xref: /openbmc/qemu/target/ppc/machine.c (revision ae3c12a0)
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
13 #include "exec/helper-proto.h"
14 
15 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
16 {
17     PowerPCCPU *cpu = opaque;
18     CPUPPCState *env = &cpu->env;
19     unsigned int i, j;
20     target_ulong sdr1;
21     uint32_t fpscr, vscr;
22 #if defined(TARGET_PPC64)
23     int32_t slb_nr;
24 #endif
25     target_ulong xer;
26 
27     for (i = 0; i < 32; i++) {
28         qemu_get_betls(f, &env->gpr[i]);
29     }
30 #if !defined(TARGET_PPC64)
31     for (i = 0; i < 32; i++) {
32         qemu_get_betls(f, &env->gprh[i]);
33     }
34 #endif
35     qemu_get_betls(f, &env->lr);
36     qemu_get_betls(f, &env->ctr);
37     for (i = 0; i < 8; i++) {
38         qemu_get_be32s(f, &env->crf[i]);
39     }
40     qemu_get_betls(f, &xer);
41     cpu_write_xer(env, xer);
42     qemu_get_betls(f, &env->reserve_addr);
43     qemu_get_betls(f, &env->msr);
44     for (i = 0; i < 4; i++) {
45         qemu_get_betls(f, &env->tgpr[i]);
46     }
47     for (i = 0; i < 32; i++) {
48         union {
49             float64 d;
50             uint64_t l;
51         } u;
52         u.l = qemu_get_be64(f);
53         *cpu_fpr_ptr(env, i) = u.d;
54     }
55     qemu_get_be32s(f, &fpscr);
56     env->fpscr = fpscr;
57     qemu_get_sbe32s(f, &env->access_type);
58 #if defined(TARGET_PPC64)
59     qemu_get_betls(f, &env->spr[SPR_ASR]);
60     qemu_get_sbe32s(f, &slb_nr);
61 #endif
62     qemu_get_betls(f, &sdr1);
63     for (i = 0; i < 32; i++) {
64         qemu_get_betls(f, &env->sr[i]);
65     }
66     for (i = 0; i < 2; i++) {
67         for (j = 0; j < 8; j++) {
68             qemu_get_betls(f, &env->DBAT[i][j]);
69         }
70     }
71     for (i = 0; i < 2; i++) {
72         for (j = 0; j < 8; j++) {
73             qemu_get_betls(f, &env->IBAT[i][j]);
74         }
75     }
76     qemu_get_sbe32s(f, &env->nb_tlb);
77     qemu_get_sbe32s(f, &env->tlb_per_way);
78     qemu_get_sbe32s(f, &env->nb_ways);
79     qemu_get_sbe32s(f, &env->last_way);
80     qemu_get_sbe32s(f, &env->id_tlbs);
81     qemu_get_sbe32s(f, &env->nb_pids);
82     if (env->tlb.tlb6) {
83         /* XXX assumes 6xx */
84         for (i = 0; i < env->nb_tlb; i++) {
85             qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
86             qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
87             qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
88         }
89     }
90     for (i = 0; i < 4; i++) {
91         qemu_get_betls(f, &env->pb[i]);
92     }
93     for (i = 0; i < 1024; i++) {
94         qemu_get_betls(f, &env->spr[i]);
95     }
96     if (!cpu->vhyp) {
97         ppc_store_sdr1(env, sdr1);
98     }
99     qemu_get_be32s(f, &vscr);
100     helper_mtvscr(env, vscr);
101     qemu_get_be64s(f, &env->spe_acc);
102     qemu_get_be32s(f, &env->spe_fscr);
103     qemu_get_betls(f, &env->msr_mask);
104     qemu_get_be32s(f, &env->flags);
105     qemu_get_sbe32s(f, &env->error_code);
106     qemu_get_be32s(f, &env->pending_interrupts);
107     qemu_get_be32s(f, &env->irq_input_state);
108     for (i = 0; i < POWERPC_EXCP_NB; i++) {
109         qemu_get_betls(f, &env->excp_vectors[i]);
110     }
111     qemu_get_betls(f, &env->excp_prefix);
112     qemu_get_betls(f, &env->ivor_mask);
113     qemu_get_betls(f, &env->ivpr_mask);
114     qemu_get_betls(f, &env->hreset_vector);
115     qemu_get_betls(f, &env->nip);
116     qemu_get_betls(f, &env->hflags);
117     qemu_get_betls(f, &env->hflags_nmsr);
118     qemu_get_sbe32(f); /* Discard unused mmu_idx */
119     qemu_get_sbe32(f); /* Discard unused power_mode */
120 
121     /* Recompute mmu indices */
122     hreg_compute_mem_idx(env);
123 
124     return 0;
125 }
126 
127 static int get_avr(QEMUFile *f, void *pv, size_t size,
128                    const VMStateField *field)
129 {
130     ppc_avr_t *v = pv;
131 
132     v->u64[0] = qemu_get_be64(f);
133     v->u64[1] = qemu_get_be64(f);
134 
135     return 0;
136 }
137 
138 static int put_avr(QEMUFile *f, void *pv, size_t size,
139                    const VMStateField *field, QJSON *vmdesc)
140 {
141     ppc_avr_t *v = pv;
142 
143     qemu_put_be64(f, v->u64[0]);
144     qemu_put_be64(f, v->u64[1]);
145     return 0;
146 }
147 
148 static const VMStateInfo vmstate_info_avr = {
149     .name = "avr",
150     .get  = get_avr,
151     .put  = put_avr,
152 };
153 
154 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
