xref: /openbmc/qemu/target/ppc/machine.c (revision de799beb)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "helper_regs.h"
7 #include "mmu-hash64.h"
8 #include "migration/cpu.h"
9 #include "qapi/error.h"
10 #include "qemu/main-loop.h"
11 #include "kvm_ppc.h"
12 #include "power8-pmu.h"
13 
14 static void post_load_update_msr(CPUPPCState *env)
15 {
16     target_ulong msr = env->msr;
17 
18     /*
19      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
20      * before restoring.  Note that this recomputes hflags.
21      */
22     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
23     ppc_store_msr(env, msr);
24 
25     if (tcg_enabled()) {
26         pmu_update_summaries(env);
27     }
28 }
29 
30 static int get_avr(QEMUFile *f, void *pv, size_t size,
31                    const VMStateField *field)
32 {
33     ppc_avr_t *v = pv;
34 
35     v->u64[0] = qemu_get_be64(f);
36     v->u64[1] = qemu_get_be64(f);
37 
38     return 0;
39 }
40 
41 static int put_avr(QEMUFile *f, void *pv, size_t size,
42                    const VMStateField *field, JSONWriter *vmdesc)
43 {
44     ppc_avr_t *v = pv;
45 
46     qemu_put_be64(f, v->u64[0]);
47     qemu_put_be64(f, v->u64[1]);
48     return 0;
49 }
50 
51 static const VMStateInfo vmstate_info_avr = {
52     .name = "avr",
53     .get  = get_avr,
54     .put  = put_avr,
55 };
56 
57 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
58     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
59 
60 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
61     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
62 
63 static int get_fpr(QEMUFile *f, void *pv, size_t size,
64                    const VMStateField *field)
65 {
66     ppc_vsr_t *v = pv;
67 
68     v->VsrD(0) = qemu_get_be64(f);
69 
70     return 0;
71 }
72 
73 static int put_fpr(QEMUFile *f, void *pv, size_t size,
74                    const VMStateField *field, JSONWriter *vmdesc)
75 {
76     ppc_vsr_t *v = pv;
77 
78     qemu_put_be64(f, v->VsrD(0));
79     return 0;
80 }
81 
82 static const VMStateInfo vmstate_info_fpr = {
83     .name = "fpr",
84     .get  = get_fpr,
85     .put  = put_fpr,
86 };
87 
88 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
89     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
90 
91 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
92     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
93 
94 static int get_vsr(QEMUFile *f, void *pv, size_t size,
95                    const VMStateField *field)
96 {
97     ppc_vsr_t *v = pv;
98 
99     v->VsrD(1) = qemu_get_be64(f);
100 
101     return 0;
102 }
103 
104 static int put_vsr(QEMUFile *f, void *pv, size_t size,
105                    const VMStateField *field, JSONWriter *vmdesc)
106 {
107     ppc_vsr_t *v = pv;
108 
109     qemu_put_be64(f, v->VsrD(1));
110     return 0;
111 }
112 
113 static const VMStateInfo vmstate_info_vsr = {
114     .name = "vsr",
115     .get  = get_vsr,
116     .put  = put_vsr,
117 };
118 
119 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
120     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
121 
122 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
123     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
124 
125 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
126 {
127     PowerPCCPU *cpu = opaque;
128 
129     return cpu->pre_2_8_migration;
130 }
131 
132 #if defined(TARGET_PPC64)
133 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
134 {
135     PowerPCCPU *cpu = opaque;
136 
137     return cpu->pre_3_0_migration;
138 }
139 #endif
140 
141 static int cpu_pre_save(void *opaque)
142 {
143     PowerPCCPU *cpu = opaque;
144     CPUPPCState *env = &cpu->env;
145     int i;
146     uint64_t insns_compat_mask =
147         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
148         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
149         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
150         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
151         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
152         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
153         | PPC_64B | PPC_64BX | PPC_ALTIVEC
154         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
155     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
156         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
157         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
158         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
159         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
160         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM
161         | PPC2_MEM_LWSYNC;
162 
163     env->spr[SPR_LR] = env->lr;
164     env->spr[SPR_CTR] = env->ctr;
165     env->spr[SPR_XER] = cpu_read_xer(env);
166 #if defined(TARGET_PPC64)
167     env->spr[SPR_CFAR] = env->cfar;
168 #endif
169     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
170 
171     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
172         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
173         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
174         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
175         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
176     }
177     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
178         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
179         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
180         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
181         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
182     }
183 
184     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
185     if (cpu->pre_2_8_migration) {
186         /*
187          * Mask out bits that got added to msr_mask since the versions
188          * which stupidly included it in the migration stream.
