xref: /openbmc/qemu/target/ppc/machine.c (revision 89854803)
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 #include "kvm_ppc.h"
13 
14 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
15 {
16     PowerPCCPU *cpu = opaque;
17     CPUPPCState *env = &cpu->env;
18     unsigned int i, j;
19     target_ulong sdr1;
20     uint32_t fpscr;
21 #if defined(TARGET_PPC64)
22     int32_t slb_nr;
23 #endif
24     target_ulong xer;
25 
26     for (i = 0; i < 32; i++)
27         qemu_get_betls(f, &env->gpr[i]);
28 #if !defined(TARGET_PPC64)
29     for (i = 0; i < 32; i++)
30         qemu_get_betls(f, &env->gprh[i]);
31 #endif
32     qemu_get_betls(f, &env->lr);
33     qemu_get_betls(f, &env->ctr);
34     for (i = 0; i < 8; i++)
35         qemu_get_be32s(f, &env->crf[i]);
36     qemu_get_betls(f, &xer);
37     cpu_write_xer(env, xer);
38     qemu_get_betls(f, &env->reserve_addr);
39     qemu_get_betls(f, &env->msr);
40     for (i = 0; i < 4; i++)
41         qemu_get_betls(f, &env->tgpr[i]);
42     for (i = 0; i < 32; i++) {
43         union {
44             float64 d;
45             uint64_t l;
46         } u;
47         u.l = qemu_get_be64(f);
48         env->fpr[i] = u.d;
49     }
50     qemu_get_be32s(f, &fpscr);
51     env->fpscr = fpscr;
52     qemu_get_sbe32s(f, &env->access_type);
53 #if defined(TARGET_PPC64)
54     qemu_get_betls(f, &env->spr[SPR_ASR]);
55     qemu_get_sbe32s(f, &slb_nr);
56 #endif
57     qemu_get_betls(f, &sdr1);
58     for (i = 0; i < 32; i++)
59         qemu_get_betls(f, &env->sr[i]);
60     for (i = 0; i < 2; i++)
61         for (j = 0; j < 8; j++)
62             qemu_get_betls(f, &env->DBAT[i][j]);
63     for (i = 0; i < 2; i++)
64         for (j = 0; j < 8; j++)
65             qemu_get_betls(f, &env->IBAT[i][j]);
66     qemu_get_sbe32s(f, &env->nb_tlb);
67     qemu_get_sbe32s(f, &env->tlb_per_way);
68     qemu_get_sbe32s(f, &env->nb_ways);
69     qemu_get_sbe32s(f, &env->last_way);
70     qemu_get_sbe32s(f, &env->id_tlbs);
71     qemu_get_sbe32s(f, &env->nb_pids);
72     if (env->tlb.tlb6) {
73         // XXX assumes 6xx
74         for (i = 0; i < env->nb_tlb; i++) {
75             qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
76             qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
77             qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
78         }
79     }
80     for (i = 0; i < 4; i++)
81         qemu_get_betls(f, &env->pb[i]);
82     for (i = 0; i < 1024; i++)
83         qemu_get_betls(f, &env->spr[i]);
84     if (!cpu->vhyp) {
85         ppc_store_sdr1(env, sdr1);
86     }
87     qemu_get_be32s(f, &env->vscr);
88     qemu_get_be64s(f, &env->spe_acc);
89     qemu_get_be32s(f, &env->spe_fscr);
90     qemu_get_betls(f, &env->msr_mask);
91     qemu_get_be32s(f, &env->flags);
92     qemu_get_sbe32s(f, &env->error_code);
93     qemu_get_be32s(f, &env->pending_interrupts);
94     qemu_get_be32s(f, &env->irq_input_state);
95     for (i = 0; i < POWERPC_EXCP_NB; i++)
96         qemu_get_betls(f, &env->excp_vectors[i]);
97     qemu_get_betls(f, &env->excp_prefix);
98     qemu_get_betls(f, &env->ivor_mask);
99     qemu_get_betls(f, &env->ivpr_mask);
100     qemu_get_betls(f, &env->hreset_vector);
101     qemu_get_betls(f, &env->nip);
102     qemu_get_betls(f, &env->hflags);
103     qemu_get_betls(f, &env->hflags_nmsr);
104     qemu_get_sbe32(f); /* Discard unused mmu_idx */
105     qemu_get_sbe32(f); /* Discard unused power_mode */
106 
107     /* Recompute mmu indices */
108     hreg_compute_mem_idx(env);
109 
110     return 0;
111 }
112 
113 static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
114 {
115     ppc_avr_t *v = pv;
116 
117     v->u64[0] = qemu_get_be64(f);
118     v->u64[1] = qemu_get_be64(f);
119 
120     return 0;
121 }
122 
123 static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
124                    QJSON *vmdesc)
125 {
126     ppc_avr_t *v = pv;
127 
128     qemu_put_be64(f, v->u64[0]);
129     qemu_put_be64(f, v->u64[1]);
130     return 0;
131 }
132 
133 static const VMStateInfo vmstate_info_avr = {
134     .name = "avr",
135     .get  = get_avr,
136     .put  = put_avr,
137 };
138 
139 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
140     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
141 
142 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
143     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
144 
145 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
146 {
147     PowerPCCPU *cpu = opaque;
148 
149     return cpu->pre_2_8_migration;
150 }
151 
152 #if defined(TARGET_PPC64)
153 static bool cpu_pre_2_13_migration(void *opaque, int version_id)
