1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "exec/exec-all.h" 4 #include "sysemu/kvm.h" 5 #include "sysemu/tcg.h" 6 #include "helper_regs.h" 7 #include "mmu-hash64.h" 8 #include "migration/cpu.h" 9 #include "qapi/error.h" 10 #include "kvm_ppc.h" 11 #include "power8-pmu.h" 12 #include "sysemu/replay.h" 13 14 static void post_load_update_msr(CPUPPCState *env) 15 { 16 target_ulong msr = env->msr; 17 18 /* 19 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB 20 * before restoring. Note that this recomputes hflags. 21 */ 22 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB); 23 ppc_store_msr(env, msr); 24 } 25 26 static int get_avr(QEMUFile *f, void *pv, size_t size, 27 const VMStateField *field) 28 { 29 ppc_avr_t *v = pv; 30 31 v->u64[0] = qemu_get_be64(f); 32 v->u64[1] = qemu_get_be64(f); 33 34 return 0; 35 } 36 37 static int put_avr(QEMUFile *f, void *pv, size_t size, 38 const VMStateField *field, JSONWriter *vmdesc) 39 { 40 ppc_avr_t *v = pv; 41 42 qemu_put_be64(f, v->u64[0]); 43 qemu_put_be64(f, v->u64[1]); 44 return 0; 45 } 46 47 static const VMStateInfo vmstate_info_avr = { 48 .name = "avr", 49 .get = get_avr, 50 .put = put_avr, 51 }; 52 53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \ 54 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t) 55 56 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \ 57 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0) 58 59 static int get_fpr(QEMUFile *f, void *pv, size_t size, 60 const VMStateField *field) 61 { 62 ppc_vsr_t *v = pv; 63 64 v->VsrD(0) = qemu_get_be64(f); 65 66 return 0; 67 } 68 69 static int put_fpr(QEMUFile *f, void *pv, size_t size, 70 const VMStateField *field, JSONWriter *vmdesc) 71 { 72 ppc_vsr_t *v = pv; 73 74 qemu_put_be64(f, v->VsrD(0)); 75 return 0; 76 } 77 78 static const VMStateInfo vmstate_info_fpr = { 79 .name = "fpr", 80 .get = get_fpr, 81 .put = put_fpr, 82 }; 83 84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \ 85 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t) 86 87 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \ 88 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0) 89 90 static int get_vsr(QEMUFile *f, void *pv, size_t size, 91 const VMStateField *field) 92 { 93 ppc_vsr_t *v = pv; 94 95 v->VsrD(1) = qemu_get_be64(f); 96 97 return 0; 98 } 99 100 static int put_vsr(QEMUFile *f, void *pv, size_t size, 101 const VMStateField *field, JSONWriter *vmdesc) 102 { 103 ppc_vsr_t *v = pv; 104 105 qemu_put_be64(f, v->VsrD(1)); 106 return 0; 107 } 108 109 static const VMStateInfo vmstate_info_vsr = { 110 .name = "vsr", 111 .get = get_vsr, 112 .put = put_vsr, 113 }; 114 115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \ 116 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t) 117 118 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \ 119 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0) 120 121 static bool cpu_pre_2_8_migration(void *opaque, int version_id) 122 { 123 PowerPCCPU *cpu = opaque; 124 125 return cpu->pre_2_8_migration; 126 } 127 128 #if defined(TARGET_PPC64) 129 static bool cpu_pre_3_0_migration(void *opaque, int version_id) 130 { 131 PowerPCCPU *cpu = opaque; 132 133 return cpu->pre_3_0_migration; 134 } 135 #endif 136 137 static int cpu_pre_save(void *opaque) 138 { 139 PowerPCCPU *cpu = opaque; 140 CPUPPCState *env = &cpu->env; 141 int i; 142 uint64_t insns_compat_mask = 143 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB 144 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES 145 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES 146 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT 147 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ 148 