155     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
156 
157 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
158     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
159 
160 static int get_fpr(QEMUFile *f, void *pv, size_t size,
161                    const VMStateField *field)
162 {
163     ppc_vsr_t *v = pv;
164 
165     v->VsrD(0) = qemu_get_be64(f);
166 
167     return 0;
168 }
169 
170 static int put_fpr(QEMUFile *f, void *pv, size_t size,
171                    const VMStateField *field, QJSON *vmdesc)
172 {
173     ppc_vsr_t *v = pv;
174 
175     qemu_put_be64(f, v->VsrD(0));
176     return 0;
177 }
178 
179 static const VMStateInfo vmstate_info_fpr = {
180     .name = "fpr",
181     .get  = get_fpr,
182     .put  = put_fpr,
183 };
184 
185 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
186     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
187 
188 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
189     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
190 
191 static int get_vsr(QEMUFile *f, void *pv, size_t size,
192                    const VMStateField *field)
193 {
194     ppc_vsr_t *v = pv;
195 
196     v->VsrD(1) = qemu_get_be64(f);
197 
198     return 0;
199 }
200 
201 static int put_vsr(QEMUFile *f, void *pv, size_t size,
202                    const VMStateField *field, QJSON *vmdesc)
203 {
204     ppc_vsr_t *v = pv;
205 
206     qemu_put_be64(f, v->VsrD(1));
207     return 0;
208 }
209 
210 static const VMStateInfo vmstate_info_vsr = {
211     .name = "vsr",
212     .get  = get_vsr,
213     .put  = put_vsr,
214 };
215 
216 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
217     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
218 
219 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
220     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
221 
222 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
223 {
224     PowerPCCPU *cpu = opaque;
225 
226     return cpu->pre_2_8_migration;
227 }
228 
229 #if defined(TARGET_PPC64)
230 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
231 {
232     PowerPCCPU *cpu = opaque;
233 
234     return cpu->pre_3_0_migration;
235 }
236 #endif
237 
238 static int cpu_pre_save(void *opaque)
239 {
240     PowerPCCPU *cpu = opaque;
241     CPUPPCState *env = &cpu->env;
242     int i;
243     uint64_t insns_compat_mask =
244         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
245         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
246         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
247         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
248         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
249         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
250         | PPC_64B | PPC_64BX | PPC_ALTIVEC
251         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
252     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
253         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
254         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
255         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
256         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
257         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
258 
259     env->spr[SPR_LR] = env->lr;
260     env->spr[SPR_CTR] = env->ctr;
261     env->spr[SPR_XER] = cpu_read_xer(env);
262 #if defined(TARGET_PPC64)
263     env->spr[SPR_CFAR] = env->cfar;
264 #endif
265     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
266 
267     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
268         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
269         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
270         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
271         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
272     }
273     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
274         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
275         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
276         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
277         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
278     }
279 
280     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
281     if (cpu->pre_2_8_migration) {
282         /*
283          * Mask out bits that got added to msr_mask since the versions
284          * which stupidly included it in the migration stream.
