xref: /openbmc/qemu/target/ppc/machine.c (revision 80adf54e)
1 #include "qemu/osdep.h"
2 #include "qemu-common.h"
3 #include "cpu.h"
4 #include "exec/exec-all.h"
5 #include "hw/hw.h"
6 #include "hw/boards.h"
7 #include "sysemu/kvm.h"
8 #include "helper_regs.h"
9 #include "mmu-hash64.h"
10 #include "migration/cpu.h"
11 #include "qapi/error.h"
12 
13 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
14 {
15     PowerPCCPU *cpu = opaque;
16     CPUPPCState *env = &cpu->env;
17     unsigned int i, j;
18     target_ulong sdr1;
19     uint32_t fpscr;
20     target_ulong xer;
21 
22     for (i = 0; i < 32; i++)
23         qemu_get_betls(f, &env->gpr[i]);
24 #if !defined(TARGET_PPC64)
25     for (i = 0; i < 32; i++)
26         qemu_get_betls(f, &env->gprh[i]);
27 #endif
28     qemu_get_betls(f, &env->lr);
29     qemu_get_betls(f, &env->ctr);
30     for (i = 0; i < 8; i++)
31         qemu_get_be32s(f, &env->crf[i]);
32     qemu_get_betls(f, &xer);
33     cpu_write_xer(env, xer);
34     qemu_get_betls(f, &env->reserve_addr);
35     qemu_get_betls(f, &env->msr);
36     for (i = 0; i < 4; i++)
37         qemu_get_betls(f, &env->tgpr[i]);
38     for (i = 0; i < 32; i++) {
39         union {
40             float64 d;
41             uint64_t l;
42         } u;
43         u.l = qemu_get_be64(f);
44         env->fpr[i] = u.d;
45     }
46     qemu_get_be32s(f, &fpscr);
47     env->fpscr = fpscr;
48     qemu_get_sbe32s(f, &env->access_type);
49 #if defined(TARGET_PPC64)
50     qemu_get_betls(f, &env->spr[SPR_ASR]);
51     qemu_get_sbe32s(f, &env->slb_nr);
52 #endif
53     qemu_get_betls(f, &sdr1);
54     for (i = 0; i < 32; i++)
55         qemu_get_betls(f, &env->sr[i]);
56     for (i = 0; i < 2; i++)
57         for (j = 0; j < 8; j++)
58             qemu_get_betls(f, &env->DBAT[i][j]);
59     for (i = 0; i < 2; i++)
60         for (j = 0; j < 8; j++)
61             qemu_get_betls(f, &env->IBAT[i][j]);
62     qemu_get_sbe32s(f, &env->nb_tlb);
63     qemu_get_sbe32s(f, &env->tlb_per_way);
64     qemu_get_sbe32s(f, &env->nb_ways);
65     qemu_get_sbe32s(f, &env->last_way);
66     qemu_get_sbe32s(f, &env->id_tlbs);
67     qemu_get_sbe32s(f, &env->nb_pids);
68     if (env->tlb.tlb6) {
69         // XXX assumes 6xx
70         for (i = 0; i < env->nb_tlb; i++) {
71             qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
72             qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
73             qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
74         }
75     }
76     for (i = 0; i < 4; i++)
77         qemu_get_betls(f, &env->pb[i]);
78     for (i = 0; i < 1024; i++)
79         qemu_get_betls(f, &env->spr[i]);
80     if (!cpu->vhyp) {
81         ppc_store_sdr1(env, sdr1);
82     }
83     qemu_get_be32s(f, &env->vscr);
84     qemu_get_be64s(f, &env->spe_acc);
85     qemu_get_be32s(f, &env->spe_fscr);
86     qemu_get_betls(f, &env->msr_mask);
87     qemu_get_be32s(f, &env->flags);
88     qemu_get_sbe32s(f, &env->error_code);
89     qemu_get_be32s(f, &env->pending_interrupts);
90     qemu_get_be32s(f, &env->irq_input_state);
91     for (i = 0; i < POWERPC_EXCP_NB; i++)
92         qemu_get_betls(f, &env->excp_vectors[i]);
93     qemu_get_betls(f, &env->excp_prefix);
94     qemu_get_betls(f, &env->ivor_mask);
95     qemu_get_betls(f, &env->ivpr_mask);
96     qemu_get_betls(f, &env->hreset_vector);
97     qemu_get_betls(f, &env->nip);
98     qemu_get_betls(f, &env->hflags);
99     qemu_get_betls(f, &env->hflags_nmsr);
100     qemu_get_sbe32(f); /* Discard unused mmu_idx */
101     qemu_get_sbe32(f); /* Discard unused power_mode */
102 
103     /* Recompute mmu indices */
104     hreg_compute_mem_idx(env);
105 
106     return 0;
107 }
108 
109 static int get_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field)
110 {
111     ppc_avr_t *v = pv;
112 
113     v->u64[0] = qemu_get_be64(f);
114     v->u64[1] = qemu_get_be64(f);
115 
116     return 0;
117 }
118 
119 static int put_avr(QEMUFile *f, void *pv, size_t size, VMStateField *field,
120                    QJSON *vmdesc)
121 {
122     ppc_avr_t *v = pv;
123 
124     qemu_put_be64(f, v->u64[0]);
125     qemu_put_be64(f, v->u64[1]);
126     return 0;
127 }
128 
