1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "exec/exec-all.h" 4 #include "sysemu/kvm.h" 5 #include "helper_regs.h" 6 #include "mmu-hash64.h" 7 #include "migration/cpu.h" 8 #include "qapi/error.h" 9 #include "qemu/main-loop.h" 10 #include "kvm_ppc.h" 11 #include "power8-pmu.h" 12 13 static void post_load_update_msr(CPUPPCState *env) 14 { 15 target_ulong msr = env->msr; 16 17 /* 18 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB 19 * before restoring. Note that this recomputes hflags. 20 */ 21 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB); 22 ppc_store_msr(env, msr); 23 pmu_update_summaries(env); 24 } 25 26 static int get_avr(QEMUFile *f, void *pv, size_t size, 27 const VMStateField *field) 28 { 29 ppc_avr_t *v = pv; 30 31 v->u64[0] = qemu_get_be64(f); 32 v->u64[1] = qemu_get_be64(f); 33 34 return 0; 35 } 36 37 static int put_avr(QEMUFile *f, void *pv, size_t size, 38 const VMStateField *field, JSONWriter *vmdesc) 39 { 40 ppc_avr_t *v = pv; 41 42 qemu_put_be64(f, v->u64[0]); 43 qemu_put_be64(f, v->u64[1]); 44 return 0; 45 } 46 47 static const VMStateInfo vmstate_info_avr = { 48 .name = "avr", 49 .get = get_avr, 50 .put = put_avr, 51 }; 52 53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \ 54 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t) 55 56 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \ 57 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0) 58 59 static int get_fpr(QEMUFile *f, void *pv, size_t size, 60 const VMStateField *field) 61 { 62 ppc_vsr_t *v = pv; 63 64 v->VsrD(0) = qemu_get_be64(f); 65 66 return 0; 67 } 68 69 static int put_fpr(QEMUFile *f, void *pv, size_t size, 70 const VMStateField *field, JSONWriter *vmdesc) 71 { 72 ppc_vsr_t *v = pv; 73 74 qemu_put_be64(f, v->VsrD(0)); 75 return 0; 76 } 77 78 static const VMStateInfo vmstate_info_fpr = { 79 .name = "fpr", 80 .get = get_fpr, 81 .put = put_fpr, 82 }; 83 84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \ 85 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t) 86 87 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \ 88 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0) 89 90 static int get_vsr(QEMUFile *f, void *pv, size_t size, 91 const VMStateField *field) 92 { 93 ppc_vsr_t *v = pv; 94 95 v->VsrD(1) = qemu_get_be64(f); 96 97 return 0; 98 } 99 100 static int put_vsr(QEMUFile *f, void *pv, size_t size, 101 const VMStateField *field, JSONWriter *vmdesc) 102 { 103 ppc_vsr_t *v = pv; 104 105 qemu_put_be64(f, v->VsrD(1)); 106 return 0; 107 } 108 109 static const VMStateInfo vmstate_info_vsr = { 110 .name = "vsr", 111 .get = get_vsr, 112 .put = put_vsr, 113 }; 114 115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \ 116 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t) 117 118 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \ 119 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0) 120 121 static bool cpu_pre_2_8_migration(void *opaque, int version_id) 122 { 123 PowerPCCPU *cpu = opaque; 124 125 return cpu->pre_2_8_migration; 126 } 127 128 #if defined(TARGET_PPC64) 129 static bool cpu_pre_3_0_migration(void *opaque, int version_id) 130 { 131 PowerPCCPU *cpu = opaque; 132 133 return cpu->pre_3_0_migration; 134 } 135 #endif 136 137 static int cpu_pre_save(void *opaque) 138 { 139 PowerPCCPU *cpu = opaque; 140 CPUPPCState *env = &cpu->env; 141 int i; 142 uint64_t insns_compat_mask = 143 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB 144 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES 145 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES 146 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT 147 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ 148 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC 149 | PPC_64B | PPC_64BX | PPC_ALTIVEC 150 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD; 151 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX 152 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 153 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206 154 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207 155 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 156 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM; 