1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "exec/exec-all.h" 4 #include "sysemu/kvm.h" 5 #include "helper_regs.h" 6 #include "mmu-hash64.h" 7 #include "migration/cpu.h" 8 #include "qapi/error.h" 9 #include "qemu/main-loop.h" 10 #include "kvm_ppc.h" 11 12 static void post_load_update_msr(CPUPPCState *env) 13 { 14 target_ulong msr = env->msr; 15 16 /* 17 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB 18 * before restoring. Note that this recomputes hflags. 19 */ 20 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB); 21 ppc_store_msr(env, msr); 22 } 23 24 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id) 25 { 26 PowerPCCPU *cpu = opaque; 27 CPUPPCState *env = &cpu->env; 28 unsigned int i, j; 29 target_ulong sdr1; 30 uint32_t fpscr, vscr; 31 #if defined(TARGET_PPC64) 32 int32_t slb_nr; 33 #endif 34 target_ulong xer; 35 36 for (i = 0; i < 32; i++) { 37 qemu_get_betls(f, &env->gpr[i]); 38 } 39 #if !defined(TARGET_PPC64) 40 for (i = 0; i < 32; i++) { 41 qemu_get_betls(f, &env->gprh[i]); 42 } 43 #endif 44 qemu_get_betls(f, &env->lr); 45 qemu_get_betls(f, &env->ctr); 46 for (i = 0; i < 8; i++) { 47 qemu_get_be32s(f, &env->crf[i]); 48 } 49 qemu_get_betls(f, &xer); 50 cpu_write_xer(env, xer); 51 qemu_get_betls(f, &env->reserve_addr); 52 qemu_get_betls(f, &env->msr); 53 for (i = 0; i < 4; i++) { 54 qemu_get_betls(f, &env->tgpr[i]); 55 } 56 for (i = 0; i < 32; i++) { 57 union { 58 float64 d; 59 uint64_t l; 60 } u; 61 u.l = qemu_get_be64(f); 62 *cpu_fpr_ptr(env, i) = u.d; 63 } 64 qemu_get_be32s(f, &fpscr); 65 env->fpscr = fpscr; 66 qemu_get_sbe32s(f, &env->access_type); 67 #if defined(TARGET_PPC64) 68 qemu_get_betls(f, &env->spr[SPR_ASR]); 69 qemu_get_sbe32s(f, &slb_nr); 70 #endif 71 qemu_get_betls(f, &sdr1); 72 for (i = 0; i < 32; i++) { 73 qemu_get_betls(f, &env->sr[i]); 74 } 75 for (i = 0; i < 2; i++) { 76 for (j = 0; j < 8; j++) { 77 qemu_get_betls(f, &env->DBAT[i][j]); 78 } 79 } 80 for (i = 0; i < 2; i++) { 81 for (j = 0; j < 8; j++) { 82 qemu_get_betls(f, &env->IBAT[i][j]); 83 } 84 } 85 qemu_get_sbe32s(f, &env->nb_tlb); 86 qemu_get_sbe32s(f, &env->tlb_per_way); 87 qemu_get_sbe32s(f, &env->nb_ways); 88 qemu_get_sbe32s(f, &env->last_way); 89 qemu_get_sbe32s(f, &env->id_tlbs); 90 qemu_get_sbe32s(f, &env->nb_pids); 91 if (env->tlb.tlb6) { 92 /* XXX assumes 6xx */ 93 for (i = 0; i < env->nb_tlb; i++) { 94 qemu_get_betls(f, &env->tlb.tlb6[i].pte0); 95 qemu_get_betls(f, &env->tlb.tlb6[i].pte1); 96 qemu_get_betls(f, &env->tlb.tlb6[i].EPN); 97 } 98 } 99 for (i = 0; i < 4; i++) { 100 qemu_get_betls(f, &env->pb[i]); 101 } 102 for (i = 0; i < 1024; i++) { 103 qemu_get_betls(f, &env->spr[i]); 104 } 105 if (!cpu->vhyp) { 106 ppc_store_sdr1(env, sdr1); 107 } 108 qemu_get_be32s(f, &vscr); 109 ppc_store_vscr(env, vscr); 110 qemu_get_be64s(f, &env->spe_acc); 111 qemu_get_be32s(f, &env->spe_fscr); 112 qemu_get_betls(f, &env->msr_mask); 113 qemu_get_be32s(f, &env->flags); 114 qemu_get_sbe32s(f, &env->error_code); 115 qemu_get_be32s(f, &env->pending_interrupts); 116 qemu_get_be32s(f, &env->irq_input_state); 117 for (i = 0; i < POWERPC_EXCP_NB; i++) { 118 qemu_get_betls(f, &env->excp_vectors[i]); 119 } 120 qemu_get_betls(f, &env->excp_prefix); 121 qemu_get_betls(f, &env->ivor_mask); 122 qemu_get_betls(f, &env->ivpr_mask); 123 qemu_get_betls(f, &env->hreset_vector); 124 qemu_get_betls(f, &env->nip); 125 qemu_get_sbetl(f); /* Discard unused hflags */ 126 qemu_get_sbetl(f); /* Discard unused hflags_nmsr */ 127 qemu_get_sbe32(f); /* Discard unused mmu_idx */ 