129 static const VMStateInfo vmstate_info_avr = {
130     .name = "avr",
131     .get  = get_avr,
132     .put  = put_avr,
133 };
134 
135 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
136     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_avr, ppc_avr_t)
137 
138 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
139     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
140 
141 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
142 {
143     PowerPCCPU *cpu = opaque;
144 
145     return cpu->pre_2_8_migration;
146 }
147 
148 static void cpu_pre_save(void *opaque)
149 {
150     PowerPCCPU *cpu = opaque;
151     CPUPPCState *env = &cpu->env;
152     int i;
153     uint64_t insns_compat_mask =
154         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
155         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
156         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
157         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
158         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
159         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
160         | PPC_64B | PPC_64BX | PPC_ALTIVEC
161         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
162     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
163         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
164         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
165         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
166         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
167         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
168 
169     env->spr[SPR_LR] = env->lr;
170     env->spr[SPR_CTR] = env->ctr;
171     env->spr[SPR_XER] = cpu_read_xer(env);
172 #if defined(TARGET_PPC64)
173     env->spr[SPR_CFAR] = env->cfar;
174 #endif
175     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
176 
177     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
178         env->spr[SPR_DBAT0U + 2*i] = env->DBAT[0][i];
179         env->spr[SPR_DBAT0U + 2*i + 1] = env->DBAT[1][i];
180         env->spr[SPR_IBAT0U + 2*i] = env->IBAT[0][i];
181         env->spr[SPR_IBAT0U + 2*i + 1] = env->IBAT[1][i];
182     }
183     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
184         env->spr[SPR_DBAT4U + 2*i] = env->DBAT[0][i+4];
185         env->spr[SPR_DBAT4U + 2*i + 1] = env->DBAT[1][i+4];
186         env->spr[SPR_IBAT4U + 2*i] = env->IBAT[0][i+4];
187         env->spr[SPR_IBAT4U + 2*i + 1] = env->IBAT[1][i+4];
188     }
189 
190     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
191     if (cpu->pre_2_8_migration) {
192         cpu->mig_msr_mask = env->msr_mask;
193         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
194         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
195         cpu->mig_nb_BATs = env->nb_BATs;
196     }
197 }
198 
199 /*
200  * Determine if a given PVR is a "close enough" match to the CPU
201  * object.  For TCG and KVM PR it would probably be sufficient to
202  * require an exact PVR match.  However for KVM HV the user is
203  * restricted to a PVR exactly matching the host CPU.  The correct way
204  * to handle this is to put the guest into an architected
205  * compatibility mode.  However, to allow a more forgiving transition
206  * and migration from before this was widely done, we allow migration
207  * between sufficiently similar PVRs, as determined by the CPU class's
208  * pvr_match() hook.
209  */
210 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
211 {
212     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
213 
214     if (pvr == pcc->pvr) {
215         return true;
216     }
217     return pcc->pvr_match(pcc, pvr);
218 }
219 
220 static int cpu_post_load(void *opaque, int version_id)
221 {
222     PowerPCCPU *cpu = opaque;
223     CPUPPCState *env = &cpu->env;
224     int i;
225     target_ulong msr;
226 
227     /*
228      * If we're operating in compat mode, we should be ok as long as
229      * the destination supports the same compatiblity mode.
230      *
231      * Otherwise, however, we require that the destination has exactly
232      * the same CPU model as the source.
