xref: /openbmc/qemu/target/ppc/machine.c (revision 91654e61)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "helper_regs.h"
6 #include "mmu-hash64.h"
7 #include "migration/cpu.h"
8 #include "qapi/error.h"
9 #include "qemu/main-loop.h"
10 #include "kvm_ppc.h"
11 #include "power8-pmu.h"
12 
13 static void post_load_update_msr(CPUPPCState *env)
14 {
15     target_ulong msr = env->msr;
16 
17     /*
18      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
19      * before restoring.  Note that this recomputes hflags.
20      */
21     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
22     ppc_store_msr(env, msr);
23     pmu_update_summaries(env);
24 }
25 
26 static int get_avr(QEMUFile *f, void *pv, size_t size,
27                    const VMStateField *field)
28 {
29     ppc_avr_t *v = pv;
30 
31     v->u64[0] = qemu_get_be64(f);
32     v->u64[1] = qemu_get_be64(f);
33 
34     return 0;
35 }
36 
37 static int put_avr(QEMUFile *f, void *pv, size_t size,
38                    const VMStateField *field, JSONWriter *vmdesc)
39 {
40     ppc_avr_t *v = pv;
41 
42     qemu_put_be64(f, v->u64[0]);
43     qemu_put_be64(f, v->u64[1]);
44     return 0;
45 }
46 
47 static const VMStateInfo vmstate_info_avr = {
48     .name = "avr",
49     .get  = get_avr,
50     .put  = put_avr,
51 };
52 
53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
54     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
55 
56 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
57     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
58 
59 static int get_fpr(QEMUFile *f, void *pv, size_t size,
60                    const VMStateField *field)
61 {
62     ppc_vsr_t *v = pv;
63 
64     v->VsrD(0) = qemu_get_be64(f);
65 
66     return 0;
67 }
68 
69 static int put_fpr(QEMUFile *f, void *pv, size_t size,
70                    const VMStateField *field, JSONWriter *vmdesc)
71 {
72     ppc_vsr_t *v = pv;
73 
74     qemu_put_be64(f, v->VsrD(0));
75     return 0;
76 }
77 
78 static const VMStateInfo vmstate_info_fpr = {
79     .name = "fpr",
80     .get  = get_fpr,
81     .put  = put_fpr,
82 };
83 
84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
85     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
86 
87 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
88     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
89 
90 static int get_vsr(QEMUFile *f, void *pv, size_t size,
91                    const VMStateField *field)
92 {
93     ppc_vsr_t *v = pv;
94 
95     v->VsrD(1) = qemu_get_be64(f);
96 
97     return 0;
98 }
99 
100 static int put_vsr(QEMUFile *f, void *pv, size_t size,
101                    const VMStateField *field, JSONWriter *vmdesc)
102 {
103     ppc_vsr_t *v = pv;
104 
105     qemu_put_be64(f, v->VsrD(1));
106     return 0;
107 }
108 
109 static const VMStateInfo vmstate_info_vsr = {
110     .name = "vsr",
111     .get  = get_vsr,
112     .put  = put_vsr,
113 };
114 
115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
116     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
117 
118 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
119     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
120 
121 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
122 {
123     PowerPCCPU *cpu = opaque;
124 
125     return cpu->pre_2_8_migration;
126 }
127 
128 #if defined(TARGET_PPC64)
129 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
130 {
131     PowerPCCPU *cpu = opaque;
132 
133     return cpu->pre_3_0_migration;
134 }
135 #endif
136 
137 static int cpu_pre_save(void *opaque)
138 {
139     PowerPCCPU *cpu = opaque;
140     CPUPPCState *env = &cpu->env;
141     int i;
142     uint64_t insns_compat_mask =
143         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
144         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
145         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
146         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
147         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
148         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
149         | PPC_64B | PPC_64BX | PPC_ALTIVEC
150         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
151     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
152         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
153         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
154         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
155         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
156         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
157 
158     env->spr[SPR_LR] = env->lr;
159     env->spr[SPR_CTR] = env->ctr;
160     env->spr[SPR_XER] = cpu_read_xer(env);
161 #if defined(TARGET_PPC64)
162     env->spr[SPR_CFAR] = env->cfar;
163 #endif
164     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
165 
166     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
167         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
168         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
169         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
170         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
171     }
172     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
173         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
174         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
175         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
176         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
177     }
178 
179     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
180     if (cpu->pre_2_8_migration) {
181         /*
182          * Mask out bits that got added to msr_mask since the versions
183          * which stupidly included it in the migration stream.
