xref: /openbmc/qemu/target/ppc/machine.c (revision dc5bd18f)
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
13 
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
15 {
16     PowerPCCPU *cpu = opaque;
17     CPUPPCState *env = &cpu->env;
18     unsigned int i, j;
19     target_ulong sdr1;
20     uint32_t fpscr;
21     target_ulong xer;
22 
23     for (i = 0; i < 32; i++)
24         qemu_get_betls(f, &env->gpr[i]);
25 #if !defined(TARGET_PPC64)
26     for (i = 0; i < 32; i++)
27         qemu_get_betls(f, &env->gprh[i]);
28 #endif
29     qemu_get_betls(f, &env->lr);
30     qemu_get_betls(f, &env->ctr);
31     for (i = 0; i < 8; i++)
32         qemu_get_be32s(f, &env->crf[i]);
33     qemu_get_betls(f, &xer);
34     cpu_write_xer(env, xer);
35     qemu_get_betls(f, &env->reserve_addr);
36     qemu_get_betls(f, &env->msr);
37     for (i = 0; i < 4; i++)
38         qemu_get_betls(f, &env->tgpr[i]);
39     for (i = 0; i < 32; i++) {
40         union {
41             float64 d;
42             uint64_t l;
43         } u;
44         u.l = qemu_get_be64(f);
45         env->fpr[i] = u.d;
46     }
47     qemu_get_be32s(f, &fpscr);
48     env->fpscr = fpscr;
49     qemu_get_sbe32s(f, &env->access_type);
50 #if defined(TARGET_PPC64)
51     qemu_get_betls(f, &env->spr[SPR_ASR]);
52     qemu_get_sbe32s(f, &env->slb_nr);
53 #endif
54     qemu_get_betls(f, &sdr1);
55     for (i = 0; i < 32; i++)
56         qemu_get_betls(f, &env->sr[i]);
57     for (i = 0; i < 2; i++)
58         for (j = 0; j < 8; j++)
59             qemu_get_betls(f, &env->DBAT[i][j]);
60     for (i = 0; i < 2; i++)
61         for (j = 0; j < 8; j++)
62             qemu_get_betls(f, &env->IBAT[i][j]);
63     qemu_get_sbe32s(f, &env->nb_tlb);
64     qemu_get_sbe32s(f, &env->tlb_per_way);
65     qemu_get_sbe32s(f, &env->nb_ways);
66     qemu_get_sbe32s(f, &env->last_way);
67     qemu_get_sbe32s(f, &env->id_tlbs);
68     qemu_get_sbe32s(f, &env->nb_pids);
69     if (env->tlb.tlb6) {
70         // XXX assumes 6xx
71         for (i = 0; i < env->nb_tlb; i++) {
72             qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
73             qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
74             qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
75         }
76     }
77     for (i = 0; i < 4; i++)
78         qemu_get_betls(f, &env->pb[i]);
79     for (i = 0; i < 1024; i++)
80         qemu_get_betls(f, &env->spr[i]);
81     if (!cpu->vhyp) {
82         ppc_store_sdr1(env, sdr1);
83     }
84     qemu_get_be32s(f, &env->vscr);
85     qemu_get_be64s(f, &env->spe_acc);
86     qemu_get_be32s(f, &env->spe_fscr);
87     qemu_get_betls(f, &env->msr_mask);
88     qemu_get_be32s(f, &env->flags);
89     qemu_get_sbe32s(f, &env->error_code);
90     qemu_get_be32s(f, &env->pending_interrupts);
91     qemu_get_be32s(f, &env->irq_input_state);
92     for (i = 0; i < POWERPC_EXCP_NB; i++)
93         qemu_get_betls(f, &env->excp_vectors[i]);
94     qemu_get_betls(f, &env->excp_prefix);
95     qemu_get_betls(f, &env->ivor_mask);
96     qemu_get_betls(f, &env->ivpr_mask);
97     qemu_get_betls(f, &env->hreset_vector);
98     qemu_get_betls(f, &env->nip);
99     qemu_get_betls(f, &env->hflags);
100     qemu_get_betls(f, &env->hflags_nmsr);
101     qemu_get_sbe32(f); /* Discard unused mmu_idx */
102     qemu_get_sbe32(f); /* Discard unused power_mode */
103 
104     /* Recompute mmu indices */
105     hreg_compute_mem_idx(env);
106 
107     return 0;
108 }
109 
110 static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
111 {
112     ppc_avr_t *v = pv;
113 
114     v->u64[0] = qemu_get_be64(f);
115     v->u64[1] = qemu_get_be64(f);
116 
117     return 0;
118 }
119 
120 static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
121                    QJSON *vmdesc)
122 {
123     ppc_avr_t *v = pv;
124 
125     qemu_put_be64(f, v->u64[0]);
126     qemu_put_be64(f, v->u64[1]);
127     return 0;
128 }
129 
130 static const VMStateInfo vmstate_info_avr = {
131     .name = "avr",
132     .get  = get_avr,
133     .put  = put_avr,
134 };
135 
136 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
137     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
138 
139 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
140     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
141 
142 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
143 {
144     PowerPCCPU *cpu = opaque;
145 
146     return cpu->pre_2_8_migration;
147 }
148 
149 static int cpu_pre_save(void *opaque)
150 {