285          */
286         target_ulong metamask = 0
287 #if defined(TARGET_PPC64)
288             | (1ULL << MSR_TS0)
289             | (1ULL << MSR_TS1)
290 #endif
291             ;
292         cpu->mig_msr_mask = env->msr_mask & ~metamask;
293         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
294         /*
295          * CPU models supported by old machines all have
296          * PPC_MEM_TLBIE, so we set it unconditionally to allow
297          * backward migration from a POWER9 host to a POWER8 host.
298          */
299         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
300         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
301         cpu->mig_nb_BATs = env->nb_BATs;
302     }
303     if (cpu->pre_3_0_migration) {
304         if (cpu->hash64_opts) {
305             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
306         }
307     }
308 
309     return 0;
310 }
311 
312 /*
313  * Determine if a given PVR is a "close enough" match to the CPU
314  * object.  For TCG and KVM PR it would probably be sufficient to
315  * require an exact PVR match.  However for KVM HV the user is
316  * restricted to a PVR exactly matching the host CPU.  The correct way
317  * to handle this is to put the guest into an architected
318  * compatibility mode.  However, to allow a more forgiving transition
319  * and migration from before this was widely done, we allow migration
320  * between sufficiently similar PVRs, as determined by the CPU class's
321  * pvr_match() hook.
322  */
323 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
324 {
325     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
326 
327     if (pvr == pcc->pvr) {
328         return true;
329     }
330     return pcc->pvr_match(pcc, pvr);
331 }
332 
333 static int cpu_post_load(void *opaque, int version_id)
334 {
335     PowerPCCPU *cpu = opaque;
336     CPUPPCState *env = &cpu->env;
337     int i;
338     target_ulong msr;
339 
340     /*
341      * If we're operating in compat mode, we should be ok as long as
342      * the destination supports the same compatiblity mode.
343      *
344      * Otherwise, however, we require that the destination has exactly
345      * the same CPU model as the source.
346      */
347 
348 #if defined(TARGET_PPC64)
349     if (cpu->compat_pvr) {
350         uint32_t compat_pvr = cpu->compat_pvr;
351         Error *local_err = NULL;
352 
353         cpu->compat_pvr = 0;
354         ppc_set_compat(cpu, compat_pvr, &local_err);
355         if (local_err) {
356             error_report_err(local_err);
357             return -1;
358         }
359     } else
360 #endif
361     {
362         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
363             return -1;
364         }
365     }
366 
367     /*
368      * If we're running with KVM HV, there is a chance that the guest
369      * is running with KVM HV and its kernel does not have the
370      * capability of dealing with a different PVR other than this
371      * exact host PVR in KVM_SET_SREGS. If that happens, the
372      * guest freezes after migration.
373      *
374      * The function kvmppc_pvr_workaround_required does this verification
375      * by first checking if the kernel has the cap, returning true immediately
376      * if that is the case. Otherwise, it checks if we're running in KVM PR.
377      * If the guest kernel does not have the cap and we're not running KVM-PR
378      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
379      * receive the PVR it expects as a workaround.