233      */
234 
235 #if defined(TARGET_PPC64)
236     if (cpu->compat_pvr) {
237         Error *local_err = NULL;
238 
239         ppc_set_compat(cpu, cpu->compat_pvr, &local_err);
240         if (local_err) {
241             error_report_err(local_err);
242             return -1;
243         }
244     } else
245 #endif
246     {
247         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
248             return -1;
249         }
250     }
251 
252     env->lr = env->spr[SPR_LR];
253     env->ctr = env->spr[SPR_CTR];
254     cpu_write_xer(env, env->spr[SPR_XER]);
255 #if defined(TARGET_PPC64)
256     env->cfar = env->spr[SPR_CFAR];
257 #endif
258     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
259 
260     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
261         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2*i];
262         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2*i + 1];
263         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2*i];
264         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2*i + 1];
265     }
266     for (i = 0; (i < 4) && ((i+4) < env->nb_BATs); i++) {
267         env->DBAT[0][i+4] = env->spr[SPR_DBAT4U + 2*i];
268         env->DBAT[1][i+4] = env->spr[SPR_DBAT4U + 2*i + 1];
269         env->IBAT[0][i+4] = env->spr[SPR_IBAT4U + 2*i];
270         env->IBAT[1][i+4] = env->spr[SPR_IBAT4U + 2*i + 1];
271     }
272 
273     if (!cpu->vhyp) {
274         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
275     }
276 
277     /* Invalidate all msr bits except MSR_TGPR/MSR_HVB before restoring */
278     msr = env->msr;
279     env->msr ^= ~((1ULL << MSR_TGPR) | MSR_HVB);
280     ppc_store_msr(env, msr);
281 
282     hreg_compute_mem_idx(env);
283 
284     return 0;
285 }
286 
287 static bool fpu_needed(void *opaque)
288 {
289     PowerPCCPU *cpu = opaque;
290 
291     return (cpu->env.insns_flags & PPC_FLOAT);
292 }
293 
294 static const VMStateDescription vmstate_fpu = {
295     .name = "cpu/fpu",
296     .version_id = 1,
297     .minimum_version_id = 1,
298     .needed = fpu_needed,
299     .fields = (VMStateField[]) {
300         VMSTATE_FLOAT64_ARRAY(env.fpr, PowerPCCPU, 32),
301         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
302         VMSTATE_END_OF_LIST()
303     },
304 };
305 
306 static bool altivec_needed(void *opaque)
307 {
308     PowerPCCPU *cpu = opaque;
309 
310     return (cpu->env.insns_flags & PPC_ALTIVEC);
311 }
312 
313 static const VMStateDescription vmstate_altivec = {
314     .name = "cpu/altivec",
315     .version_id = 1,
316     .minimum_version_id = 1,
317     .needed = altivec_needed,
318     .fields = (VMStateField[]) {
319         VMSTATE_AVR_ARRAY(env.avr, PowerPCCPU, 32),
320         VMSTATE_UINT32(env.vscr, PowerPCCPU),
321         VMSTATE_END_OF_LIST()
322     },
323 };
324 
325 static bool vsx_needed(void *opaque)
326 {
327     PowerPCCPU *cpu = opaque;
328 
329     return (cpu->env.insns_flags2 & PPC2_VSX);
330 }
331 
332 static const VMStateDescription vmstate_vsx = {
333     .name = "cpu/vsx",
334     .version_id = 1,
335     .minimum_version_id = 1,
336     .needed = vsx_needed,
337     .fields = (VMStateField[]) {
338         VMSTATE_UINT64_ARRAY(env.vsr, PowerPCCPU, 32),
339         VMSTATE_END_OF_LIST()
340     },
341 };
342 
343 #ifdef TARGET_PPC64
344 /* Transactional memory state */
345 static bool tm_needed(void *opaque)
346 {
347     PowerPCCPU *cpu = opaque;
348     CPUPPCState *env = &cpu->env;
349     return msr_ts;
350 }
351 
352 static const VMStateDescription vmstate_tm = {
353     .name = "cpu/tm",
354     .version_id = 1,
355     .minimum_version_id = 1,
356     .minimum_version_id_old = 1,
357     .needed = tm_needed,
358     .fields      = (VMStateField []) {
359         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
360         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
361         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
362         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
363         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
364         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
365         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
366         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
367         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
368         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
369         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
370         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
371         VMSTATE_END_OF_LIST()
372     },
373 };
374 #endif
375 
376 static bool sr_needed(void *opaque)
377 {
378 #ifdef TARGET_PPC64
379     PowerPCCPU *cpu = opaque;
380 
381     return !(cpu->env.mmu_model & POWERPC_MMU_64);
382 #else
383     return true;
384 #endif
385 }
386 
