xref: /openbmc/qemu/target/ppc/machine.c (revision 30d0647bcfa99d4a141eaa843a9fb5b091ddbb76)
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "helper_regs.h"
7 #include "mmu-hash64.h"
8 #include "migration/cpu.h"
9 #include "qapi/error.h"
10 #include "kvm_ppc.h"
11 #include "power8-pmu.h"
12 
13 static void post_load_update_msr(CPUPPCState *env)
14 {
15     target_ulong msr = env->msr;
16 
17     /*
18      * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
19      * before restoring.  Note that this recomputes hflags.
20      */
21     env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
22     ppc_store_msr(env, msr);
23 }
24 
25 static int get_avr(QEMUFile *f, void *pv, size_t size,
26                    const VMStateField *field)
27 {
28     ppc_avr_t *v = pv;
29 
30     v->u64[0] = qemu_get_be64(f);
31     v->u64[1] = qemu_get_be64(f);
32 
33     return 0;
34 }
35 
36 static int put_avr(QEMUFile *f, void *pv, size_t size,
37                    const VMStateField *field, JSONWriter *vmdesc)
38 {
39     ppc_avr_t *v = pv;
40 
41     qemu_put_be64(f, v->u64[0]);
42     qemu_put_be64(f, v->u64[1]);
43     return 0;
44 }
45 
46 static const VMStateInfo vmstate_info_avr = {
47     .name = "avr",
48     .get  = get_avr,
49     .put  = put_avr,
50 };
51 
52 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
53     VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
54 
55 #define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
56     VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
57 
58 static int get_fpr(QEMUFile *f, void *pv, size_t size,
59                    const VMStateField *field)
60 {
61     ppc_vsr_t *v = pv;
62 
63     v->VsrD(0) = qemu_get_be64(f);
64 
65     return 0;
66 }
67 
68 static int put_fpr(QEMUFile *f, void *pv, size_t size,
69                    const VMStateField *field, JSONWriter *vmdesc)
70 {
71     ppc_vsr_t *v = pv;
72 
73     qemu_put_be64(f, v->VsrD(0));
74     return 0;
75 }
76 
77 static const VMStateInfo vmstate_info_fpr = {
78     .name = "fpr",
79     .get  = get_fpr,
80     .put  = put_fpr,
81 };
82 
83 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
84     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
85 
86 #define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
87     VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
88 
89 static int get_vsr(QEMUFile *f, void *pv, size_t size,
90                    const VMStateField *field)
91 {
92     ppc_vsr_t *v = pv;
93 
94     v->VsrD(1) = qemu_get_be64(f);
95 
96     return 0;
97 }
98 
99 static int put_vsr(QEMUFile *f, void *pv, size_t size,
100                    const VMStateField *field, JSONWriter *vmdesc)
101 {
102     ppc_vsr_t *v = pv;
103 
104     qemu_put_be64(f, v->VsrD(1));
105     return 0;
106 }
107 
108 static const VMStateInfo vmstate_info_vsr = {
109     .name = "vsr",
110     .get  = get_vsr,
111     .put  = put_vsr,
112 };
113 
114 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
115     VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
116 
117 #define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
118     VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
119 
120 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
121 {
122     PowerPCCPU *cpu = opaque;
123 
124     return cpu->pre_2_8_migration;
125 }
126 
127 #if defined(TARGET_PPC64)
128 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
129 {
130     PowerPCCPU *cpu = opaque;
131 
132     return cpu->pre_3_0_migration;
133 }
134 #endif
135 
136 static int cpu_pre_save(void *opaque)
137 {
138     PowerPCCPU *cpu = opaque;
139     CPUPPCState *env = &cpu->env;
140     int i;
141     uint64_t insns_compat_mask =
142         PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
143         | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
144         | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
145         | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
146         | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
147         | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
148         | PPC_64B | PPC_64BX | PPC_ALTIVEC
149         | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
150     uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
151         | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
152         | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
153         | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
154         | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
155         | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM
156         | PPC2_MEM_LWSYNC;
157 
158     env->spr[SPR_LR] = env->lr;
159     env->spr[SPR_CTR] = env->ctr;
160     env->spr[SPR_XER] = cpu_read_xer(env);
161 #if defined(TARGET_PPC64)
162     env->spr[SPR_CFAR] = env->cfar;
163 #endif
164     env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
165 
166     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
167         env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
168         env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
169         env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
170         env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
171     }
172     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
173         env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
174         env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
175         env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
176         env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
177     }
178 
179     /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
180     if (cpu->pre_2_8_migration) {
181         /*
182          * Mask out bits that got added to msr_mask since the versions
183          * which stupidly included it in the migration stream.