380      *
381      */
382 #if defined(CONFIG_KVM)
383     if (kvmppc_pvr_workaround_required(cpu)) {
384         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
385     }
386 #endif
387 
388     env->lr = env->spr[SPR_LR];
389     env->ctr = env->spr[SPR_CTR];
390     cpu_write_xer(env, env->spr[SPR_XER]);
391 #if defined(TARGET_PPC64)
392     env->cfar = env->spr[SPR_CFAR];
393 #endif
394     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
395 
396     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
397         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
398         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
399         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
400         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
401     }
402     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
403         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
404         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
405         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
406         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
407     }
408 
409     if (!cpu->vhyp) {
410         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
411     }
412 
413     /*
414      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
415      * before restoring
416      */
417     msr = env->msr;
418     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
419     ppc_store_msr(env, msr);
420 
421     hreg_compute_mem_idx(env);
422 
423     return 0;
424 }
425 
426 static bool fpu_needed(void *opaque)
427 {
428     PowerPCCPU *cpu = opaque;
429 
430     return cpu->env.insns_flags & PPC_FLOAT;
431 }
432 
433 static const VMStateDescription vmstate_fpu = {
434     .name = "cpu/fpu",
435     .version_id = 1,
436     .minimum_version_id = 1,
437     .needed = fpu_needed,
438     .fields = (VMStateField[]) {
439         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
440         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
441         VMSTATE_END_OF_LIST()
442     },
443 };
444 
445 static bool altivec_needed(void *opaque)
446 {
447     PowerPCCPU *cpu = opaque;
448 
449     return cpu->env.insns_flags & PPC_ALTIVEC;
450 }
451 
452 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
453                     const VMStateField *field)
454 {
455     PowerPCCPU *cpu = opaque;
456     helper_mtvscr(&cpu->env, qemu_get_be32(f));
457     return 0;
458 }
459 
460 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
461                     const VMStateField *field, QJSON *vmdesc)
462 {
463     PowerPCCPU *cpu = opaque;
464     qemu_put_be32(f, helper_mfvscr(&cpu->env));
465     return 0;
466 }
467 
468 static const VMStateInfo vmstate_vscr = {
469     .name = "cpu/altivec/vscr",
470     .get = get_vscr,
471     .put = put_vscr,
472 };
473 
474 static const VMStateDescription vmstate_altivec = {
475     .name = "cpu/altivec",
476     .version_id = 1,
477     .minimum_version_id = 1,
478     .needed = altivec_needed,
479     .fields = (VMStateField[]) {
480         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
481         /*
482          * Save the architecture value of the vscr, not the internally
483          * expanded version.  Since this architecture value does not
484          * exist in memory to be stored, this requires a but of hoop
485          * jumping.  We want OFFSET=0 so that we effectively pass CPU
486          * to the helper functions.
487          */
488         {
489             .name = "vscr",
490             .version_id = 0,
491             .size = sizeof(uint32_t),
492             .info = &vmstate_vscr,
493             .flags = VMS_SINGLE,
494             .offset = 0
495         },
496         VMSTATE_END_OF_LIST()
497     },
498 };
499 
500 static bool vsx_needed(void *opaque)
501 {
502     PowerPCCPU *cpu = opaque;
503 
504     return cpu->env.insns_flags2 & PPC2_VSX;
505 }
506 
507 static const VMStateDescription vmstate_vsx = {
508     .name = "cpu/vsx",
509     .version_id = 1,
510     .minimum_version_id = 1,
511     .needed = vsx_needed,
512     .fields = (VMStateField[]) {
513         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
514         VMSTATE_END_OF_LIST()
515     },
516 };
517 
518 #ifdef TARGET_PPC64
519 /* Transactional memory state */
520 static bool tm_needed(void *opaque)
521 {
522     PowerPCCPU *cpu = opaque;
523     CPUPPCState *env = &cpu->env;
524     return msr_ts;
525 }
526 
527 static const VMStateDescription vmstate_tm = {
528     .name = "cpu/tm",
529     .version_id = 1,
530     .minimum_version_id = 1,
531     .minimum_version_id_old = 1,
532     .needed = tm_needed,
533     .fields      = (VMStateField []) {
534         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
535         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
536         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
537         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
538         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
539         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
540         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
