xref: /openbmc/qemu/target/ppc/machine.c (revision ab938ae4)
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
13 
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
15 {
16     PowerPCCPU *cpu = opaque;
17     CPUPPCState *env = &cpu->env;
18     unsigned int i, j;
19     target_ulong sdr1;
20     uint32_t fpscr;
21     target_ulong xer;
22 
23     for (i = 0; i < 32; i++)
24         qemu_get_betls(f, &env->gpr[i]);
25 #if !defined(TARGET_PPC64)
26     for (i = 0; i < 32; i++)
27         qemu_get_betls(f, &env->gprh[i]);
28 #endif
29     qemu_get_betls(f, &env->lr);
30     qemu_get_betls(f, &env->ctr);
31     for (i = 0; i < 8; i++)
32         qemu_get_be32s(f, &env->crf[i]);
33     qemu_get_betls(f, &xer);
34     cpu_write_xer(env, xer);
35     qemu_get_betls(f, &env->reserve_addr);
36     qemu_get_betls(f, &env->msr);
37     for (i = 0; i < 4; i++)
38         qemu_get_betls(f, &env->tgpr[i]);
39     for (i = 0; i < 32; i++) {
40         union {
41             float64 d;
42             uint64_t l;
43         } u;
44         u.l = qemu_get_be64(f);
45         env->fpr[i] = u.d;
46     }
47     qemu_get_be32s(f, &fpscr);
48     env->fpscr = fpscr;
49     qemu_get_sbe32s(f, &env->access_type);
50 #if defined(TARGET_PPC64)
51     qemu_get_betls(f, &env->spr[SPR_ASR]);
52     qemu_get_sbe32s(f, &env->slb_nr);
53 #endif
54     qemu_get_betls(f, &sdr1);
55     for (i = 0; i < 32; i++)
56         qemu_get_betls(f, &env->sr[i]);
57     for (i = 0; i < 2; i++)
58         for (j = 0; j < 8; j++)
59             qemu_get_betls(f, &env->DBAT[i][j]);
60     for (i = 0; i < 2; i++)
61         for (j = 0; j < 8; j++)
62             qemu_get_betls(f, &env->IBAT[i][j]);
63     qemu_get_sbe32s(f, &env->nb_tlb);
64     qemu_get_sbe32s(f, &env->tlb_per_way);
65     qemu_get_sbe32s(f, &env->nb_ways);
66     qemu_get_sbe32s(f, &env->last_way);
67     qemu_get_sbe32s(f, &env->id_tlbs);
68     qemu_get_sbe32s(f, &env->nb_pids);
69     if (env->tlb.tlb6) {
70         // XXX assumes 6xx
71         for (i = 0; i < env->nb_tlb; i++) {
72             qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
73             qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
74             qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
75         }
76     }
77     for (i = 0; i < 4; i++)
78         qemu_get_betls(f, &env->pb[i]);
79     for (i = 0; i < 1024; i++)
80         qemu_get_betls(f, &env->spr[i]);
81     if (!cpu->vhyp) {
82         ppc_store_sdr1(env, sdr1);
83     }
84     qemu_get_be32s(f, &env->vscr);
85     qemu_get_be64s(f, &env->spe_acc);
86     qemu_get_be32s(f, &env->spe_fscr);
87     qemu_get_betls(f, &env->msr_mask);
88     qemu_get_be32s(f, &env->flags);
89     qemu_get_sbe32s(f, &env->error_code);
90     qemu_get_be32s(f, &env->pending_interrupts);
91     qemu_get_be32s(f, &env->irq_input_state);
92     for (i = 0; i < POWERPC_EXCP_NB; i++)
93         qemu_get_betls(f, &env->excp_vectors[i]);
94     qemu_get_betls(f, &env->excp_prefix);
95     qemu_get_betls(f, &env->ivor_mask);
96     qemu_get_betls(f, &env->ivpr_mask);
97     qemu_get_betls(f, &env->hreset_vector);
98     qemu_get_betls(f, &env->nip);
99     qemu_get_betls(f, &env->hflags);
100     qemu_get_betls(f, &env->hflags_nmsr);
101     qemu_get_sbe32(f); /* Discard unused mmu_idx */
102     qemu_get_sbe32(f); /* Discard unused power_mode */
103 
104     /* Recompute mmu indices */
105     hreg_compute_mem_idx(env);
106 
107     return 0;
108 }
109 
110 static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
111 {
112     ppc_avr_t *v = pv;
113 
114     v->u64[0] = qemu_get_be64(f);
115     v->u64[1] = qemu_get_be64(f);
116 
117     return 0;
118 }
119 
120 static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
121                    QJSON *vmdesc)
122 {
123     ppc_avr_t *v = pv;
124 
125     qemu_put_be64(f, v->u64[0]);
126     qemu_put_be64(f, v->u64[1]);
127     return 0;
128 }
129 
130 static const VMStateInfo vmstate_info_avr = {
131     .name = "avr",
132     .get  = get_avr,
133     .put  = put_avr,
134 };
135 
136 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
137     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
138 
139 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
140     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
141 
142 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
143 {
144     PowerPCCPU *cpu = opaque;
145 
146     return cpu->pre_2_8_migration;
147 }
148 
149 static void cpu_pre_save(void *opaque)
150 {
151     PowerPCCPU *cpu = opaque;
152     CPUPPCState *env = &cpu->env;
153     int i;