157 158 env->spr[SPR_LR] = env->lr; 159 env->spr[SPR_CTR] = env->ctr; 160 env->spr[SPR_XER] = cpu_read_xer(env); 161 #if defined(TARGET_PPC64) 162 env->spr[SPR_CFAR] = env->cfar; 163 #endif 164 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr; 165 166 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 167 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i]; 168 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i]; 169 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i]; 170 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i]; 171 } 172 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 173 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4]; 174 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4]; 175 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4]; 176 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4]; 177 } 178 179 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */ 180 if (cpu->pre_2_8_migration) { 181 /* 182 * Mask out bits that got added to msr_mask since the versions 183 * which stupidly included it in the migration stream. 184 */ 185 target_ulong metamask = 0 186 #if defined(TARGET_PPC64) 187 | (1ULL << MSR_TS0) 188 | (1ULL << MSR_TS1) 189 #endif 190 ; 191 cpu->mig_msr_mask = env->msr_mask & ~metamask; 192 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask; 193 /* 194 * CPU models supported by old machines all have 195 * PPC_MEM_TLBIE, so we set it unconditionally to allow 196 * backward migration from a POWER9 host to a POWER8 host. 197 */ 198 cpu->mig_insns_flags |= PPC_MEM_TLBIE; 199 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2; 200 cpu->mig_nb_BATs = env->nb_BATs; 201 } 202 if (cpu->pre_3_0_migration) { 203 if (cpu->hash64_opts) { 204 cpu->mig_slb_nr = cpu->hash64_opts->slb_size; 205 } 206 } 207 208 /* Retain migration compatibility for pre 6.0 for 601 machines. */ 209 env->hflags_compat_nmsr = (env->flags & POWERPC_FLAG_HID0_LE 210 ? env->hflags & MSR_LE : 0); 211 212 return 0; 213 } 214 215 /* 216 * Determine if a given PVR is a "close enough" match to the CPU 217 * object. For TCG and KVM PR it would probably be sufficient to 218 * require an exact PVR match. However for KVM HV the user is 219 * restricted to a PVR exactly matching the host CPU. The correct way 220 * to handle this is to put the guest into an architected 221 * compatibility mode. However, to allow a more forgiving transition 222 * and migration from before this was widely done, we allow migration 223 * between sufficiently similar PVRs, as determined by the CPU class's 224 * pvr_match() hook. 225 */ 226 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr) 227 { 228 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 229 230 if (pvr == pcc->pvr) { 231 return true; 232 } 233 return pcc->pvr_match(pcc, pvr); 234 } 235 236 static int cpu_post_load(void *opaque, int version_id) 237 { 238 PowerPCCPU *cpu = opaque; 239 CPUPPCState *env = &cpu->env; 240 int i; 241 242 /* 243 * If we're operating in compat mode, we should be ok as long as 244 * the destination supports the same compatibility mode. 245 * 246 * Otherwise, however, we require that the destination has exactly 247 * the same CPU model as the source. 248 */ 249 250 #if defined(TARGET_PPC64) 251 if (cpu->compat_pvr) { 252 uint32_t compat_pvr = cpu->compat_pvr; 253 Error *local_err = NULL; 254 int ret; 255 256 cpu->compat_pvr = 0; 257 ret = ppc_set_compat(cpu, compat_pvr, &local_err); 258 if (ret < 0) { 259 error_report_err(local_err); 260 return ret; 261 } 262 } else 263 #endif 264 { 265 if (!pvr_match(cpu, env->spr[SPR_PVR])) { 266 return -EINVAL; 267 } 268 } 269 270 /* 271 * If we're running with KVM HV, there is a chance that the guest 272 * is running with KVM HV and its kernel does not have the 273 * capability of dealing with a different PVR other than this 274 * exact host PVR in KVM_SET_SREGS. If that happens, the 275 * guest freezes after migration. 276 * 277 * The function kvmppc_pvr_workaround_required does this verification 278 * by first checking if the kernel has the cap, returning true immediately 279 * if that is the case. Otherwise, it checks if we're running in KVM PR. 280 * If the guest kernel does not have the cap and we're not running KVM-PR 281 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will 282 * receive the PVR it expects as a workaround. 