1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "exec/exec-all.h" 4 #include "sysemu/kvm.h" 5 #include "sysemu/tcg.h" 6 #include "helper_regs.h" 7 #include "mmu-hash64.h" 8 #include "migration/cpu.h" 9 #include "qapi/error.h" 10 #include "qemu/main-loop.h" 11 #include "kvm_ppc.h" 12 #include "power8-pmu.h" 13 14 static void post_load_update_msr(CPUPPCState *env) 15 { 16 target_ulong msr = env->msr; 17 18 /* 19 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB 20 * before restoring. Note that this recomputes hflags. 21 */ 22 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB); 23 ppc_store_msr(env, msr); 24 } 25 26 static int get_avr(QEMUFile *f, void *pv, size_t size, 27 const VMStateField *field) 28 { 29 ppc_avr_t *v = pv; 30 31 v->u64[0] = qemu_get_be64(f); 32 v->u64[1] = qemu_get_be64(f); 33 34 return 0; 35 } 36 37 static int put_avr(QEMUFile *f, void *pv, size_t size, 38 const VMStateField *field, JSONWriter *vmdesc) 39 { 40 ppc_avr_t *v = pv; 41 42 qemu_put_be64(f, v->u64[0]); 43 qemu_put_be64(f, v->u64[1]); 44 return 0; 45 } 46 47 static const VMStateInfo vmstate_info_avr = { 48 .name = "avr", 49 .get = get_avr, 50 .put = put_avr, 51 }; 52 53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \ 54 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t) 55 56 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \ 57 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0) 58 59 static int get_fpr(QEMUFile *f, void *pv, size_t size, 60 const VMStateField *field) 61 { 62 ppc_vsr_t *v = pv; 63 64 v->VsrD(0) = qemu_get_be64(f); 65 66 return 0; 67 } 68 69 static int put_fpr(QEMUFile *f, void *pv, size_t size, 70 const VMStateField *field, JSONWriter *vmdesc) 71 { 72 ppc_vsr_t *v = pv; 73 74 qemu_put_be64(f, v->VsrD(0)); 75 return 0; 76 } 77 78 static const VMStateInfo vmstate_info_fpr = { 79 .name = "fpr", 80 .get = get_fpr, 81 .put = put_fpr, 82 }; 83 84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \ 85 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t) 86 87 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \ 88 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0) 89 90 static int get_vsr(QEMUFile *f, void *pv, size_t size, 91 const VMStateField *field) 92 { 93 ppc_vsr_t *v = pv; 94 95 v->VsrD(1) = qemu_get_be64(f); 96 97 return 0; 98 } 99 100 static int put_vsr(QEMUFile *f, void *pv, size_t size, 101 const VMStateField *field, JSONWriter *vmdesc) 102 { 103 ppc_vsr_t *v = pv; 104 105 qemu_put_be64(f, v->VsrD(1)); 106 return 0; 107 } 108 109 static const VMStateInfo vmstate_info_vsr = { 110 .name = "vsr", 111 .get = get_vsr, 112 .put = put_vsr, 113 }; 114 115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \ 116 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t) 117 118 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \ 119 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0) 120 121 static bool cpu_pre_2_8_migration(void *opaque, int version_id) 122 { 123 PowerPCCPU *cpu = opaque; 124 125 return cpu->pre_2_8_migration; 126 } 127 128 #if defined(TARGET_PPC64) 129 static bool cpu_pre_3_0_migration(void *opaque, int version_id) 130 { 131 PowerPCCPU *cpu = opaque; 132 133 return cpu->pre_3_0_migration; 134 } 135 #endif 136 137 static int cpu_pre_save(void *opaque) 138 { 139 PowerPCCPU *cpu = opaque; 140 CPUPPCState *env = &cpu->env; 141 int i; 142 uint64_t insns_compat_mask = 143 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB 144 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES 145 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES 146 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT 147 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ 148 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC 149 | PPC_64B | PPC_64BX | PPC_ALTIVEC 150 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD; 151 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX 152 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 153 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206 154 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207 155 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 156 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM 157 | PPC2_MEM_LWSYNC; 158 159 env->spr[SPR_LR] = env->lr; 160 env->spr[SPR_CTR] = env->ctr; 161 env->spr[SPR_XER] = cpu_read_xer(env); 162 #if defined(TARGET_PPC64) 163 env->spr[SPR_CFAR] = env->cfar; 164 #endif 165 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr; 166 167 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 168 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i]; 169 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i]; 170 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i]; 171 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i]; 172 } 173 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 174 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4]; 175 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4]; 176 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4]; 177 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4]; 178 } 179 180 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */ 181 if (cpu->pre_2_8_migration) { 182 /* 183 * Mask out bits that got added to msr_mask since the versions 184 * which stupidly included it in the migration stream. 185 */ 186 target_ulong metamask = 0 187 #if defined(TARGET_PPC64) 188 | (1ULL << MSR_TS0) 189 | (1ULL << MSR_TS1) 190 #endif 191 ; 192 cpu->mig_msr_mask = env->msr_mask & ~metamask; 193 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask; 194 /* 195 * CPU models supported by old machines all have 196 * PPC_MEM_TLBIE, so we set it unconditionally to allow 197 * backward migration from a POWER9 host to a POWER8 host. 198 */ 199 cpu->mig_insns_flags |= PPC_MEM_TLBIE; 200 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2; 201 cpu->mig_nb_BATs = env->nb_BATs; 202 } 203 if (cpu->pre_3_0_migration) { 204 if (cpu->hash64_opts) { 205 cpu->mig_slb_nr = cpu->hash64_opts->slb_size; 206 } 207 } 208 209 /* Used to retain migration compatibility for pre 6.0 for 601 machines. */ 210 env->hflags_compat_nmsr = 0; 211 212 return 0; 213 } 214 215 /* 216 * Determine if a given PVR is a "close enough" match to the CPU 217 * object. For TCG and KVM PR it would probably be sufficient to 218 * require an exact PVR match. However for KVM HV the user is 219 * restricted to a PVR exactly matching the host CPU. The correct way 220 * to handle this is to put the guest into an architected 221 * compatibility mode. However, to allow a more forgiving transition 222 * and migration from before this was widely done, we allow migration 223 * between sufficiently similar PVRs, as determined by the CPU class's 224 * pvr_match() hook. 225 */ 226 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr) 227 { 228 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 229 230 if (pvr == pcc->pvr) { 231 return true; 232 } 233 return pcc->pvr_match(pcc, pvr, true); 234 } 235 236 static int cpu_post_load(void *opaque, int version_id) 237 { 238 PowerPCCPU *cpu = opaque; 239 CPUPPCState *env = &cpu->env; 240 int i; 241 242 /* 243 * If we're operating in compat mode, we should be ok as long as 244 * the destination supports the same compatibility mode. 245 * 246 * Otherwise, however, we require that the destination has exactly 247 * the same CPU model as the source. 248 */ 249 250 #if defined(TARGET_PPC64) 251 if (cpu->compat_pvr) { 252 uint32_t compat_pvr = cpu->compat_pvr; 253 Error *local_err = NULL; 254 int ret; 255 256 cpu->compat_pvr = 0; 257 ret = ppc_set_compat(cpu, compat_pvr, &local_err); 258 if (ret < 0) { 259 error_report_err(local_err); 260 return ret; 261 } 262 } else 263 #endif 264 { 265 if (!pvr_match(cpu, env->spr[SPR_PVR])) { 266 return -EINVAL; 267 } 268 } 269 270 /* 271 * If we're running with KVM HV, there is a chance that the guest 272 * is running with KVM HV and its kernel does not have the 273 * capability of dealing with a different PVR other than this 274 * exact host PVR in KVM_SET_SREGS. If that happens, the 275 * guest freezes after migration. 276 * 277 * The function kvmppc_pvr_workaround_required does this verification 278 * by first checking if the kernel has the cap, returning true immediately 279 * if that is the case. Otherwise, it checks if we're running in KVM PR. 280 * If the guest kernel does not have the cap and we're not running KVM-PR 281 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will 282 * receive the PVR it expects as a workaround. 