xref: /openbmc/qemu/target/ppc/kvm.c (revision ebe15582)
1 /*
2  * PowerPC implementation of KVM hooks
3  *
4  * Copyright IBM Corp. 2007
5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
6  *
7  * Authors:
8  *  Jerone Young <jyoung5@us.ibm.com>
9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10  *  Hollis Blanchard <hollisb@us.ibm.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
13  * See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21 
22 #include <linux/kvm.h>
23 
24 #include "qemu-common.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "cpu.h"
28 #include "cpu-models.h"
29 #include "qemu/timer.h"
30 #include "sysemu/hw_accel.h"
31 #include "kvm_ppc.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/device_tree.h"
34 #include "mmu-hash64.h"
35 
36 #include "hw/sysbus.h"
37 #include "hw/ppc/spapr.h"
38 #include "hw/ppc/spapr_cpu_core.h"
39 #include "hw/hw.h"
40 #include "hw/ppc/ppc.h"
41 #include "migration/qemu-file-types.h"
42 #include "sysemu/watchdog.h"
43 #include "trace.h"
44 #include "exec/gdbstub.h"
45 #include "exec/memattrs.h"
46 #include "exec/ram_addr.h"
47 #include "sysemu/hostmem.h"
48 #include "qemu/cutils.h"
49 #include "qemu/main-loop.h"
50 #include "qemu/mmap-alloc.h"
51 #include "elf.h"
52 #include "sysemu/kvm_int.h"
53 
54 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
55 
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57     KVM_CAP_LAST_INFO
58 };
59 
60 static int cap_interrupt_unset;
61 static int cap_segstate;
62 static int cap_booke_sregs;
63 static int cap_ppc_smt;
64 static int cap_ppc_smt_possible;
65 static int cap_spapr_tce;
66 static int cap_spapr_tce_64;
67 static int cap_spapr_multitce;
68 static int cap_spapr_vfio;
69 static int cap_hior;
70 static int cap_one_reg;
71 static int cap_epr;
72 static int cap_ppc_watchdog;
73 static int cap_papr;
74 static int cap_htab_fd;
75 static int cap_fixup_hcalls;
76 static int cap_htm;             /* Hardware transactional memory support */
77 static int cap_mmu_radix;
78 static int cap_mmu_hash_v3;
79 static int cap_xive;
80 static int cap_resize_hpt;
81 static int cap_ppc_pvr_compat;
82 static int cap_ppc_safe_cache;
83 static int cap_ppc_safe_bounds_check;
84 static int cap_ppc_safe_indirect_branch;
85 static int cap_ppc_count_cache_flush_assist;
86 static int cap_ppc_nested_kvm_hv;
87 static int cap_large_decr;
88 
89 static uint32_t debug_inst_opcode;
90 
91 /*
92  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
93  * should only be used for fallback tests - generally we should use
94  * explicit capabilities for the features we want, rather than
95  * assuming what is/isn't available depending on the KVM variant.
96  */
97 static bool kvmppc_is_pr(KVMState *ks)
98 {
99     /* Assume KVM-PR if the GET_PVINFO capability is available */
100     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
101 }
102 
103 static int kvm_ppc_register_host_cpu_type(MachineState *ms);
104 static void kvmppc_get_cpu_characteristics(KVMState *s);
105 static int kvmppc_get_dec_bits(void);
106 
107 int kvm_arch_init(MachineState *ms, KVMState *s)
108 {
109     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
110     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
111     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
112     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
113     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
114     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
115     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
116     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
117     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
118     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
119     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
120     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
121     /*
122      * Note: we don't set cap_papr here, because this capability is
123      * only activated after this by kvmppc_set_papr()
124      */
125     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
126     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
127     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
128     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
129     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
130     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
131     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
132     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
133     kvmppc_get_cpu_characteristics(s);
134     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
135     cap_large_decr = kvmppc_get_dec_bits();
136     /*
137      * Note: setting it to false because there is not such capability
138      * in KVM at this moment.
139      *
140      * TODO: call kvm_vm_check_extension() with the right capability
141      * after the kernel starts implementing it.
142      */
143     cap_ppc_pvr_compat = false;
144 
145     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
146         error_report("KVM: Host kernel doesn't have level irq capability");
147         exit(1);
148     }
149 
150     kvm_ppc_register_host_cpu_type(ms);
151 
152     return 0;
153 }
154 
155 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
156 {
157     return 0;
158 }
159 
160 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
161 {
162     CPUPPCState *cenv = &cpu->env;
163     CPUState *cs = CPU(cpu);
164     struct kvm_sregs sregs;
165     int ret;
166 
167     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
168         /*
169          * What we're really trying to say is "if we're on BookE, we
170          * use the native PVR for now". This is the only sane way to
171          * check it though, so we potentially confuse users that they
172          * can run BookE guests on BookS. Let's hope nobody dares
173          * enough :)
174          */
175         return 0;
176     } else {
177         if (!cap_segstate) {
178             fprintf(stderr, "kvm error: missing PVR setting capability\n");
179             return -ENOSYS;
180         }
181     }
182 
183     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
184     if (ret) {
185         return ret;
186     }
187 
188     sregs.pvr = cenv->spr[SPR_PVR];
189     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
190 }
191 
192 /* Set up a shared TLB array with KVM */
193 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
194 {
195     CPUPPCState *env = &cpu->env;
196     CPUState *cs = CPU(cpu);
197     struct kvm_book3e_206_tlb_params params = {};
198     struct kvm_config_tlb cfg = {};
199     unsigned int entries = 0;
200     int ret, i;
201 
202     if (!kvm_enabled() ||
203         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
204         return 0;
205     }
206 
207     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
208 
209     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
210         params.tlb_sizes[i] = booke206_tlb_size(env, i);
211         params.tlb_ways[i] = booke206_tlb_ways(env, i);
212         entries += params.tlb_sizes[i];
213     }
214 
215     assert(entries == env->nb_tlb);
216     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
217 
218     env->tlb_dirty = true;
219 
220     cfg.array = (uintptr_t)env->tlb.tlbm;
221     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
222     cfg.params = (uintptr_t)&params;
223     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
224 
225     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
226     if (ret < 0) {
227         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
228                 __func__, strerror(-ret));
229         return ret;
230     }
231 
232     env->kvm_sw_tlb = true;
233     return 0;
234 }
235 
236 
237 #if defined(TARGET_PPC64)
238 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
239 {
240     int ret;
241 
242     assert(kvm_state != NULL);
243 
244     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
245         error_setg(errp, "KVM doesn't expose the MMU features it supports");
246         error_append_hint(errp, "Consider switching to a newer KVM\n");
247         return;
248     }
249 
250     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
251     if (ret == 0) {
252         return;
253     }
254 
255     error_setg_errno(errp, -ret,
256                      "KVM failed to provide the MMU features it supports");
257 }
258 
259 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
260 {
261     KVMState *s = KVM_STATE(current_machine->accelerator);
262     struct ppc_radix_page_info *radix_page_info;
263     struct kvm_ppc_rmmu_info rmmu_info;
264     int i;
265 
266     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
267         return NULL;
268     }
269     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
270         return NULL;
271     }
272     radix_page_info = g_malloc0(sizeof(*radix_page_info));
273     radix_page_info->count = 0;
274     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
275         if (rmmu_info.ap_encodings[i]) {
276             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
277             radix_page_info->count++;
278         }
279     }
280     return radix_page_info;
281 }
282 
283 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
284                                      bool radix, bool gtse,
285                                      uint64_t proc_tbl)
286 {
287     CPUState *cs = CPU(cpu);
288     int ret;
289     uint64_t flags = 0;
290     struct kvm_ppc_mmuv3_cfg cfg = {
291         .process_table = proc_tbl,
292     };
293 
294     if (radix) {
295         flags |= KVM_PPC_MMUV3_RADIX;
296     }
297     if (gtse) {
298         flags |= KVM_PPC_MMUV3_GTSE;
299     }
300     cfg.flags = flags;
301     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
302     switch (ret) {
303     case 0:
304         return H_SUCCESS;
305     case -EINVAL:
306         return H_PARAMETER;
307     case -ENODEV:
308         return H_NOT_AVAILABLE;
309     default:
310         return H_HARDWARE;
311     }
312 }
313 
314 bool kvmppc_hpt_needs_host_contiguous_pages(void)
315 {
316     static struct kvm_ppc_smmu_info smmu_info;
317 
318     if (!kvm_enabled()) {
319         return false;
320     }
321 
322     kvm_get_smmu_info(&smmu_info, &error_fatal);
323     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
324 }
325 
326 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
327 {
328     struct kvm_ppc_smmu_info smmu_info;
329     int iq, ik, jq, jk;
330     Error *local_err = NULL;
331 
332     /* For now, we only have anything to check on hash64 MMUs */
333     if (!cpu->hash64_opts || !kvm_enabled()) {
334         return;
335     }
336 
337     kvm_get_smmu_info(&smmu_info, &local_err);
338     if (local_err) {
339         error_propagate(errp, local_err);
340         return;
341     }
342 
343     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
344         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
345         error_setg(errp,
346                    "KVM does not support 1TiB segments which guest expects");
347         return;
348     }
349 
350     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
351         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
352                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
353         return;
354     }
355 
356     /*
357      * Verify that every pagesize supported by the cpu model is
358      * supported by KVM with the same encodings
359      */
360     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
361         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
362         struct kvm_ppc_one_seg_page_size *ksps;
363 
364         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
365             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
366                 break;
367             }
368         }
369         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
370             error_setg(errp, "KVM doesn't support for base page shift %u",
371                        qsps->page_shift);
372             return;
373         }
374 
375         ksps = &smmu_info.sps[ik];
376         if (ksps->slb_enc != qsps->slb_enc) {
377             error_setg(errp,
378 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
379                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
380             return;
381         }
382 
383         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
384             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
385                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
386                     break;
387                 }
388             }
389 
390             if (jk >= ARRAY_SIZE(ksps->enc)) {
391                 error_setg(errp, "KVM doesn't support page shift %u/%u",
392                            qsps->enc[jq].page_shift, qsps->page_shift);
393                 return;
394             }
395             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
396                 error_setg(errp,
397 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
398                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
399                            qsps->page_shift, qsps->enc[jq].pte_enc);
400                 return;
401             }
402         }
403     }
404 
405     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
406         /*
407          * Mostly what guest pagesizes we can use are related to the
408          * host pages used to map guest RAM, which is handled in the
409          * platform code. Cache-Inhibited largepages (64k) however are
410          * used for I/O, so if they're mapped to the host at all it
411          * will be a normal mapping, not a special hugepage one used
412          * for RAM.