283 * 284 */ 285 if (kvmppc_pvr_workaround_required(cpu)) { 286 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; 287 } 288 289 env->lr = env->spr[SPR_LR]; 290 env->ctr = env->spr[SPR_CTR]; 291 cpu_write_xer(env, env->spr[SPR_XER]); 292 #if defined(TARGET_PPC64) 293 env->cfar = env->spr[SPR_CFAR]; 294 #endif 295 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR]; 296 297 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 298 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i]; 299 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1]; 300 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i]; 301 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1]; 302 } 303 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 304 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i]; 305 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1]; 306 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i]; 307 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1]; 308 } 309 310 if (!cpu->vhyp) { 311 ppc_store_sdr1(env, env->spr[SPR_SDR1]); 312 } 313 314 post_load_update_msr(env); 315 316 return 0; 317 } 318 319 static bool fpu_needed(void *opaque) 320 { 321 PowerPCCPU *cpu = opaque; 322 323 return cpu->env.insns_flags & PPC_FLOAT; 324 } 325 326 static const VMStateDescription vmstate_fpu = { 327 .name = "cpu/fpu", 328 .version_id = 1, 329 .minimum_version_id = 1, 330 .needed = fpu_needed, 331 .fields = (VMStateField[]) { 332 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32), 333 VMSTATE_UINTTL(env.fpscr, PowerPCCPU), 334 VMSTATE_END_OF_LIST() 335 }, 336 }; 337 338 static bool altivec_needed(void *opaque) 339 { 340 PowerPCCPU *cpu = opaque; 341 342 return cpu->env.insns_flags & PPC_ALTIVEC; 343 } 344 345 static int get_vscr(QEMUFile *f, void *opaque, size_t size, 346 const VMStateField *field) 347 { 348 PowerPCCPU *cpu = opaque; 349 ppc_store_vscr(&cpu->env, qemu_get_be32(f)); 350 return 0; 351 } 352 353 static int put_vscr(QEMUFile *f, void *opaque, size_t size, 354 const VMStateField *field, JSONWriter *vmdesc) 355 { 356 PowerPCCPU *cpu = opaque; 357 qemu_put_be32(f, ppc_get_vscr(&cpu->env)); 358 return 0; 359 } 360 361 static const VMStateInfo vmstate_vscr = { 362 .name = "cpu/altivec/vscr", 363 .get = get_vscr, 364 .put = put_vscr, 365 }; 366 367 static const VMStateDescription vmstate_altivec = { 368 .name = "cpu/altivec", 369 .version_id = 1, 370 .minimum_version_id = 1, 371 .needed = altivec_needed, 372 .fields = (VMStateField[]) { 373 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32), 374 /* 375 * Save the architecture value of the vscr, not the internally 376 * expanded version. Since this architecture value does not 377 * exist in memory to be stored, this requires a but of hoop 378 * jumping. We want OFFSET=0 so that we effectively pass CPU 379 * to the helper functions. 380 */ 381 { 382 .name = "vscr", 383 .version_id = 0, 384 .size = sizeof(uint32_t), 385 .info = &vmstate_vscr, 386 .flags = VMS_SINGLE, 387 .offset = 0 388 }, 389 VMSTATE_END_OF_LIST() 390 }, 391 }; 392 393 static bool vsx_needed(void *opaque) 394 { 395 PowerPCCPU *cpu = opaque; 396 397 return cpu->env.insns_flags2 & PPC2_VSX; 398 } 399 400 static const VMStateDescription vmstate_vsx = { 401 .name = "cpu/vsx", 402 .version_id = 1, 403 .minimum_version_id = 1, 404 .needed = vsx_needed, 405 .fields = (VMStateField[]) { 406 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32), 407 VMSTATE_END_OF_LIST() 408 }, 409 }; 410 411 #ifdef TARGET_PPC64 412 /* Transactional memory state */ 413 static bool tm_needed(void *opaque) 414 { 415 PowerPCCPU *cpu = opaque; 416 CPUPPCState *env = &cpu->env; 417 return msr_ts; 418 } 419 420 static const VMStateDescription vmstate_tm = { 421 .name = "cpu/tm", 422 .version_id = 1, 423 .minimum_version_id = 1, 424 .needed = tm_needed, 425 .fields = (VMStateField []) { 426 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32), 427 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64), 