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC 149 | PPC_64B | PPC_64BX | PPC_ALTIVEC 150 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD; 151 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX 152 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 153 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206 154 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207 155 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 156 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM 157 | PPC2_MEM_LWSYNC; 158 159 env->spr[SPR_LR] = env->lr; 160 env->spr[SPR_CTR] = env->ctr; 161 env->spr[SPR_XER] = cpu_read_xer(env); 162 #if defined(TARGET_PPC64) 163 env->spr[SPR_CFAR] = env->cfar; 164 #endif 165 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr; 166 167 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 168 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i]; 169 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i]; 170 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i]; 171 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i]; 172 } 173 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 174 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4]; 175 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4]; 176 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4]; 177 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4]; 178 } 179 180 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */ 181 if (cpu->pre_2_8_migration) { 182 /* 183 * Mask out bits that got added to msr_mask since the versions 184 * which stupidly included it in the migration stream. 185 */ 186 target_ulong metamask = 0 187 #if defined(TARGET_PPC64) 188 | (1ULL << MSR_TS0) 189 | (1ULL << MSR_TS1) 190 #endif 191 ; 192 cpu->mig_msr_mask = env->msr_mask & ~metamask; 193 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask; 194 /* 195 * CPU models supported by old machines all have 196 * PPC_MEM_TLBIE, so we set it unconditionally to allow 197 * backward migration from a POWER9 host to a POWER8 host. 198 */ 199 cpu->mig_insns_flags |= PPC_MEM_TLBIE; 200 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2; 201 cpu->mig_nb_BATs = env->nb_BATs; 202 } 203 if (cpu->pre_3_0_migration) { 204 if (cpu->hash64_opts) { 205 cpu->mig_slb_nr = cpu->hash64_opts->slb_size; 206 } 207 } 208 209 /* Used to retain migration compatibility for pre 6.0 for 601 machines. */ 210 env->hflags_compat_nmsr = 0; 211 212 if (tcg_enabled()) { 213 /* 214 * TCG does not maintain the DECR spr (unlike KVM) so have to save 215 * it here. 216 */ 217 env->spr[SPR_DECR] = cpu_ppc_load_decr(env); 218 } 219 220 return 0; 221 } 222 223 /* 224 * Determine if a given PVR is a "close enough" match to the CPU 225 * object. For TCG and KVM PR it would probably be sufficient to 226 * require an exact PVR match. However for KVM HV the user is 227 * restricted to a PVR exactly matching the host CPU. The correct way 228 * to handle this is to put the guest into an architected 229 * compatibility mode. However, to allow a more forgiving transition 230 * and migration from before this was widely done, we allow migration 231 * between sufficiently similar PVRs, as determined by the CPU class's 232 * pvr_match() hook. 233 */ 234 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr) 235 { 236 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 237 238 if (pvr == pcc->pvr) { 239 return true; 240 } 241 return pcc->pvr_match(pcc, pvr, true); 242 } 243 244 static int cpu_post_load(void *opaque, int version_id) 245 { 246 PowerPCCPU *cpu = opaque; 247 CPUPPCState *env = &cpu->env; 248 int i; 249 250 /* 251 * If we're operating in compat mode, we should be ok as long as 252 * the destination supports the same compatibility mode. 253 * 254 * Otherwise, however, we require that the destination has exactly 255 * the same CPU model as the source. 