154 {
155     PowerPCCPU *cpu = opaque;
156 
157     return cpu->pre_2_13_migration;
158 }
159 #endif
160 
161 static int cpu_pre_save(void *opaque)
162 {
163     PowerPCCPU *cpu = opaque;
164     CPUPPCState *env = &cpu->env;
165     int i;
166     uint64_t insns_compat_mask =
167         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
168         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
169         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
170         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
171         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
172         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
173         | PPC_64B | PPC_64BX | PPC_ALTIVEC
174         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
175     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
176         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
177         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
178         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
179         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
180         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
181 
182     env->spr[SPR_LR] = env->lr;
183     env->spr[SPR_CTR] = env->ctr;
184     env->spr[SPR_XER] = cpu_read_xer(env);
185 #if defined(TARGET_PPC64)
186     env->spr[SPR_CFAR] = env->cfar;
187 #endif
188     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
189 
190     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
191         env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
192         env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
193         env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
194         env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
195     }
196     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
197         env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
198         env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
199         env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
200         env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
201     }
202 
203     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
204     if (cpu->pre_2_8_migration) {
205         /* Mask out bits that got added to msr_mask since the versions
206          * which stupidly included it in the migration stream. */
207         target_ulong metamask = 0
208 #if defined(TARGET_PPC64)
209             | (1ULL << MSR_TS0)
210             | (1ULL << MSR_TS1)
211 #endif
212             ;
213         cpu->mig_msr_mask = env->msr_mask & ~metamask;
214         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
215         /* CPU models supported by old machines all have PPC_MEM_TLBIE,
216          * so we set it unconditionally to allow backward migration from
217          * a POWER9 host to a POWER8 host.
218          */
219         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
220         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
221         cpu->mig_nb_BATs = env->nb_BATs;
222     }
223     if (cpu->pre_2_13_migration) {
224         if (cpu->hash64_opts) {
225             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
226         }
227     }
228 
229     return 0;
230 }
231 
232 /*
233  * Determine if a given PVR is a "close enough" match to the CPU
234  * object.  For TCG and KVM PR it would probably be sufficient to
235  * require an exact PVR match.  However for KVM HV the user is
236  * restricted to a PVR exactly matching the host CPU.  The correct way
237  * to handle this is to put the guest into an architected
238  * compatibility mode.  However, to allow a more forgiving transition
239  * and migration from before this was widely done, we allow migration
240  * between sufficiently similar PVRs, as determined by the CPU class's
241  * pvr_match() hook.
242  */
243 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
244 {
245     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
246 
247     if (pvr == pcc->pvr) {
248         return true;
249     }
250     return pcc->pvr_match(pcc, pvr);
251 }
252 
253 static int cpu_post_load(void *opaque, int version_id)
254 {
255     PowerPCCPU *cpu = opaque;
256     CPUPPCState *env = &cpu->env;
257     int i;
258     target_ulong msr;
259 
260     /*
261      * If we're operating in compat mode, we should be ok as long as
262      * the destination supports the same compatiblity mode.
263      *
264      * Otherwise, however, we require that the destination has exactly
265      * the same CPU model as the source.