128 qemu_get_sbe32(f); /* Discard unused power_mode */ 129 130 post_load_update_msr(env); 131 132 return 0; 133 } 134 135 static int get_avr(QEMUFile *f, void *pv, size_t size, 136 const VMStateField *field) 137 { 138 ppc_avr_t *v = pv; 139 140 v->u64[0] = qemu_get_be64(f); 141 v->u64[1] = qemu_get_be64(f); 142 143 return 0; 144 } 145 146 static int put_avr(QEMUFile *f, void *pv, size_t size, 147 const VMStateField *field, JSONWriter *vmdesc) 148 { 149 ppc_avr_t *v = pv; 150 151 qemu_put_be64(f, v->u64[0]); 152 qemu_put_be64(f, v->u64[1]); 153 return 0; 154 } 155 156 static const VMStateInfo vmstate_info_avr = { 157 .name = "avr", 158 .get = get_avr, 159 .put = put_avr, 160 }; 161 162 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \ 163 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t) 164 165 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \ 166 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0) 167 168 static int get_fpr(QEMUFile *f, void *pv, size_t size, 169 const VMStateField *field) 170 { 171 ppc_vsr_t *v = pv; 172 173 v->VsrD(0) = qemu_get_be64(f); 174 175 return 0; 176 } 177 178 static int put_fpr(QEMUFile *f, void *pv, size_t size, 179 const VMStateField *field, JSONWriter *vmdesc) 180 { 181 ppc_vsr_t *v = pv; 182 183 qemu_put_be64(f, v->VsrD(0)); 184 return 0; 185 } 186 187 static const VMStateInfo vmstate_info_fpr = { 188 .name = "fpr", 189 .get = get_fpr, 190 .put = put_fpr, 191 }; 192 193 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \ 194 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t) 195 196 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \ 197 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0) 198 199 static int get_vsr(QEMUFile *f, void *pv, size_t size, 200 const VMStateField *field) 201 { 202 ppc_vsr_t *v = pv; 203 204 v->VsrD(1) = qemu_get_be64(f); 205 206 return 0; 207 } 208 209 static int put_vsr(QEMUFile *f, void *pv, size_t size, 210 const VMStateField *field, JSONWriter *vmdesc) 211 { 212 ppc_vsr_t *v = pv; 213 214 qemu_put_be64(f, v->VsrD(1)); 215 return 0; 216 } 217 218 static const VMStateInfo vmstate_info_vsr = { 219 .name = "vsr", 220 .get = get_vsr, 221 .put = put_vsr, 222 }; 223 224 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \ 225 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t) 226 227 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \ 228 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0) 229 230 static bool cpu_pre_2_8_migration(void *opaque, int version_id) 231 { 232 PowerPCCPU *cpu = opaque; 233 234 return cpu->pre_2_8_migration; 235 } 236 237 #if defined(TARGET_PPC64) 238 static bool cpu_pre_3_0_migration(void *opaque, int version_id) 239 { 240 PowerPCCPU *cpu = opaque; 241 242 return cpu->pre_3_0_migration; 243 } 244 #endif 245 246 static int cpu_pre_save(void *opaque) 247 { 248 PowerPCCPU *cpu = opaque; 249 CPUPPCState *env = &cpu->env; 250 int i; 251 uint64_t insns_compat_mask = 252 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB 253 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES 254 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES 255 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT 256 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ 257 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC 258 | PPC_64B | PPC_64BX | PPC_ALTIVEC 259 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD; 260 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX 261 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 262 