1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "exec/exec-all.h" 4 #include "sysemu/kvm.h" 5 #include "helper_regs.h" 6 #include "mmu-hash64.h" 7 #include "migration/cpu.h" 8 #include "qapi/error.h" 9 #include "qemu/main-loop.h" 10 #include "kvm_ppc.h" 11 #include "exec/helper-proto.h" 12 13 static int cpu_load_old(QEMUFile *f, void *opaque, int version_id) 14 { 15 PowerPCCPU *cpu = opaque; 16 CPUPPCState *env = &cpu->env; 17 unsigned int i, j; 18 target_ulong sdr1; 19 uint32_t fpscr, vscr; 20 #if defined(TARGET_PPC64) 21 int32_t slb_nr; 22 #endif 23 target_ulong xer; 24 25 for (i = 0; i < 32; i++) { 26 qemu_get_betls(f, &env->gpr[i]); 27 } 28 #if !defined(TARGET_PPC64) 29 for (i = 0; i < 32; i++) { 30 qemu_get_betls(f, &env->gprh[i]); 31 } 32 #endif 33 qemu_get_betls(f, &env->lr); 34 qemu_get_betls(f, &env->ctr); 35 for (i = 0; i < 8; i++) { 36 qemu_get_be32s(f, &env->crf[i]); 37 } 38 qemu_get_betls(f, &xer); 39 cpu_write_xer(env, xer); 40 qemu_get_betls(f, &env->reserve_addr); 41 qemu_get_betls(f, &env->msr); 42 for (i = 0; i < 4; i++) { 43 qemu_get_betls(f, &env->tgpr[i]); 44 } 45 for (i = 0; i < 32; i++) { 46 union { 47 float64 d; 48 uint64_t l; 49 } u; 50 u.l = qemu_get_be64(f); 51 *cpu_fpr_ptr(env, i) = u.d; 52 } 53 qemu_get_be32s(f, &fpscr); 54 env->fpscr = fpscr; 55 qemu_get_sbe32s(f, &env->access_type); 56 #if defined(TARGET_PPC64) 57 qemu_get_betls(f, &env->spr[SPR_ASR]); 58 qemu_get_sbe32s(f, &slb_nr); 59 #endif 60 qemu_get_betls(f, &sdr1); 61 for (i = 0; i < 32; i++) { 62 qemu_get_betls(f, &env->sr[i]); 63 } 64 for (i = 0; i < 2; i++) { 65 for (j = 0; j < 8; j++) { 66 qemu_get_betls(f, &env->DBAT[i][j]); 67 } 68 } 69 for (i = 0; i < 2; i++) { 70 for (j = 0; j < 8; j++) { 71 qemu_get_betls(f, &env->IBAT[i][j]); 72 } 73 } 74 qemu_get_sbe32s(f, &env->nb_tlb); 75 qemu_get_sbe32s(f, &env->tlb_per_way); 76 qemu_get_sbe32s(f, &env->nb_ways); 77 qemu_get_sbe32s(f, &env->last_way); 78 qemu_get_sbe32s(f, &env->id_tlbs); 79 qemu_get_sbe32s(f, &env->nb_pids); 80 if (env->tlb.tlb6) { 81 /* XXX assumes 6xx */ 82 for (i = 0; i < env->nb_tlb; i++) { 83 qemu_get_betls(f, &env->tlb.tlb6[i].pte0); 84 qemu_get_betls(f, &env->tlb.tlb6[i].pte1); 85 qemu_get_betls(f, &env->tlb.tlb6[i].EPN); 86 } 87 } 88 for (i = 0; i < 4; i++) { 89 qemu_get_betls(f, &env->pb[i]); 90 } 91 for (i = 0; i < 1024; i++) { 92 qemu_get_betls(f, &env->spr[i]); 93 } 94 if (!cpu->vhyp) { 95 ppc_store_sdr1(env, sdr1); 96 } 97 qemu_get_be32s(f, &vscr); 98 helper_mtvscr(env, vscr); 99 qemu_get_be64s(f, &env->spe_acc); 100 qemu_get_be32s(f, &env->spe_fscr); 101 qemu_get_betls(f, &env->msr_mask); 102 qemu_get_be32s(f, &env->flags); 103 qemu_get_sbe32s(f, &env->error_code); 104 qemu_get_be32s(f, &env->pending_interrupts); 105 qemu_get_be32s(f, &env->irq_input_state); 106 for (i = 0; i < POWERPC_EXCP_NB; i++) { 107 qemu_get_betls(f, &env->excp_vectors[i]); 108 } 109 qemu_get_betls(f, &env->excp_prefix); 110 qemu_get_betls(f, &env->ivor_mask); 111 qemu_get_betls(f, &env->ivpr_mask); 112 qemu_get_betls(f, &env->hreset_vector); 113 qemu_get_betls(f, &env->nip); 114 qemu_get_betls(f, &env->hflags); 115 qemu_get_betls(f, &env->hflags_nmsr); 116 qemu_get_sbe32(f); /* Discard unused mmu_idx */ 117 qemu_get_sbe32(f); /* Discard unused power_mode */ 118 119 /* Recompute mmu indices */ 120 hreg_compute_mem_idx(env); 121 122 return 0; 123 } 124 125 static int get_avr(QEMUFile *f, void *pv, size_t size, 126 const VMStateField *field) 127 { 128 ppc_avr_t *v = pv; 129 130 