189          */
190         target_ulong metamask = 0
191 #if defined(TARGET_PPC64)
192             | (1ULL << MSR_TS0)
193             | (1ULL << MSR_TS1)
194 #endif
195             ;
196         cpu->mig_msr_mask = env->msr_mask & ~metamask;
197         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
198         /*
199          * CPU models supported by old machines all have
200          * PPC_MEM_TLBIE, so we set it unconditionally to allow
201          * backward migration from a POWER9 host to a POWER8 host.
202          */
203         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
204         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
205         cpu->mig_nb_BATs = env->nb_BATs;
206     }
207     if (cpu->pre_3_0_migration) {
208         if (cpu->hash64_opts) {
209             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
210         }
211     }
212 
213     /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
214     env->hflags_compat_nmsr = 0;
215 
216     return 0;
217 }
218 
219 /*
220  * Determine if a given PVR is a "close enough" match to the CPU
221  * object.  For TCG and KVM PR it would probably be sufficient to
222  * require an exact PVR match.  However for KVM HV the user is
223  * restricted to a PVR exactly matching the host CPU.  The correct way
224  * to handle this is to put the guest into an architected
225  * compatibility mode.  However, to allow a more forgiving transition
226  * and migration from before this was widely done, we allow migration
227  * between sufficiently similar PVRs, as determined by the CPU class's
228  * pvr_match() hook.
229  */
230 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
231 {
232     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
233 
234     if (pvr == pcc->pvr) {
235         return true;
236     }
237     return pcc->pvr_match(pcc, pvr);
238 }
239 
240 static int cpu_post_load(void *opaque, int version_id)
241 {
242     PowerPCCPU *cpu = opaque;
243     CPUPPCState *env = &cpu->env;
244     int i;
245 
246     /*
247      * If we're operating in compat mode, we should be ok as long as
248      * the destination supports the same compatibility mode.
249      *
250      * Otherwise, however, we require that the destination has exactly
251      * the same CPU model as the source.
252      */
253 
254 #if defined(TARGET_PPC64)
255     if (cpu->compat_pvr) {
256         uint32_t compat_pvr = cpu->compat_pvr;
257         Error *local_err = NULL;
258         int ret;
259 
260         cpu->compat_pvr = 0;
261         ret = ppc_set_compat(cpu, compat_pvr, &local_err);
262         if (ret < 0) {
263             error_report_err(local_err);
264             return ret;
265         }
266     } else
267 #endif
268     {
269         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
270             return -EINVAL;
271         }
272     }
273 
274     /*
275      * If we're running with KVM HV, there is a chance that the guest
276      * is running with KVM HV and its kernel does not have the
277      * capability of dealing with a different PVR other than this
278      * exact host PVR in KVM_SET_SREGS. If that happens, the
279      * guest freezes after migration.
280      *
281      * The function kvmppc_pvr_workaround_required does this verification
282      * by first checking if the kernel has the cap, returning true immediately
283      * if that is the case. Otherwise, it checks if we're running in KVM PR.
284      * If the guest kernel does not have the cap and we're not running KVM-PR
285      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
286      * receive the PVR it expects as a workaround.