428 VMSTATE_UINT64(env.tm_cr, PowerPCCPU), 429 VMSTATE_UINT64(env.tm_lr, PowerPCCPU), 430 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU), 431 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU), 432 VMSTATE_UINT64(env.tm_amr, PowerPCCPU), 433 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU), 434 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU), 435 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU), 436 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU), 437 VMSTATE_UINT64(env.tm_tar, PowerPCCPU), 438 VMSTATE_END_OF_LIST() 439 }, 440 }; 441 #endif 442 443 static bool sr_needed(void *opaque) 444 { 445 #ifdef TARGET_PPC64 446 PowerPCCPU *cpu = opaque; 447 448 return !mmu_is_64bit(cpu->env.mmu_model); 449 #else 450 return true; 451 #endif 452 } 453 454 static const VMStateDescription vmstate_sr = { 455 .name = "cpu/sr", 456 .version_id = 1, 457 .minimum_version_id = 1, 458 .needed = sr_needed, 459 .fields = (VMStateField[]) { 460 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32), 461 VMSTATE_END_OF_LIST() 462 }, 463 }; 464 465 #ifdef TARGET_PPC64 466 static int get_slbe(QEMUFile *f, void *pv, size_t size, 467 const VMStateField *field) 468 { 469 ppc_slb_t *v = pv; 470 471 v->esid = qemu_get_be64(f); 472 v->vsid = qemu_get_be64(f); 473 474 return 0; 475 } 476 477 static int put_slbe(QEMUFile *f, void *pv, size_t size, 478 const VMStateField *field, JSONWriter *vmdesc) 479 { 480 ppc_slb_t *v = pv; 481 482 qemu_put_be64(f, v->esid); 483 qemu_put_be64(f, v->vsid); 484 return 0; 485 } 486 487 static const VMStateInfo vmstate_info_slbe = { 488 .name = "slbe", 489 .get = get_slbe, 490 .put = put_slbe, 491 }; 492 493 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \ 494 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t) 495 496 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \ 497 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0) 498 499 static bool slb_needed(void *opaque) 500 { 501 PowerPCCPU *cpu = opaque; 502 503 /* We don't support any of the old segment table based 64-bit CPUs */ 504 return mmu_is_64bit(cpu->env.mmu_model); 505 } 506 507 static int slb_post_load(void *opaque, int version_id) 508 { 509 PowerPCCPU *cpu = opaque; 510 CPUPPCState *env = &cpu->env; 511 int i; 512 513 /* 514 * We've pulled in the raw esid and vsid values from the migration 515 * stream, but we need to recompute the page size pointers 516 */ 517 for (i = 0; i < cpu->hash64_opts->slb_size; i++) { 518 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) { 519 /* Migration source had bad values in its SLB */ 520 return -1; 521 } 522 } 523 524 return 0; 525 } 526 527 static const VMStateDescription vmstate_slb = { 528 .name = "cpu/slb", 529 .version_id = 1, 530 .minimum_version_id = 1, 531 .needed = slb_needed, 532 .post_load = slb_post_load, 533 .fields = (VMStateField[]) { 534 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration), 535 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES), 536 VMSTATE_END_OF_LIST() 537 } 538 }; 539 #endif /* TARGET_PPC64 */ 540 541 static const VMStateDescription vmstate_tlb6xx_entry = { 542 .name = "cpu/tlb6xx_entry", 543 .version_id = 1, 544 .minimum_version_id = 1, 545 .fields = (VMStateField[]) { 546 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t), 547 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t), 548 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t), 549 VMSTATE_END_OF_LIST() 550 }, 551 }; 552 553 static bool tlb6xx_needed(void *opaque) 554 { 555 PowerPCCPU *cpu = opaque; 556 CPUPPCState *env = &cpu->env; 557 558 return env->nb_tlb && (env->tlb_type == TLB_6XX); 559 } 560 561 static const VMStateDescription vmstate_tlb6xx = { 562 .name = "cpu/tlb6xx", 563 .version_id = 1, 564 .minimum_version_id = 1, 565 .needed = tlb6xx_needed, 566 .fields = (VMStateField[]) { 567 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 568 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU, 569 env.nb_tlb, 570 vmstate_tlb6xx_entry, 571 ppc6xx_tlb_t), 572 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4), 573 VMSTATE_END_OF_LIST() 574 } 575 }; 576 577 static const VMStateDescription