154     uint64_t insns_compat_mask =
155         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
156         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
157         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
158         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
159         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
160         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
161         | PPC_64B | PPC_64BX | PPC_ALTIVEC
162         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
163     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
164         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
165         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
166         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
167         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
168         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
169 
170     env->spr[SPR_LR] = env->lr;
171     env->spr[SPR_CTR] = env->ctr;
172     env->spr[SPR_XER] = cpu_read_xer(env);
173 #if defined(TARGET_PPC64)
174     env->spr[SPR_CFAR] = env->cfar;
175 #endif
176     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
177 
178     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
179         env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
180         env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
181         env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
182         env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
183     }
184     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
185         env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
186         env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
187         env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
188         env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
189     }
190 
191     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
192     if (cpu->pre_2_8_migration) {
193         cpu->mig_msr_mask = env->msr_mask;
194         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
195         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
196         cpu->mig_nb_BATs = env->nb_BATs;
197     }
198 }
199 
200 /*
201  * Determine if a given PVR is a "close enough" match to the CPU
202  * object.  For TCG and KVM PR it would probably be sufficient to
203  * require an exact PVR match.  However for KVM HV the user is
204  * restricted to a PVR exactly matching the host CPU.  The correct way
205  * to handle this is to put the guest into an architected
206  * compatibility mode.  However, to allow a more forgiving transition
207  * and migration from before this was widely done, we allow migration
208  * between sufficiently similar PVRs, as determined by the CPU class's
209  * pvr_match() hook.
210  */
211 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
212 {
213     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
214 
215     if (pvr == pcc->pvr) {
216         return true;
217     }
218     return pcc->pvr_match(pcc, pvr);
219 }
220 
221 static int cpu_post_load(void *opaque, int version_id)
222 {
223     PowerPCCPU *cpu = opaque;
224     CPUPPCState *env = &cpu->env;
225     int i;
226     target_ulong msr;
227 
228     /*
229      * If we're operating in compat mode, we should be ok as long as
230      * the destination supports the same compatiblity mode.
231      *
232      * Otherwise, however, we require that the destination has exactly
233      * the same CPU model as the source.
234      */
235 
236 #if defined(TARGET_PPC64)
237     if (cpu->compat_pvr) {
238         Error *local_err = NULL;
239 
240         ppc_set_compat(cpu, cpu->compat_pvr, &local_err);
241         if (local_err) {
242             error_report_err(local_err);
243             return -1;
244         }
245     } else
246 #endif
247     {
248         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
249             return -1;
250         }
251     }
252 
253     /*
254      * If we're running with KVM HV, there is a chance that the guest
255      * is running with KVM HV and its kernel does not have the
256      * capability of dealing with a different PVR other than this
257      * exact host PVR in KVM_SET_SREGS. If that happens, the
258      * guest freezes after migration.
259      *
260      * The function kvmppc_pvr_workaround_required does this verification
261      * by first checking if the kernel has the cap, returning true immediately
262      * if that is the case. Otherwise, it checks if we're running in KVM PR.