266      */
267 
268 #if defined(TARGET_PPC64)
269     if (cpu->compat_pvr) {
270         uint32_t compat_pvr = cpu->compat_pvr;
271         Error *local_err = NULL;
272 
273         cpu->compat_pvr = 0;
274         ppc_set_compat(cpu, compat_pvr, &local_err);
275         if (local_err) {
276             error_report_err(local_err);
277             return -1;
278         }
279     } else
280 #endif
281     {
282         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
283             return -1;
284         }
285     }
286 
287     /*
288      * If we're running with KVM HV, there is a chance that the guest
289      * is running with KVM HV and its kernel does not have the
290      * capability of dealing with a different PVR other than this
291      * exact host PVR in KVM_SET_SREGS. If that happens, the
292      * guest freezes after migration.
293      *
294      * The function kvmppc_pvr_workaround_required does this verification
295      * by first checking if the kernel has the cap, returning true immediately
296      * if that is the case. Otherwise, it checks if we're running in KVM PR.
297      * If the guest kernel does not have the cap and we're not running KVM-PR
298      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
299      * receive the PVR it expects as a workaround.
300      *
301      */
302 #if defined(CONFIG_KVM)
303     if (kvmppc_pvr_workaround_required(cpu)) {
304         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
305     }
306 #endif
307 
308     env->lr = env->spr[SPR_LR];
309     env->ctr = env->spr[SPR_CTR];
310     cpu_write_xer(env, env->spr[SPR_XER]);
311 #if defined(TARGET_PPC64)
312     env->cfar = env->spr[SPR_CFAR];
313 #endif
314     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
315 
316     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
317         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
318         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
319         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
320         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
321     }
322     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
323         env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
324         env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
325         env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
326         env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
327     }
328 
329     if (!cpu->vhyp) {
330         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
331     }
332 
333     /* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB before restoring */
334     msr = env->msr;
335     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
336     ppc_store_msr(env, msr);
337 
338     hreg_compute_mem_idx(env);
339 
340     return 0;
341 }
342 
343 static bool fpu_needed(void *opaque)
344 {
345     PowerPCCPU *cpu = opaque;
346 
347     return (cpu->env.insns_flags & PPC_FLOAT);
348 }
349 
350 static const VMStateDescription vmstate_fpu = {
351     .name = "cpu/fpu",
352     .version_id = 1,
353     .minimum_version_id = 1,
354     .needed = fpu_needed,
355     .fields = (VMStateField[]) {
356         VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
357         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
358         VMSTATE_END_OF_LIST()
359     },
360 };
361 
362 static bool altivec_needed(void *opaque)
363 {
364     PowerPCCPU *cpu = opaque;
365 
366     return (cpu->env.insns_flags & PPC_ALTIVEC);
367 }
368 
369 static const VMStateDescription vmstate_altivec = {
370     .name = "cpu/altivec",
371     .version_id = 1,
372     .minimum_version_id = 1,
373     .needed = altivec_needed,
374     .fields = (VMStateField[]) {
375         VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
376         VMSTATE_UINT32(env.vscr, PowerPCCPU),
377         VMSTATE_END_OF_LIST()
378     },
379 };
380 
381 static bool vsx_needed(void *opaque)
382 {
383     PowerPCCPU *cpu = opaque;
384 
385     return (cpu->env.insns_flags2 & PPC2_VSX);
386 }
387 
388 static const VMStateDescription vmstate_vsx = {
389     .name = "cpu/vsx",
390     .version_id = 1,
391     .minimum_version_id = 1,
392     .needed = vsx_needed,
393     .fields = (VMStateField[]) {
394         VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
395         VMSTATE_END_OF_LIST()
396     },
397 };
398 
399 #ifdef TARGET_PPC64
400 /* Transactional memory state */
401 static bool tm_needed(void *opaque)
402 {
403     PowerPCCPU *cpu = opaque;
404     CPUPPCState *env = &cpu->env;
405     return msr_ts;
406 }
407 
408 static const VMStateDescription vmstate_tm = {
409     .name = "cpu/tm",
410     .version_id = 1,
411     .minimum_version_id = 1,
412     .minimum_version_id_old = 1,
413     .needed = tm_needed,
414     .fields      = (VMStateField []) {
415         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
416         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
417         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
418         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
419         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