287      *
288      */
289     if (kvmppc_pvr_workaround_required(cpu)) {
290         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
291     }
292 
293     env->lr = env->spr[SPR_LR];
294     env->ctr = env->spr[SPR_CTR];
295     cpu_write_xer(env, env->spr[SPR_XER]);
296 #if defined(TARGET_PPC64)
297     env->cfar = env->spr[SPR_CFAR];
298 #endif
299     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
300 
301     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
302         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
303         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
304         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
305         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
306     }
307     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
308         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
309         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
310         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
311         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
312     }
313 
314     if (!cpu->vhyp) {
315         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
316     }
317 
318     post_load_update_msr(env);
319 
320     return 0;
321 }
322 
323 static bool fpu_needed(void *opaque)
324 {
325     PowerPCCPU *cpu = opaque;
326 
327     return cpu->env.insns_flags & PPC_FLOAT;
328 }
329 
330 static const VMStateDescription vmstate_fpu = {
331     .name = "cpu/fpu",
332     .version_id = 1,
333     .minimum_version_id = 1,
334     .needed = fpu_needed,
335     .fields = (VMStateField[]) {
336         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
337         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
338         VMSTATE_END_OF_LIST()
339     },
340 };
341 
342 static bool altivec_needed(void *opaque)
343 {
344     PowerPCCPU *cpu = opaque;
345 
346     return cpu->env.insns_flags & PPC_ALTIVEC;
347 }
348 
349 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
350                     const VMStateField *field)
351 {
352     PowerPCCPU *cpu = opaque;
353     ppc_store_vscr(&cpu->env, qemu_get_be32(f));
354     return 0;
355 }
356 
357 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
358                     const VMStateField *field, JSONWriter *vmdesc)
359 {
360     PowerPCCPU *cpu = opaque;
361     qemu_put_be32(f, ppc_get_vscr(&cpu->env));
362     return 0;
363 }
364 
365 static const VMStateInfo vmstate_vscr = {
366     .name = "cpu/altivec/vscr",
367     .get = get_vscr,
368     .put = put_vscr,
369 };
370 
371 static const VMStateDescription vmstate_altivec = {
372     .name = "cpu/altivec",
373     .version_id = 1,
374     .minimum_version_id = 1,
375     .needed = altivec_needed,
376     .fields = (VMStateField[]) {
377         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
378         /*
379          * Save the architecture value of the vscr, not the internally
380          * expanded version.  Since this architecture value does not
381          * exist in memory to be stored, this requires a but of hoop
382          * jumping.  We want OFFSET=0 so that we effectively pass CPU
383          * to the helper functions.
384          */
385         {
386             .name = "vscr",
387             .version_id = 0,
388             .size = sizeof(uint32_t),
389             .info = &vmstate_vscr,
390             .flags = VMS_SINGLE,
391             .offset = 0
392         },
393         VMSTATE_END_OF_LIST()
394     },
395 };
396 
397 static bool vsx_needed(void *opaque)
398 {
399     PowerPCCPU *cpu = opaque;
400 
401     return cpu->env.insns_flags2 & PPC2_VSX;
402 }
403 
404 static const VMStateDescription vmstate_vsx = {
405     .name = "cpu/vsx",
406     .version_id = 1,
407     .minimum_version_id = 1,
408     .needed = vsx_needed,
409     .fields = (VMStateField[]) {
410         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
411         VMSTATE_END_OF_LIST()
412     },
413 };
414 
415 #ifdef TARGET_PPC64
416 /* Transactional memory state */
417 static bool tm_needed(void *opaque)
418 {
419     PowerPCCPU *cpu = opaque;
420     CPUPPCState *env = &cpu->env;
421     return FIELD_EX64(env->msr, MSR, TS);
422 }
423 
424 static const VMStateDescription vmstate_tm = {
425     .name = "cpu/tm",
426     .version_id = 1,
427     .minimum_version_id = 1,
428     .needed = tm_needed,
429     .fields      = (VMStateField []) {
430         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
431         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
432         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
433         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
434         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
435         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