256 */ 257 258 #if defined(TARGET_PPC64) 259 if (cpu->compat_pvr) { 260 uint32_t compat_pvr = cpu->compat_pvr; 261 Error *local_err = NULL; 262 int ret; 263 264 cpu->compat_pvr = 0; 265 ret = ppc_set_compat(cpu, compat_pvr, &local_err); 266 if (ret < 0) { 267 error_report_err(local_err); 268 return ret; 269 } 270 } else 271 #endif 272 { 273 if (!pvr_match(cpu, env->spr[SPR_PVR])) { 274 return -EINVAL; 275 } 276 } 277 278 /* 279 * If we're running with KVM HV, there is a chance that the guest 280 * is running with KVM HV and its kernel does not have the 281 * capability of dealing with a different PVR other than this 282 * exact host PVR in KVM_SET_SREGS. If that happens, the 283 * guest freezes after migration. 284 * 285 * The function kvmppc_pvr_workaround_required does this verification 286 * by first checking if the kernel has the cap, returning true immediately 287 * if that is the case. Otherwise, it checks if we're running in KVM PR. 288 * If the guest kernel does not have the cap and we're not running KVM-PR 289 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will 290 * receive the PVR it expects as a workaround. 291 * 292 */ 293 if (kvmppc_pvr_workaround_required(cpu)) { 294 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; 295 } 296 297 env->lr = env->spr[SPR_LR]; 298 env->ctr = env->spr[SPR_CTR]; 299 cpu_write_xer(env, env->spr[SPR_XER]); 300 #if defined(TARGET_PPC64) 301 env->cfar = env->spr[SPR_CFAR]; 302 #endif 303 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR]; 304 305 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 306 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i]; 307 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1]; 308 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i]; 309 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1]; 310 } 311 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 312 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i]; 313 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1]; 314 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i]; 315 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1]; 316 } 317 318 if (!cpu->vhyp) { 319 ppc_store_sdr1(env, env->spr[SPR_SDR1]); 320 } 321 322 post_load_update_msr(env); 323 324 if (tcg_enabled()) { 325 /* Re-set breaks based on regs */ 326 #if defined(TARGET_PPC64) 327 ppc_update_ciabr(env); 328 ppc_update_daw0(env); 329 #endif 330 /* 331 * TCG needs to re-start the decrementer timer and/or raise the 332 * interrupt. This works for level-triggered decrementer. Edge 333 * triggered types (including HDEC) would need to carry more state. 334 */ 335 cpu_ppc_store_decr(env, env->spr[SPR_DECR]); 336 pmu_mmcr01_updated(env); 337 } 338 339 return 0; 340 } 341 342 static bool fpu_needed(void *opaque) 343 { 344 PowerPCCPU *cpu = opaque; 345 346 return cpu->env.insns_flags & PPC_FLOAT; 347 } 348 349 static const VMStateDescription vmstate_fpu = { 350 .name = "cpu/fpu", 351 .version_id = 1, 352 .minimum_version_id = 1, 353 .needed = fpu_needed, 354 .fields = (const VMStateField[]) { 355 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32), 356 VMSTATE_UINTTL(env.fpscr, PowerPCCPU), 357 VMSTATE_END_OF_LIST() 358 }, 359 }; 360 361 static bool altivec_needed(void *opaque) 362 { 363 PowerPCCPU *cpu = opaque; 364 365 return cpu->env.insns_flags & PPC_ALTIVEC; 366 } 367 368 static int get_vscr(QEMUFile *f, void *opaque, size_t size, 369 const VMStateField *field) 370 { 371 PowerPCCPU *cpu = opaque; 372 ppc_store_vscr(&cpu->env, qemu_get_be32(f)); 373 return 0; 