184          */
185         target_ulong metamask = 0
186 #if defined(TARGET_PPC64)
187             | (1ULL << MSR_TS0)
188             | (1ULL << MSR_TS1)
189 #endif
190             ;
191         cpu->mig_msr_mask = env->msr_mask & ~metamask;
192         cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
193         /*
194          * CPU models supported by old machines all have
195          * PPC_MEM_TLBIE, so we set it unconditionally to allow
196          * backward migration from a POWER9 host to a POWER8 host.
197          */
198         cpu->mig_insns_flags |= PPC_MEM_TLBIE;
199         cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
200         cpu->mig_nb_BATs = env->nb_BATs;
201     }
202     if (cpu->pre_3_0_migration) {
203         if (cpu->hash64_opts) {
204             cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
205         }
206     }
207 
208     /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
209     env->hflags_compat_nmsr = 0;
210 
211     if (tcg_enabled()) {
212         /*
213          * TCG does not maintain the DECR spr (unlike KVM) so have to save
214          * it here.
215          */
216         env->spr[SPR_DECR] = cpu_ppc_load_decr(env);
217     }
218 
219     return 0;
220 }
221 
222 /*
223  * Determine if a given PVR is a "close enough" match to the CPU
224  * object.  For TCG and KVM PR it would probably be sufficient to
225  * require an exact PVR match.  However for KVM HV the user is
226  * restricted to a PVR exactly matching the host CPU.  The correct way
227  * to handle this is to put the guest into an architected
228  * compatibility mode.  However, to allow a more forgiving transition
229  * and migration from before this was widely done, we allow migration
230  * between sufficiently similar PVRs, as determined by the CPU class's
231  * pvr_match() hook.
232  */
233 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
234 {
235     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
236 
237     if (pvr == pcc->pvr) {
238         return true;
239     }
240     return pcc->pvr_match(pcc, pvr, true);
241 }
242 
243 static int cpu_post_load(void *opaque, int version_id)
244 {
245     PowerPCCPU *cpu = opaque;
246     CPUPPCState *env = &cpu->env;
247     int i;
248 
249     /*
250      * If we're operating in compat mode, we should be ok as long as
251      * the destination supports the same compatibility mode.
252      *
253      * Otherwise, however, we require that the destination has exactly
254      * the same CPU model as the source.
255      */
256 
257 #if defined(TARGET_PPC64)
258     if (cpu->compat_pvr) {
259         uint32_t compat_pvr = cpu->compat_pvr;
260         Error *local_err = NULL;
261         int ret;
262 
263         cpu->compat_pvr = 0;
264         ret = ppc_set_compat(cpu, compat_pvr, &local_err);
265         if (ret < 0) {
266             error_report_err(local_err);
267             return ret;
268         }
269     } else
270 #endif
271     {
272         if (!pvr_match(cpu, env->spr[SPR_PVR])) {
273             return -EINVAL;
274         }
275     }
276 
277     /*
278      * If we're running with KVM HV, there is a chance that the guest
279      * is running with KVM HV and its kernel does not have the
280      * capability of dealing with a different PVR other than this
281      * exact host PVR in KVM_SET_SREGS. If that happens, the
282      * guest freezes after migration.
283      *
284      * The function kvmppc_pvr_workaround_required does this verification
285      * by first checking if the kernel has the cap, returning true immediately
286      * if that is the case. Otherwise, it checks if we're running in KVM PR.
287      * If the guest kernel does not have the cap and we're not running KVM-PR
288      * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
289      * receive the PVR it expects as a workaround.