184          */
185         target_ulong metamask = 0
186 #if defined(TARGET_PPC64)
187             | (1ULL << MSR_TS0)
188             | (1ULL << MSR_TS1)
189 #endif
190             ;
191         cpu->mig_msr_mask = env->msr_mask & ~metamask;
192         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
193         /*
194          * CPU models supported by old machines all have
195          * PPC_MEM_TLBIE, so we set it unconditionally to allow
196          * backward migration from a POWER9 host to a POWER8 host.
197          */
198         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
199         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
200         cpu->mig_nb_BATs = env->nb_BATs;
201     }
202     if (cpu->pre_3_0_migration) {
203         if (cpu->hash64_opts) {
204             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
205         }
206     }
207 
208     /* Retain migration compatibility for pre 6.0 for 601 machines. */
209     env->hflags_compat_nmsr = (env->flags & POWERPC_FLAG_HID0_LE
210                                ? env->hflags & MSR_LE : 0);
211 
212     return 0;
213 }
214 
215 /*
216  * Determine if a given PVR is a "close enough" match to the CPU
217  * object.  For TCG and KVM PR it would probably be sufficient to
218  * require an exact PVR match.  However for KVM HV the user is
219  * restricted to a PVR exactly matching the host CPU.  The correct way
220  * to handle this is to put the guest into an architected
221  * compatibility mode.  However, to allow a more forgiving transition
222  * and migration from before this was widely done, we allow migration
223  * between sufficiently similar PVRs, as determined by the CPU class's
224  * pvr_match() hook.
225  */
226 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
227 {
228     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
229 
230     if (pvr == pcc->pvr) {
231         return true;
232     }
233     return pcc->pvr_match(pcc, pvr);
234 }
235 
236 static int cpu_post_load(void *opaque, int version_id)
237 {
238     PowerPCCPU *cpu = opaque;
239     CPUPPCState *env = &cpu->env;
240     int i;
241 
242     /*
243      * If we're operating in compat mode, we should be ok as long as
244      * the destination supports the same compatibility mode.
245      *
246      * Otherwise, however, we require that the destination has exactly
247      * the same CPU model as the source.
248      */
249 
250 #if defined(TARGET_PPC64)
251     if (cpu->compat_pvr) {
252         uint32_t compat_pvr = cpu->compat_pvr;
253         Error *local_err = NULL;
254         int ret;
255 
256         cpu->compat_pvr = 0;
257         ret = ppc_set_compat(cpu, compat_pvr, &local_err);
258         if (ret < 0) {
259             error_report_err(local_err);
260             return ret;
261         }
262     } else
263 #endif
264     {
265         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
266             return -EINVAL;
267         }
268     }
269 
270     /*
271      * If we're running with KVM HV, there is a chance that the guest
272      * is running with KVM HV and its kernel does not have the
273      * capability of dealing with a different PVR other than this
274      * exact host PVR in KVM_SET_SREGS. If that happens, the
275      * guest freezes after migration.
276      *
277      * The function kvmppc_pvr_workaround_required does this verification
278      * by first checking if the kernel has the cap, returning true immediately
279      * if that is the case. Otherwise, it checks if we're running in KVM PR.
280      * If the guest kernel does not have the cap and we're not running KVM-PR
281      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
282      * receive the PVR it expects as a workaround.