413          */
414         if (getpagesize() < 0x10000) {
415             error_setg(errp,
416                        "KVM can't supply 64kiB CI pages, which guest expects");
417         }
418     }
419 }
420 #endif /* !defined (TARGET_PPC64) */
421 
422 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
423 {
424     return POWERPC_CPU(cpu)->vcpu_id;
425 }
426 
427 /*
428  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
429  * only 1 watchpoint, so array size of 4 is sufficient for now.
430  */
431 #define MAX_HW_BKPTS 4
432 
433 static struct HWBreakpoint {
434     target_ulong addr;
435     int type;
436 } hw_debug_points[MAX_HW_BKPTS];
437 
438 static CPUWatchpoint hw_watchpoint;
439 
440 /* Default there is no breakpoint and watchpoint supported */
441 static int max_hw_breakpoint;
442 static int max_hw_watchpoint;
443 static int nb_hw_breakpoint;
444 static int nb_hw_watchpoint;
445 
446 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
447 {
448     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
449         max_hw_breakpoint = 2;
450         max_hw_watchpoint = 2;
451     }
452 
453     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
454         fprintf(stderr, "Error initializing h/w breakpoints\n");
455         return;
456     }
457 }
458 
459 int kvm_arch_init_vcpu(CPUState *cs)
460 {
461     PowerPCCPU *cpu = POWERPC_CPU(cs);
462     CPUPPCState *cenv = &cpu->env;
463     int ret;
464 
465     /* Synchronize sregs with kvm */
466     ret = kvm_arch_sync_sregs(cpu);
467     if (ret) {
468         if (ret == -EINVAL) {
469             error_report("Register sync failed... If you're using kvm-hv.ko,"
470                          " only \"-cpu host\" is possible");
471         }
472         return ret;
473     }
474 
475     switch (cenv->mmu_model) {
476     case POWERPC_MMU_BOOKE206:
477         /* This target supports access to KVM's guest TLB */
478         ret = kvm_booke206_tlb_init(cpu);
479         break;
480     case POWERPC_MMU_2_07:
481         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
482             /*
483              * KVM-HV has transactional memory on POWER8 also without
484              * the KVM_CAP_PPC_HTM extension, so enable it here
485              * instead as long as it's availble to userspace on the
486              * host.
487              */
488             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
489                 cap_htm = true;
490             }
491         }
492         break;
493     default:
494         break;
495     }
496 
497     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
498     kvmppc_hw_debug_points_init(cenv);
499 
500     return ret;
501 }
502 
503 int kvm_arch_destroy_vcpu(CPUState *cs)
504 {
505     return 0;
506 }
507 
508 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
509 {
510     CPUPPCState *env = &cpu->env;
511     CPUState *cs = CPU(cpu);
512     struct kvm_dirty_tlb dirty_tlb;
513     unsigned char *bitmap;
514     int ret;
515 
516     if (!env->kvm_sw_tlb) {
517         return;
518     }
519 
520     bitmap = g_malloc((env->nb_tlb + 7) / 8);
521     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
522 
523     dirty_tlb.bitmap = (uintptr_t)bitmap;
524     dirty_tlb.num_dirty = env->nb_tlb;
525 
526     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
527     if (ret) {
528         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
529                 __func__, strerror(-ret));
530     }
531 
532     g_free(bitmap);
533 }
534 
535 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
536 {
537     PowerPCCPU *cpu = POWERPC_CPU(cs);
538     CPUPPCState *env = &cpu->env;
539     union {
540         uint32_t u32;
541         uint64_t u64;
542     } val;
543     struct kvm_one_reg reg = {
544         .id = id,
545         .addr = (uintptr_t) &val,
546     };
547     int ret;
548 
549     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
550     if (ret != 0) {
551         trace_kvm_failed_spr_get(spr, strerror(errno));
552     } else {
553         switch (id & KVM_REG_SIZE_MASK) {
554         case KVM_REG_SIZE_U32:
555             env->spr[spr] = val.u32;
556             break;
557 
558         case KVM_REG_SIZE_U64:
559             env->spr[spr] = val.u64;
560             break;
561 
562         default:
563             /* Don't handle this size yet */
564             abort();
565         }
566     }
567 }
568 
569 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
570 {
571     PowerPCCPU *cpu = POWERPC_CPU(cs);
572     CPUPPCState *env = &cpu->env;
573     union {
574         uint32_t u32;
575         uint64_t u64;
576     } val;
577     struct kvm_one_reg reg = {
578         .id = id,
579         .addr = (uintptr_t) &val,
580     };
581     int ret;
582 
583     switch (id & KVM_REG_SIZE_MASK) {
584     case KVM_REG_SIZE_U32:
585         val.u32 = env->spr[spr];
586         break;
587 
588     case KVM_REG_SIZE_U64:
589         val.u64 = env->spr[spr];
590         break;
591 
592     default:
593         /* Don't handle this size yet */
594         abort();
595     }
596 
597     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
598     if (ret != 0) {
599         trace_kvm_failed_spr_set(spr, strerror(errno));
600     }
601 }
602 
603 static int kvm_put_fp(CPUState *cs)
604 {
605     PowerPCCPU *cpu = POWERPC_CPU(cs);
606     CPUPPCState *env = &cpu->env;
607     struct kvm_one_reg reg;
608     int i;
609     int ret;
610 
611     if (env->insns_flags & PPC_FLOAT) {
612         uint64_t fpscr = env->fpscr;
613         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
614 
615         reg.id = KVM_REG_PPC_FPSCR;
616         reg.addr = (uintptr_t)&fpscr;
617         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
618         if (ret < 0) {
619             trace_kvm_failed_fpscr_set(strerror(errno));
620             return ret;
621         }
622 
623         for (i = 0; i < 32; i++) {
624             uint64_t vsr[2];
625             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
626             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
627 
628 #ifdef HOST_WORDS_BIGENDIAN
629             vsr[0] = float64_val(*fpr);
630             vsr[1] = *vsrl;
631 #else
632             vsr[0] = *vsrl;
633             vsr[1] = float64_val(*fpr);
634 #endif
635             reg.addr = (uintptr_t) &vsr;
636             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
637 
638             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
639             if (ret < 0) {
640                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
641                                         strerror(errno));
642                 return ret;
643             }
644         }
645     }
646 
647     if (env->insns_flags & PPC_ALTIVEC) {
648         reg.id = KVM_REG_PPC_VSCR;
649         reg.addr = (uintptr_t)&env->vscr;
650         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
651         if (ret < 0) {
652             trace_kvm_failed_vscr_set(strerror(errno));
653             return ret;
654         }
655 
656         for (i = 0; i < 32; i++) {
657             reg.id = KVM_REG_PPC_VR(i);
658             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
659             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
660             if (ret < 0) {
661                 trace_kvm_failed_vr_set(i, strerror(errno));
662                 return ret;
663             }
664         }
665     }
666 
667     return 0;
668 }
669 
670 static int kvm_get_fp(CPUState *cs)
671 {
672     PowerPCCPU *cpu = POWERPC_CPU(cs);
673     CPUPPCState *env = &cpu->env;
674     struct kvm_one_reg reg;
675     int i;
676     int ret;
677 
678     if (env->insns_flags & PPC_FLOAT) {
679         uint64_t fpscr;
680         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
681 
682         reg.id = KVM_REG_PPC_FPSCR;
683         reg.addr = (uintptr_t)&fpscr;
684         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
685         if (ret < 0) {
686             trace_kvm_failed_fpscr_get(strerror(errno));
687             return ret;
688         } else {
689             env->fpscr = fpscr;
690         }
691 
692         for (i = 0; i < 32; i++) {
693             uint64_t vsr[2];
694             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
695             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
696 
697             reg.addr = (uintptr_t) &vsr;
698             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
699 
700             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
701             if (ret < 0) {
702                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
703                                         strerror(errno));
704                 return ret;
705             } else {
706 #ifdef HOST_WORDS_BIGENDIAN
707                 *fpr = vsr[0];
708                 if (vsx) {
709                     *vsrl = vsr[1];
710                 }
711 #else
712                 *fpr = vsr[1];
713                 if (vsx) {
714                     *vsrl = vsr[0];
715                 }
716 #endif
717             }
718         }
719     }
720 
721     if (env->insns_flags & PPC_ALTIVEC) {
722         reg.id = KVM_REG_PPC_VSCR;
723         reg.addr = (uintptr_t)&env->vscr;
724         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
725         if (ret < 0) {
726             trace_kvm_failed_vscr_get(strerror(errno));
727             return ret;
728         }
729 
730         for (i = 0; i < 32; i++) {
731             reg.id = KVM_REG_PPC_VR(i);
732             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
733             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
734             if (ret < 0) {
735                 trace_kvm_failed_vr_get(i, strerror(errno));
736                 return ret;
737             }
738         }
739     }
740 
741     return 0;
742 }
743 
744 #if defined(TARGET_PPC64)
745 static int kvm_get_vpa(CPUState *cs)
746 {
747     PowerPCCPU *cpu = POWERPC_CPU(cs);
748     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
749     struct kvm_one_reg reg;
750     int ret;
751 
752     reg.id = KVM_REG_PPC_VPA_ADDR;
753     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
754     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
755     if (ret < 0) {
756         trace_kvm_failed_vpa_addr_get(strerror(errno));
757         return ret;
758     }
759 
760     assert((uintptr_t)&spapr_cpu->slb_shadow_size
761            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
762     reg.id = KVM_REG_PPC_VPA_SLB;
763     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
764     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
765     if (ret < 0) {
766         trace_kvm_failed_slb_get(strerror(errno));
767         return ret;
768     }
769 
770     assert((uintptr_t)&spapr_cpu->dtl_size
771            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
772     reg.id = KVM_REG_PPC_VPA_DTL;
773     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
774     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
775     if (ret < 0) {
776         trace_kvm_failed_dtl_get(strerror(errno));
777         return ret;
778     }
779 
780     return 0;
781 }
782 
783 static int kvm_put_vpa(CPUState *cs)
784 {
785     PowerPCCPU *cpu = POWERPC_CPU(cs);
786     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
787     struct kvm_one_reg reg;
788     int ret;
789 
790     /*
791      * SLB shadow or DTL can't be registered unless a master VPA is
792      * registered.  That means when restoring state, if a VPA *is*
793      * registered, we need to set that up first.  If not, we need to
794      * deregister the others before deregistering the master VPA
795      */
796     assert(spapr_cpu->vpa_addr
797            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
798 
799     if (spapr_cpu->vpa_addr) {
800         reg.id = KVM_REG_PPC_VPA_ADDR;
801         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
802         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
803         if (ret < 0) {
804             trace_kvm_failed_vpa_addr_set(strerror(errno));
805             return ret;
806         }
807     }
808 
809     assert((uintptr_t)&spapr_cpu->slb_shadow_size
810            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
811     reg.id = KVM_REG_PPC_VPA_SLB;
812     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
813     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
814     if (ret < 0) {
815         trace_kvm_failed_slb_set(strerror(errno));
816         return ret;
817     }
818 
819     assert((uintptr_t)&spapr_cpu->dtl_size
820            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
821     reg.id = KVM_REG_PPC_VPA_DTL;
822     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
823     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
824     if (ret < 0) {
825         trace_kvm_failed_dtl_set(strerror(errno));
826         return ret;
827     }
828 