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206 263 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207 264 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 265 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM; 266 267 env->spr[SPR_LR] = env->lr; 268 env->spr[SPR_CTR] = env->ctr; 269 env->spr[SPR_XER] = cpu_read_xer(env); 270 #if defined(TARGET_PPC64) 271 env->spr[SPR_CFAR] = env->cfar; 272 #endif 273 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr; 274 275 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 276 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i]; 277 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i]; 278 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i]; 279 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i]; 280 } 281 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 282 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4]; 283 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4]; 284 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4]; 285 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4]; 286 } 287 288 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */ 289 if (cpu->pre_2_8_migration) { 290 /* 291 * Mask out bits that got added to msr_mask since the versions 292 * which stupidly included it in the migration stream. 293 */ 294 target_ulong metamask = 0 295 #if defined(TARGET_PPC64) 296 | (1ULL << MSR_TS0) 297 | (1ULL << MSR_TS1) 298 #endif 299 ; 300 cpu->mig_msr_mask = env->msr_mask & ~metamask; 301 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask; 302 /* 303 * CPU models supported by old machines all have 304 * PPC_MEM_TLBIE, so we set it unconditionally to allow 305 * backward migration from a POWER9 host to a POWER8 host. 306 */ 307 cpu->mig_insns_flags |= PPC_MEM_TLBIE; 308 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2; 309 cpu->mig_nb_BATs = env->nb_BATs; 310 } 311 if (cpu->pre_3_0_migration) { 312 if (cpu->hash64_opts) { 313 cpu->mig_slb_nr = cpu->hash64_opts->slb_size; 314 } 315 } 316 317 /* Retain migration compatibility for pre 6.0 for 601 machines. */ 318 env->hflags_compat_nmsr = (env->flags & POWERPC_FLAG_HID0_LE 319 ? env->hflags & MSR_LE : 0); 320 321 return 0; 322 } 323 324 /* 325 * Determine if a given PVR is a "close enough" match to the CPU 326 * object. For TCG and KVM PR it would probably be sufficient to 327 * require an exact PVR match. However for KVM HV the user is 328 * restricted to a PVR exactly matching the host CPU. The correct way 329 * to handle this is to put the guest into an architected 330 * compatibility mode. However, to allow a more forgiving transition 331 * and migration from before this was widely done, we allow migration 332 * between sufficiently similar PVRs, as determined by the CPU class's 333 * pvr_match() hook. 334 */ 335 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr) 336 { 337 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 338 339 if (pvr == pcc->pvr) { 340 return true; 341 } 342 return pcc->pvr_match(pcc, pvr); 343 } 344 345 static int cpu_post_load(void *opaque, int version_id) 346 { 347 PowerPCCPU *cpu = opaque; 348 CPUPPCState *env = &cpu->env; 349 int i; 350 351 /* 352 * If we're operating in compat mode, we should be ok as long as 353 * the destination supports the same compatibility mode. 354 * 355 * Otherwise, however, we require that the destination has exactly 356 * the same CPU model as the source. 