263      * If the guest kernel does not have the cap and we're not running KVM-PR
264      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
265      * receive the PVR it expects as a workaround.
266      *
267      */
268 #if defined(CONFIG_KVM)
269     if (kvmppc_pvr_workaround_required(cpu)) {
270         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
271     }
272 #endif
273 
274     env->lr = env->spr[SPR_LR];
275     env->ctr = env->spr[SPR_CTR];
276     cpu_write_xer(env, env->spr[SPR_XER]);
277 #if defined(TARGET_PPC64)
278     env->cfar = env->spr[SPR_CFAR];
279 #endif
280     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
281 
282     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
283         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
284         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
285         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
286         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
287     }
288     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
289         env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
290         env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
291         env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
292         env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
293     }
294 
295     if (!cpu->vhyp) {
296         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
297     }
298 
299     /* Invalidate all msr bits except MSR_TGPR/MSR_HVB before restoring */
300     msr = env->msr;
301     env->msr ^= ~((1ULL << MSR_TGPR) | MSR_HVB);
302     ppc_store_msr(env, msr);
303 
304     hreg_compute_mem_idx(env);
305 
306     return 0;
307 }
308 
309 static bool fpu_needed(void *opaque)
310 {
311     PowerPCCPU *cpu = opaque;
312 
313     return (cpu->env.insns_flags & PPC_FLOAT);
314 }
315 
316 static const VMStateDescription vmstate_fpu = {
317     .name = "cpu/fpu",
318     .version_id = 1,
319     .minimum_version_id = 1,
320     .needed = fpu_needed,
321     .fields = (VMStateField[]) {
322         VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
323         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
324         VMSTATE_END_OF_LIST()
325     },
326 };
327 
328 static bool altivec_needed(void *opaque)
329 {
330     PowerPCCPU *cpu = opaque;
331 
332     return (cpu->env.insns_flags & PPC_ALTIVEC);
333 }
334 
335 static const VMStateDescription vmstate_altivec = {
336     .name = "cpu/altivec",
337     .version_id = 1,
338     .minimum_version_id = 1,
339     .needed = altivec_needed,
340     .fields = (VMStateField[]) {
341         VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
342         VMSTATE_UINT32(env.vscr, PowerPCCPU),
343         VMSTATE_END_OF_LIST()
344     },
345 };
346 
347 static bool vsx_needed(void *opaque)
348 {
349     PowerPCCPU *cpu = opaque;
350 
351     return (cpu->env.insns_flags2 & PPC2_VSX);
352 }
353 
354 static const VMStateDescription vmstate_vsx = {
355     .name = "cpu/vsx",
356     .version_id = 1,
357     .minimum_version_id = 1,
358     .needed = vsx_needed,
359     .fields = (VMStateField[]) {
360         VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
361         VMSTATE_END_OF_LIST()
362     },
363 };
364 
365 #ifdef TARGET_PPC64
366 /* Transactional memory state */
367 static bool tm_needed(void *opaque)
368 {
369     PowerPCCPU *cpu = opaque;
370     CPUPPCState *env = &cpu->env;
371     return msr_ts;
372 }
373 
374 static const VMStateDescription vmstate_tm = {
375     .name = "cpu/tm",
376     .version_id = 1,
377     .minimum_version_id = 1,
378     .minimum_version_id_old = 1,
379     .needed = tm_needed,
380     .fields      = (VMStateField []) {
381         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
382         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
383         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
384         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
385         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
386         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
387         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
388         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
389         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
390         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
391         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
392         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
393         VMSTATE_END_OF_LIST()
394     },
395 };
396 #endif
397 
398 static bool sr_needed(void *opaque)
399 {
400 #ifdef TARGET_PPC64
401     PowerPCCPU *cpu = opaque;
402 
403     return !(cpu->env.mmu_model & POWERPC_MMU_64);
404 #else
405     return true;
406 #endif
407 }
408 