151     PowerPCCPU *cpu = opaque;
152     CPUPPCState *env = &cpu->env;
153     int i;
154     uint64_t insns_compat_mask =
155         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
156         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
157         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
158         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
159         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
160         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
161         | PPC_64B | PPC_64BX | PPC_ALTIVEC
162         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
163     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
164         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
165         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
166         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
167         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
168         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
169 
170     env->spr[SPR_LR] = env->lr;
171     env->spr[SPR_CTR] = env->ctr;
172     env->spr[SPR_XER] = cpu_read_xer(env);
173 #if defined(TARGET_PPC64)
174     env->spr[SPR_CFAR] = env->cfar;
175 #endif
176     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
177 
178     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
179         env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
180         env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
181         env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
182         env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
183     }
184     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
185         env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
186         env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
187         env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
188         env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
189     }
190 
191     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
192     if (cpu->pre_2_8_migration) {
193         cpu->mig_msr_mask = env->msr_mask;
194         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
195         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
196         cpu->mig_nb_BATs = env->nb_BATs;
197     }
198 
199     return 0;
200 }
201 
202 /*
203  * Determine if a given PVR is a "close enough" match to the CPU
204  * object.  For TCG and KVM PR it would probably be sufficient to
205  * require an exact PVR match.  However for KVM HV the user is
206  * restricted to a PVR exactly matching the host CPU.  The correct way
207  * to handle this is to put the guest into an architected
208  * compatibility mode.  However, to allow a more forgiving transition
209  * and migration from before this was widely done, we allow migration
210  * between sufficiently similar PVRs, as determined by the CPU class's
211  * pvr_match() hook.
212  */
213 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
214 {
215     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
216 
217     if (pvr == pcc->pvr) {
218         return true;
219     }
220     return pcc->pvr_match(pcc, pvr);
221 }
222 
223 static int cpu_post_load(void *opaque, int version_id)
224 {
225     PowerPCCPU *cpu = opaque;
226     CPUPPCState *env = &cpu->env;
227     int i;
228     target_ulong msr;
229 
230     /*
231      * If we're operating in compat mode, we should be ok as long as
232      * the destination supports the same compatiblity mode.
233      *
234      * Otherwise, however, we require that the destination has exactly
235      * the same CPU model as the source.
236      */
237 
238 #if defined(TARGET_PPC64)
239     if (cpu->compat_pvr) {
240         uint32_t compat_pvr = cpu->compat_pvr;
241         Error *local_err = NULL;
242 
243         cpu->compat_pvr = 0;
244         ppc_set_compat(cpu, compat_pvr, &local_err);
245         if (local_err) {
246             error_report_err(local_err);
247             return -1;
248         }
249     } else
250 #endif
251     {
252         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
253             return -1;
254         }
255     }
256 
257     /*
258      * If we're running with KVM HV, there is a chance that the guest
259      * is running with KVM HV and its kernel does not have the
260      * capability of dealing with a different PVR other than this
261      * exact host PVR in KVM_SET_SREGS. If that happens, the
262      * guest freezes after migration.