283      *
284      */
285     if (kvmppc_pvr_workaround_required(cpu)) {
286         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
287     }
288 
289     env->lr = env->spr[SPR_LR];
290     env->ctr = env->spr[SPR_CTR];
291     cpu_write_xer(env, env->spr[SPR_XER]);
292 #if defined(TARGET_PPC64)
293     env->cfar = env->spr[SPR_CFAR];
294 #endif
295     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
296 
297     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
298         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
299         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
300         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
301         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
302     }
303     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
304         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
305         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
306         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
307         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
308     }
309 
310     if (!cpu->vhyp) {
311         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
312     }
313 
314     post_load_update_msr(env);
315 
316     return 0;
317 }
318 
319 static bool fpu_needed(void *opaque)
320 {
321     PowerPCCPU *cpu = opaque;
322 
323     return cpu->env.insns_flags & PPC_FLOAT;
324 }
325 
326 static const VMStateDescription vmstate_fpu = {
327     .name = "cpu/fpu",
328     .version_id = 1,
329     .minimum_version_id = 1,
330     .needed = fpu_needed,
331     .fields = (VMStateField[]) {
332         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
333         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
334         VMSTATE_END_OF_LIST()
335     },
336 };
337 
338 static bool altivec_needed(void *opaque)
339 {
340     PowerPCCPU *cpu = opaque;
341 
342     return cpu->env.insns_flags & PPC_ALTIVEC;
343 }
344 
345 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
346                     const VMStateField *field)
347 {
348     PowerPCCPU *cpu = opaque;
349     ppc_store_vscr(&cpu->env, qemu_get_be32(f));
350     return 0;
351 }
352 
353 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
354                     const VMStateField *field, JSONWriter *vmdesc)
355 {
356     PowerPCCPU *cpu = opaque;
357     qemu_put_be32(f, ppc_get_vscr(&cpu->env));
358     return 0;
359 }
360 
361 static const VMStateInfo vmstate_vscr = {
362     .name = "cpu/altivec/vscr",
363     .get = get_vscr,
364     .put = put_vscr,
365 };
366 
367 static const VMStateDescription vmstate_altivec = {
368     .name = "cpu/altivec",
369     .version_id = 1,
370     .minimum_version_id = 1,
371     .needed = altivec_needed,
372     .fields = (VMStateField[]) {
373         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
374         /*
375          * Save the architecture value of the vscr, not the internally
376          * expanded version.  Since this architecture value does not
377          * exist in memory to be stored, this requires a but of hoop
378          * jumping.  We want OFFSET=0 so that we effectively pass CPU
379          * to the helper functions.
380          */
381         {
382             .name = "vscr",
383             .version_id = 0,
384             .size = sizeof(uint32_t),
385             .info = &vmstate_vscr,
386             .flags = VMS_SINGLE,
387             .offset = 0
388         },
389         VMSTATE_END_OF_LIST()
390     },
391 };
392 
393 static bool vsx_needed(void *opaque)
394 {
395     PowerPCCPU *cpu = opaque;
396 
397     return cpu->env.insns_flags2 & PPC2_VSX;
398 }
399 
400 static const VMStateDescription vmstate_vsx = {
401     .name = "cpu/vsx",
402     .version_id = 1,
403     .minimum_version_id = 1,
404     .needed = vsx_needed,
405     .fields = (VMStateField[]) {
406         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
407         VMSTATE_END_OF_LIST()
408     },
409 };
410 
411 #ifdef TARGET_PPC64
412 /* Transactional memory state */
413 static bool tm_needed(void *opaque)
414 {
415     PowerPCCPU *cpu = opaque;
416     CPUPPCState *env = &cpu->env;
417     return msr_ts;
418 }
419 
420 static const VMStateDescription vmstate_tm = {
421     .name = "cpu/tm",
422     .version_id = 1,
423     .minimum_version_id = 1,
424     .minimum_version_id_old = 1,
425     .needed = tm_needed,
426     .fields      = (VMStateField []) {
427         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
428         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
429         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
430         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
431         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
432         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