v->u64[0] = qemu_get_be64(f); 131 v->u64[1] = qemu_get_be64(f); 132 133 return 0; 134 } 135 136 static int put_avr(QEMUFile *f, void *pv, size_t size, 137 const VMStateField *field, JSONWriter *vmdesc) 138 { 139 ppc_avr_t *v = pv; 140 141 qemu_put_be64(f, v->u64[0]); 142 qemu_put_be64(f, v->u64[1]); 143 return 0; 144 } 145 146 static const VMStateInfo vmstate_info_avr = { 147 .name = "avr", 148 .get = get_avr, 149 .put = put_avr, 150 }; 151 152 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \ 153 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t) 154 155 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \ 156 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0) 157 158 static int get_fpr(QEMUFile *f, void *pv, size_t size, 159 const VMStateField *field) 160 { 161 ppc_vsr_t *v = pv; 162 163 v->VsrD(0) = qemu_get_be64(f); 164 165 return 0; 166 } 167 168 static int put_fpr(QEMUFile *f, void *pv, size_t size, 169 const VMStateField *field, JSONWriter *vmdesc) 170 { 171 ppc_vsr_t *v = pv; 172 173 qemu_put_be64(f, v->VsrD(0)); 174 return 0; 175 } 176 177 static const VMStateInfo vmstate_info_fpr = { 178 .name = "fpr", 179 .get = get_fpr, 180 .put = put_fpr, 181 }; 182 183 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \ 184 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t) 185 186 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \ 187 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0) 188 189 static int get_vsr(QEMUFile *f, void *pv, size_t size, 190 const VMStateField *field) 191 { 192 ppc_vsr_t *v = pv; 193 194 v->VsrD(1) = qemu_get_be64(f); 195 196 return 0; 197 } 198 199 static int put_vsr(QEMUFile *f, void *pv, size_t size, 200 const VMStateField *field, JSONWriter *vmdesc) 201 { 202 ppc_vsr_t *v = pv; 203 204 qemu_put_be64(f, v->VsrD(1)); 205 return 0; 206 } 207 208 static const VMStateInfo vmstate_info_vsr = { 209 .name = "vsr", 210 .get = get_vsr, 211 .put = put_vsr, 212 }; 213 214 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \ 215 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t) 216 217 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \ 218 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0) 219 220 static bool cpu_pre_2_8_migration(void *opaque, int version_id) 221 { 222 PowerPCCPU *cpu = opaque; 223 224 return cpu->pre_2_8_migration; 225 } 226 227 #if defined(TARGET_PPC64) 228 static bool cpu_pre_3_0_migration(void *opaque, int version_id) 229 { 230 PowerPCCPU *cpu = opaque; 231 232 return cpu->pre_3_0_migration; 233 } 234 #endif 235 236 static int cpu_pre_save(void *opaque) 237 { 238 PowerPCCPU *cpu = opaque; 239 CPUPPCState *env = &cpu->env; 240 int i; 241 uint64_t insns_compat_mask = 242 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB 243 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES 244 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES 245 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT 246 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ 247 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC 248 | PPC_64B | PPC_64BX | PPC_ALTIVEC 249 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD; 250 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX 251 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 252 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206 253 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207 254 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 255 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM; 