290      *
291      */
292     if (kvmppc_pvr_workaround_required(cpu)) {
293         env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
294     }
295 
296     env->lr = env->spr[SPR_LR];
297     env->ctr = env->spr[SPR_CTR];
298     cpu_write_xer(env, env->spr[SPR_XER]);
299 #if defined(TARGET_PPC64)
300     env->cfar = env->spr[SPR_CFAR];
301 #endif
302     env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
303 
304     for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
305         env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
306         env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
307         env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
308         env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
309     }
310     for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
311         env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
312         env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
313         env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
314         env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
315     }
316 
317     if (!cpu->vhyp) {
318         ppc_store_sdr1(env, env->spr[SPR_SDR1]);
319     }
320 
321     post_load_update_msr(env);
322 
323     if (tcg_enabled()) {
324         /* Re-set breaks based on regs */
325 #if defined(TARGET_PPC64)
326         ppc_update_ciabr(env);
327         ppc_update_daw0(env);
328 #endif
329         /*
330          * TCG needs to re-start the decrementer timer and/or raise the
331          * interrupt. This works for level-triggered decrementer. Edge
332          * triggered types (including HDEC) would need to carry more state.
333          */
334         cpu_ppc_store_decr(env, env->spr[SPR_DECR]);
335         pmu_mmcr01_updated(env);
336     }
337 
338     return 0;
339 }
340 
341 static bool fpu_needed(void *opaque)
342 {
343     PowerPCCPU *cpu = opaque;
344 
345     return cpu->env.insns_flags & PPC_FLOAT;
346 }
347 
348 static const VMStateDescription vmstate_fpu = {
349     .name = "cpu/fpu",
350     .version_id = 1,
351     .minimum_version_id = 1,
352     .needed = fpu_needed,
353     .fields = (VMStateField[]) {
354         VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
355         VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
356         VMSTATE_END_OF_LIST()
357     },
358 };
359 
360 static bool altivec_needed(void *opaque)
361 {
362     PowerPCCPU *cpu = opaque;
363 
364     return cpu->env.insns_flags & PPC_ALTIVEC;
365 }
366 
367 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
368                     const VMStateField *field)
369 {
370     PowerPCCPU *cpu = opaque;
371     ppc_store_vscr(&cpu->env, qemu_get_be32(f));
372     return 0;
373 }
374 
375 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
376                     const VMStateField *field, JSONWriter *vmdesc)
377 {
378     PowerPCCPU *cpu = opaque;
379     qemu_put_be32(f, ppc_get_vscr(&cpu->env));
380     return 0;
381 }
382 
383 static const VMStateInfo vmstate_vscr = {
384     .name = "cpu/altivec/vscr",
385     .get = get_vscr,
386     .put = put_vscr,
387 };
388 
389 static const VMStateDescription vmstate_altivec = {
390     .name = "cpu/altivec",
391     .version_id = 1,
392     .minimum_version_id = 1,
393     .needed = altivec_needed,
394     .fields = (VMStateField[]) {
395         VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
396         /*
397          * Save the architecture value of the vscr, not the internally
398          * expanded version.  Since this architecture value does not
399          * exist in memory to be stored, this requires a but of hoop
400          * jumping.  We want OFFSET=0 so that we effectively pass CPU
401          * to the helper functions.
402          */
403         {
404             .name = "vscr",
405             .version_id = 0,
406             .size = sizeof(uint32_t),
407             .info = &vmstate_vscr,
408             .flags = VMS_SINGLE,
409             .offset = 0
410         },
411         VMSTATE_END_OF_LIST()
412     },
413 };
414 
415 static bool vsx_needed(void *opaque)
416 {
417     PowerPCCPU *cpu = opaque;
418 
419     return cpu->env.insns_flags2 & PPC2_VSX;
420 }
421 
422 static const VMStateDescription vmstate_vsx = {
423     .name = "cpu/vsx",
424     .version_id = 1,
425     .minimum_version_id = 1,
426     .needed = vsx_needed,
427     .fields = (VMStateField[]) {
428         VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
429         VMSTATE_END_OF_LIST()
430     },
431 };
432 
433 #ifdef TARGET_PPC64
434 /* Transactional memory state */
435 static bool tm_needed(void *opaque)
436 {
437     PowerPCCPU *cpu = opaque;
438     CPUPPCState *env = &cpu->env;
439     return FIELD_EX64(env->msr, MSR, TS);
440 }
441 
442 static const VMStateDescription vmstate_tm = {
443     .name = "cpu/tm",
444     .version_id = 1,
445     .minimum_version_id = 1,
446     .needed = tm_needed,
447     .fields      = (VMStateField []) {