436         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
437         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
438         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
439         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
440         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
441         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
442         VMSTATE_END_OF_LIST()
443     },
444 };
445 #endif
446 
447 static bool sr_needed(void *opaque)
448 {
449 #ifdef TARGET_PPC64
450     PowerPCCPU *cpu = opaque;
451 
452     return !mmu_is_64bit(cpu->env.mmu_model);
453 #else
454     return true;
455 #endif
456 }
457 
458 static const VMStateDescription vmstate_sr = {
459     .name = "cpu/sr",
460     .version_id = 1,
461     .minimum_version_id = 1,
462     .needed = sr_needed,
463     .fields = (VMStateField[]) {
464         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
465         VMSTATE_END_OF_LIST()
466     },
467 };
468 
469 #ifdef TARGET_PPC64
470 static int get_slbe(QEMUFile *f, void *pv, size_t size,
471                     const VMStateField *field)
472 {
473     ppc_slb_t *v = pv;
474 
475     v->esid = qemu_get_be64(f);
476     v->vsid = qemu_get_be64(f);
477 
478     return 0;
479 }
480 
481 static int put_slbe(QEMUFile *f, void *pv, size_t size,
482                     const VMStateField *field, JSONWriter *vmdesc)
483 {
484     ppc_slb_t *v = pv;
485 
486     qemu_put_be64(f, v->esid);
487     qemu_put_be64(f, v->vsid);
488     return 0;
489 }
490 
491 static const VMStateInfo vmstate_info_slbe = {
492     .name = "slbe",
493     .get  = get_slbe,
494     .put  = put_slbe,
495 };
496 
497 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
498     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
499 
500 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
501     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
502 
503 static bool slb_needed(void *opaque)
504 {
505     PowerPCCPU *cpu = opaque;
506 
507     /* We don't support any of the old segment table based 64-bit CPUs */
508     return mmu_is_64bit(cpu->env.mmu_model);
509 }
510 
511 static int slb_post_load(void *opaque, int version_id)
512 {
513     PowerPCCPU *cpu = opaque;
514     CPUPPCState *env = &cpu->env;
515     int i;
516 
517     /*
518      * We've pulled in the raw esid and vsid values from the migration
519      * stream, but we need to recompute the page size pointers
520      */
521     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
522         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
523             /* Migration source had bad values in its SLB */
524             return -1;
525         }
526     }
527 
528     return 0;
529 }
530 
531 static const VMStateDescription vmstate_slb = {
532     .name = "cpu/slb",
533     .version_id = 1,
534     .minimum_version_id = 1,
535     .needed = slb_needed,
536     .post_load = slb_post_load,
537     .fields = (VMStateField[]) {
538         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
539         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
540         VMSTATE_END_OF_LIST()
541     }
542 };
543 #endif /* TARGET_PPC64 */
544 
545 static const VMStateDescription vmstate_tlb6xx_entry = {
546     .name = "cpu/tlb6xx_entry",
547     .version_id = 1,
548     .minimum_version_id = 1,
549     .fields = (VMStateField[]) {
550         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
551         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
552         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
553         VMSTATE_END_OF_LIST()
554     },
555 };
556 
557 static bool tlb6xx_needed(void *opaque)
558 {
559     PowerPCCPU *cpu = opaque;
560     CPUPPCState *env = &cpu->env;
561 
562     return env->nb_tlb && (env->tlb_type == TLB_6XX);
563 }
564 
565 static const VMStateDescription vmstate_tlb6xx = {
566     .name = "cpu/tlb6xx",
567     .version_id = 1,
568     .minimum_version_id = 1,
569     .needed = tlb6xx_needed,
570     .fields = (VMStateField[]) {
571         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
572         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
573                                             env.nb_tlb,
574                                             vmstate_tlb6xx_entry,
575                                             ppc6xx_tlb_t),
576         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
577         VMSTATE_END_OF_LIST()
578     }
579 };
580 
581 static const VMStateDescription vmstate_tlbemb_entry = {
582     .name = "cpu/tlbemb_entry",
583     .version_id = 1,
584     .minimum_version_id = 1,
585     .fields = (VMStateField[]) {
586         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
587         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