829     if (!spapr_cpu->vpa_addr) {
830         reg.id = KVM_REG_PPC_VPA_ADDR;
831         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
832         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
833         if (ret < 0) {
834             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
835             return ret;
836         }
837     }
838 
839     return 0;
840 }
841 #endif /* TARGET_PPC64 */
842 
843 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
844 {
845     CPUPPCState *env = &cpu->env;
846     struct kvm_sregs sregs;
847     int i;
848 
849     sregs.pvr = env->spr[SPR_PVR];
850 
851     if (cpu->vhyp) {
852         PPCVirtualHypervisorClass *vhc =
853             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
854         sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
855     } else {
856         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
857     }
858 
859     /* Sync SLB */
860 #ifdef TARGET_PPC64
861     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
862         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
863         if (env->slb[i].esid & SLB_ESID_V) {
864             sregs.u.s.ppc64.slb[i].slbe |= i;
865         }
866         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
867     }
868 #endif
869 
870     /* Sync SRs */
871     for (i = 0; i < 16; i++) {
872         sregs.u.s.ppc32.sr[i] = env->sr[i];
873     }
874 
875     /* Sync BATs */
876     for (i = 0; i < 8; i++) {
877         /* Beware. We have to swap upper and lower bits here */
878         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
879             | env->DBAT[1][i];
880         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
881             | env->IBAT[1][i];
882     }
883 
884     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
885 }
886 
887 int kvm_arch_put_registers(CPUState *cs, int level)
888 {
889     PowerPCCPU *cpu = POWERPC_CPU(cs);
890     CPUPPCState *env = &cpu->env;
891     struct kvm_regs regs;
892     int ret;
893     int i;
894 
895     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
896     if (ret < 0) {
897         return ret;
898     }
899 
900     regs.ctr = env->ctr;
901     regs.lr  = env->lr;
902     regs.xer = cpu_read_xer(env);
903     regs.msr = env->msr;
904     regs.pc = env->nip;
905 
906     regs.srr0 = env->spr[SPR_SRR0];
907     regs.srr1 = env->spr[SPR_SRR1];
908 
909     regs.sprg0 = env->spr[SPR_SPRG0];
910     regs.sprg1 = env->spr[SPR_SPRG1];
911     regs.sprg2 = env->spr[SPR_SPRG2];
912     regs.sprg3 = env->spr[SPR_SPRG3];
913     regs.sprg4 = env->spr[SPR_SPRG4];
914     regs.sprg5 = env->spr[SPR_SPRG5];
915     regs.sprg6 = env->spr[SPR_SPRG6];
916     regs.sprg7 = env->spr[SPR_SPRG7];
917 
918     regs.pid = env->spr[SPR_BOOKE_PID];
919 
920     for (i = 0; i < 32; i++) {
921         regs.gpr[i] = env->gpr[i];
922     }
923 
924     regs.cr = 0;
925     for (i = 0; i < 8; i++) {
926         regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
927     }
928 
929     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
930     if (ret < 0) {
931         return ret;
932     }
933 
934     kvm_put_fp(cs);
935 
936     if (env->tlb_dirty) {
937         kvm_sw_tlb_put(cpu);
938         env->tlb_dirty = false;
939     }
940 
941     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
942         ret = kvmppc_put_books_sregs(cpu);
943         if (ret < 0) {
944             return ret;
945         }
946     }
947 
948     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
949         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
950     }
951 
952     if (cap_one_reg) {
953         int i;
954 
955         /*
956          * We deliberately ignore errors here, for kernels which have
957          * the ONE_REG calls, but don't support the specific
958          * registers, there's a reasonable chance things will still
959          * work, at least until we try to migrate.
960          */
961         for (i = 0; i < 1024; i++) {
962             uint64_t id = env->spr_cb[i].one_reg_id;
963 
964             if (id != 0) {
965                 kvm_put_one_spr(cs, id, i);
966             }
967         }
968 
969 #ifdef TARGET_PPC64
970         if (msr_ts) {
971             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
972                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
973             }
974             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
975                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
976             }
977             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
978             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
979             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
980             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
981             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
982             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
983             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
984             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
985             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
986             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
987         }
988 
989         if (cap_papr) {
990             if (kvm_put_vpa(cs) < 0) {
991                 trace_kvm_failed_put_vpa();
992             }
993         }
994 
995         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
996 #endif /* TARGET_PPC64 */
997     }
998 
999     return ret;
1000 }
1001 
1002 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1003 {
1004      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1005 }
1006 
1007 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1008 {
1009     CPUPPCState *env = &cpu->env;
1010     struct kvm_sregs sregs;
1011     int ret;
1012 
1013     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1014     if (ret < 0) {
1015         return ret;
1016     }
1017 
1018     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1019         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1020         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1021         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1022         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1023         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1024         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1025         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1026         env->spr[SPR_DECR] = sregs.u.e.dec;
1027         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1028         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1029         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1030     }
1031 
1032     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1033         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1034         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1035         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1036         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1037         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1038     }
1039 
1040     if (sregs.u.e.features & KVM_SREGS_E_64) {
1041         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1042     }
1043 
1044     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1045         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1046     }
1047 
1048     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1049         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1050         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1051         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1052         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1053         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1054         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1055         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1056         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1057         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1058         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1059         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1060         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1061         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1062         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1063         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1064         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1065         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1066         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1067         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1068         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1069         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1070         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1071         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1072         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1073         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1074         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1075         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1076         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1077         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1078         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1079         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1080         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1081 
1082         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1083             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1084             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1085             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1086             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1087             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1088             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1089         }
1090 
1091         if (sregs.u.e.features & KVM_SREGS_E_PM) {
1092             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1093             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1094         }
1095 
1096         if (sregs.u.e.features & KVM_SREGS_E_PC) {
1097             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1098             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1099             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1100             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1101         }
1102     }
1103 
1104     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1105         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1106         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1107         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1108         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1109         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1110         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1111         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1112         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1113         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1114         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1115     }
1116 
1117     if (sregs.u.e.features & KVM_SREGS_EXP) {
1118         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1119     }
1120 
1121     if (sregs.u.e.features & KVM_SREGS_E_PD) {
1122         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1123         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1124     }
1125 
1126     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1127         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1128         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1129         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1130 
1131         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1132             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1133             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1134         }
1135     }
1136 
1137     return 0;
1138 }
1139 
1140 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1141 {
1142     CPUPPCState *env = &cpu->env;
1143     struct kvm_sregs sregs;
1144     int ret;
1145     int i;
1146 
1147     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1148     if (ret < 0) {
1149         return ret;
1150     }
1151 
1152     if (!cpu->vhyp) {
1153         ppc_store_sdr1(env, sregs.u.s.sdr1);
1154     }
1155 
1156     /* Sync SLB */
1157 #ifdef TARGET_PPC64
1158     /*
1159      * The packed SLB array we get from KVM_GET_SREGS only contains
1160      * information about valid entries. So we flush our internal copy
1161      * to get rid of stale ones, then put all valid SLB entries back
1162      * in.