256 257 env->spr[SPR_LR] = env->lr; 258 env->spr[SPR_CTR] = env->ctr; 259 env->spr[SPR_XER] = cpu_read_xer(env); 260 #if defined(TARGET_PPC64) 261 env->spr[SPR_CFAR] = env->cfar; 262 #endif 263 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr; 264 265 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 266 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i]; 267 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i]; 268 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i]; 269 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i]; 270 } 271 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 272 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4]; 273 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4]; 274 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4]; 275 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4]; 276 } 277 278 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */ 279 if (cpu->pre_2_8_migration) { 280 /* 281 * Mask out bits that got added to msr_mask since the versions 282 * which stupidly included it in the migration stream. 283 */ 284 target_ulong metamask = 0 285 #if defined(TARGET_PPC64) 286 | (1ULL << MSR_TS0) 287 | (1ULL << MSR_TS1) 288 #endif 289 ; 290 cpu->mig_msr_mask = env->msr_mask & ~metamask; 291 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask; 292 /* 293 * CPU models supported by old machines all have 294 * PPC_MEM_TLBIE, so we set it unconditionally to allow 295 * backward migration from a POWER9 host to a POWER8 host. 296 */ 297 cpu->mig_insns_flags |= PPC_MEM_TLBIE; 298 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2; 299 cpu->mig_nb_BATs = env->nb_BATs; 300 } 301 if (cpu->pre_3_0_migration) { 302 if (cpu->hash64_opts) { 303 cpu->mig_slb_nr = cpu->hash64_opts->slb_size; 304 } 305 } 306 307 return 0; 308 } 309 310 /* 311 * Determine if a given PVR is a "close enough" match to the CPU 312 * object. For TCG and KVM PR it would probably be sufficient to 313 * require an exact PVR match. However for KVM HV the user is 314 * restricted to a PVR exactly matching the host CPU. The correct way 315 * to handle this is to put the guest into an architected 316 * compatibility mode. However, to allow a more forgiving transition 317 * and migration from before this was widely done, we allow migration 318 * between sufficiently similar PVRs, as determined by the CPU class's 319 * pvr_match() hook. 320 */ 321 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr) 322 { 323 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 324 325 if (pvr == pcc->pvr) { 326 return true; 327 } 328 return pcc->pvr_match(pcc, pvr); 329 } 330 331 static int cpu_post_load(void *opaque, int version_id) 332 { 333 PowerPCCPU *cpu = opaque; 334 CPUPPCState *env = &cpu->env; 335 int i; 336 target_ulong msr; 337 338 /* 339 * If we're operating in compat mode, we should be ok as long as 340 * the destination supports the same compatibility mode. 341 * 342 * Otherwise, however, we require that the destination has exactly 343 * the same CPU model as the source. 344 */ 345 346 #if defined(TARGET_PPC64) 347 if (cpu->compat_pvr) { 348 uint32_t compat_pvr = cpu->compat_pvr; 349 Error *local_err = NULL; 350 int ret; 351 352 cpu->compat_pvr = 0; 353 ret = ppc_set_compat(cpu, compat_pvr, &local_err); 354 if (ret < 0) { 355 error_report_err(local_err); 356 return ret; 357 } 358 } else 359 #endif 360 { 361 if (!pvr_match(cpu, env->spr[SPR_PVR])) { 362 return -EINVAL; 363 } 364 } 365 366 /* 367 * If we're running with KVM HV, there is a chance that the guest 368 * is running with KVM HV and its kernel does not have the 369 * capability of dealing with a different PVR other than this 370 * exact host PVR in KVM_SET_SREGS. If that happens, the 371 * guest freezes after migration. 