541         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
542         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
543         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
544         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
545         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
546         VMSTATE_END_OF_LIST()
547     },
548 };
549 #endif
550 
551 static bool sr_needed(void *opaque)
552 {
553 #ifdef TARGET_PPC64
554     PowerPCCPU *cpu = opaque;
555 
556     return !(cpu->env.mmu_model & POWERPC_MMU_64);
557 #else
558     return true;
559 #endif
560 }
561 
562 static const VMStateDescription vmstate_sr = {
563     .name = "cpu/sr",
564     .version_id = 1,
565     .minimum_version_id = 1,
566     .needed = sr_needed,
567     .fields = (VMStateField[]) {
568         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
569         VMSTATE_END_OF_LIST()
570     },
571 };
572 
573 #ifdef TARGET_PPC64
574 static int get_slbe(QEMUFile *f, void *pv, size_t size,
575                     const VMStateField *field)
576 {
577     ppc_slb_t *v = pv;
578 
579     v->esid = qemu_get_be64(f);
580     v->vsid = qemu_get_be64(f);
581 
582     return 0;
583 }
584 
585 static int put_slbe(QEMUFile *f, void *pv, size_t size,
586                     const VMStateField *field, QJSON *vmdesc)
587 {
588     ppc_slb_t *v = pv;
589 
590     qemu_put_be64(f, v->esid);
591     qemu_put_be64(f, v->vsid);
592     return 0;
593 }
594 
595 static const VMStateInfo vmstate_info_slbe = {
596     .name = "slbe",
597     .get  = get_slbe,
598     .put  = put_slbe,
599 };
600 
601 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
602     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
603 
604 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
605     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
606 
607 static bool slb_needed(void *opaque)
608 {
609     PowerPCCPU *cpu = opaque;
610 
611     /* We don't support any of the old segment table based 64-bit CPUs */
612     return cpu->env.mmu_model & POWERPC_MMU_64;
613 }
614 
615 static int slb_post_load(void *opaque, int version_id)
616 {
617     PowerPCCPU *cpu = opaque;
618     CPUPPCState *env = &cpu->env;
619     int i;
620 
621     /*
622      * We've pulled in the raw esid and vsid values from the migration
623      * stream, but we need to recompute the page size pointers
624      */
625     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
626         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
627             /* Migration source had bad values in its SLB */
628             return -1;
629         }
630     }
631 
632     return 0;
633 }
634 
635 static const VMStateDescription vmstate_slb = {
636     .name = "cpu/slb",
637     .version_id = 1,
638     .minimum_version_id = 1,
639     .needed = slb_needed,
640     .post_load = slb_post_load,
641     .fields = (VMStateField[]) {
642         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
643         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
644         VMSTATE_END_OF_LIST()
645     }
646 };
647 #endif /* TARGET_PPC64 */
648 
649 static const VMStateDescription vmstate_tlb6xx_entry = {
650     .name = "cpu/tlb6xx_entry",
651     .version_id = 1,
652     .minimum_version_id = 1,
653     .fields = (VMStateField[]) {
654         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
655         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
656         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
657         VMSTATE_END_OF_LIST()
658     },
659 };
660 
661 static bool tlb6xx_needed(void *opaque)
662 {
663     PowerPCCPU *cpu = opaque;
664     CPUPPCState *env = &cpu->env;
665 
666     return env->nb_tlb && (env->tlb_type == TLB_6XX);
667 }
668 
669 static const VMStateDescription vmstate_tlb6xx = {
670     .name = "cpu/tlb6xx",
671     .version_id = 1,
672     .minimum_version_id = 1,
673     .needed = tlb6xx_needed,
674     .fields = (VMStateField[]) {
675         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
676         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
677                                             env.nb_tlb,
678                                             vmstate_tlb6xx_entry,
679                                             ppc6xx_tlb_t),
680         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
681         VMSTATE_END_OF_LIST()
682     }
683 };
684 
685 static const VMStateDescription vmstate_tlbemb_entry = {
686     .name = "cpu/tlbemb_entry",
687     .version_id = 1,
688     .minimum_version_id = 1,
689     .fields = (VMStateField[]) {
690         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
691         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
692         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
693         VMSTATE_UINTTL(size, ppcemb_tlb_t),
694         VMSTATE_UINT32(prot, ppcemb_tlb_t),
695         VMSTATE_UINT32(attr, ppcemb_tlb_t),
696         VMSTATE_END_OF_LIST()
697     },
698 };
699 
700 static bool tlbemb_needed(void *opaque)
701 {
702     PowerPCCPU *cpu = opaque;
703     CPUPPCState *env = &cpu->env;
704 
705     return env->nb_tlb && (env->tlb_type == TLB_EMB);