1163      */
1164     memset(env->slb, 0, sizeof(env->slb));
1165     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1166         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1167         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1168         /*
1169          * Only restore valid entries
1170          */
1171         if (rb & SLB_ESID_V) {
1172             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1173         }
1174     }
1175 #endif
1176 
1177     /* Sync SRs */
1178     for (i = 0; i < 16; i++) {
1179         env->sr[i] = sregs.u.s.ppc32.sr[i];
1180     }
1181 
1182     /* Sync BATs */
1183     for (i = 0; i < 8; i++) {
1184         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1185         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1186         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1187         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1188     }
1189 
1190     return 0;
1191 }
1192 
1193 int kvm_arch_get_registers(CPUState *cs)
1194 {
1195     PowerPCCPU *cpu = POWERPC_CPU(cs);
1196     CPUPPCState *env = &cpu->env;
1197     struct kvm_regs regs;
1198     uint32_t cr;
1199     int i, ret;
1200 
1201     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1202     if (ret < 0) {
1203         return ret;
1204     }
1205 
1206     cr = regs.cr;
1207     for (i = 7; i >= 0; i--) {
1208         env->crf[i] = cr & 15;
1209         cr >>= 4;
1210     }
1211 
1212     env->ctr = regs.ctr;
1213     env->lr = regs.lr;
1214     cpu_write_xer(env, regs.xer);
1215     env->msr = regs.msr;
1216     env->nip = regs.pc;
1217 
1218     env->spr[SPR_SRR0] = regs.srr0;
1219     env->spr[SPR_SRR1] = regs.srr1;
1220 
1221     env->spr[SPR_SPRG0] = regs.sprg0;
1222     env->spr[SPR_SPRG1] = regs.sprg1;
1223     env->spr[SPR_SPRG2] = regs.sprg2;
1224     env->spr[SPR_SPRG3] = regs.sprg3;
1225     env->spr[SPR_SPRG4] = regs.sprg4;
1226     env->spr[SPR_SPRG5] = regs.sprg5;
1227     env->spr[SPR_SPRG6] = regs.sprg6;
1228     env->spr[SPR_SPRG7] = regs.sprg7;
1229 
1230     env->spr[SPR_BOOKE_PID] = regs.pid;
1231 
1232     for (i = 0; i < 32; i++) {
1233         env->gpr[i] = regs.gpr[i];
1234     }
1235 
1236     kvm_get_fp(cs);
1237 
1238     if (cap_booke_sregs) {
1239         ret = kvmppc_get_booke_sregs(cpu);
1240         if (ret < 0) {
1241             return ret;
1242         }
1243     }
1244 
1245     if (cap_segstate) {
1246         ret = kvmppc_get_books_sregs(cpu);
1247         if (ret < 0) {
1248             return ret;
1249         }
1250     }
1251 
1252     if (cap_hior) {
1253         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1254     }
1255 
1256     if (cap_one_reg) {
1257         int i;
1258 
1259         /*
1260          * We deliberately ignore errors here, for kernels which have
1261          * the ONE_REG calls, but don't support the specific
1262          * registers, there's a reasonable chance things will still
1263          * work, at least until we try to migrate.
1264          */
1265         for (i = 0; i < 1024; i++) {
1266             uint64_t id = env->spr_cb[i].one_reg_id;
1267 
1268             if (id != 0) {
1269                 kvm_get_one_spr(cs, id, i);
1270             }
1271         }
1272 
1273 #ifdef TARGET_PPC64
1274         if (msr_ts) {
1275             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1276                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1277             }
1278             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1279                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1280             }
1281             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1282             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1283             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1284             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1285             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1286             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1287             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1288             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1289             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1290             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1291         }
1292 
1293         if (cap_papr) {
1294             if (kvm_get_vpa(cs) < 0) {
1295                 trace_kvm_failed_get_vpa();
1296             }
1297         }
1298 
1299         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1300 #endif
1301     }
1302 
1303     return 0;
1304 }
1305 
1306 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1307 {
1308     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1309 
1310     if (irq != PPC_INTERRUPT_EXT) {
1311         return 0;
1312     }
1313 
1314     if (!kvm_enabled() || !cap_interrupt_unset) {
1315         return 0;
1316     }
1317 
1318     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1319 
1320     return 0;
1321 }
1322 
1323 #if defined(TARGET_PPC64)
1324 #define PPC_INPUT_INT PPC970_INPUT_INT
1325 #else
1326 #define PPC_INPUT_INT PPC6xx_INPUT_INT
1327 #endif
1328 
1329 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1330 {
1331     return;
1332 }
1333 
1334 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1335 {
1336     return MEMTXATTRS_UNSPECIFIED;
1337 }
1338 
1339 int kvm_arch_process_async_events(CPUState *cs)
1340 {
1341     return cs->halted;
1342 }
1343 
1344 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1345 {
1346     CPUState *cs = CPU(cpu);
1347     CPUPPCState *env = &cpu->env;
1348 
1349     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1350         cs->halted = 1;
1351         cs->exception_index = EXCP_HLT;
1352     }
1353 
1354     return 0;
1355 }
1356 
1357 /* map dcr access to existing qemu dcr emulation */
1358 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1359                                   uint32_t dcrn, uint32_t *data)
1360 {
1361     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1362         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1363     }
1364 
1365     return 0;
1366 }
1367 
1368 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1369                                    uint32_t dcrn, uint32_t data)
1370 {
1371     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1372         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1373     }
1374 
1375     return 0;
1376 }
1377 
1378 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1379 {
1380     /* Mixed endian case is not handled */
1381     uint32_t sc = debug_inst_opcode;
1382 
1383     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1384                             sizeof(sc), 0) ||
1385         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1386         return -EINVAL;
1387     }
1388 
1389     return 0;
1390 }
1391 
1392 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1393 {
1394     uint32_t sc;
1395 
1396     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1397         sc != debug_inst_opcode ||
1398         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1399                             sizeof(sc), 1)) {
1400         return -EINVAL;
1401     }
1402 
1403     return 0;
1404 }
1405 
1406 static int find_hw_breakpoint(target_ulong addr, int type)
1407 {
1408     int n;
1409 
1410     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1411            <= ARRAY_SIZE(hw_debug_points));
1412 
1413     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1414         if (hw_debug_points[n].addr == addr &&
1415              hw_debug_points[n].type == type) {
1416             return n;
1417         }
1418     }
1419 
1420     return -1;
1421 }
1422 
1423 static int find_hw_watchpoint(target_ulong addr, int *flag)
1424 {
1425     int n;
1426 
1427     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1428     if (n >= 0) {
1429         *flag = BP_MEM_ACCESS;
1430         return n;
1431     }
1432 
1433     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1434     if (n >= 0) {
1435         *flag = BP_MEM_WRITE;
1436         return n;
1437     }
1438 
1439     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1440     if (n >= 0) {
1441         *flag = BP_MEM_READ;
1442         return n;
1443     }
1444 
1445     return -1;
1446 }
1447 
1448 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1449                                   target_ulong len, int type)
1450 {
1451     if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1452         return -ENOBUFS;
1453     }
1454 
1455     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1456     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1457 
1458     switch (type) {
1459     case GDB_BREAKPOINT_HW:
1460         if (nb_hw_breakpoint >= max_hw_breakpoint) {
1461             return -ENOBUFS;
1462         }
1463 
1464         if (find_hw_breakpoint(addr, type) >= 0) {
1465             return -EEXIST;
1466         }
1467 
1468         nb_hw_breakpoint++;
1469         break;
1470 
1471     case GDB_WATCHPOINT_WRITE:
1472     case GDB_WATCHPOINT_READ:
1473     case GDB_WATCHPOINT_ACCESS:
1474         if (nb_hw_watchpoint >= max_hw_watchpoint) {
1475             return -ENOBUFS;
1476         }
1477 
1478         if (find_hw_breakpoint(addr, type) >= 0) {
1479             return -EEXIST;
1480         }
1481 
1482         nb_hw_watchpoint++;
1483         break;
1484 
1485     default:
1486         return -ENOSYS;
1487     }
1488 
1489     return 0;
1490 }
1491 
1492 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1493                                   target_ulong len, int type)
1494 {
1495     int n;
1496 
1497     n = find_hw_breakpoint(addr, type);
1498     if (n < 0) {
1499         return -ENOENT;
1500     }
1501 
1502     switch (type) {
1503     case GDB_BREAKPOINT_HW:
1504         nb_hw_breakpoint--;
1505         break;
1506 
1507     case GDB_WATCHPOINT_WRITE:
1508     case GDB_WATCHPOINT_READ:
1509     case GDB_WATCHPOINT_ACCESS:
1510         nb_hw_watchpoint--;
1511         break;
1512 
1513     default:
1514         return -ENOSYS;
1515     }
1516     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1517 
1518     return 0;
1519 }
1520 
1521 void kvm_arch_remove_all_hw_breakpoints(void)
1522 {
1523     nb_hw_breakpoint = nb_hw_watchpoint = 0;
1524 }
1525 
1526 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1527 {
1528     int n;
1529 
1530     /* Software Breakpoint updates */
1531     if (kvm_sw_breakpoints_active(cs)) {
1532         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1533     }
1534 