588         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
589         VMSTATE_UINTTL(size, ppcemb_tlb_t),
590         VMSTATE_UINT32(prot, ppcemb_tlb_t),
591         VMSTATE_UINT32(attr, ppcemb_tlb_t),
592         VMSTATE_END_OF_LIST()
593     },
594 };
595 
596 static bool tlbemb_needed(void *opaque)
597 {
598     PowerPCCPU *cpu = opaque;
599     CPUPPCState *env = &cpu->env;
600 
601     return env->nb_tlb && (env->tlb_type == TLB_EMB);
602 }
603 
604 static const VMStateDescription vmstate_tlbemb = {
605     .name = "cpu/tlb6xx",
606     .version_id = 1,
607     .minimum_version_id = 1,
608     .needed = tlbemb_needed,
609     .fields = (VMStateField[]) {
610         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
611         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
612                                             env.nb_tlb,
613                                             vmstate_tlbemb_entry,
614                                             ppcemb_tlb_t),
615         VMSTATE_END_OF_LIST()
616     },
617 };
618 
619 static const VMStateDescription vmstate_tlbmas_entry = {
620     .name = "cpu/tlbmas_entry",
621     .version_id = 1,
622     .minimum_version_id = 1,
623     .fields = (VMStateField[]) {
624         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
625         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
626         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
627         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
628         VMSTATE_END_OF_LIST()
629     },
630 };
631 
632 static bool tlbmas_needed(void *opaque)
633 {
634     PowerPCCPU *cpu = opaque;
635     CPUPPCState *env = &cpu->env;
636 
637     return env->nb_tlb && (env->tlb_type == TLB_MAS);
638 }
639 
640 static const VMStateDescription vmstate_tlbmas = {
641     .name = "cpu/tlbmas",
642     .version_id = 1,
643     .minimum_version_id = 1,
644     .needed = tlbmas_needed,
645     .fields = (VMStateField[]) {
646         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
647         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
648                                             env.nb_tlb,
649                                             vmstate_tlbmas_entry,
650                                             ppcmas_tlb_t),
651         VMSTATE_END_OF_LIST()
652     }
653 };
654 
655 static bool compat_needed(void *opaque)
656 {
657     PowerPCCPU *cpu = opaque;
658 
659     assert(!(cpu->compat_pvr && !cpu->vhyp));
660     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
661 }
662 
663 static const VMStateDescription vmstate_compat = {
664     .name = "cpu/compat",
665     .version_id = 1,
666     .minimum_version_id = 1,
667     .needed = compat_needed,
668     .fields = (VMStateField[]) {
669         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
670         VMSTATE_END_OF_LIST()
671     }
672 };
673 
674 const VMStateDescription vmstate_ppc_cpu = {
675     .name = "cpu",
676     .version_id = 5,
677     .minimum_version_id = 5,
678     .pre_save = cpu_pre_save,
679     .post_load = cpu_post_load,
680     .fields = (VMStateField[]) {
681         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
682 
683         /* User mode architected state */
684         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
685 #if !defined(TARGET_PPC64)
686         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
687 #endif
688         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
689         VMSTATE_UINTTL(env.nip, PowerPCCPU),
690 
691         /* SPRs */
692         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
693         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
694 
695         /* Reservation */
696         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
697 
698         /* Supervisor mode architected state */
699         VMSTATE_UINTTL(env.msr, PowerPCCPU),
700 
701         /* Backward compatible internal state */
702         VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
703 
704         /* Sanity checking */
705         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
706         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
707         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
708                             cpu_pre_2_8_migration),
709         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
710         VMSTATE_END_OF_LIST()
711     },
712     .subsections = (const VMStateDescription*[]) {
713         &vmstate_fpu,
714         &vmstate_altivec,
715         &vmstate_vsx,
716         &vmstate_sr,
717 #ifdef TARGET_PPC64
718         &vmstate_tm,
719         &vmstate_slb,
720 #endif /* TARGET_PPC64 */
721         &vmstate_tlb6xx,
722         &vmstate_tlbemb,
723         &vmstate_tlbmas,
724         &vmstate_compat,
725         NULL
726     }
727 };
728