263      *
264      * The function kvmppc_pvr_workaround_required does this verification
265      * by first checking if the kernel has the cap, returning true immediately
266      * if that is the case. Otherwise, it checks if we're running in KVM PR.
267      * If the guest kernel does not have the cap and we're not running KVM-PR
268      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
269      * receive the PVR it expects as a workaround.
270      *
271      */
272 #if defined(CONFIG_KVM)
273     if (kvmppc_pvr_workaround_required(cpu)) {
274         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
275     }
276 #endif
277 
278     env->lr = env->spr[SPR_LR];
279     env->ctr = env->spr[SPR_CTR];
280     cpu_write_xer(env, env->spr[SPR_XER]);
281 #if defined(TARGET_PPC64)
282     env->cfar = env->spr[SPR_CFAR];
283 #endif
284     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
285 
286     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
287         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
288         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
289         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
290         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
291     }
292     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
293         env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
294         env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
295         env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
296         env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
297     }
298 
299     if (!cpu->vhyp) {
300         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
301     }
302 
303     /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
304     msr = env->msr;
305     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
306     ppc_store_msr(env, msr);
307 
308     hreg_compute_mem_idx(env);
309 
310     return 0;
311 }
312 
313 static bool fpu_needed(void *opaque)
314 {
315     PowerPCCPU *cpu = opaque;
316 
317     return (cpu->env.insns_flags & PPC_FLOAT);
318 }
319 
320 static const VMStateDescription vmstate_fpu = {
321     .name = "cpu/fpu",
322     .version_id = 1,
323     .minimum_version_id = 1,
324     .needed = fpu_needed,
325     .fields = (VMStateField[]) {
326         VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
327         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
328         VMSTATE_END_OF_LIST()
329     },
330 };
331 
332 static bool altivec_needed(void *opaque)
333 {
334     PowerPCCPU *cpu = opaque;
335 
336     return (cpu->env.insns_flags & PPC_ALTIVEC);
337 }
338 
339 static const VMStateDescription vmstate_altivec = {
340     .name = "cpu/altivec",
341     .version_id = 1,
342     .minimum_version_id = 1,
343     .needed = altivec_needed,
344     .fields = (VMStateField[]) {
345         VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
346         VMSTATE_UINT32(env.vscr, PowerPCCPU),
347         VMSTATE_END_OF_LIST()
348     },
349 };
350 
351 static bool vsx_needed(void *opaque)
352 {
353     PowerPCCPU *cpu = opaque;
354 
355     return (cpu->env.insns_flags2 & PPC2_VSX);
356 }
357 
358 static const VMStateDescription vmstate_vsx = {
359     .name = "cpu/vsx",
360     .version_id = 1,
361     .minimum_version_id = 1,
362     .needed = vsx_needed,
363     .fields = (VMStateField[]) {
364         VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
365         VMSTATE_END_OF_LIST()
366     },
367 };
368 
369 #ifdef TARGET_PPC64
370 /* Transactional memory state */
371 static bool tm_needed(void *opaque)
372 {
373     PowerPCCPU *cpu = opaque;
374     CPUPPCState *env = &cpu->env;
375     return msr_ts;
376 }
377 
378 static const VMStateDescription vmstate_tm = {
379     .name = "cpu/tm",
380     .version_id = 1,
381     .minimum_version_id = 1,
382     .minimum_version_id_old = 1,
383     .needed = tm_needed,
384     .fields      = (VMStateField []) {
385         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
386         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
387         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
388         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
389         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
390         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
391         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
392         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
393         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
394         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
395         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
396         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
397         VMSTATE_END_OF_LIST()
398     },
399 };
400 #endif
401 
402 static bool sr_needed(void *opaque)
403 {
404 #ifdef TARGET_PPC64