409 static const VMStateDescription vmstate_sr = {
410     .name = "cpu/sr",
411     .version_id = 1,
412     .minimum_version_id = 1,
413     .needed = sr_needed,
414     .fields = (VMStateField[]) {
415         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
416         VMSTATE_END_OF_LIST()
417     },
418 };
419 
420 #ifdef TARGET_PPC64
421 static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
422 {
423     ppc_slb_t *v = pv;
424 
425     v->esid = qemu_get_be64(f);
426     v->vsid = qemu_get_be64(f);
427 
428     return 0;
429 }
430 
431 static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
432                     QJSON *vmdesc)
433 {
434     ppc_slb_t *v = pv;
435 
436     qemu_put_be64(f, v->esid);
437     qemu_put_be64(f, v->vsid);
438     return 0;
439 }
440 
441 static const VMStateInfo vmstate_info_slbe = {
442     .name = "slbe",
443     .get  = get_slbe,
444     .put  = put_slbe,
445 };
446 
447 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
448     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
449 
450 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
451     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
452 
453 static bool slb_needed(void *opaque)
454 {
455     PowerPCCPU *cpu = opaque;
456 
457     /* We don't support any of the old segment table based 64-bit CPUs */
458     return (cpu->env.mmu_model & POWERPC_MMU_64);
459 }
460 
461 static int slb_post_load(void *opaque, int version_id)
462 {
463     PowerPCCPU *cpu = opaque;
464     CPUPPCState *env = &cpu->env;
465     int i;
466 
467     /* We've pulled in the raw esid and vsid values from the migration
468      * stream, but we need to recompute the page size pointers */
469     for (i = 0; i < env->slb_nr; i++) {
470         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
471             /* Migration source had bad values in its SLB */
472             return -1;
473         }
474     }
475 
476     return 0;
477 }
478 
479 static const VMStateDescription vmstate_slb = {
480     .name = "cpu/slb",
481     .version_id = 1,
482     .minimum_version_id = 1,
483     .needed = slb_needed,
484     .post_load = slb_post_load,
485     .fields = (VMStateField[]) {
486         VMSTATE_INT32_EQUAL(env.slb_nr, PowerPCCPU, NULL),
487         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
488         VMSTATE_END_OF_LIST()
489     }
490 };
491 #endif /* TARGET_PPC64 */
492 
493 static const VMStateDescription vmstate_tlb6xx_entry = {
494     .name = "cpu/tlb6xx_entry",
495     .version_id = 1,
496     .minimum_version_id = 1,
497     .fields = (VMStateField[]) {
498         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
499         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
500         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
501         VMSTATE_END_OF_LIST()
502     },
503 };
504 
505 static bool tlb6xx_needed(void *opaque)
506 {
507     PowerPCCPU *cpu = opaque;
508     CPUPPCState *env = &cpu->env;
509 
510     return env->nb_tlb && (env->tlb_type == TLB_6XX);
511 }
512 
513 static const VMStateDescription vmstate_tlb6xx = {
514     .name = "cpu/tlb6xx",
515     .version_id = 1,
516     .minimum_version_id = 1,
517     .needed = tlb6xx_needed,
518     .fields = (VMStateField[]) {
519         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
520         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
521                                             env.nb_tlb,
522                                             vmstate_tlb6xx_entry,
523                                             ppc6xx_tlb_t),
524         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
525         VMSTATE_END_OF_LIST()
526     }
527 };
528 
529 static const VMStateDescription vmstate_tlbemb_entry = {
530     .name = "cpu/tlbemb_entry",
531     .version_id = 1,
532     .minimum_version_id = 1,
533     .fields = (VMStateField[]) {
534         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
535         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
536         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
537         VMSTATE_UINTTL(size, ppcemb_tlb_t),
538         VMSTATE_UINT32(prot, ppcemb_tlb_t),
539         VMSTATE_UINT32(attr, ppcemb_tlb_t),
540         VMSTATE_END_OF_LIST()
541     },
542 };
543 
544 static bool tlbemb_needed(void *opaque)
545 {
546     PowerPCCPU *cpu = opaque;
547     CPUPPCState *env = &cpu->env;
548 
549     return env->nb_tlb && (env->tlb_type == TLB_EMB);
550 }
551 
552 static bool pbr403_needed(void *opaque)
553 {
554     PowerPCCPU *cpu = opaque;
555     uint32_t pvr = cpu->env.spr[SPR_PVR];
556 
557     return (pvr & 0xffff0000) == 0x00200000;
558 }
559 
560 static const VMStateDescription vmstate_pbr403 = {
561     .name = "cpu/pbr403",
562     .version_id = 1,
563     .minimum_version_id = 1,