283 * 284 */ 285 if (kvmppc_pvr_workaround_required(cpu)) { 286 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; 287 } 288 289 env->lr = env->spr[SPR_LR]; 290 env->ctr = env->spr[SPR_CTR]; 291 cpu_write_xer(env, env->spr[SPR_XER]); 292 #if defined(TARGET_PPC64) 293 env->cfar = env->spr[SPR_CFAR]; 294 #endif 295 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR]; 296 297 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 298 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i]; 299 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1]; 300 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i]; 301 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1]; 302 } 303 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 304 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i]; 305 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1]; 306 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i]; 307 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1]; 308 } 309 310 if (!cpu->vhyp) { 311 ppc_store_sdr1(env, env->spr[SPR_SDR1]); 312 } 313 314 post_load_update_msr(env); 315 316 if (tcg_enabled()) { 317 pmu_mmcr01_updated(env); 318 } 319 320 return 0; 321 } 322 323 static bool fpu_needed(void *opaque) 324 { 325 PowerPCCPU *cpu = opaque; 326 327 return cpu->env.insns_flags & PPC_FLOAT; 328 } 329 330 static const VMStateDescription vmstate_fpu = { 331 .name = "cpu/fpu", 332 .version_id = 1, 333 .minimum_version_id = 1, 334 .needed = fpu_needed, 335 .fields = (VMStateField[]) { 336 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32), 337 VMSTATE_UINTTL(env.fpscr, PowerPCCPU), 338 VMSTATE_END_OF_LIST() 339 }, 340 }; 341 342 static bool altivec_needed(void *opaque) 343 { 344 PowerPCCPU *cpu = opaque; 345 346 return cpu->env.insns_flags & PPC_ALTIVEC; 347 } 348 349 static int get_vscr(QEMUFile *f, void *opaque, size_t size, 350 const VMStateField *field) 351 { 352 PowerPCCPU *cpu = opaque; 353 ppc_store_vscr(&cpu->env, qemu_get_be32(f)); 354 return 0; 355 } 356 357 static int put_vscr(QEMUFile *f, void *opaque, size_t size, 358 const VMStateField *field, JSONWriter *vmdesc) 359 { 360 PowerPCCPU *cpu = opaque; 361 qemu_put_be32(f, ppc_get_vscr(&cpu->env)); 362 return 0; 363 } 364 365 static const VMStateInfo vmstate_vscr = { 366 .name = "cpu/altivec/vscr", 367 .get = get_vscr, 368 .put = put_vscr, 369 }; 370 371 static const VMStateDescription vmstate_altivec = { 372 .name = "cpu/altivec", 373 .version_id = 1, 374 .minimum_version_id = 1, 375 .needed = altivec_needed, 376 .fields = (VMStateField[]) { 377 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32), 378 /* 379 * Save the architecture value of the vscr, not the internally 380 * expanded version. Since this architecture value does not 381 * exist in memory to be stored, this requires a but of hoop 382 * jumping. We want OFFSET=0 so that we effectively pass CPU 383 * to the helper functions. 384 */ 385 { 386 .name = "vscr", 387 .version_id = 0, 388 .size = sizeof(uint32_t), 389 .info = &vmstate_vscr, 390 .flags = VMS_SINGLE, 391 .offset = 0 392 }, 393 VMSTATE_END_OF_LIST() 394 }, 395 }; 396 397 static bool vsx_needed(void *opaque) 398 { 399 PowerPCCPU *cpu = opaque; 400 401 return cpu->env.insns_flags2 & PPC2_VSX; 402 } 403 404 static const VMStateDescription vmstate_vsx = { 405 .name = "cpu/vsx", 406 .version_id = 1, 407 .minimum_version_id = 1, 408 .needed = vsx_needed, 409 .fields = (VMStateField[]) { 410 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32), 411 VMSTATE_END_OF_LIST() 412 }, 413 }; 414 415 #ifdef TARGET_PPC64 416 /* Transactional memory state */ 417 static bool tm_needed(void *opaque) 418 { 419 PowerPCCPU *cpu = opaque; 420 CPUPPCState *env = &cpu->env; 421 return FIELD_EX64(env->msr, MSR, TS); 422 } 423 424 static const VMStateDescription vmstate_tm = { 425 .name = "cpu/tm", 426 .version_id = 1, 427 .minimum_version_id = 1, 428 .needed = tm_needed, 429 .fields = (VMStateField []) { 430 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32), 431 