448         VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
449         VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
450         VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
451         VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
452         VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
453         VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
454         VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
455         VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
456         VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
457         VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
458         VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
459         VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
460         VMSTATE_END_OF_LIST()
461     },
462 };
463 #endif
464 
465 static bool sr_needed(void *opaque)
466 {
467 #ifdef TARGET_PPC64
468     PowerPCCPU *cpu = opaque;
469 
470     return !mmu_is_64bit(cpu->env.mmu_model);
471 #else
472     return true;
473 #endif
474 }
475 
476 static const VMStateDescription vmstate_sr = {
477     .name = "cpu/sr",
478     .version_id = 1,
479     .minimum_version_id = 1,
480     .needed = sr_needed,
481     .fields = (VMStateField[]) {
482         VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
483         VMSTATE_END_OF_LIST()
484     },
485 };
486 
487 #ifdef TARGET_PPC64
488 static int get_slbe(QEMUFile *f, void *pv, size_t size,
489                     const VMStateField *field)
490 {
491     ppc_slb_t *v = pv;
492 
493     v->esid = qemu_get_be64(f);
494     v->vsid = qemu_get_be64(f);
495 
496     return 0;
497 }
498 
499 static int put_slbe(QEMUFile *f, void *pv, size_t size,
500                     const VMStateField *field, JSONWriter *vmdesc)
501 {
502     ppc_slb_t *v = pv;
503 
504     qemu_put_be64(f, v->esid);
505     qemu_put_be64(f, v->vsid);
506     return 0;
507 }
508 
509 static const VMStateInfo vmstate_info_slbe = {
510     .name = "slbe",
511     .get  = get_slbe,
512     .put  = put_slbe,
513 };
514 
515 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
516     VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
517 
518 #define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
519     VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
520 
521 static bool slb_needed(void *opaque)
522 {
523     PowerPCCPU *cpu = opaque;
524 
525     /* We don't support any of the old segment table based 64-bit CPUs */
526     return mmu_is_64bit(cpu->env.mmu_model);
527 }
528 
529 static int slb_post_load(void *opaque, int version_id)
530 {
531     PowerPCCPU *cpu = opaque;
532     CPUPPCState *env = &cpu->env;
533     int i;
534 
535     /*
536      * We've pulled in the raw esid and vsid values from the migration
537      * stream, but we need to recompute the page size pointers
538      */
539     for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
540         if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
541             /* Migration source had bad values in its SLB */
542             return -1;
543         }
544     }
545 
546     return 0;
547 }
548 
549 static const VMStateDescription vmstate_slb = {
550     .name = "cpu/slb",
551     .version_id = 1,
552     .minimum_version_id = 1,
553     .needed = slb_needed,
554     .post_load = slb_post_load,
555     .fields = (VMStateField[]) {
556         VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
557         VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
558         VMSTATE_END_OF_LIST()
559     }
560 };
561 #endif /* TARGET_PPC64 */
562 
563 static const VMStateDescription vmstate_tlb6xx_entry = {
564     .name = "cpu/tlb6xx_entry",
565     .version_id = 1,
566     .minimum_version_id = 1,
567     .fields = (VMStateField[]) {
568         VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
569         VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
570         VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
571         VMSTATE_END_OF_LIST()
572     },
573 };
574 
575 static bool tlb6xx_needed(void *opaque)
576 {
577     PowerPCCPU *cpu = opaque;
578     CPUPPCState *env = &cpu->env;
579 
580     return env->nb_tlb && (env->tlb_type == TLB_6XX);
581 }
582 
583 static const VMStateDescription vmstate_tlb6xx = {
584     .name = "cpu/tlb6xx",
585     .version_id = 1,
586     .minimum_version_id = 1,
587     .needed = tlb6xx_needed,
588     .fields = (VMStateField[]) {
589         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
590         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
591                                             env.nb_tlb,
592                                             vmstate_tlb6xx_entry,
593                                             ppc6xx_tlb_t),
594         VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
595         VMSTATE_END_OF_LIST()
596     }
597 };
598 
599 static const VMStateDescription vmstate_tlbemb_entry = {