433         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
434         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
435         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
436         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
437         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
438         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
439         VMSTATE_END_OF_LIST()
440     },
441 };
442 #endif
443 
444 static bool sr_needed(void *opaque)
445 {
446 #ifdef TARGET_PPC64
447     PowerPCCPU *cpu = opaque;
448 
449     return !mmu_is_64bit(cpu->env.mmu_model);
450 #else
451     return true;
452 #endif
453 }
454 
455 static const VMStateDescription vmstate_sr = {
456     .name = "cpu/sr",
457     .version_id = 1,
458     .minimum_version_id = 1,
459     .needed = sr_needed,
460     .fields = (VMStateField[]) {
461         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
462         VMSTATE_END_OF_LIST()
463     },
464 };
465 
466 #ifdef TARGET_PPC64
467 static int get_slbe(QEMUFile *f, void *pv, size_t size,
468                     const VMStateField *field)
469 {
470     ppc_slb_t *v = pv;
471 
472     v->esid = qemu_get_be64(f);
473     v->vsid = qemu_get_be64(f);
474 
475     return 0;
476 }
477 
478 static int put_slbe(QEMUFile *f, void *pv, size_t size,
479                     const VMStateField *field, JSONWriter *vmdesc)
480 {
481     ppc_slb_t *v = pv;
482 
483     qemu_put_be64(f, v->esid);
484     qemu_put_be64(f, v->vsid);
485     return 0;
486 }
487 
488 static const VMStateInfo vmstate_info_slbe = {
489     .name = "slbe",
490     .get  = get_slbe,
491     .put  = put_slbe,
492 };
493 
494 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
495     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
496 
497 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
498     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
499 
500 static bool slb_needed(void *opaque)
501 {
502     PowerPCCPU *cpu = opaque;
503 
504     /* We don't support any of the old segment table based 64-bit CPUs */
505     return mmu_is_64bit(cpu->env.mmu_model);
506 }
507 
508 static int slb_post_load(void *opaque, int version_id)
509 {
510     PowerPCCPU *cpu = opaque;
511     CPUPPCState *env = &cpu->env;
512     int i;
513 
514     /*
515      * We've pulled in the raw esid and vsid values from the migration
516      * stream, but we need to recompute the page size pointers
517      */
518     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
519         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
520             /* Migration source had bad values in its SLB */
521             return -1;
522         }
523     }
524 
525     return 0;
526 }
527 
528 static const VMStateDescription vmstate_slb = {
529     .name = "cpu/slb",
530     .version_id = 1,
531     .minimum_version_id = 1,
532     .needed = slb_needed,
533     .post_load = slb_post_load,
534     .fields = (VMStateField[]) {
535         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
536         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
537         VMSTATE_END_OF_LIST()
538     }
539 };
540 #endif /* TARGET_PPC64 */
541 
542 static const VMStateDescription vmstate_tlb6xx_entry = {
543     .name = "cpu/tlb6xx_entry",
544     .version_id = 1,
545     .minimum_version_id = 1,
546     .fields = (VMStateField[]) {
547         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
548         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
549         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
550         VMSTATE_END_OF_LIST()
551     },
552 };
553 
554 static bool tlb6xx_needed(void *opaque)
555 {
556     PowerPCCPU *cpu = opaque;
557     CPUPPCState *env = &cpu->env;
558 
559     return env->nb_tlb && (env->tlb_type == TLB_6XX);
560 }
561 
562 static const VMStateDescription vmstate_tlb6xx = {
563     .name = "cpu/tlb6xx",
564     .version_id = 1,
565     .minimum_version_id = 1,
566     .needed = tlb6xx_needed,
567     .fields = (VMStateField[]) {
568         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
569         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
570                                             env.nb_tlb,
571                                             vmstate_tlb6xx_entry,
572                                             ppc6xx_tlb_t),
573         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
574         VMSTATE_END_OF_LIST()
575     }
576 };
577 
578 static const VMStateDescription vmstate_tlbemb_entry = {
579     .name = "cpu/tlbemb_entry",
580     .version_id = 1,
581     .minimum_version_id = 1,
582     .fields = (VMStateField[]) {
583         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
584         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
585         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