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64), 432 VMSTATE_UINT64(env.tm_cr, PowerPCCPU), 433 VMSTATE_UINT64(env.tm_lr, PowerPCCPU), 434 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU), 435 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU), 436 VMSTATE_UINT64(env.tm_amr, PowerPCCPU), 437 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU), 438 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU), 439 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU), 440 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU), 441 VMSTATE_UINT64(env.tm_tar, PowerPCCPU), 442 VMSTATE_END_OF_LIST() 443 }, 444 }; 445 #endif 446 447 static bool sr_needed(void *opaque) 448 { 449 #ifdef TARGET_PPC64 450 PowerPCCPU *cpu = opaque; 451 452 return !mmu_is_64bit(cpu->env.mmu_model); 453 #else 454 return true; 455 #endif 456 } 457 458 static const VMStateDescription vmstate_sr = { 459 .name = "cpu/sr", 460 .version_id = 1, 461 .minimum_version_id = 1, 462 .needed = sr_needed, 463 .fields = (VMStateField[]) { 464 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32), 465 VMSTATE_END_OF_LIST() 466 }, 467 }; 468 469 #ifdef TARGET_PPC64 470 static int get_slbe(QEMUFile *f, void *pv, size_t size, 471 const VMStateField *field) 472 { 473 ppc_slb_t *v = pv; 474 475 v->esid = qemu_get_be64(f); 476 v->vsid = qemu_get_be64(f); 477 478 return 0; 479 } 480 481 static int put_slbe(QEMUFile *f, void *pv, size_t size, 482 const VMStateField *field, JSONWriter *vmdesc) 483 { 484 ppc_slb_t *v = pv; 485 486 qemu_put_be64(f, v->esid); 487 qemu_put_be64(f, v->vsid); 488 return 0; 489 } 490 491 static const VMStateInfo vmstate_info_slbe = { 492 .name = "slbe", 493 .get = get_slbe, 494 .put = put_slbe, 495 }; 496 497 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \ 498 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t) 499 500 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \ 501 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0) 502 503 static bool slb_needed(void *opaque) 504 { 505 PowerPCCPU *cpu = opaque; 506 507 /* We don't support any of the old segment table based 64-bit CPUs */ 508 return mmu_is_64bit(cpu->env.mmu_model); 509 } 510 511 static int slb_post_load(void *opaque, int version_id) 512 { 513 PowerPCCPU *cpu = opaque; 514 CPUPPCState *env = &cpu->env; 515 int i; 516 517 /* 518 * We've pulled in the raw esid and vsid values from the migration 519 * stream, but we need to recompute the page size pointers 520 */ 521 for (i = 0; i < cpu->hash64_opts->slb_size; i++) { 522 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) { 523 /* Migration source had bad values in its SLB */ 524 return -1; 525 } 526 } 527 528 return 0; 529 } 530 531 static const VMStateDescription vmstate_slb = { 532 .name = "cpu/slb", 533 .version_id = 1, 534 .minimum_version_id = 1, 535 .needed = slb_needed, 536 .post_load = slb_post_load, 537 .fields = (VMStateField[]) { 538 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration), 539 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES), 540 VMSTATE_END_OF_LIST() 541 } 542 }; 543 #endif /* TARGET_PPC64 */ 544 545 static const VMStateDescription vmstate_tlb6xx_entry = { 546 .name = "cpu/tlb6xx_entry", 547 .version_id = 1, 548 .minimum_version_id = 1, 549 .fields = (VMStateField[]) { 550 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t), 551 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t), 552 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t), 553 VMSTATE_END_OF_LIST() 554 }, 555 }; 556 557 static bool tlb6xx_needed(void *opaque) 558 { 559 PowerPCCPU *cpu = opaque; 560 CPUPPCState *env = &cpu->env; 561 562 return env->nb_tlb && (env->tlb_type == TLB_6XX); 563 } 564 565 static const VMStateDescription vmstate_tlb6xx = { 566 .name = "cpu/tlb6xx", 567 .version_id = 1, 568 .minimum_version_id = 1, 569 .needed = tlb6xx_needed, 570 .fields = (VMStateField[]) { 571 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 572 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU, 573 env.nb_tlb, 574 vmstate_tlb6xx_entry, 575 ppc6xx_tlb_t), 576 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4), 577 VMSTATE_END_OF_LIST() 578 } 579 }; 580 581 static const