387 static const VMStateDescription vmstate_sr = {
388     .name = "cpu/sr",
389     .version_id = 1,
390     .minimum_version_id = 1,
391     .needed = sr_needed,
392     .fields = (VMStateField[]) {
393         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
394         VMSTATE_END_OF_LIST()
395     },
396 };
397 
398 #ifdef TARGET_PPC64
399 static int get_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field)
400 {
401     ppc_slb_t *v = pv;
402 
403     v->esid = qemu_get_be64(f);
404     v->vsid = qemu_get_be64(f);
405 
406     return 0;
407 }
408 
409 static int put_slbe(QEMUFile *f, void *pv, size_t size, VMStateField *field,
410                     QJSON *vmdesc)
411 {
412     ppc_slb_t *v = pv;
413 
414     qemu_put_be64(f, v->esid);
415     qemu_put_be64(f, v->vsid);
416     return 0;
417 }
418 
419 static const VMStateInfo vmstate_info_slbe = {
420     .name = "slbe",
421     .get  = get_slbe,
422     .put  = put_slbe,
423 };
424 
425 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
426     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
427 
428 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
429     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
430 
431 static bool slb_needed(void *opaque)
432 {
433     PowerPCCPU *cpu = opaque;
434 
435     /* We don't support any of the old segment table based 64-bit CPUs */
436     return (cpu->env.mmu_model & POWERPC_MMU_64);
437 }
438 
439 static int slb_post_load(void *opaque, int version_id)
440 {
441     PowerPCCPU *cpu = opaque;
442     CPUPPCState *env = &cpu->env;
443     int i;
444 
445     /* We've pulled in the raw esid and vsid values from the migration
446      * stream, but we need to recompute the page size pointers */
447     for (i = 0; i < env->slb_nr; i++) {
448         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
449             /* Migration source had bad values in its SLB */
450             return -1;
451         }
452     }
453 
454     return 0;
455 }
456 
457 static const VMStateDescription vmstate_slb = {
458     .name = "cpu/slb",
459     .version_id = 1,
460     .minimum_version_id = 1,
461     .needed = slb_needed,
462     .post_load = slb_post_load,
463     .fields = (VMStateField[]) {
464         VMSTATE_INT32_EQUAL(env.slb_nr, PowerPCCPU, NULL),
465         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
466         VMSTATE_END_OF_LIST()
467     }
468 };
469 #endif /* TARGET_PPC64 */
470 
471 static const VMStateDescription vmstate_tlb6xx_entry = {
472     .name = "cpu/tlb6xx_entry",
473     .version_id = 1,
474     .minimum_version_id = 1,
475     .fields = (VMStateField[]) {
476         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
477         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
478         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
479         VMSTATE_END_OF_LIST()
480     },
481 };
482 
483 static bool tlb6xx_needed(void *opaque)
484 {
485     PowerPCCPU *cpu = opaque;
486     CPUPPCState *env = &cpu->env;
487 
488     return env->nb_tlb && (env->tlb_type == TLB_6XX);
489 }
490 
491 static const VMStateDescription vmstate_tlb6xx = {
492     .name = "cpu/tlb6xx",
493     .version_id = 1,
494     .minimum_version_id = 1,
495     .needed = tlb6xx_needed,
496     .fields = (VMStateField[]) {
497         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
498         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
499                                             env.nb_tlb,
500                                             vmstate_tlb6xx_entry,
501                                             ppc6xx_tlb_t),
502         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
503         VMSTATE_END_OF_LIST()
504     }
505 };
506 
507 static const VMStateDescription vmstate_tlbemb_entry = {
508     .name = "cpu/tlbemb_entry",
509     .version_id = 1,
510     .minimum_version_id = 1,
511     .fields = (VMStateField[]) {
512         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
513         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
514         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
515         VMSTATE_UINTTL(size, ppcemb_tlb_t),
516         VMSTATE_UINT32(prot, ppcemb_tlb_t),
517         VMSTATE_UINT32(attr, ppcemb_tlb_t),
518         VMSTATE_END_OF_LIST()
519     },
520 };
521 
522 static bool tlbemb_needed(void *opaque)
523 {
524     PowerPCCPU *cpu = opaque;
525     CPUPPCState *env = &cpu->env;
526 
527     return env->nb_tlb && (env->tlb_type == TLB_EMB);
528 }
529 
530 static bool pbr403_needed(void *opaque)
531 {
532     PowerPCCPU *cpu = opaque;
533     uint32_t pvr = cpu->env.spr[SPR_PVR];
534 
535     return (pvr & 0xffff0000) == 0x00200000;
536 }
537 
538 static const VMStateDescription vmstate_pbr403 = {
539     .name = "cpu/pbr403",
540     .version_id = 1,