1535     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1536            <= ARRAY_SIZE(hw_debug_points));
1537     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1538 
1539     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1540         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1541         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1542         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1543             switch (hw_debug_points[n].type) {
1544             case GDB_BREAKPOINT_HW:
1545                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1546                 break;
1547             case GDB_WATCHPOINT_WRITE:
1548                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1549                 break;
1550             case GDB_WATCHPOINT_READ:
1551                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1552                 break;
1553             case GDB_WATCHPOINT_ACCESS:
1554                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1555                                         KVMPPC_DEBUG_WATCH_READ;
1556                 break;
1557             default:
1558                 cpu_abort(cs, "Unsupported breakpoint type\n");
1559             }
1560             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1561         }
1562     }
1563 }
1564 
1565 static int kvm_handle_hw_breakpoint(CPUState *cs,
1566                                     struct kvm_debug_exit_arch *arch_info)
1567 {
1568     int handle = 0;
1569     int n;
1570     int flag = 0;
1571 
1572     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1573         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1574             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1575             if (n >= 0) {
1576                 handle = 1;
1577             }
1578         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1579                                         KVMPPC_DEBUG_WATCH_WRITE)) {
1580             n = find_hw_watchpoint(arch_info->address,  &flag);
1581             if (n >= 0) {
1582                 handle = 1;
1583                 cs->watchpoint_hit = &hw_watchpoint;
1584                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1585                 hw_watchpoint.flags = flag;
1586             }
1587         }
1588     }
1589     return handle;
1590 }
1591 
1592 static int kvm_handle_singlestep(void)
1593 {
1594     return 1;
1595 }
1596 
1597 static int kvm_handle_sw_breakpoint(void)
1598 {
1599     return 1;
1600 }
1601 
1602 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1603 {
1604     CPUState *cs = CPU(cpu);
1605     CPUPPCState *env = &cpu->env;
1606     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1607 
1608     if (cs->singlestep_enabled) {
1609         return kvm_handle_singlestep();
1610     }
1611 
1612     if (arch_info->status) {
1613         return kvm_handle_hw_breakpoint(cs, arch_info);
1614     }
1615 
1616     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1617         return kvm_handle_sw_breakpoint();
1618     }
1619 
1620     /*
1621      * QEMU is not able to handle debug exception, so inject
1622      * program exception to guest;
1623      * Yes program exception NOT debug exception !!
1624      * When QEMU is using debug resources then debug exception must
1625      * be always set. To achieve this we set MSR_DE and also set
1626      * MSRP_DEP so guest cannot change MSR_DE.
1627      * When emulating debug resource for guest we want guest
1628      * to control MSR_DE (enable/disable debug interrupt on need).
1629      * Supporting both configurations are NOT possible.
1630      * So the result is that we cannot share debug resources
1631      * between QEMU and Guest on BOOKE architecture.
1632      * In the current design QEMU gets the priority over guest,
1633      * this means that if QEMU is using debug resources then guest
1634      * cannot use them;
1635      * For software breakpoint QEMU uses a privileged instruction;
1636      * So there cannot be any reason that we are here for guest
1637      * set debug exception, only possibility is guest executed a
1638      * privileged / illegal instruction and that's why we are
1639      * injecting a program interrupt.
1640      */
1641     cpu_synchronize_state(cs);
1642     /*
1643      * env->nip is PC, so increment this by 4 to use
1644      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1645      */
1646     env->nip += 4;
1647     cs->exception_index = POWERPC_EXCP_PROGRAM;
1648     env->error_code = POWERPC_EXCP_INVAL;
1649     ppc_cpu_do_interrupt(cs);
1650 
1651     return 0;
1652 }
1653 
1654 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1655 {
1656     PowerPCCPU *cpu = POWERPC_CPU(cs);
1657     CPUPPCState *env = &cpu->env;
1658     int ret;
1659 
1660     qemu_mutex_lock_iothread();
1661 
1662     switch (run->exit_reason) {
1663     case KVM_EXIT_DCR:
1664         if (run->dcr.is_write) {
1665             trace_kvm_handle_dcr_write();
1666             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1667         } else {
1668             trace_kvm_handle_dcr_read();
1669             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1670         }
1671         break;
1672     case KVM_EXIT_HLT:
1673         trace_kvm_handle_halt();
1674         ret = kvmppc_handle_halt(cpu);
1675         break;
1676 #if defined(TARGET_PPC64)
1677     case KVM_EXIT_PAPR_HCALL:
1678         trace_kvm_handle_papr_hcall();
1679         run->papr_hcall.ret = spapr_hypercall(cpu,
1680                                               run->papr_hcall.nr,
1681                                               run->papr_hcall.args);
1682         ret = 0;
1683         break;
1684 #endif
1685     case KVM_EXIT_EPR:
1686         trace_kvm_handle_epr();
1687         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1688         ret = 0;
1689         break;
1690     case KVM_EXIT_WATCHDOG:
1691         trace_kvm_handle_watchdog_expiry();
1692         watchdog_perform_action();
1693         ret = 0;
1694         break;
1695 
1696     case KVM_EXIT_DEBUG:
1697         trace_kvm_handle_debug_exception();
1698         if (kvm_handle_debug(cpu, run)) {
1699             ret = EXCP_DEBUG;
1700             break;
1701         }
1702         /* re-enter, this exception was guest-internal */
1703         ret = 0;
1704         break;
1705 
1706     default:
1707         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1708         ret = -1;
1709         break;
1710     }
1711 
1712     qemu_mutex_unlock_iothread();
1713     return ret;
1714 }
1715 
1716 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1717 {
1718     CPUState *cs = CPU(cpu);
1719     uint32_t bits = tsr_bits;
1720     struct kvm_one_reg reg = {
1721         .id = KVM_REG_PPC_OR_TSR,
1722         .addr = (uintptr_t) &bits,
1723     };
1724 
1725     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1726 }
1727 
1728 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1729 {
1730 
1731     CPUState *cs = CPU(cpu);
1732     uint32_t bits = tsr_bits;
1733     struct kvm_one_reg reg = {
1734         .id = KVM_REG_PPC_CLEAR_TSR,
1735         .addr = (uintptr_t) &bits,
1736     };
1737 
1738     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1739 }
1740 
1741 int kvmppc_set_tcr(PowerPCCPU *cpu)
1742 {
1743     CPUState *cs = CPU(cpu);
1744     CPUPPCState *env = &cpu->env;
1745     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1746 
1747     struct kvm_one_reg reg = {
1748         .id = KVM_REG_PPC_TCR,
1749         .addr = (uintptr_t) &tcr,
1750     };
1751 
1752     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1753 }
1754 
1755 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1756 {
1757     CPUState *cs = CPU(cpu);
1758     int ret;
1759 
1760     if (!kvm_enabled()) {
1761         return -1;
1762     }
1763 
1764     if (!cap_ppc_watchdog) {
1765         printf("warning: KVM does not support watchdog");
1766         return -1;
1767     }
1768 
1769     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1770     if (ret < 0) {
1771         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1772                 __func__, strerror(-ret));
1773         return ret;
1774     }
1775 
1776     return ret;
1777 }
1778 
1779 static int read_cpuinfo(const char *field, char *value, int len)
1780 {
1781     FILE *f;
1782     int ret = -1;
1783     int field_len = strlen(field);
1784     char line[512];
1785 
1786     f = fopen("/proc/cpuinfo", "r");
1787     if (!f) {
1788         return -1;
1789     }
1790 
1791     do {
1792         if (!fgets(line, sizeof(line), f)) {
1793             break;
1794         }
1795         if (!strncmp(line, field, field_len)) {
1796             pstrcpy(value, len, line);
1797             ret = 0;
1798             break;
1799         }
1800     } while (*line);
1801 
1802     fclose(f);
1803 
1804     return ret;
1805 }
1806 
1807 uint32_t kvmppc_get_tbfreq(void)
1808 {
1809     char line[512];
1810     char *ns;
1811     uint32_t retval = NANOSECONDS_PER_SECOND;
1812 
1813     if (read_cpuinfo("timebase", line, sizeof(line))) {
1814         return retval;
1815     }
1816 
1817     ns = strchr(line, ':');
1818     if (!ns) {
1819         return retval;
1820     }
1821 
1822     ns++;
1823 
1824     return atoi(ns);
1825 }
1826 
1827 bool kvmppc_get_host_serial(char **value)
1828 {
1829     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1830                                NULL);
1831 }
1832 
1833 bool kvmppc_get_host_model(char **value)
1834 {
1835     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1836 }
1837 
1838 /* Try to find a device tree node for a CPU with clock-frequency property */
1839 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1840 {
1841     struct dirent *dirp;
1842     DIR *dp;
1843 
1844     dp = opendir(PROC_DEVTREE_CPU);
1845     if (!dp) {
1846         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1847         return -1;
1848     }
1849 
1850     buf[0] = '\0';
1851     while ((dirp = readdir(dp)) != NULL) {
1852         FILE *f;
1853         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1854                  dirp->d_name);
1855         f = fopen(buf, "r");
1856         if (f) {
1857             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1858             fclose(f);
1859             break;
1860         }
1861         buf[0] = '\0';
1862     }
1863     closedir(dp);
1864     if (buf[0] == '\0') {
1865         printf("Unknown host!\n");
1866         return -1;
1867     }
1868 
1869     return 0;
1870 }
1871 
1872 static uint64_t kvmppc_read_int_dt(const char *filename)
1873 {
1874     union {
1875         uint32_t v32;