372 * 373 * The function kvmppc_pvr_workaround_required does this verification 374 * by first checking if the kernel has the cap, returning true immediately 375 * if that is the case. Otherwise, it checks if we're running in KVM PR. 376 * If the guest kernel does not have the cap and we're not running KVM-PR 377 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will 378 * receive the PVR it expects as a workaround. 379 * 380 */ 381 if (kvmppc_pvr_workaround_required(cpu)) { 382 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; 383 } 384 385 env->lr = env->spr[SPR_LR]; 386 env->ctr = env->spr[SPR_CTR]; 387 cpu_write_xer(env, env->spr[SPR_XER]); 388 #if defined(TARGET_PPC64) 389 env->cfar = env->spr[SPR_CFAR]; 390 #endif 391 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR]; 392 393 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 394 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i]; 395 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1]; 396 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i]; 397 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1]; 398 } 399 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 400 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i]; 401 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1]; 402 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i]; 403 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1]; 404 } 405 406 if (!cpu->vhyp) { 407 ppc_store_sdr1(env, env->spr[SPR_SDR1]); 408 } 409 410 /* 411 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB 412 * before restoring 413 */ 414 msr = env->msr; 415 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB); 416 ppc_store_msr(env, msr); 417 418 hreg_compute_mem_idx(env); 419 420 return 0; 421 } 422 423 static bool fpu_needed(void *opaque) 424 { 425 PowerPCCPU *cpu = opaque; 426 427 return cpu->env.insns_flags & PPC_FLOAT; 428 } 429 430 static const VMStateDescription vmstate_fpu = { 431 .name = "cpu/fpu", 432 .version_id = 1, 433 .minimum_version_id = 1, 434 .needed = fpu_needed, 435 .fields = (VMStateField[]) { 436 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32), 437 VMSTATE_UINTTL(env.fpscr, PowerPCCPU), 438 VMSTATE_END_OF_LIST() 439 }, 440 }; 441 442 static bool altivec_needed(void *opaque) 443 { 444 PowerPCCPU *cpu = opaque; 445 446 return cpu->env.insns_flags & PPC_ALTIVEC; 447 } 448 449 static int get_vscr(QEMUFile *f, void *opaque, size_t size, 450 const VMStateField *field) 451 { 452 PowerPCCPU *cpu = opaque; 453 helper_mtvscr(&cpu->env, qemu_get_be32(f)); 454 return 0; 455 } 456 457 static int put_vscr(QEMUFile *f, void *opaque, size_t size, 458 const VMStateField *field, JSONWriter *vmdesc) 459 { 460 PowerPCCPU *cpu = opaque; 461 qemu_put_be32(f, helper_mfvscr(&cpu->env)); 462 return 0; 463 } 464 465 static const VMStateInfo vmstate_vscr = { 466 .name = "cpu/altivec/vscr", 467 .get = get_vscr, 468 .put = put_vscr, 469 }; 470 471 static const VMStateDescription vmstate_altivec = { 472 .name = "cpu/altivec", 473 .version_id = 1, 474 .minimum_version_id = 1, 475 .needed = altivec_needed, 476 .fields = (VMStateField[]) { 477 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32), 478 /* 479 * Save the architecture value of the vscr, not the internally 480 * expanded version. Since this architecture value does not 481 * exist in memory to be stored, this requires a but of hoop 482 * jumping. We want OFFSET=0 so that we effectively pass CPU 483 * to the helper functions. 