405     PowerPCCPU *cpu = opaque;
406 
407     return !(cpu->env.mmu_model & POWERPC_MMU_64);
408 #else
409     return true;
410 #endif
411 }
412 
413 static const VMStateDescription vmstate_sr = {
414     .name = "cpu/sr",
415     .version_id = 1,
416     .minimum_version_id = 1,
417     .needed = sr_needed,
418     .fields = (VMStateField[]) {
419         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
420         VMSTATE_END_OF_LIST()
421     },
422 };
423 
424 #ifdef TARGET_PPC64
425 static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
426 {
427     ppc_slb_t *v = pv;
428 
429     v->esid = qemu_get_be64(f);
430     v->vsid = qemu_get_be64(f);
431 
432     return 0;
433 }
434 
435 static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
436                     QJSON *vmdesc)
437 {
438     ppc_slb_t *v = pv;
439 
440     qemu_put_be64(f, v->esid);
441     qemu_put_be64(f, v->vsid);
442     return 0;
443 }
444 
445 static const VMStateInfo vmstate_info_slbe = {
446     .name = "slbe",
447     .get  = get_slbe,
448     .put  = put_slbe,
449 };
450 
451 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
452     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
453 
454 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
455     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
456 
457 static bool slb_needed(void *opaque)
458 {
459     PowerPCCPU *cpu = opaque;
460 
461     /* We don't support any of the old segment table based 64-bit CPUs */
462     return (cpu->env.mmu_model & POWERPC_MMU_64);
463 }
464 
465 static int slb_post_load(void *opaque, int version_id)
466 {
467     PowerPCCPU *cpu = opaque;
468     CPUPPCState *env = &cpu->env;
469     int i;
470 
471     /* We've pulled in the raw esid and vsid values from the migration
472      * stream, but we need to recompute the page size pointers */
473     for (i = 0; i < env->slb_nr; i++) {
474         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
475             /* Migration source had bad values in its SLB */
476             return -1;
477         }
478     }
479 
480     return 0;
481 }
482 
483 static const VMStateDescription vmstate_slb = {
484     .name = "cpu/slb",
485     .version_id = 1,
486     .minimum_version_id = 1,
487     .needed = slb_needed,
488     .post_load = slb_post_load,
489     .fields = (VMStateField[]) {
490         VMSTATE_INT32_EQUAL(env.slb_nr, PowerPCCPU, NULL),
491         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
492         VMSTATE_END_OF_LIST()
493     }
494 };
495 #endif /* TARGET_PPC64 */
496 
497 static const VMStateDescription vmstate_tlb6xx_entry = {
498     .name = "cpu/tlb6xx_entry",
499     .version_id = 1,
500     .minimum_version_id = 1,
501     .fields = (VMStateField[]) {
502         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
503         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
504         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
505         VMSTATE_END_OF_LIST()
506     },
507 };
508 
509 static bool tlb6xx_needed(void *opaque)
510 {
511     PowerPCCPU *cpu = opaque;
512     CPUPPCState *env = &cpu->env;
513 
514     return env->nb_tlb && (env->tlb_type == TLB_6XX);
515 }
516 
517 static const VMStateDescription vmstate_tlb6xx = {
518     .name = "cpu/tlb6xx",
519     .version_id = 1,
520     .minimum_version_id = 1,
521     .needed = tlb6xx_needed,
522     .fields = (VMStateField[]) {
523         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
524         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
525                                             env.nb_tlb,
526                                             vmstate_tlb6xx_entry,
527                                             ppc6xx_tlb_t),
528         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
529         VMSTATE_END_OF_LIST()
530     }
531 };
532 
533 static const VMStateDescription vmstate_tlbemb_entry = {
534     .name = "cpu/tlbemb_entry",
535     .version_id = 1,
536     .minimum_version_id = 1,
537     .fields = (VMStateField[]) {
538         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
539         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
540         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
541         VMSTATE_UINTTL(size, ppcemb_tlb_t),
542         VMSTATE_UINT32(prot, ppcemb_tlb_t),
543         VMSTATE_UINT32(attr, ppcemb_tlb_t),
544         VMSTATE_END_OF_LIST()
545     },
546 };
547 
548 static bool tlbemb_needed(void *opaque)
549 {
550     PowerPCCPU *cpu = opaque;
551     CPUPPCState *env = &cpu->env;
552 
553     return env->nb_tlb && (env->tlb_type == TLB_EMB);
554 }
555 
556 static bool pbr403_needed(void *opaque)
557 {
558     PowerPCCPU *cpu = opaque;
559     uint32_t pvr = cpu->env.spr[SPR_PVR];
560 
561     return (pvr & 0xffff0000) == 0x00200000;
562 }
563 
564 static const VMStateDescription vmstate_pbr403 = {