564     .needed = pbr403_needed,
565     .fields = (VMStateField[]) {
566         VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
567         VMSTATE_END_OF_LIST()
568     },
569 };
570 
571 static const VMStateDescription vmstate_tlbemb = {
572     .name = "cpu/tlb6xx",
573     .version_id = 1,
574     .minimum_version_id = 1,
575     .needed = tlbemb_needed,
576     .fields = (VMStateField[]) {
577         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
578         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
579                                             env.nb_tlb,
580                                             vmstate_tlbemb_entry,
581                                             ppcemb_tlb_t),
582         /* 403 protection registers */
583         VMSTATE_END_OF_LIST()
584     },
585     .subsections = (const VMStateDescription*[]) {
586         &vmstate_pbr403,
587         NULL
588     }
589 };
590 
591 static const VMStateDescription vmstate_tlbmas_entry = {
592     .name = "cpu/tlbmas_entry",
593     .version_id = 1,
594     .minimum_version_id = 1,
595     .fields = (VMStateField[]) {
596         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
597         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
598         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
599         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
600         VMSTATE_END_OF_LIST()
601     },
602 };
603 
604 static bool tlbmas_needed(void *opaque)
605 {
606     PowerPCCPU *cpu = opaque;
607     CPUPPCState *env = &cpu->env;
608 
609     return env->nb_tlb && (env->tlb_type == TLB_MAS);
610 }
611 
612 static const VMStateDescription vmstate_tlbmas = {
613     .name = "cpu/tlbmas",
614     .version_id = 1,
615     .minimum_version_id = 1,
616     .needed = tlbmas_needed,
617     .fields = (VMStateField[]) {
618         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
619         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
620                                             env.nb_tlb,
621                                             vmstate_tlbmas_entry,
622                                             ppcmas_tlb_t),
623         VMSTATE_END_OF_LIST()
624     }
625 };
626 
627 static bool compat_needed(void *opaque)
628 {
629     PowerPCCPU *cpu = opaque;
630 
631     assert(!(cpu->compat_pvr && !cpu->vhyp));
632     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
633 }
634 
635 static const VMStateDescription vmstate_compat = {
636     .name = "cpu/compat",
637     .version_id = 1,
638     .minimum_version_id = 1,
639     .needed = compat_needed,
640     .fields = (VMStateField[]) {
641         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
642         VMSTATE_END_OF_LIST()
643     }
644 };
645 
646 const VMStateDescription vmstate_ppc_cpu = {
647     .name = "cpu",
648     .version_id = 5,
649     .minimum_version_id = 5,
650     .minimum_version_id_old = 4,
651     .load_state_old = cpu_load_old,
652     .pre_save = cpu_pre_save,
653     .post_load = cpu_post_load,
654     .fields = (VMStateField[]) {
655         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
656 
657         /* User mode architected state */
658         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
659 #if !defined(TARGET_PPC64)
660         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
661 #endif
662         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
663         VMSTATE_UINTTL(env.nip, PowerPCCPU),
664 
665         /* SPRs */
666         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
667         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
668 
669         /* Reservation */
670         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
671 
672         /* Supervisor mode architected state */
673         VMSTATE_UINTTL(env.msr, PowerPCCPU),
674 
675         /* Internal state */
676         VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
677         /* FIXME: access_type? */
678 
679         /* Sanity checking */
680         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
681         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
682         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
683                             cpu_pre_2_8_migration),
684         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
685         VMSTATE_END_OF_LIST()
686     },
687     .subsections = (const VMStateDescription*[]) {
688         &vmstate_fpu,
689         &vmstate_altivec,
690         &vmstate_vsx,
691         &vmstate_sr,
692 #ifdef TARGET_PPC64
693         &vmstate_tm,
694         &vmstate_slb,
695 #endif /* TARGET_PPC64 */
696         &vmstate_tlb6xx,
697         &vmstate_tlbemb,
698         &vmstate_tlbmas,
699         &vmstate_compat,
700         NULL
701     }
702 };
703