600     .name = "cpu/tlbemb_entry",
601     .version_id = 1,
602     .minimum_version_id = 1,
603     .fields = (VMStateField[]) {
604         VMSTATE_UINT64(RPN, ppcemb_tlb_t),
605         VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
606         VMSTATE_UINTTL(PID, ppcemb_tlb_t),
607         VMSTATE_UINTTL(size, ppcemb_tlb_t),
608         VMSTATE_UINT32(prot, ppcemb_tlb_t),
609         VMSTATE_UINT32(attr, ppcemb_tlb_t),
610         VMSTATE_END_OF_LIST()
611     },
612 };
613 
614 static bool tlbemb_needed(void *opaque)
615 {
616     PowerPCCPU *cpu = opaque;
617     CPUPPCState *env = &cpu->env;
618 
619     return env->nb_tlb && (env->tlb_type == TLB_EMB);
620 }
621 
622 static const VMStateDescription vmstate_tlbemb = {
623     .name = "cpu/tlb6xx",
624     .version_id = 1,
625     .minimum_version_id = 1,
626     .needed = tlbemb_needed,
627     .fields = (VMStateField[]) {
628         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
629         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
630                                             env.nb_tlb,
631                                             vmstate_tlbemb_entry,
632                                             ppcemb_tlb_t),
633         VMSTATE_END_OF_LIST()
634     },
635 };
636 
637 static const VMStateDescription vmstate_tlbmas_entry = {
638     .name = "cpu/tlbmas_entry",
639     .version_id = 1,
640     .minimum_version_id = 1,
641     .fields = (VMStateField[]) {
642         VMSTATE_UINT32(mas8, ppcmas_tlb_t),
643         VMSTATE_UINT32(mas1, ppcmas_tlb_t),
644         VMSTATE_UINT64(mas2, ppcmas_tlb_t),
645         VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
646         VMSTATE_END_OF_LIST()
647     },
648 };
649 
650 static bool tlbmas_needed(void *opaque)
651 {
652     PowerPCCPU *cpu = opaque;
653     CPUPPCState *env = &cpu->env;
654 
655     return env->nb_tlb && (env->tlb_type == TLB_MAS);
656 }
657 
658 static const VMStateDescription vmstate_tlbmas = {
659     .name = "cpu/tlbmas",
660     .version_id = 1,
661     .minimum_version_id = 1,
662     .needed = tlbmas_needed,
663     .fields = (VMStateField[]) {
664         VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
665         VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
666                                             env.nb_tlb,
667                                             vmstate_tlbmas_entry,
668                                             ppcmas_tlb_t),
669         VMSTATE_END_OF_LIST()
670     }
671 };
672 
673 static bool compat_needed(void *opaque)
674 {
675     PowerPCCPU *cpu = opaque;
676 
677     assert(!(cpu->compat_pvr && !cpu->vhyp));
678     return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
679 }
680 
681 static const VMStateDescription vmstate_compat = {
682     .name = "cpu/compat",
683     .version_id = 1,
684     .minimum_version_id = 1,
685     .needed = compat_needed,
686     .fields = (VMStateField[]) {
687         VMSTATE_UINT32(compat_pvr, PowerPCCPU),
688         VMSTATE_END_OF_LIST()
689     }
690 };
691 
692 const VMStateDescription vmstate_ppc_cpu = {
693     .name = "cpu",
694     .version_id = 5,
695     .minimum_version_id = 5,
696     .pre_save = cpu_pre_save,
697     .post_load = cpu_post_load,
698     .fields = (VMStateField[]) {
699         VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
700 
701         /* User mode architected state */
702         VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
703 #if !defined(TARGET_PPC64)
704         VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
705 #endif
706         VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
707         VMSTATE_UINTTL(env.nip, PowerPCCPU),
708 
709         /* SPRs */
710         VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
711         VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
712 
713         /* Reservation */
714         VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
715 
716         /* Supervisor mode architected state */
717         VMSTATE_UINTTL(env.msr, PowerPCCPU),
718 
719         /* Backward compatible internal state */
720         VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
721 
722         /* Sanity checking */
723         VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
724         VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
725         VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
726                             cpu_pre_2_8_migration),
727         VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
728         VMSTATE_END_OF_LIST()
729     },
730     .subsections = (const VMStateDescription*[]) {
731         &vmstate_fpu,
732         &vmstate_altivec,
733         &vmstate_vsx,
734         &vmstate_sr,
735 #ifdef TARGET_PPC64
736         &vmstate_tm,
737         &vmstate_slb,
738 #endif /* TARGET_PPC64 */
739         &vmstate_tlb6xx,
740         &vmstate_tlbemb,
741         &vmstate_tlbmas,
742         &vmstate_compat,
743         NULL
744     }
745 };
746