420         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
421         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
422         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
423         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
424         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
425         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
426         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
427         VMSTATE_END_OF_LIST()
428     },
429 };
430 #endif
431 
432 static bool sr_needed(void *opaque)
433 {
434 #ifdef TARGET_PPC64
435     PowerPCCPU *cpu = opaque;
436 
437     return !(cpu->env.mmu_model & POWERPC_MMU_64);
438 #else
439     return true;
440 #endif
441 }
442 
443 static const VMStateDescription vmstate_sr = {
444     .name = "cpu/sr",
445     .version_id = 1,
446     .minimum_version_id = 1,
447     .needed = sr_needed,
448     .fields = (VMStateField[]) {
449         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
450         VMSTATE_END_OF_LIST()
451     },
452 };
453 
454 #ifdef TARGET_PPC64
455 static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
456 {
457     ppc_slb_t *v = pv;
458 
459     v->esid = qemu_get_be64(f);
460     v->vsid = qemu_get_be64(f);
461 
462     return 0;
463 }
464 
465 static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
466                     QJSON *vmdesc)
467 {
468     ppc_slb_t *v = pv;
469 
470     qemu_put_be64(f, v->esid);
471     qemu_put_be64(f, v->vsid);
472     return 0;
473 }
474 
475 static const VMStateInfo vmstate_info_slbe = {
476     .name = "slbe",
477     .get  = get_slbe,
478     .put  = put_slbe,
479 };
480 
481 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
482     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
483 
484 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
485     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
486 
487 static bool slb_needed(void *opaque)
488 {
489     PowerPCCPU *cpu = opaque;
490 
491     /* We don't support any of the old segment table based 64-bit CPUs */
492     return (cpu->env.mmu_model & POWERPC_MMU_64);
493 }
494 
495 static int slb_post_load(void *opaque, int version_id)
496 {
497     PowerPCCPU *cpu = opaque;
498     CPUPPCState *env = &cpu->env;
499     int i;
500 
501     /* We've pulled in the raw esid and vsid values from the migration
502      * stream, but we need to recompute the page size pointers */
503     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
504         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
505             /* Migration source had bad values in its SLB */
506             return -1;
507         }
508     }
509 
510     return 0;
511 }
512 
513 static const VMStateDescription vmstate_slb = {
514     .name = "cpu/slb",
515     .version_id = 1,
516     .minimum_version_id = 1,
517     .needed = slb_needed,
518     .post_load = slb_post_load,
519     .fields = (VMStateField[]) {
520         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_2_13_migration),
521         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
522         VMSTATE_END_OF_LIST()
523     }
524 };
525 #endif /* TARGET_PPC64 */
526 
527 static const VMStateDescription vmstate_tlb6xx_entry = {
528     .name = "cpu/tlb6xx_entry",
529     .version_id = 1,
530     .minimum_version_id = 1,
531     .fields = (VMStateField[]) {
532         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
533         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
534         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
535         VMSTATE_END_OF_LIST()
536     },
537 };
538 
539 static bool tlb6xx_needed(void *opaque)
540 {
541     PowerPCCPU *cpu = opaque;
542     CPUPPCState *env = &cpu->env;
543 
544     return env->nb_tlb && (env->tlb_type == TLB_6XX);
545 }
546 
547 static const VMStateDescription vmstate_tlb6xx = {
548     .name = "cpu/tlb6xx",
549     .version_id = 1,
550     .minimum_version_id = 1,
551     .needed = tlb6xx_needed,
552     .fields = (VMStateField[]) {
553         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
554         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
555                                             env.nb_tlb,
556                                             vmstate_tlb6xx_entry,
557                                             ppc6xx_tlb_t),
558         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
559         VMSTATE_END_OF_LIST()
560     }
561 };
562 
563 static const VMStateDescription vmstate_tlbemb_entry = {
564     .name = "cpu/tlbemb_entry",
565     .version_id = 1,
566     .minimum_version_id = 1,
567     .fields = (VMStateField[]) {
568         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
569         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
570         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
571         VMSTATE_UINTTL(size, ppcemb_tlb_t),
572         VMSTATE_UINT32(prot, ppcemb_tlb_t),
573         VMSTATE_UINT32(attr, ppcemb_tlb_t),
574         VMSTATE_END_OF_LIST()
575     },
576 };
577 
578 static bool tlbemb_needed(void *opaque)
579 {
580     PowerPCCPU *cpu = opaque;
581     CPUPPCState *env = &cpu->env;
582 