VMStateDescription vmstate_tlbemb_entry = { 582 .name = "cpu/tlbemb_entry", 583 .version_id = 1, 584 .minimum_version_id = 1, 585 .fields = (VMStateField[]) { 586 VMSTATE_UINT64(RPN, ppcemb_tlb_t), 587 VMSTATE_UINTTL(EPN, ppcemb_tlb_t), 588 VMSTATE_UINTTL(PID, ppcemb_tlb_t), 589 VMSTATE_UINTTL(size, ppcemb_tlb_t), 590 VMSTATE_UINT32(prot, ppcemb_tlb_t), 591 VMSTATE_UINT32(attr, ppcemb_tlb_t), 592 VMSTATE_END_OF_LIST() 593 }, 594 }; 595 596 static bool tlbemb_needed(void *opaque) 597 { 598 PowerPCCPU *cpu = opaque; 599 CPUPPCState *env = &cpu->env; 600 601 return env->nb_tlb && (env->tlb_type == TLB_EMB); 602 } 603 604 static const VMStateDescription vmstate_tlbemb = { 605 .name = "cpu/tlb6xx", 606 .version_id = 1, 607 .minimum_version_id = 1, 608 .needed = tlbemb_needed, 609 .fields = (VMStateField[]) { 610 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 611 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU, 612 env.nb_tlb, 613 vmstate_tlbemb_entry, 614 ppcemb_tlb_t), 615 VMSTATE_END_OF_LIST() 616 }, 617 }; 618 619 static const VMStateDescription vmstate_tlbmas_entry = { 620 .name = "cpu/tlbmas_entry", 621 .version_id = 1, 622 .minimum_version_id = 1, 623 .fields = (VMStateField[]) { 624 VMSTATE_UINT32(mas8, ppcmas_tlb_t), 625 VMSTATE_UINT32(mas1, ppcmas_tlb_t), 626 VMSTATE_UINT64(mas2, ppcmas_tlb_t), 627 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t), 628 VMSTATE_END_OF_LIST() 629 }, 630 }; 631 632 static bool tlbmas_needed(void *opaque) 633 { 634 PowerPCCPU *cpu = opaque; 635 CPUPPCState *env = &cpu->env; 636 637 return env->nb_tlb && (env->tlb_type == TLB_MAS); 638 } 639 640 static const VMStateDescription vmstate_tlbmas = { 641 .name = "cpu/tlbmas", 642 .version_id = 1, 643 .minimum_version_id = 1, 644 .needed = tlbmas_needed, 645 .fields = (VMStateField[]) { 646 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 647 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU, 648 env.nb_tlb, 649 vmstate_tlbmas_entry, 650 ppcmas_tlb_t), 651 VMSTATE_END_OF_LIST() 652 } 653 }; 654 655 static bool compat_needed(void *opaque) 656 { 657 PowerPCCPU *cpu = opaque; 658 659 assert(!(cpu->compat_pvr && !cpu->vhyp)); 660 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0; 661 } 662 663 static const VMStateDescription vmstate_compat = { 664 .name = "cpu/compat", 665 .version_id = 1, 666 .minimum_version_id = 1, 667 .needed = compat_needed, 668 .fields = (VMStateField[]) { 669 VMSTATE_UINT32(compat_pvr, PowerPCCPU), 670 VMSTATE_END_OF_LIST() 671 } 672 }; 673 674 const VMStateDescription vmstate_ppc_cpu = { 675 .name = "cpu", 676 .version_id = 5, 677 .minimum_version_id = 5, 678 .pre_save = cpu_pre_save, 679 .post_load = cpu_post_load, 680 .fields = (VMStateField[]) { 681 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */ 682 683 /* User mode architected state */ 684 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32), 685 #if !defined(TARGET_PPC64) 686 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32), 687 #endif 688 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8), 689 VMSTATE_UINTTL(env.nip, PowerPCCPU), 690 691 /* SPRs */ 692 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024), 693 VMSTATE_UINT64(env.spe_acc, PowerPCCPU), 694 695 /* Reservation */ 696 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU), 697 698 /* Supervisor mode architected state */ 699 VMSTATE_UINTTL(env.msr, PowerPCCPU), 700 701 /* Backward compatible internal state */ 702 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU), 703 704 /* Sanity checking */ 705 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration), 706 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration), 707 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU, 708 cpu_pre_2_8_migration), 709 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration), 710 VMSTATE_END_OF_LIST() 711 }, 712 .subsections = (const VMStateDescription*[]) { 713 &vmstate_fpu, 714 &vmstate_altivec, 715 &vmstate_vsx, 716 &vmstate_sr, 717 #ifdef TARGET_PPC64 718 &vmstate_tm, 719 &vmstate_slb, 720 #endif /* TARGET_PPC64 */ 721 &vmstate_tlb6xx, 722 &vmstate_tlbemb, 723 &vmstate_tlbmas, 724 &vmstate_compat, 725 NULL 726 } 727 }; 728