vmstate_tlbemb_entry = { 578 .name = "cpu/tlbemb_entry", 579 .version_id = 1, 580 .minimum_version_id = 1, 581 .fields = (VMStateField[]) { 582 VMSTATE_UINT64(RPN, ppcemb_tlb_t), 583 VMSTATE_UINTTL(EPN, ppcemb_tlb_t), 584 VMSTATE_UINTTL(PID, ppcemb_tlb_t), 585 VMSTATE_UINTTL(size, ppcemb_tlb_t), 586 VMSTATE_UINT32(prot, ppcemb_tlb_t), 587 VMSTATE_UINT32(attr, ppcemb_tlb_t), 588 VMSTATE_END_OF_LIST() 589 }, 590 }; 591 592 static bool tlbemb_needed(void *opaque) 593 { 594 PowerPCCPU *cpu = opaque; 595 CPUPPCState *env = &cpu->env; 596 597 return env->nb_tlb && (env->tlb_type == TLB_EMB); 598 } 599 600 static const VMStateDescription vmstate_tlbemb = { 601 .name = "cpu/tlb6xx", 602 .version_id = 1, 603 .minimum_version_id = 1, 604 .needed = tlbemb_needed, 605 .fields = (VMStateField[]) { 606 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 607 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU, 608 env.nb_tlb, 609 vmstate_tlbemb_entry, 610 ppcemb_tlb_t), 611 VMSTATE_END_OF_LIST() 612 }, 613 }; 614 615 static const VMStateDescription vmstate_tlbmas_entry = { 616 .name = "cpu/tlbmas_entry", 617 .version_id = 1, 618 .minimum_version_id = 1, 619 .fields = (VMStateField[]) { 620 VMSTATE_UINT32(mas8, ppcmas_tlb_t), 621 VMSTATE_UINT32(mas1, ppcmas_tlb_t), 622 VMSTATE_UINT64(mas2, ppcmas_tlb_t), 623 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t), 624 VMSTATE_END_OF_LIST() 625 }, 626 }; 627 628 static bool tlbmas_needed(void *opaque) 629 { 630 PowerPCCPU *cpu = opaque; 631 CPUPPCState *env = &cpu->env; 632 633 return env->nb_tlb && (env->tlb_type == TLB_MAS); 634 } 635 636 static const VMStateDescription vmstate_tlbmas = { 637 .name = "cpu/tlbmas", 638 .version_id = 1, 639 .minimum_version_id = 1, 640 .needed = tlbmas_needed, 641 .fields = (VMStateField[]) { 642 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 643 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU, 644 env.nb_tlb, 645 vmstate_tlbmas_entry, 646 ppcmas_tlb_t), 647 VMSTATE_END_OF_LIST() 648 } 649 }; 650 651 static bool compat_needed(void *opaque) 652 { 653 PowerPCCPU *cpu = opaque; 654 655 assert(!(cpu->compat_pvr && !cpu->vhyp)); 656 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0; 657 } 658 659 static const VMStateDescription vmstate_compat = { 660 .name = "cpu/compat", 661 .version_id = 1, 662 .minimum_version_id = 1, 663 .needed = compat_needed, 664 .fields = (VMStateField[]) { 665 VMSTATE_UINT32(compat_pvr, PowerPCCPU), 666 VMSTATE_END_OF_LIST() 667 } 668 }; 669 670 const VMStateDescription vmstate_ppc_cpu = { 671 .name = "cpu", 672 .version_id = 5, 673 .minimum_version_id = 5, 674 .pre_save = cpu_pre_save, 675 .post_load = cpu_post_load, 676 .fields = (VMStateField[]) { 677 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */ 678 679 /* User mode architected state */ 680 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32), 681 #if !defined(TARGET_PPC64) 682 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32), 683 #endif 684 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8), 685 VMSTATE_UINTTL(env.nip, PowerPCCPU), 686 687 /* SPRs */ 688 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024), 689 VMSTATE_UINT64(env.spe_acc, PowerPCCPU), 690 691 /* Reservation */ 692 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU), 693 694 /* Supervisor mode architected state */ 695 VMSTATE_UINTTL(env.msr, PowerPCCPU), 696 697 /* Backward compatible internal state */ 698 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU), 699 700 /* Sanity checking */ 701 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration), 702 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration), 703 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU, 704 cpu_pre_2_8_migration), 705 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration), 706 VMSTATE_END_OF_LIST() 707 }, 708 .subsections = (const VMStateDescription*[]) { 709 &vmstate_fpu, 710 &vmstate_altivec, 711 &vmstate_vsx, 712 &vmstate_sr, 713 #ifdef TARGET_PPC64 714 &vmstate_tm, 715 &vmstate_slb, 716 #endif /* TARGET_PPC64 */ 717 &vmstate_tlb6xx, 718 &vmstate_tlbemb, 719 &vmstate_tlbmas, 720 &vmstate_compat, 721 NULL 722 } 723 }; 724