484 */ 485 { 486 .name = "vscr", 487 .version_id = 0, 488 .size = sizeof(uint32_t), 489 .info = &vmstate_vscr, 490 .flags = VMS_SINGLE, 491 .offset = 0 492 }, 493 VMSTATE_END_OF_LIST() 494 }, 495 }; 496 497 static bool vsx_needed(void *opaque) 498 { 499 PowerPCCPU *cpu = opaque; 500 501 return cpu->env.insns_flags2 & PPC2_VSX; 502 } 503 504 static const VMStateDescription vmstate_vsx = { 505 .name = "cpu/vsx", 506 .version_id = 1, 507 .minimum_version_id = 1, 508 .needed = vsx_needed, 509 .fields = (VMStateField[]) { 510 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32), 511 VMSTATE_END_OF_LIST() 512 }, 513 }; 514 515 #ifdef TARGET_PPC64 516 /* Transactional memory state */ 517 static bool tm_needed(void *opaque) 518 { 519 PowerPCCPU *cpu = opaque; 520 CPUPPCState *env = &cpu->env; 521 return msr_ts; 522 } 523 524 static const VMStateDescription vmstate_tm = { 525 .name = "cpu/tm", 526 .version_id = 1, 527 .minimum_version_id = 1, 528 .minimum_version_id_old = 1, 529 .needed = tm_needed, 530 .fields = (VMStateField []) { 531 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32), 532 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64), 533 VMSTATE_UINT64(env.tm_cr, PowerPCCPU), 534 VMSTATE_UINT64(env.tm_lr, PowerPCCPU), 535 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU), 536 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU), 537 VMSTATE_UINT64(env.tm_amr, PowerPCCPU), 538 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU), 539 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU), 540 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU), 541 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU), 542 VMSTATE_UINT64(env.tm_tar, PowerPCCPU), 543 VMSTATE_END_OF_LIST() 544 }, 545 }; 546 #endif 547 548 static bool sr_needed(void *opaque) 549 { 550 #ifdef TARGET_PPC64 551 PowerPCCPU *cpu = opaque; 552 553 return !mmu_is_64bit(cpu->env.mmu_model); 554 #else 555 return true; 556 #endif 557 } 558 559 static const VMStateDescription vmstate_sr = { 560 .name = "cpu/sr", 561 .version_id = 1, 562 .minimum_version_id = 1, 563 .needed = sr_needed, 564 .fields = (VMStateField[]) { 565 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32), 566 VMSTATE_END_OF_LIST() 567 }, 568 }; 569 570 #ifdef TARGET_PPC64 571 static int get_slbe(QEMUFile *f, void *pv, size_t size, 572 const VMStateField *field) 573 { 574 ppc_slb_t *v = pv; 575 576 v->esid = qemu_get_be64(f); 577 v->vsid = qemu_get_be64(f); 578 579 return 0; 580 } 581 582 static int put_slbe(QEMUFile *f, void *pv, size_t size, 583 const VMStateField *field, JSONWriter *vmdesc) 584 { 585 ppc_slb_t *v = pv; 586 587 qemu_put_be64(f, v->esid); 588 qemu_put_be64(f, v->vsid); 589 return 0; 590 } 591 592 static const VMStateInfo vmstate_info_slbe = { 593 .name = "slbe", 594 .get = get_slbe, 595 .put = put_slbe, 596 }; 597 598 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \ 599 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t) 600 601 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \ 602 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0) 603 604 static bool slb_needed(void *opaque) 605 { 606 PowerPCCPU *cpu = opaque; 607 608 /* We don't support