586         VMSTATE_UINTTL(size, ppcemb_tlb_t),
587         VMSTATE_UINT32(prot, ppcemb_tlb_t),
588         VMSTATE_UINT32(attr, ppcemb_tlb_t),
589         VMSTATE_END_OF_LIST()
590     },
591 };
592 
593 static bool tlbemb_needed(void *opaque)
594 {
595     PowerPCCPU *cpu = opaque;
596     CPUPPCState *env = &cpu->env;
597 
598     return env->nb_tlb && (env->tlb_type == TLB_EMB);
599 }
600 
601 static const VMStateDescription vmstate_tlbemb = {
602     .name = "cpu/tlb6xx",
603     .version_id = 1,
604     .minimum_version_id = 1,
605     .needed = tlbemb_needed,
606     .fields = (VMStateField[]) {
607         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
608         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
609                                             env.nb_tlb,
610                                             vmstate_tlbemb_entry,
611                                             ppcemb_tlb_t),
612         VMSTATE_END_OF_LIST()
613     },
614 };
615 
616 static const VMStateDescription vmstate_tlbmas_entry = {
617     .name = "cpu/tlbmas_entry",
618     .version_id = 1,
619     .minimum_version_id = 1,
620     .fields = (VMStateField[]) {
621         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
622         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
623         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
624         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
625         VMSTATE_END_OF_LIST()
626     },
627 };
628 
629 static bool tlbmas_needed(void *opaque)
630 {
631     PowerPCCPU *cpu = opaque;
632     CPUPPCState *env = &cpu->env;
633 
634     return env->nb_tlb && (env->tlb_type == TLB_MAS);
635 }
636 
637 static const VMStateDescription vmstate_tlbmas = {
638     .name = "cpu/tlbmas",
639     .version_id = 1,
640     .minimum_version_id = 1,
641     .needed = tlbmas_needed,
642     .fields = (VMStateField[]) {
643         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
644         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
645                                             env.nb_tlb,
646                                             vmstate_tlbmas_entry,
647                                             ppcmas_tlb_t),
648         VMSTATE_END_OF_LIST()
649     }
650 };
651 
652 static bool compat_needed(void *opaque)
653 {
654     PowerPCCPU *cpu = opaque;
655 
656     assert(!(cpu->compat_pvr && !cpu->vhyp));
657     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
658 }
659 
660 static const VMStateDescription vmstate_compat = {
661     .name = "cpu/compat",
662     .version_id = 1,
663     .minimum_version_id = 1,
664     .needed = compat_needed,
665     .fields = (VMStateField[]) {
666         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
667         VMSTATE_END_OF_LIST()
668     }
669 };
670 
671 const VMStateDescription vmstate_ppc_cpu = {
672     .name = "cpu",
673     .version_id = 5,
674     .minimum_version_id = 5,
675     .minimum_version_id_old = 4,
676     .pre_save = cpu_pre_save,
677     .post_load = cpu_post_load,
678     .fields = (VMStateField[]) {
679         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
680 
681         /* User mode architected state */
682         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
683 #if !defined(TARGET_PPC64)
684         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
685 #endif
686         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
687         VMSTATE_UINTTL(env.nip, PowerPCCPU),
688 
689         /* SPRs */
690         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
691         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
692 
693         /* Reservation */
694         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
695 
696         /* Supervisor mode architected state */
697         VMSTATE_UINTTL(env.msr, PowerPCCPU),
698 
699         /* Backward compatible internal state */
700         VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
701 
702         /* Sanity checking */
703         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
704         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
705         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
706                             cpu_pre_2_8_migration),
707         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
708         VMSTATE_END_OF_LIST()
709     },
710     .subsections = (const VMStateDescription*[]) {
711         &vmstate_fpu,
712         &vmstate_altivec,
713         &vmstate_vsx,
714         &vmstate_sr,
715 #ifdef TARGET_PPC64
716         &vmstate_tm,
717         &vmstate_slb,
718 #endif /* TARGET_PPC64 */
719         &vmstate_tlb6xx,
720         &vmstate_tlbemb,
721         &vmstate_tlbmas,
722         &vmstate_compat,
723         NULL
724     }
725 };
726