1876         uint64_t v64;
1877     } u;
1878     FILE *f;
1879     int len;
1880 
1881     f = fopen(filename, "rb");
1882     if (!f) {
1883         return -1;
1884     }
1885 
1886     len = fread(&u, 1, sizeof(u), f);
1887     fclose(f);
1888     switch (len) {
1889     case 4:
1890         /* property is a 32-bit quantity */
1891         return be32_to_cpu(u.v32);
1892     case 8:
1893         return be64_to_cpu(u.v64);
1894     }
1895 
1896     return 0;
1897 }
1898 
1899 /*
1900  * Read a CPU node property from the host device tree that's a single
1901  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1902  * (can't find or open the property, or doesn't understand the format)
1903  */
1904 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1905 {
1906     char buf[PATH_MAX], *tmp;
1907     uint64_t val;
1908 
1909     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1910         return -1;
1911     }
1912 
1913     tmp = g_strdup_printf("%s/%s", buf, propname);
1914     val = kvmppc_read_int_dt(tmp);
1915     g_free(tmp);
1916 
1917     return val;
1918 }
1919 
1920 uint64_t kvmppc_get_clockfreq(void)
1921 {
1922     return kvmppc_read_int_cpu_dt("clock-frequency");
1923 }
1924 
1925 static int kvmppc_get_dec_bits(void)
1926 {
1927     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1928 
1929     if (nr_bits > 0) {
1930         return nr_bits;
1931     }
1932     return 0;
1933 }
1934 
1935 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1936 {
1937     CPUState *cs = env_cpu(env);
1938 
1939     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1940         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1941         return 0;
1942     }
1943 
1944     return 1;
1945 }
1946 
1947 int kvmppc_get_hasidle(CPUPPCState *env)
1948 {
1949     struct kvm_ppc_pvinfo pvinfo;
1950 
1951     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1952         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1953         return 1;
1954     }
1955 
1956     return 0;
1957 }
1958 
1959 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1960 {
1961     uint32_t *hc = (uint32_t *)buf;
1962     struct kvm_ppc_pvinfo pvinfo;
1963 
1964     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1965         memcpy(buf, pvinfo.hcall, buf_len);
1966         return 0;
1967     }
1968 
1969     /*
1970      * Fallback to always fail hypercalls regardless of endianness:
1971      *
1972      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1973      *     li r3, -1
1974      *     b .+8       (becomes nop in wrong endian)
1975      *     bswap32(li r3, -1)
1976      */
1977 
1978     hc[0] = cpu_to_be32(0x08000048);
1979     hc[1] = cpu_to_be32(0x3860ffff);
1980     hc[2] = cpu_to_be32(0x48000008);
1981     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
1982 
1983     return 1;
1984 }
1985 
1986 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
1987 {
1988     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
1989 }
1990 
1991 void kvmppc_enable_logical_ci_hcalls(void)
1992 {
1993     /*
1994      * FIXME: it would be nice if we could detect the cases where
1995      * we're using a device which requires the in kernel
1996      * implementation of these hcalls, but the kernel lacks them and
1997      * produce a warning.
1998      */
1999     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2000     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2001 }
2002 
2003 void kvmppc_enable_set_mode_hcall(void)
2004 {
2005     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2006 }
2007 
2008 void kvmppc_enable_clear_ref_mod_hcalls(void)
2009 {
2010     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2011     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2012 }
2013 
2014 void kvmppc_enable_h_page_init(void)
2015 {
2016     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2017 }
2018 
2019 void kvmppc_set_papr(PowerPCCPU *cpu)
2020 {
2021     CPUState *cs = CPU(cpu);
2022     int ret;
2023 
2024     if (!kvm_enabled()) {
2025         return;
2026     }
2027 
2028     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2029     if (ret) {
2030         error_report("This vCPU type or KVM version does not support PAPR");
2031         exit(1);
2032     }
2033 
2034     /*
2035      * Update the capability flag so we sync the right information
2036      * with kvm
2037      */
2038     cap_papr = 1;
2039 }
2040 
2041 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2042 {
2043     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2044 }
2045 
2046 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2047 {
2048     CPUState *cs = CPU(cpu);
2049     int ret;
2050 
2051     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2052     if (ret && mpic_proxy) {
2053         error_report("This KVM version does not support EPR");
2054         exit(1);
2055     }
2056 }
2057 
2058 int kvmppc_smt_threads(void)
2059 {
2060     return cap_ppc_smt ? cap_ppc_smt : 1;
2061 }
2062 
2063 int kvmppc_set_smt_threads(int smt)
2064 {
2065     int ret;
2066 
2067     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2068     if (!ret) {
2069         cap_ppc_smt = smt;
2070     }
2071     return ret;
2072 }
2073 
2074 void kvmppc_hint_smt_possible(Error **errp)
2075 {
2076     int i;
2077     GString *g;
2078     char *s;
2079 
2080     assert(kvm_enabled());
2081     if (cap_ppc_smt_possible) {
2082         g = g_string_new("Available VSMT modes:");
2083         for (i = 63; i >= 0; i--) {
2084             if ((1UL << i) & cap_ppc_smt_possible) {
2085                 g_string_append_printf(g, " %lu", (1UL << i));
2086             }
2087         }
2088         s = g_string_free(g, false);
2089         error_append_hint(errp, "%s.\n", s);
2090         g_free(s);
2091     } else {
2092         error_append_hint(errp,
2093                           "This KVM seems to be too old to support VSMT.\n");
2094     }
2095 }
2096 
2097 
2098 #ifdef TARGET_PPC64
2099 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2100 {
2101     struct kvm_ppc_smmu_info info;
2102     long rampagesize, best_page_shift;
2103     int i;
2104 
2105     /*
2106      * Find the largest hardware supported page size that's less than
2107      * or equal to the (logical) backing page size of guest RAM
2108      */
2109     kvm_get_smmu_info(&info, &error_fatal);
2110     rampagesize = qemu_minrampagesize();
2111     best_page_shift = 0;
2112 
2113     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2114         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2115 
2116         if (!sps->page_shift) {
2117             continue;
2118         }
2119 
2120         if ((sps->page_shift > best_page_shift)
2121             && ((1UL << sps->page_shift) <= rampagesize)) {
2122             best_page_shift = sps->page_shift;
2123         }
2124     }
2125 
2126     return MIN(current_size,
2127                1ULL << (best_page_shift + hash_shift - 7));
2128 }
2129 #endif
2130 
2131 bool kvmppc_spapr_use_multitce(void)
2132 {
2133     return cap_spapr_multitce;
2134 }
2135 
2136 int kvmppc_spapr_enable_inkernel_multitce(void)
2137 {
2138     int ret;
2139 
2140     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2141                             H_PUT_TCE_INDIRECT, 1);
2142     if (!ret) {
2143         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2144                                 H_STUFF_TCE, 1);
2145     }
2146 
2147     return ret;
2148 }
2149 
2150 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2151                               uint64_t bus_offset, uint32_t nb_table,
2152                               int *pfd, bool need_vfio)
2153 {
2154     long len;
2155     int fd;
2156     void *table;
2157 
2158     /*
2159      * Must set fd to -1 so we don't try to munmap when called for
2160      * destroying the table, which the upper layers -will- do
2161      */
2162     *pfd = -1;
2163     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2164         return NULL;
2165     }
2166 
2167     if (cap_spapr_tce_64) {
2168         struct kvm_create_spapr_tce_64 args = {
2169             .liobn = liobn,
2170             .page_shift = page_shift,
2171             .offset = bus_offset >> page_shift,
2172             .size = nb_table,
2173             .flags = 0
2174         };
2175         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2176         if (fd < 0) {
2177             fprintf(stderr,
2178                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2179                     liobn);
2180             return NULL;
2181         }
2182     } else if (cap_spapr_tce) {
2183         uint64_t window_size = (uint64_t) nb_table << page_shift;
2184         struct kvm_create_spapr_tce args = {
2185             .liobn = liobn,
2186             .window_size = window_size,
2187         };
2188         if ((window_size != args.window_size) || bus_offset) {
2189             return NULL;
2190         }
2191         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2192         if (fd < 0) {
2193             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2194                     liobn);
2195             return NULL;
2196         }
2197     } else {
2198         return NULL;
2199     }
2200 
2201     len = nb_table * sizeof(uint64_t);
2202     /* FIXME: round this up to page size */
2203 
2204     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2205     if (table == MAP_FAILED) {
2206         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2207                 liobn);
2208         close(fd);
2209         return NULL;
2210     }
2211 
2212     *pfd = fd;
2213     return table;
2214 }
2215 
2216 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2217 {
2218     long len;
2219 
2220     if (fd < 0) {
2221         return -1;
2222     }
2223 
2224     len = nb_table * sizeof(uint64_t);
2225     if ((munmap(table, len) < 0) ||
2226         (close(fd) < 0)) {
2227         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2228                 strerror(errno));
2229         /* Leak the table */
2230     }
2231 
2232     return 0;
2233 }
2234 
2235 int kvmppc_reset_htab(int shift_hint)
2236 {
2237     uint32_t shift = shift_hint;
2238 
2239     if (!kvm_enabled()) {
2240         /* Full emulation, tell caller to allocate htab itself */
2241         return 0;
2242     }
2243     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2244         int ret;
2245         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2246         if (ret == -ENOTTY) {
2247             /*
2248              * At least some versions of PR KVM advertise the
2249              * capability, but don't implement the ioctl().  Oops.