357 */ 358 359 #if defined(TARGET_PPC64) 360 if (cpu->compat_pvr) { 361 uint32_t compat_pvr = cpu->compat_pvr; 362 Error *local_err = NULL; 363 int ret; 364 365 cpu->compat_pvr = 0; 366 ret = ppc_set_compat(cpu, compat_pvr, &local_err); 367 if (ret < 0) { 368 error_report_err(local_err); 369 return ret; 370 } 371 } else 372 #endif 373 { 374 if (!pvr_match(cpu, env->spr[SPR_PVR])) { 375 return -EINVAL; 376 } 377 } 378 379 /* 380 * If we're running with KVM HV, there is a chance that the guest 381 * is running with KVM HV and its kernel does not have the 382 * capability of dealing with a different PVR other than this 383 * exact host PVR in KVM_SET_SREGS. If that happens, the 384 * guest freezes after migration. 385 * 386 * The function kvmppc_pvr_workaround_required does this verification 387 * by first checking if the kernel has the cap, returning true immediately 388 * if that is the case. Otherwise, it checks if we're running in KVM PR. 389 * If the guest kernel does not have the cap and we're not running KVM-PR 390 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will 391 * receive the PVR it expects as a workaround. 392 * 393 */ 394 if (kvmppc_pvr_workaround_required(cpu)) { 395 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; 396 } 397 398 env->lr = env->spr[SPR_LR]; 399 env->ctr = env->spr[SPR_CTR]; 400 cpu_write_xer(env, env->spr[SPR_XER]); 401 #if defined(TARGET_PPC64) 402 env->cfar = env->spr[SPR_CFAR]; 403 #endif 404 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR]; 405 406 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 407 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i]; 408 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1]; 409 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i]; 410 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1]; 411 } 412 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 413 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i]; 414 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1]; 415 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i]; 416 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1]; 417 } 418 419 if (!cpu->vhyp) { 420 ppc_store_sdr1(env, env->spr[SPR_SDR1]); 421 } 422 423 post_load_update_msr(env); 424 425 return 0; 426 } 427 428 static bool fpu_needed(void *opaque) 429 { 430 PowerPCCPU *cpu = opaque; 431 432 return cpu->env.insns_flags & PPC_FLOAT; 433 } 434 435 static const VMStateDescription vmstate_fpu = { 436 .name = "cpu/fpu", 437 .version_id = 1, 438 .minimum_version_id = 1, 439 .needed = fpu_needed, 440 .fields = (VMStateField[]) { 441 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32), 442 VMSTATE_UINTTL(env.fpscr, PowerPCCPU), 443 VMSTATE_END_OF_LIST() 444 }, 445 }; 446 447 static bool altivec_needed(void *opaque) 448 { 449 PowerPCCPU *cpu = opaque; 450 451 return cpu->env.insns_flags & PPC_ALTIVEC; 452 } 453 454 static int get_vscr(QEMUFile *f, void *opaque, size_t size, 455 const VMStateField *field) 456 { 457 PowerPCCPU *cpu = opaque; 458 ppc_store_vscr(&cpu->env, qemu_get_be32(f)); 459 return 0; 460 } 461 462 static int put_vscr(QEMUFile *f, void *opaque, size_t size, 463 const VMStateField *field, JSONWriter *vmdesc) 464 { 465 PowerPCCPU *cpu = opaque; 466 qemu_put_be32(f, ppc_get_vscr(&cpu->env)); 467 return 0; 468 } 469 470 static const VMStateInfo vmstate_vscr = { 471 .name = "cpu/altivec/vscr", 472 .get = get_vscr, 473 .put = put_vscr, 474 }; 475 476 static const VMStateDescription vmstate_altivec = { 477 .name = "cpu/altivec", 478 .version_id = 1, 479 .minimum_version_id = 1, 480 .needed = altivec_needed, 481 .fields = (VMStateField[]) { 482 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32), 483 /* 484 * Save the architecture value of the vscr, not the internally 485 * expanded version. Since this architecture value does not 486 * exist in memory to be stored, this requires a but of hoop 487 * jumping. We want OFFSET=0 so that we effectively pass CPU 488 * to the helper functions. 