583     return env->nb_tlb && (env->tlb_type == TLB_EMB);
584 }
585 
586 static bool pbr403_needed(void *opaque)
587 {
588     PowerPCCPU *cpu = opaque;
589     uint32_t pvr = cpu->env.spr[SPR_PVR];
590 
591     return (pvr & 0xffff0000) == 0x00200000;
592 }
593 
594 static const VMStateDescription vmstate_pbr403 = {
595     .name = "cpu/pbr403",
596     .version_id = 1,
597     .minimum_version_id = 1,
598     .needed = pbr403_needed,
599     .fields = (VMStateField[]) {
600         VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
601         VMSTATE_END_OF_LIST()
602     },
603 };
604 
605 static const VMStateDescription vmstate_tlbemb = {
606     .name = "cpu/tlb6xx",
607     .version_id = 1,
608     .minimum_version_id = 1,
609     .needed = tlbemb_needed,
610     .fields = (VMStateField[]) {
611         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
612         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
613                                             env.nb_tlb,
614                                             vmstate_tlbemb_entry,
615                                             ppcemb_tlb_t),
616         /* 403 protection registers */
617         VMSTATE_END_OF_LIST()
618     },
619     .subsections = (const VMStateDescription*[]) {
620         &vmstate_pbr403,
621         NULL
622     }
623 };
624 
625 static const VMStateDescription vmstate_tlbmas_entry = {
626     .name = "cpu/tlbmas_entry",
627     .version_id = 1,
628     .minimum_version_id = 1,
629     .fields = (VMStateField[]) {
630         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
631         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
632         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
633         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
634         VMSTATE_END_OF_LIST()
635     },
636 };
637 
638 static bool tlbmas_needed(void *opaque)
639 {
640     PowerPCCPU *cpu = opaque;
641     CPUPPCState *env = &cpu->env;
642 
643     return env->nb_tlb && (env->tlb_type == TLB_MAS);
644 }
645 
646 static const VMStateDescription vmstate_tlbmas = {
647     .name = "cpu/tlbmas",
648     .version_id = 1,
649     .minimum_version_id = 1,
650     .needed = tlbmas_needed,
651     .fields = (VMStateField[]) {
652         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
653         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
654                                             env.nb_tlb,
655                                             vmstate_tlbmas_entry,
656                                             ppcmas_tlb_t),
657         VMSTATE_END_OF_LIST()
658     }
659 };
660 
661 static bool compat_needed(void *opaque)
662 {
663     PowerPCCPU *cpu = opaque;
664 
665     assert(!(cpu->compat_pvr && !cpu->vhyp));
666     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
667 }
668 
669 static const VMStateDescription vmstate_compat = {
670     .name = "cpu/compat",
671     .version_id = 1,
672     .minimum_version_id = 1,
673     .needed = compat_needed,
674     .fields = (VMStateField[]) {
675         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
676         VMSTATE_END_OF_LIST()
677     }
678 };
679 
680 const VMStateDescription vmstate_ppc_cpu = {
681     .name = "cpu",
682     .version_id = 5,
683     .minimum_version_id = 5,
684     .minimum_version_id_old = 4,
685     .load_state_old = cpu_load_old,
686     .pre_save = cpu_pre_save,
687     .post_load = cpu_post_load,
688     .fields = (VMStateField[]) {
689         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
690 
691         /* User mode architected state */
692         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
693 #if !defined(TARGET_PPC64)
694         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
695 #endif
696         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
697         VMSTATE_UINTTL(env.nip, PowerPCCPU),
698 
699         /* SPRs */
700         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
701         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
702 
703         /* Reservation */
704         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
705 
706         /* Supervisor mode architected state */
707         VMSTATE_UINTTL(env.msr, PowerPCCPU),
708 
709         /* Internal state */
710         VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
711         /* FIXME: access_type? */
712 
713         /* Sanity checking */
714         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
715         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
716         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
717                             cpu_pre_2_8_migration),
718         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
719         VMSTATE_END_OF_LIST()
720     },
721     .subsections = (const VMStateDescription*[]) {
722         &vmstate_fpu,
723         &vmstate_altivec,
724         &vmstate_vsx,
725         &vmstate_sr,
726 #ifdef TARGET_PPC64
727         &vmstate_tm,
728         &vmstate_slb,
729 #endif /* TARGET_PPC64 */
730         &vmstate_tlb6xx,
731         &vmstate_tlbemb,
732         &vmstate_tlbmas,
733         &vmstate_compat,
734         NULL
735     }
736 };
737