any of the old segment table based 64-bit CPUs */ 609 return mmu_is_64bit(cpu->env.mmu_model); 610 } 611 612 static int slb_post_load(void *opaque, int version_id) 613 { 614 PowerPCCPU *cpu = opaque; 615 CPUPPCState *env = &cpu->env; 616 int i; 617 618 /* 619 * We've pulled in the raw esid and vsid values from the migration 620 * stream, but we need to recompute the page size pointers 621 */ 622 for (i = 0; i < cpu->hash64_opts->slb_size; i++) { 623 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) { 624 /* Migration source had bad values in its SLB */ 625 return -1; 626 } 627 } 628 629 return 0; 630 } 631 632 static const VMStateDescription vmstate_slb = { 633 .name = "cpu/slb", 634 .version_id = 1, 635 .minimum_version_id = 1, 636 .needed = slb_needed, 637 .post_load = slb_post_load, 638 .fields = (VMStateField[]) { 639 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration), 640 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES), 641 VMSTATE_END_OF_LIST() 642 } 643 }; 644 #endif /* TARGET_PPC64 */ 645 646 static const VMStateDescription vmstate_tlb6xx_entry = { 647 .name = "cpu/tlb6xx_entry", 648 .version_id = 1, 649 .minimum_version_id = 1, 650 .fields = (VMStateField[]) { 651 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t), 652 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t), 653 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t), 654 VMSTATE_END_OF_LIST() 655 }, 656 }; 657 658 static bool tlb6xx_needed(void *opaque) 659 { 660 PowerPCCPU *cpu = opaque; 661 CPUPPCState *env = &cpu->env; 662 663 return env->nb_tlb && (env->tlb_type == TLB_6XX); 664 } 665 666 static const VMStateDescription vmstate_tlb6xx = { 667 .name = "cpu/tlb6xx", 668 .version_id = 1, 669 .minimum_version_id = 1, 670 .needed = tlb6xx_needed, 671 .fields = (VMStateField[]) { 672 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 673 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU, 674 env.nb_tlb, 675 vmstate_tlb6xx_entry, 676 ppc6xx_tlb_t), 677 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4), 678 VMSTATE_END_OF_LIST() 679 } 680 }; 681 682 static const VMStateDescription vmstate_tlbemb_entry = { 683 .name = "cpu/tlbemb_entry", 684 .version_id = 1, 685 .minimum_version_id = 1, 686 .fields = (VMStateField[]) { 687 VMSTATE_UINT64(RPN, ppcemb_tlb_t), 688 VMSTATE_UINTTL(EPN, ppcemb_tlb_t), 689 VMSTATE_UINTTL(PID, ppcemb_tlb_t), 690 VMSTATE_UINTTL(size, ppcemb_tlb_t), 691 VMSTATE_UINT32(prot, ppcemb_tlb_t), 692 VMSTATE_UINT32(attr, ppcemb_tlb_t), 693 VMSTATE_END_OF_LIST() 694 }, 695 }; 696 697 static bool tlbemb_needed(void *opaque) 698 { 699 PowerPCCPU *cpu = opaque; 700 CPUPPCState *env = &cpu->env; 701 702 return env->nb_tlb && (env->tlb_type == TLB_EMB); 703 } 704 705 static bool pbr403_needed(void *opaque) 706 { 707 PowerPCCPU *cpu = opaque; 708 uint32_t pvr = cpu->env.spr[SPR_PVR]; 709 710 return (pvr & 0xffff0000) == 0x00200000; 711 } 712 713 static const VMStateDescription vmstate_pbr403 = { 714 .name = "cpu/pbr403", 715 .version_id = 1, 716 .minimum_version_id = 1, 717 .needed = pbr403_needed, 718 .fields = (VMStateField[]) { 719 VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4), 720 VMSTATE_END_OF_LIST() 721 }, 722 }; 723 724 static const VMStateDescription vmstate_tlbemb = { 725 .name = "cpu/tlb6xx", 726 .version_id = 1, 727 .minimum_version_id = 1, 728 .needed = tlbemb_needed, 729 .fields = (VMStateField[]) { 730 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 731 