489 */ 490 { 491 .name = "vscr", 492 .version_id = 0, 493 .size = sizeof(uint32_t), 494 .info = &vmstate_vscr, 495 .flags = VMS_SINGLE, 496 .offset = 0 497 }, 498 VMSTATE_END_OF_LIST() 499 }, 500 }; 501 502 static bool vsx_needed(void *opaque) 503 { 504 PowerPCCPU *cpu = opaque; 505 506 return cpu->env.insns_flags2 & PPC2_VSX; 507 } 508 509 static const VMStateDescription vmstate_vsx = { 510 .name = "cpu/vsx", 511 .version_id = 1, 512 .minimum_version_id = 1, 513 .needed = vsx_needed, 514 .fields = (VMStateField[]) { 515 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32), 516 VMSTATE_END_OF_LIST() 517 }, 518 }; 519 520 #ifdef TARGET_PPC64 521 /* Transactional memory state */ 522 static bool tm_needed(void *opaque) 523 { 524 PowerPCCPU *cpu = opaque; 525 CPUPPCState *env = &cpu->env; 526 return msr_ts; 527 } 528 529 static const VMStateDescription vmstate_tm = { 530 .name = "cpu/tm", 531 .version_id = 1, 532 .minimum_version_id = 1, 533 .minimum_version_id_old = 1, 534 .needed = tm_needed, 535 .fields = (VMStateField []) { 536 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32), 537 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64), 538 VMSTATE_UINT64(env.tm_cr, PowerPCCPU), 539 VMSTATE_UINT64(env.tm_lr, PowerPCCPU), 540 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU), 541 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU), 542 VMSTATE_UINT64(env.tm_amr, PowerPCCPU), 543 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU), 544 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU), 545 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU), 546 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU), 547 VMSTATE_UINT64(env.tm_tar, PowerPCCPU), 548 VMSTATE_END_OF_LIST() 549 }, 550 }; 551 #endif 552 553 static bool sr_needed(void *opaque) 554 { 555 #ifdef TARGET_PPC64 556 PowerPCCPU *cpu = opaque; 557 558 return !mmu_is_64bit(cpu->env.mmu_model); 559 #else 560 return true; 561 #endif 562 } 563 564 static const VMStateDescription vmstate_sr = { 565 .name = "cpu/sr", 566 .version_id = 1, 567 .minimum_version_id = 1, 568 .needed = sr_needed, 569 .fields = (VMStateField[]) { 570 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32), 571 VMSTATE_END_OF_LIST() 572 }, 573 }; 574 575 #ifdef TARGET_PPC64 576 static int get_slbe(QEMUFile *f, void *pv, size_t size, 577 const VMStateField *field) 578 { 579 ppc_slb_t *v = pv; 580 581 v->esid = qemu_get_be64(f); 582 v->vsid = qemu_get_be64(f); 583 584 return 0; 585 } 586 587 static int put_slbe(QEMUFile *f, void *pv, size_t size, 588 const VMStateField *field, JSONWriter *vmdesc) 589 { 590 ppc_slb_t *v = pv; 591 592 qemu_put_be64(f, v->esid); 593 qemu_put_be64(f, v->vsid); 594 return 0; 595 } 596 597 static const VMStateInfo vmstate_info_slbe = { 598 .name = "slbe", 599 .get = get_slbe, 600 .put = put_slbe, 601 }; 602 603 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \ 604 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t) 605 606 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \ 607 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0) 608 609 static bool slb_needed(void *opaque) 610 { 611 PowerPCCPU *cpu = opaque; 612 613 /* We don't support any of the old segment table based 64-bit CPUs */ 614 return mmu_is_64bit(cpu->env.mmu_model); 615 } 616 617 static int slb_post_load(void *opaque, int version_id) 618 { 619 PowerPCCPU *cpu = opaque; 620 CPUPPCState *env = &cpu->env; 621 int i; 622 623 /* 624 * We've pulled in the raw esid and vsid values from the migration 625 * stream, but we need to recompute the page size pointers 626 */ 627 for (i = 0; i < cpu->hash64_opts->slb_size; i++) { 628 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) { 629 /* Migration source had bad values in its SLB */ 630 return -1; 631 } 632 } 633 634 return 0; 635 } 636 637 static const VMStateDescription vmstate_slb = { 638 .name = "cpu/slb", 639 .version_id = 1, 640 .minimum_version_id = 1, 641 .needed = slb_needed, 642 .post_load = slb_post_load, 643 .fields = (VMStateField[]) { 644 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration), 645 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES), 646 VMSTATE_END_OF_LIST() 647 } 648 }; 649 #endif /* TARGET_PPC64 */ 650 651 static const VMStateDescription vmstate_tlb6xx_entry = { 652 .name = "cpu/tlb6xx_entry", 653 .version_id = 1, 654 .minimum_version_id = 1, 655 .fields = (VMStateField[]) { 656 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t), 657 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t), 658 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t), 659 VMSTATE_END_OF_LIST() 660 }, 661 }; 662 663 static bool tlb6xx_needed(void *opaque) 664 { 665 PowerPCCPU *cpu = opaque; 666 CPUPPCState *env = &cpu->env; 667 668 return env->nb_tlb && (env->tlb_type == TLB_6XX); 669 } 670 671 static const VMStateDescription vmstate_tlb6xx = { 672 .name = "cpu/tlb6xx", 673 .version_id = 1, 674 .minimum_version_id = 1, 675 .needed = tlb6xx_needed, 676 .fields = (VMStateField[]) { 677 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 678 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU, 679 env.nb_tlb, 680 vmstate_tlb6xx_entry, 681 ppc6xx_tlb_t), 682 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4), 683 VMSTATE_END_OF_LIST() 684 } 685 }; 686 687 static const VMStateDescription vmstate_tlbemb_entry = { 688 .name = "cpu/tlbemb_entry", 689 .version_id = 1, 690 .minimum_version_id = 1, 691 .fields = (VMStateField[]) { 692 VMSTATE_UINT64(RPN, ppcemb_tlb_t), 693 VMSTATE_UINTTL(EPN, ppcemb_tlb_t), 694 VMSTATE_UINTTL(PID, ppcemb_tlb_t), 695 VMSTATE_UINTTL(size, ppcemb_tlb_t), 696 VMSTATE_UINT32(prot, ppcemb_tlb_t), 697 VMSTATE_UINT32(attr, ppcemb_tlb_t), 698 VMSTATE_END_OF_LIST() 699 }, 700 }; 701 702 static bool tlbemb_needed(void *opaque) 703 { 704 PowerPCCPU *cpu = opaque; 705 CPUPPCState *env = &cpu->env; 706 707 return env->nb_tlb && (env->tlb_type == TLB_EMB); 708 } 709 710 static bool pbr403_needed(void *opaque) 711 { 712 PowerPCCPU *cpu = opaque; 713 uint32_t pvr = cpu->env.spr[SPR_PVR]; 714 715 return (pvr & 0xffff0000) == 0x00200000; 716 } 717 718 static const VMStateDescription vmstate_pbr403 = { 719 .name = "cpu/pbr403", 720 .version_id = 1, 721 .minimum_version_id = 1, 722 .needed = pbr403_needed, 723 .fields = (VMStateField[]) { 724 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4), 725 VMSTATE_END_OF_LIST() 726 }, 727 }; 728 729 static const VMStateDescription vmstate_tlbemb = { 730 .name = "cpu/tlb6xx", 731 .version_id = 1, 732 .minimum_version_id = 1, 733 .needed = tlbemb_needed, 734 .fields = (VMStateField[]) { 735 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 