374 } 375 376 static int put_vscr(QEMUFile *f, void *opaque, size_t size, 377 const VMStateField *field, JSONWriter *vmdesc) 378 { 379 PowerPCCPU *cpu = opaque; 380 qemu_put_be32(f, ppc_get_vscr(&cpu->env)); 381 return 0; 382 } 383 384 static const VMStateInfo vmstate_vscr = { 385 .name = "cpu/altivec/vscr", 386 .get = get_vscr, 387 .put = put_vscr, 388 }; 389 390 static const VMStateDescription vmstate_altivec = { 391 .name = "cpu/altivec", 392 .version_id = 1, 393 .minimum_version_id = 1, 394 .needed = altivec_needed, 395 .fields = (const VMStateField[]) { 396 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32), 397 /* 398 * Save the architecture value of the vscr, not the internally 399 * expanded version. Since this architecture value does not 400 * exist in memory to be stored, this requires a but of hoop 401 * jumping. We want OFFSET=0 so that we effectively pass CPU 402 * to the helper functions. 403 */ 404 { 405 .name = "vscr", 406 .version_id = 0, 407 .size = sizeof(uint32_t), 408 .info = &vmstate_vscr, 409 .flags = VMS_SINGLE, 410 .offset = 0 411 }, 412 VMSTATE_END_OF_LIST() 413 }, 414 }; 415 416 static bool vsx_needed(void *opaque) 417 { 418 PowerPCCPU *cpu = opaque; 419 420 return cpu->env.insns_flags2 & PPC2_VSX; 421 } 422 423 static const VMStateDescription vmstate_vsx = { 424 .name = "cpu/vsx", 425 .version_id = 1, 426 .minimum_version_id = 1, 427 .needed = vsx_needed, 428 .fields = (const VMStateField[]) { 429 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32), 430 VMSTATE_END_OF_LIST() 431 }, 432 }; 433 434 #ifdef TARGET_PPC64 435 /* Transactional memory state */ 436 static bool tm_needed(void *opaque) 437 { 438 PowerPCCPU *cpu = opaque; 439 CPUPPCState *env = &cpu->env; 440 return FIELD_EX64(env->msr, MSR, TS); 441 } 442 443 static const VMStateDescription vmstate_tm = { 444 .name = "cpu/tm", 445 .version_id = 1, 446 .minimum_version_id = 1, 447 .needed = tm_needed, 448 .fields = (const VMStateField []) { 449 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32), 450 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64), 451 VMSTATE_UINT64(env.tm_cr, PowerPCCPU), 452 VMSTATE_UINT64(env.tm_lr, PowerPCCPU), 453 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU), 454 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU), 455 VMSTATE_UINT64(env.tm_amr, PowerPCCPU), 456 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU), 457 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU), 458 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU), 459 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU), 460 VMSTATE_UINT64(env.tm_tar, PowerPCCPU), 461 VMSTATE_END_OF_LIST() 462 }, 463 }; 464 #endif 465 466 static bool sr_needed(void *opaque) 467 { 468 #ifdef TARGET_PPC64 469 PowerPCCPU *cpu = opaque; 470 471 return !mmu_is_64bit(cpu->env.mmu_model); 472 #else 473 return true; 474 #endif 475 } 476 477 static const VMStateDescription vmstate_sr = { 478 .name = "cpu/sr", 479 .version_id = 1, 480 .minimum_version_id = 1, 481 .needed = sr_needed, 482 .fields = (const VMStateField[]) { 483 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32), 484 VMSTATE_END_OF_LIST() 485 }, 486 }; 487 488 #ifdef TARGET_PPC64 489 static int get_slbe(QEMUFile *f, void *pv, size_t size, 490 const VMStateField *field) 491 { 492 ppc_slb_t *v = pv; 493 494 v->esid = qemu_get_be64(f); 495 v->vsid = qemu_get_be64(f); 496 497 return 0; 498 } 499 500 static int put_slbe(QEMUFile *f, void *pv, size_t size, 501 const VMStateField *field, JSONWriter *vmdesc) 502 { 503 ppc_slb_t *v = pv; 504 505 qemu_put_be64(f, v->esid); 506 qemu_put_be64(f, v->vsid); 507 return 0; 508 } 509 510 static const VMStateInfo vmstate_info_slbe = { 511 .name = "slbe", 512 .get = get_slbe, 513 .put = put_slbe, 514 }; 515 516 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \ 517 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t) 518 519 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \ 520 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0) 521 522 static bool slb_needed(void *opaque) 523 { 524 PowerPCCPU *cpu = opaque; 525 526 /* We don't support any of the old segment table based 64-bit CPUs */ 527 return mmu_is_64bit(cpu->env.mmu_model); 528 } 529 530 static int slb_post_load(void *opaque, int version_id) 531 { 532 PowerPCCPU *cpu = opaque; 533 CPUPPCState *env = &cpu->env; 534 int i; 535 536 /* 537 * We've pulled in the raw esid and vsid values from the migration 538 * stream, but we need to recompute the page size pointers 539 */ 540 for (i = 0; i < cpu->hash64_opts->slb_size; i++) { 541 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) { 542 /* Migration source had bad values in its SLB */ 543 return -1; 544 } 545 } 546 547 return 0; 548 } 549 550 static const VMStateDescription vmstate_slb = { 551 .name = "cpu/slb", 552 .version_id = 1, 553 .minimum_version_id = 1, 554 .needed = slb_needed, 555 .post_load = slb_post_load, 556 .fields = (const VMStateField[]) { 557 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration), 558 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES), 559 VMSTATE_END_OF_LIST() 560 } 561 }; 562 #endif /* TARGET_PPC64 */ 563 564 static const VMStateDescription vmstate_tlb6xx_entry = { 565 .name = "cpu/tlb6xx_entry", 566 .version_id = 1, 567 .minimum_version_id = 1, 568 .fields = (const VMStateField[]) { 569 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t), 570 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t), 571 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t), 572 VMSTATE_END_OF_LIST() 573 }, 574 }; 575 576 static bool tlb6xx_needed(void *opaque) 577 { 578 PowerPCCPU *cpu = opaque; 579 CPUPPCState *env = &cpu->env; 580 581 return env->nb_tlb && (env->tlb_type == TLB_6XX); 582 } 583 584 static const VMStateDescription vmstate_tlb6xx = { 585 .name = "cpu/tlb6xx", 586 .version_id = 1, 587 .minimum_version_id = 1, 588 .needed = tlb6xx_needed, 589 .fields = (const VMStateField[]) { 590 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 591 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU, 592 env.nb_tlb, 593 vmstate_tlb6xx_entry, 594 ppc6xx_tlb_t), 595 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4), 596 VMSTATE_END_OF_LIST() 597 } 598 }; 599 600 static const VMStateDescription vmstate_tlbemb_entry = { 601 .name = "cpu/tlbemb_entry", 602 .version_id = 1, 603 .minimum_version_id = 1, 604 .fields = (const VMStateField[]) { 605 VMSTATE_UINT64(RPN, ppcemb_tlb_t), 606 VMSTATE_UINTTL(EPN, ppcemb_tlb_t), 607 VMSTATE_UINTTL(PID, ppcemb_tlb_t), 608 VMSTATE_UINTTL(size, ppcemb_tlb_t), 609 VMSTATE_UINT32(prot, ppcemb_tlb_t), 610 VMSTATE_UINT32(attr, ppcemb_tlb_t), 611 VMSTATE_END_OF_LIST() 612 }, 613 }; 614 615 static bool tlbemb_needed(void *opaque) 616 { 617 PowerPCCPU *cpu = opaque; 618 CPUPPCState *env = &cpu->env; 619 620 return env->nb_tlb && (env->tlb_type == TLB_EMB); 621 } 622 623 static const VMStateDescription vmstate_tlbemb = { 624 .name = "cpu/tlb6xx", 625 .version_id = 1, 626 .minimum_version_id = 1, 627 .needed = tlbemb_needed, 628 .fields = (const VMStateField[]) { 629 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 630 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU, 631 env.nb_tlb, 632 vmstate_tlbemb_entry, 633 ppcemb_tlb_t), 634 VMSTATE_END_OF_LIST() 635 }, 636 }; 637 638 static const VMStateDescription vmstate_tlbmas_entry = { 639 .name = "cpu/tlbmas_entry", 640 .version_id = 1, 641 .minimum_version_id = 1, 642 .fields = (const VMStateField[]) { 643 VMSTATE_UINT32(mas8, ppcmas_tlb_t), 644 VMSTATE_UINT32(mas1, ppcmas_tlb_t), 645 VMSTATE_UINT64(mas2, ppcmas_tlb_t), 646 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t), 647 VMSTATE_END_OF_LIST() 648 }, 649 }; 650 651 static bool tlbmas_needed(void *opaque) 652 { 653 PowerPCCPU *cpu = opaque; 654 CPUPPCState *env = &cpu->env; 655 656 return env->nb_tlb && (env->tlb_type == TLB_MAS); 657 } 658 659 static const VMStateDescription vmstate_tlbmas = { 660 .name = "cpu/tlbmas", 661 .version_id = 1, 662 .minimum_version_id = 1, 663 .needed = tlbmas_needed, 664 .fields = (const VMStateField[]) { 665 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 666 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU, 667 env.nb_tlb, 668 vmstate_tlbmas_entry, 669 ppcmas_tlb_t), 670 VMSTATE_END_OF_LIST() 671 } 672 }; 673 674 static bool compat_needed(void *opaque) 675 { 676 PowerPCCPU *cpu = opaque; 677 678 assert(!(cpu->compat_pvr && !cpu->vhyp)); 679 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0; 680 } 681 682 static const VMStateDescription vmstate_compat = { 683 .name = "cpu/compat", 684 .version_id = 1, 685 .minimum_version_id = 1, 686 .needed = compat_needed, 687 .fields = (const VMStateField[]) { 688 VMSTATE_UINT32(compat_pvr, PowerPCCPU), 689 VMSTATE_END_OF_LIST() 690 } 691 }; 692 693 static bool reservation_needed(void *opaque) 694 { 695 return (replay_mode != REPLAY_MODE_NONE); 696 } 697 698 static const VMStateDescription vmstate_reservation = { 699 .name = "cpu/reservation", 700 .version_id = 1, 701 .minimum_version_id = 1, 702 .needed = reservation_needed, 703 .fields = (const VMStateField[]) { 704 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU), 705 VMSTATE_UINTTL(env.reserve_length, PowerPCCPU), 706 VMSTATE_UINTTL(env.reserve_val, PowerPCCPU), 707 #if defined(TARGET_PPC64) 708 VMSTATE_UINTTL(env.reserve_val2, PowerPCCPU), 709 #endif 710 VMSTATE_END_OF_LIST() 711 } 712 }; 713 714 const VMStateDescription vmstate_ppc_cpu = { 715 .name = "cpu", 716 .version_id = 5, 717 .minimum_version_id = 5, 718 .pre_save = cpu_pre_save, 719 .post_load = cpu_post_load, 720 .fields = (const VMStateField[]) { 721 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */ 722 723 /* User mode architected state */ 724 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32), 725 #if !defined(TARGET_PPC64) 726 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32), 727 #endif 728 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8), 729 VMSTATE_UINTTL(env.nip, PowerPCCPU), 730 731 /* SPRs */ 732 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024), 733 VMSTATE_UINT64(env.spe_acc, PowerPCCPU), 734 735 VMSTATE_UNUSED(sizeof(target_ulong)), /* was env.reserve_addr */ 736 737 /* Supervisor mode architected state */ 738 VMSTATE_UINTTL(env.msr, PowerPCCPU), 739 740 /* Backward compatible internal state */ 741 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU), 742 743 /* Sanity checking */ 744 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration), 745 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration), 746 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU, 747 cpu_pre_2_8_migration), 748 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration), 749 VMSTATE_END_OF_LIST() 750 }, 751 .subsections = (const VMStateDescription * const []) { 752 &vmstate_fpu, 753 &vmstate_altivec, 754 &vmstate_vsx, 755 &vmstate_sr, 756 #ifdef TARGET_PPC64 757 &vmstate_tm, 758 &vmstate_slb, 759 #endif /* TARGET_PPC64 */ 760 &vmstate_tlb6xx, 761 &vmstate_tlbemb, 762 &vmstate_tlbmas, 763 &vmstate_compat, 764 &vmstate_reservation, 765 NULL 766 } 767 }; 768