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU, 732 env.nb_tlb, 733 vmstate_tlbemb_entry, 734 ppcemb_tlb_t), 735 /* 403 protection registers */ 736 VMSTATE_END_OF_LIST() 737 }, 738 .subsections = (const VMStateDescription*[]) { 739 &vmstate_pbr403, 740 NULL 741 } 742 }; 743 744 static const VMStateDescription vmstate_tlbmas_entry = { 745 .name = "cpu/tlbmas_entry", 746 .version_id = 1, 747 .minimum_version_id = 1, 748 .fields = (VMStateField[]) { 749 VMSTATE_UINT32(mas8, ppcmas_tlb_t), 750 VMSTATE_UINT32(mas1, ppcmas_tlb_t), 751 VMSTATE_UINT64(mas2, ppcmas_tlb_t), 752 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t), 753 VMSTATE_END_OF_LIST() 754 }, 755 }; 756 757 static bool tlbmas_needed(void *opaque) 758 { 759 PowerPCCPU *cpu = opaque; 760 CPUPPCState *env = &cpu->env; 761 762 return env->nb_tlb && (env->tlb_type == TLB_MAS); 763 } 764 765 static const VMStateDescription vmstate_tlbmas = { 766 .name = "cpu/tlbmas", 767 .version_id = 1, 768 .minimum_version_id = 1, 769 .needed = tlbmas_needed, 770 .fields = (VMStateField[]) { 771 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 772 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU, 773 env.nb_tlb, 774 vmstate_tlbmas_entry, 775 ppcmas_tlb_t), 776 VMSTATE_END_OF_LIST() 777 } 778 }; 779 780 static bool compat_needed(void *opaque) 781 { 782 PowerPCCPU *cpu = opaque; 783 784 assert(!(cpu->compat_pvr && !cpu->vhyp)); 785 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0; 786 } 787 788 static const VMStateDescription vmstate_compat = { 789 .name = "cpu/compat", 790 .version_id = 1, 791 .minimum_version_id = 1, 792 .needed = compat_needed, 793 .fields = (VMStateField[]) { 794 VMSTATE_UINT32(compat_pvr, PowerPCCPU), 795 VMSTATE_END_OF_LIST() 796 } 797 }; 798 799 const VMStateDescription vmstate_ppc_cpu = { 800 .name = "cpu", 801 .version_id = 5, 802 .minimum_version_id = 5, 803 .minimum_version_id_old = 4, 804 .load_state_old = cpu_load_old, 805 .pre_save = cpu_pre_save, 806 .post_load = cpu_post_load, 807 .fields = (VMStateField[]) { 808 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */ 809 810 /* User mode architected state */ 811 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32), 812 #if !defined(TARGET_PPC64) 813 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32), 814 #endif 815 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8), 816 VMSTATE_UINTTL(env.nip, PowerPCCPU), 817 818 /* SPRs */ 819 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024), 820 VMSTATE_UINT64(env.spe_acc, PowerPCCPU), 821 822 /* Reservation */ 823 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU), 824 825 /* Supervisor mode architected state */ 826 VMSTATE_UINTTL(env.msr, PowerPCCPU), 827 828 /* Internal state */ 829 VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU), 830 /* FIXME: access_type? */ 831 832 /* Sanity checking */ 833 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration), 834 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration), 835 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU, 836 cpu_pre_2_8_migration), 837 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration), 838 VMSTATE_END_OF_LIST() 839 }, 840 .subsections = (const VMStateDescription*[]) { 841 &vmstate_fpu, 842 &vmstate_altivec, 843 &vmstate_vsx, 844 &vmstate_sr, 845 #ifdef TARGET_PPC64 846 &vmstate_tm, 847 &vmstate_slb, 848 #endif /* TARGET_PPC64 */ 849 &vmstate_tlb6xx, 850 &vmstate_tlbemb, 851 &vmstate_tlbmas, 852 &vmstate_compat, 853 NULL 854 } 855 }; 856