541     .minimum_version_id = 1,
542     .needed = pbr403_needed,
543     .fields = (VMStateField[]) {
544         VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
545         VMSTATE_END_OF_LIST()
546     },
547 };
548 
549 static const VMStateDescription vmstate_tlbemb = {
550     .name = "cpu/tlb6xx",
551     .version_id = 1,
552     .minimum_version_id = 1,
553     .needed = tlbemb_needed,
554     .fields = (VMStateField[]) {
555         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
556         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
557                                             env.nb_tlb,
558                                             vmstate_tlbemb_entry,
559                                             ppcemb_tlb_t),
560         /* 403 protection registers */
561         VMSTATE_END_OF_LIST()
562     },
563     .subsections = (const VMStateDescription*[]) {
564         &vmstate_pbr403,
565         NULL
566     }
567 };
568 
569 static const VMStateDescription vmstate_tlbmas_entry = {
570     .name = "cpu/tlbmas_entry",
571     .version_id = 1,
572     .minimum_version_id = 1,
573     .fields = (VMStateField[]) {
574         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
575         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
576         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
577         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
578         VMSTATE_END_OF_LIST()
579     },
580 };
581 
582 static bool tlbmas_needed(void *opaque)
583 {
584     PowerPCCPU *cpu = opaque;
585     CPUPPCState *env = &cpu->env;
586 
587     return env->nb_tlb && (env->tlb_type == TLB_MAS);
588 }
589 
590 static const VMStateDescription vmstate_tlbmas = {
591     .name = "cpu/tlbmas",
592     .version_id = 1,
593     .minimum_version_id = 1,
594     .needed = tlbmas_needed,
595     .fields = (VMStateField[]) {
596         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
597         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
598                                             env.nb_tlb,
599                                             vmstate_tlbmas_entry,
600                                             ppcmas_tlb_t),
601         VMSTATE_END_OF_LIST()
602     }
603 };
604 
605 static bool compat_needed(void *opaque)
606 {
607     PowerPCCPU *cpu = opaque;
608 
609     assert(!(cpu->compat_pvr && !cpu->vhyp));
610     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
611 }
612 
613 static const VMStateDescription vmstate_compat = {
614     .name = "cpu/compat",
615     .version_id = 1,
616     .minimum_version_id = 1,
617     .needed = compat_needed,
618     .fields = (VMStateField[]) {
619         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
620         VMSTATE_END_OF_LIST()
621     }
622 };
623 
624 const VMStateDescription vmstate_ppc_cpu = {
625     .name = "cpu",
626     .version_id = 5,
627     .minimum_version_id = 5,
628     .minimum_version_id_old = 4,
629     .load_state_old = cpu_load_old,
630     .pre_save = cpu_pre_save,
631     .post_load = cpu_post_load,
632     .fields = (VMStateField[]) {
633         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
634 
635         /* User mode architected state */
636         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
637 #if !defined(TARGET_PPC64)
638         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
639 #endif
640         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
641         VMSTATE_UINTTL(env.nip, PowerPCCPU),
642 
643         /* SPRs */
644         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
645         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
646 
647         /* Reservation */
648         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
649 
650         /* Supervisor mode architected state */
651         VMSTATE_UINTTL(env.msr, PowerPCCPU),
652 
653         /* Internal state */
654         VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
655         /* FIXME: access_type? */
656 
657         /* Sanity checking */
658         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
659         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
660         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
661                             cpu_pre_2_8_migration),
662         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
663         VMSTATE_END_OF_LIST()
664     },
665     .subsections = (const VMStateDescription*[]) {
666         &vmstate_fpu,
667         &vmstate_altivec,
668         &vmstate_vsx,
669         &vmstate_sr,
670 #ifdef TARGET_PPC64
671         &vmstate_tm,
672         &vmstate_slb,
673 #endif /* TARGET_PPC64 */
674         &vmstate_tlb6xx,
675         &vmstate_tlbemb,
676         &vmstate_tlbmas,
677         &vmstate_compat,
678         NULL
679     }
680 };
681