2250              * Return 0 so that we allocate the htab in qemu, as is
2251              * correct for PR.
2252              */
2253             return 0;
2254         } else if (ret < 0) {
2255             return ret;
2256         }
2257         return shift;
2258     }
2259 
2260     /*
2261      * We have a kernel that predates the htab reset calls.  For PR
2262      * KVM, we need to allocate the htab ourselves, for an HV KVM of
2263      * this era, it has allocated a 16MB fixed size hash table
2264      * already.
2265      */
2266     if (kvmppc_is_pr(kvm_state)) {
2267         /* PR - tell caller to allocate htab */
2268         return 0;
2269     } else {
2270         /* HV - assume 16MB kernel allocated htab */
2271         return 24;
2272     }
2273 }
2274 
2275 static inline uint32_t mfpvr(void)
2276 {
2277     uint32_t pvr;
2278 
2279     asm ("mfpvr %0"
2280          : "=r"(pvr));
2281     return pvr;
2282 }
2283 
2284 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2285 {
2286     if (on) {
2287         *word |= flags;
2288     } else {
2289         *word &= ~flags;
2290     }
2291 }
2292 
2293 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2294 {
2295     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2296     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2297     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2298 
2299     /* Now fix up the class with information we can query from the host */
2300     pcc->pvr = mfpvr();
2301 
2302     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2303                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2304     alter_insns(&pcc->insns_flags2, PPC2_VSX,
2305                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2306     alter_insns(&pcc->insns_flags2, PPC2_DFP,
2307                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2308 
2309     if (dcache_size != -1) {
2310         pcc->l1_dcache_size = dcache_size;
2311     }
2312 
2313     if (icache_size != -1) {
2314         pcc->l1_icache_size = icache_size;
2315     }
2316 
2317 #if defined(TARGET_PPC64)
2318     pcc->radix_page_info = kvm_get_radix_page_info();
2319 
2320     if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2321         /*
2322          * POWER9 DD1 has some bugs which make it not really ISA 3.00
2323          * compliant.  More importantly, advertising ISA 3.00
2324          * architected mode may prevent guests from activating
2325          * necessary DD1 workarounds.
2326          */
2327         pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2328                                 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2329     }
2330 #endif /* defined(TARGET_PPC64) */
2331 }
2332 
2333 bool kvmppc_has_cap_epr(void)
2334 {
2335     return cap_epr;
2336 }
2337 
2338 bool kvmppc_has_cap_fixup_hcalls(void)
2339 {
2340     return cap_fixup_hcalls;
2341 }
2342 
2343 bool kvmppc_has_cap_htm(void)
2344 {
2345     return cap_htm;
2346 }
2347 
2348 bool kvmppc_has_cap_mmu_radix(void)
2349 {
2350     return cap_mmu_radix;
2351 }
2352 
2353 bool kvmppc_has_cap_mmu_hash_v3(void)
2354 {
2355     return cap_mmu_hash_v3;
2356 }
2357 
2358 static bool kvmppc_power8_host(void)
2359 {
2360     bool ret = false;
2361 #ifdef TARGET_PPC64
2362     {
2363         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2364         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2365               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2366               (base_pvr == CPU_POWERPC_POWER8_BASE);
2367     }
2368 #endif /* TARGET_PPC64 */
2369     return ret;
2370 }
2371 
2372 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2373 {
2374     bool l1d_thread_priv_req = !kvmppc_power8_host();
2375 
2376     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2377         return 2;
2378     } else if ((!l1d_thread_priv_req ||
2379                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2380                (c.character & c.character_mask
2381                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2382         return 1;
2383     }
2384 
2385     return 0;
2386 }
2387 
2388 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2389 {
2390     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2391         return 2;
2392     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2393         return 1;
2394     }
2395 
2396     return 0;
2397 }
2398 
2399 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2400 {
2401     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2402         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2403         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2404         return SPAPR_CAP_FIXED_NA;
2405     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2406         return SPAPR_CAP_WORKAROUND;
2407     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2408         return  SPAPR_CAP_FIXED_CCD;
2409     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2410         return SPAPR_CAP_FIXED_IBS;
2411     }
2412 
2413     return 0;
2414 }
2415 
2416 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2417 {
2418     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2419         return 1;
2420     }
2421     return 0;
2422 }
2423 
2424 bool kvmppc_has_cap_xive(void)
2425 {
2426     return cap_xive;
2427 }
2428 
2429 static void kvmppc_get_cpu_characteristics(KVMState *s)
2430 {
2431     struct kvm_ppc_cpu_char c;
2432     int ret;
2433 
2434     /* Assume broken */
2435     cap_ppc_safe_cache = 0;
2436     cap_ppc_safe_bounds_check = 0;
2437     cap_ppc_safe_indirect_branch = 0;
2438 
2439     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2440     if (!ret) {
2441         return;
2442     }
2443     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2444     if (ret < 0) {
2445         return;
2446     }
2447 
2448     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2449     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2450     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2451     cap_ppc_count_cache_flush_assist =
2452         parse_cap_ppc_count_cache_flush_assist(c);
2453 }
2454 
2455 int kvmppc_get_cap_safe_cache(void)
2456 {
2457     return cap_ppc_safe_cache;
2458 }
2459 
2460 int kvmppc_get_cap_safe_bounds_check(void)
2461 {
2462     return cap_ppc_safe_bounds_check;
2463 }
2464 
2465 int kvmppc_get_cap_safe_indirect_branch(void)
2466 {
2467     return cap_ppc_safe_indirect_branch;
2468 }
2469 
2470 int kvmppc_get_cap_count_cache_flush_assist(void)
2471 {
2472     return cap_ppc_count_cache_flush_assist;
2473 }
2474 
2475 bool kvmppc_has_cap_nested_kvm_hv(void)
2476 {
2477     return !!cap_ppc_nested_kvm_hv;
2478 }
2479 
2480 int kvmppc_set_cap_nested_kvm_hv(int enable)
2481 {
2482     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2483 }
2484 
2485 bool kvmppc_has_cap_spapr_vfio(void)
2486 {
2487     return cap_spapr_vfio;
2488 }
2489 
2490 int kvmppc_get_cap_large_decr(void)
2491 {
2492     return cap_large_decr;
2493 }
2494 
2495 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2496 {
2497     CPUState *cs = CPU(cpu);
2498     uint64_t lpcr;
2499 
2500     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2501     /* Do we need to modify the LPCR? */
2502     if (!!(lpcr & LPCR_LD) != !!enable) {
2503         if (enable) {
2504             lpcr |= LPCR_LD;
2505         } else {
2506             lpcr &= ~LPCR_LD;
2507         }
2508         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2509         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2510 
2511         if (!!(lpcr & LPCR_LD) != !!enable) {
2512             return -1;
2513         }
2514     }
2515 
2516     return 0;
2517 }
2518 
2519 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2520 {
2521     uint32_t host_pvr = mfpvr();
2522     PowerPCCPUClass *pvr_pcc;
2523 
2524     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2525     if (pvr_pcc == NULL) {
2526         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2527     }
2528 
2529     return pvr_pcc;
2530 }
2531 
2532 static int kvm_ppc_register_host_cpu_type(MachineState *ms)
2533 {
2534     TypeInfo type_info = {
2535         .name = TYPE_HOST_POWERPC_CPU,
2536         .class_init = kvmppc_host_cpu_class_init,
2537     };
2538     MachineClass *mc = MACHINE_GET_CLASS(ms);
2539     PowerPCCPUClass *pvr_pcc;
2540     ObjectClass *oc;
2541     DeviceClass *dc;
2542     int i;
2543 
2544     pvr_pcc = kvm_ppc_get_host_cpu_class();
2545     if (pvr_pcc == NULL) {
2546         return -1;
2547     }
2548     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2549     type_register(&type_info);
2550     if (object_dynamic_cast(OBJECT(ms), TYPE_SPAPR_MACHINE)) {
2551         /* override TCG default cpu type with 'host' cpu model */
2552         mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2553     }
2554 
2555     oc = object_class_by_name(type_info.name);
2556     g_assert(oc);
2557 
2558     /*
2559      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2560      * we want "POWER8" to be a "family" alias that points to the current
2561      * host CPU type, too)
2562      */
2563     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2564     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2565         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2566             char *suffix;
2567 
2568             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2569             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2570             if (suffix) {