736 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU, 737 env.nb_tlb, 738 vmstate_tlbemb_entry, 739 ppcemb_tlb_t), 740 /* 403 protection registers */ 741 VMSTATE_END_OF_LIST() 742 }, 743 .subsections = (const VMStateDescription*[]) { 744 &vmstate_pbr403, 745 NULL 746 } 747 }; 748 749 static const VMStateDescription vmstate_tlbmas_entry = { 750 .name = "cpu/tlbmas_entry", 751 .version_id = 1, 752 .minimum_version_id = 1, 753 .fields = (VMStateField[]) { 754 VMSTATE_UINT32(mas8, ppcmas_tlb_t), 755 VMSTATE_UINT32(mas1, ppcmas_tlb_t), 756 VMSTATE_UINT64(mas2, ppcmas_tlb_t), 757 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t), 758 VMSTATE_END_OF_LIST() 759 }, 760 }; 761 762 static bool tlbmas_needed(void *opaque) 763 { 764 PowerPCCPU *cpu = opaque; 765 CPUPPCState *env = &cpu->env; 766 767 return env->nb_tlb && (env->tlb_type == TLB_MAS); 768 } 769 770 static const VMStateDescription vmstate_tlbmas = { 771 .name = "cpu/tlbmas", 772 .version_id = 1, 773 .minimum_version_id = 1, 774 .needed = tlbmas_needed, 775 .fields = (VMStateField[]) { 776 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 777 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU, 778 env.nb_tlb, 779 vmstate_tlbmas_entry, 780 ppcmas_tlb_t), 781 VMSTATE_END_OF_LIST() 782 } 783 }; 784 785 static bool compat_needed(void *opaque) 786 { 787 PowerPCCPU *cpu = opaque; 788 789 assert(!(cpu->compat_pvr && !cpu->vhyp)); 790 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0; 791 } 792 793 static const VMStateDescription vmstate_compat = { 794 .name = "cpu/compat", 795 .version_id = 1, 796 .minimum_version_id = 1, 797 .needed = compat_needed, 798 .fields = (VMStateField[]) { 799 VMSTATE_UINT32(compat_pvr, PowerPCCPU), 800 VMSTATE_END_OF_LIST() 801 } 802 }; 803 804 const VMStateDescription vmstate_ppc_cpu = { 805 .name = "cpu", 806 .version_id = 5, 807 .minimum_version_id = 5, 808 .minimum_version_id_old = 4, 809 .load_state_old = cpu_load_old, 810 .pre_save = cpu_pre_save, 811 .post_load = cpu_post_load, 812 .fields = (VMStateField[]) { 813 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */ 814 815 /* User mode architected state */ 816 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32), 817 #if !defined(TARGET_PPC64) 818 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32), 819 #endif 820 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8), 821 VMSTATE_UINTTL(env.nip, PowerPCCPU), 822 823 /* SPRs */ 824 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024), 825 VMSTATE_UINT64(env.spe_acc, PowerPCCPU), 826 827 /* Reservation */ 828 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU), 829 830 /* Supervisor mode architected state */ 831 VMSTATE_UINTTL(env.msr, PowerPCCPU), 832 833 /* Backward compatible internal state */ 834 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU), 835 836 /* Sanity checking */ 837 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration), 838 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration), 839 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU, 840 cpu_pre_2_8_migration), 841 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration), 842 VMSTATE_END_OF_LIST() 843 }, 844 .subsections = (const VMStateDescription*[]) { 845 &vmstate_fpu, 846 &vmstate_altivec, 847 &vmstate_vsx, 848 &vmstate_sr, 849 #ifdef TARGET_PPC64 850 &vmstate_tm, 851 &vmstate_slb, 852 #endif /* TARGET_PPC64 */ 853 &vmstate_tlb6xx, 854 &vmstate_tlbemb, 855 &vmstate_tlbmas, 856 &vmstate_compat, 857 NULL 858 } 859 }; 860