565     .name = "cpu/pbr403",
566     .version_id = 1,
567     .minimum_version_id = 1,
568     .needed = pbr403_needed,
569     .fields = (VMStateField[]) {
570         VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
571         VMSTATE_END_OF_LIST()
572     },
573 };
574 
575 static const VMStateDescription vmstate_tlbemb = {
576     .name = "cpu/tlb6xx",
577     .version_id = 1,
578     .minimum_version_id = 1,
579     .needed = tlbemb_needed,
580     .fields = (VMStateField[]) {
581         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
582         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
583                                             env.nb_tlb,
584                                             vmstate_tlbemb_entry,
585                                             ppcemb_tlb_t),
586         /* 403 protection registers */
587         VMSTATE_END_OF_LIST()
588     },
589     .subsections = (const VMStateDescription*[]) {
590         &vmstate_pbr403,
591         NULL
592     }
593 };
594 
595 static const VMStateDescription vmstate_tlbmas_entry = {
596     .name = "cpu/tlbmas_entry",
597     .version_id = 1,
598     .minimum_version_id = 1,
599     .fields = (VMStateField[]) {
600         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
601         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
602         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
603         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
604         VMSTATE_END_OF_LIST()
605     },
606 };
607 
608 static bool tlbmas_needed(void *opaque)
609 {
610     PowerPCCPU *cpu = opaque;
611     CPUPPCState *env = &cpu->env;
612 
613     return env->nb_tlb && (env->tlb_type == TLB_MAS);
614 }
615 
616 static const VMStateDescription vmstate_tlbmas = {
617     .name = "cpu/tlbmas",
618     .version_id = 1,
619     .minimum_version_id = 1,
620     .needed = tlbmas_needed,
621     .fields = (VMStateField[]) {
622         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
623         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
624                                             env.nb_tlb,
625                                             vmstate_tlbmas_entry,
626                                             ppcmas_tlb_t),
627         VMSTATE_END_OF_LIST()
628     }
629 };
630 
631 static bool compat_needed(void *opaque)
632 {
633     PowerPCCPU *cpu = opaque;
634 
635     assert(!(cpu->compat_pvr && !cpu->vhyp));
636     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
637 }
638 
639 static const VMStateDescription vmstate_compat = {
640     .name = "cpu/compat",
641     .version_id = 1,
642     .minimum_version_id = 1,
643     .needed = compat_needed,
644     .fields = (VMStateField[]) {
645         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
646         VMSTATE_END_OF_LIST()
647     }
648 };
649 
650 const VMStateDescription vmstate_ppc_cpu = {
651     .name = "cpu",
652     .version_id = 5,
653     .minimum_version_id = 5,
654     .minimum_version_id_old = 4,
655     .load_state_old = cpu_load_old,
656     .pre_save = cpu_pre_save,
657     .post_load = cpu_post_load,
658     .fields = (VMStateField[]) {
659         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
660 
661         /* User mode architected state */
662         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
663 #if !defined(TARGET_PPC64)
664         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
665 #endif
666         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
667         VMSTATE_UINTTL(env.nip, PowerPCCPU),
668 
669         /* SPRs */
670         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
671         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
672 
673         /* Reservation */
674         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
675 
676         /* Supervisor mode architected state */
677         VMSTATE_UINTTL(env.msr, PowerPCCPU),
678 
679         /* Internal state */
680         VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
681         /* FIXME: access_type? */
682 
683         /* Sanity checking */
684         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
685         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
686         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
687                             cpu_pre_2_8_migration),
688         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
689         VMSTATE_END_OF_LIST()
690     },
691     .subsections = (const VMStateDescription*[]) {
692         &vmstate_fpu,
693         &vmstate_altivec,
694         &vmstate_vsx,
695         &vmstate_sr,
696 #ifdef TARGET_PPC64
697         &vmstate_tm,
698         &vmstate_slb,
699 #endif /* TARGET_PPC64 */
700         &vmstate_tlb6xx,
701         &vmstate_tlbemb,
702         &vmstate_tlbmas,
703         &vmstate_compat,
704         NULL
705     }
706 };
707