2571                 *suffix = 0;
2572             }
2573             break;
2574         }
2575     }
2576 
2577     return 0;
2578 }
2579 
2580 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2581 {
2582     struct kvm_rtas_token_args args = {
2583         .token = token,
2584     };
2585 
2586     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2587         return -ENOENT;
2588     }
2589 
2590     strncpy(args.name, function, sizeof(args.name) - 1);
2591 
2592     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2593 }
2594 
2595 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2596 {
2597     struct kvm_get_htab_fd s = {
2598         .flags = write ? KVM_GET_HTAB_WRITE : 0,
2599         .start_index = index,
2600     };
2601     int ret;
2602 
2603     if (!cap_htab_fd) {
2604         error_setg(errp, "KVM version doesn't support %s the HPT",
2605                    write ? "writing" : "reading");
2606         return -ENOTSUP;
2607     }
2608 
2609     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2610     if (ret < 0) {
2611         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2612                    write ? "writing" : "reading", write ? "to" : "from",
2613                    strerror(errno));
2614         return -errno;
2615     }
2616 
2617     return ret;
2618 }
2619 
2620 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2621 {
2622     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2623     uint8_t buf[bufsize];
2624     ssize_t rc;
2625 
2626     do {
2627         rc = read(fd, buf, bufsize);
2628         if (rc < 0) {
2629             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2630                     strerror(errno));
2631             return rc;
2632         } else if (rc) {
2633             uint8_t *buffer = buf;
2634             ssize_t n = rc;
2635             while (n) {
2636                 struct kvm_get_htab_header *head =
2637                     (struct kvm_get_htab_header *) buffer;
2638                 size_t chunksize = sizeof(*head) +
2639                      HASH_PTE_SIZE_64 * head->n_valid;
2640 
2641                 qemu_put_be32(f, head->index);
2642                 qemu_put_be16(f, head->n_valid);
2643                 qemu_put_be16(f, head->n_invalid);
2644                 qemu_put_buffer(f, (void *)(head + 1),
2645                                 HASH_PTE_SIZE_64 * head->n_valid);
2646 
2647                 buffer += chunksize;
2648                 n -= chunksize;
2649             }
2650         }
2651     } while ((rc != 0)
2652              && ((max_ns < 0) ||
2653                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2654 
2655     return (rc == 0) ? 1 : 0;
2656 }
2657 
2658 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2659                            uint16_t n_valid, uint16_t n_invalid)
2660 {
2661     struct kvm_get_htab_header *buf;
2662     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2663     ssize_t rc;
2664 
2665     buf = alloca(chunksize);
2666     buf->index = index;
2667     buf->n_valid = n_valid;
2668     buf->n_invalid = n_invalid;
2669 
2670     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2671 
2672     rc = write(fd, buf, chunksize);
2673     if (rc < 0) {
2674         fprintf(stderr, "Error writing KVM hash table: %s\n",
2675                 strerror(errno));
2676         return rc;
2677     }
2678     if (rc != chunksize) {
2679         /* We should never get a short write on a single chunk */
2680         fprintf(stderr, "Short write, restoring KVM hash table\n");
2681         return -1;
2682     }
2683     return 0;
2684 }
2685 
2686 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2687 {
2688     return true;
2689 }
2690 
2691 void kvm_arch_init_irq_routing(KVMState *s)
2692 {
2693 }
2694 
2695 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2696 {
2697     int fd, rc;
2698     int i;
2699 
2700     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2701 
2702     i = 0;
2703     while (i < n) {
2704         struct kvm_get_htab_header *hdr;
2705         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2706         char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2707 
2708         rc = read(fd, buf, sizeof(buf));
2709         if (rc < 0) {
2710             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2711         }
2712 
2713         hdr = (struct kvm_get_htab_header *)buf;
2714         while ((i < n) && ((char *)hdr < (buf + rc))) {
2715             int invalid = hdr->n_invalid, valid = hdr->n_valid;
2716 
2717             if (hdr->index != (ptex + i)) {
2718                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2719                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2720             }
2721 
2722             if (n - i < valid) {
2723                 valid = n - i;
2724             }
2725             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2726             i += valid;
2727 
2728             if ((n - i) < invalid) {
2729                 invalid = n - i;
2730             }
2731             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2732             i += invalid;
2733 
2734             hdr = (struct kvm_get_htab_header *)
2735                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2736         }
2737     }
2738 
2739     close(fd);
2740 }
2741 
2742 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2743 {
2744     int fd, rc;
2745     struct {
2746         struct kvm_get_htab_header hdr;
2747         uint64_t pte0;
2748         uint64_t pte1;
2749     } buf;
2750 
2751     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2752 
2753     buf.hdr.n_valid = 1;
2754     buf.hdr.n_invalid = 0;
2755     buf.hdr.index = ptex;
2756     buf.pte0 = cpu_to_be64(pte0);
2757     buf.pte1 = cpu_to_be64(pte1);
2758 
2759     rc = write(fd, &buf, sizeof(buf));
2760     if (rc != sizeof(buf)) {
2761         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2762     }
2763     close(fd);
2764 }
2765 
2766 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2767                              uint64_t address, uint32_t data, PCIDevice *dev)
2768 {
2769     return 0;
2770 }
2771 
2772 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2773                                 int vector, PCIDevice *dev)
2774 {
2775     return 0;
2776 }
2777 
2778 int kvm_arch_release_virq_post(int virq)
2779 {
2780     return 0;
2781 }
2782 
2783 int kvm_arch_msi_data_to_gsi(uint32_t data)
2784 {
2785     return data & 0xffff;
2786 }
2787 
2788 int kvmppc_enable_hwrng(void)
2789 {
2790     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2791         return -1;
2792     }
2793 
2794     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2795 }
2796 
2797 void kvmppc_check_papr_resize_hpt(Error **errp)
2798 {
2799     if (!kvm_enabled()) {
2800         return; /* No KVM, we're good */
2801     }
2802 
2803     if (cap_resize_hpt) {
2804         return; /* Kernel has explicit support, we're good */
2805     }
2806 
2807     /* Otherwise fallback on looking for PR KVM */
2808     if (kvmppc_is_pr(kvm_state)) {
2809         return;
2810     }
2811 
2812     error_setg(errp,
2813                "Hash page table resizing not available with this KVM version");
2814 }
2815 
2816 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2817 {
2818     CPUState *cs = CPU(cpu);
2819     struct kvm_ppc_resize_hpt rhpt = {
2820         .flags = flags,
2821         .shift = shift,
2822     };
2823 
2824     if (!cap_resize_hpt) {
2825         return -ENOSYS;
2826     }
2827 
2828     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2829 }
2830 
2831 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2832 {
2833     CPUState *cs = CPU(cpu);
2834     struct kvm_ppc_resize_hpt rhpt = {
2835         .flags = flags,
2836         .shift = shift,
2837     };
2838 
2839     if (!cap_resize_hpt) {
2840         return -ENOSYS;
2841     }
2842 
2843     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2844 }
2845 
2846 /*
2847  * This is a helper function to detect a post migration scenario
2848  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2849  * the guest kernel can't handle a PVR value other than the actual host
2850  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2851  *
2852  * If we don't have cap_ppc_pvr_compat and we're not running in PR
2853  * (so, we're HV), return true. The workaround itself is done in
2854  * cpu_post_load.
2855  *
2856  * The order here is important: we'll only check for KVM PR as a
2857  * fallback if the guest kernel can't handle the situation itself.
2858  * We need to avoid as much as possible querying the running KVM type
2859  * in QEMU level.
2860  */
2861 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2862 {
2863     CPUState *cs = CPU(cpu);
2864 
2865     if (!kvm_enabled()) {
2866         return false;
2867     }
2868 
2869     if (cap_ppc_pvr_compat) {
2870         return false;
2871     }
2872 
2873     return !kvmppc_is_pr(cs->kvm_state);
2874 }
2875 
2876 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2877 {
2878     CPUState *cs = CPU(cpu);
2879 
2880     if (kvm_enabled()) {
2881         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2882     }
2883 }
2884 
2885 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2886 {
2887     CPUState *cs = CPU(cpu);
2888 
2889     if (kvm_enabled()) {
2890         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2891     }
2892 }
2893