706 }
707 
708 static bool pbr403_needed(void *opaque)
709 {
710     PowerPCCPU *cpu = opaque;
711     uint32_t pvr = cpu->env.spr[SPR_PVR];
712 
713     return (pvr & 0xffff0000) == 0x00200000;
714 }
715 
716 static const VMStateDescription vmstate_pbr403 = {
717     .name = "cpu/pbr403",
718     .version_id = 1,
719     .minimum_version_id = 1,
720     .needed = pbr403_needed,
721     .fields = (VMStateField[]) {
722         VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
723         VMSTATE_END_OF_LIST()
724     },
725 };
726 
727 static const VMStateDescription vmstate_tlbemb = {
728     .name = "cpu/tlb6xx",
729     .version_id = 1,
730     .minimum_version_id = 1,
731     .needed = tlbemb_needed,
732     .fields = (VMStateField[]) {
733         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
734         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
735                                             env.nb_tlb,
736                                             vmstate_tlbemb_entry,
737                                             ppcemb_tlb_t),
738         /* 403 protection registers */
739         VMSTATE_END_OF_LIST()
740     },
741     .subsections = (const VMStateDescription*[]) {
742         &vmstate_pbr403,
743         NULL
744     }
745 };
746 
747 static const VMStateDescription vmstate_tlbmas_entry = {
748     .name = "cpu/tlbmas_entry",
749     .version_id = 1,
750     .minimum_version_id = 1,
751     .fields = (VMStateField[]) {
752         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
753         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
754         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
755         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
756         VMSTATE_END_OF_LIST()
757     },
758 };
759 
760 static bool tlbmas_needed(void *opaque)
761 {
762     PowerPCCPU *cpu = opaque;
763     CPUPPCState *env = &cpu->env;
764 
765     return env->nb_tlb && (env->tlb_type == TLB_MAS);
766 }
767 
768 static const VMStateDescription vmstate_tlbmas = {
769     .name = "cpu/tlbmas",
770     .version_id = 1,
771     .minimum_version_id = 1,
772     .needed = tlbmas_needed,
773     .fields = (VMStateField[]) {
774         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
775         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
776                                             env.nb_tlb,
777                                             vmstate_tlbmas_entry,
778                                             ppcmas_tlb_t),
779         VMSTATE_END_OF_LIST()
780     }
781 };
782 
783 static bool compat_needed(void *opaque)
784 {
785     PowerPCCPU *cpu = opaque;
786 
787     assert(!(cpu->compat_pvr && !cpu->vhyp));
788     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
789 }
790 
791 static const VMStateDescription vmstate_compat = {
792     .name = "cpu/compat",
793     .version_id = 1,
794     .minimum_version_id = 1,
795     .needed = compat_needed,
796     .fields = (VMStateField[]) {
797         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
798         VMSTATE_END_OF_LIST()
799     }
800 };
801 
802 const VMStateDescription vmstate_ppc_cpu = {
803     .name = "cpu",
804     .version_id = 5,
805     .minimum_version_id = 5,
806     .minimum_version_id_old = 4,
807     .load_state_old = cpu_load_old,
808     .pre_save = cpu_pre_save,
809     .post_load = cpu_post_load,
810     .fields = (VMStateField[]) {
811         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
812 
813         /* User mode architected state */
814         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
815 #if !defined(TARGET_PPC64)
816         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
817 #endif
818         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
819         VMSTATE_UINTTL(env.nip, PowerPCCPU),
820 
821         /* SPRs */
822         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
823         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
824 
825         /* Reservation */
826         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
827 
828         /* Supervisor mode architected state */
829         VMSTATE_UINTTL(env.msr, PowerPCCPU),
830 
831         /* Internal state */
832         VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
833         /* FIXME: access_type? */
834 
835         /* Sanity checking */
836         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
837         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
838         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
839                             cpu_pre_2_8_migration),
840         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
841         VMSTATE_END_OF_LIST()
842     },
843     .subsections = (const VMStateDescription*[]) {
844         &vmstate_fpu,
845         &vmstate_altivec,
846         &vmstate_vsx,
847         &vmstate_sr,
848 #ifdef TARGET_PPC64
849         &vmstate_tm,
850         &vmstate_slb,
851 #endif /* TARGET_PPC64 */
852         &vmstate_tlb6xx,
853         &vmstate_tlbemb,
854         &vmstate_tlbmas,
855         &vmstate_compat,
856         NULL
857     }
858 };
859