1 /* 2 * PowerPC implementation of KVM hooks 3 * 4 * Copyright IBM Corp. 2007 5 * Copyright (C) 2011 Freescale Semiconductor, Inc. 6 * 7 * Authors: 8 * Jerone Young <jyoung5@us.ibm.com> 9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 10 * Hollis Blanchard <hollisb@us.ibm.com> 11 * 12 * This work is licensed under the terms of the GNU GPL, version 2 or later. 13 * See the COPYING file in the top-level directory. 14 * 15 */ 16 17 #include "qemu/osdep.h" 18 #include <dirent.h> 19 #include <sys/ioctl.h> 20 #include <sys/vfs.h> 21 22 #include <linux/kvm.h> 23 24 #include "qapi/error.h" 25 #include "qemu/error-report.h" 26 #include "cpu.h" 27 #include "cpu-models.h" 28 #include "qemu/timer.h" 29 #include "sysemu/hw_accel.h" 30 #include "kvm_ppc.h" 31 #include "sysemu/cpus.h" 32 #include "sysemu/device_tree.h" 33 #include "mmu-hash64.h" 34 35 #include "hw/sysbus.h" 36 #include "hw/ppc/spapr.h" 37 #include "hw/ppc/spapr_cpu_core.h" 38 #include "hw/hw.h" 39 #include "hw/ppc/ppc.h" 40 #include "migration/qemu-file-types.h" 41 #include "sysemu/watchdog.h" 42 #include "trace.h" 43 #include "exec/gdbstub.h" 44 #include "exec/memattrs.h" 45 #include "exec/ram_addr.h" 46 #include "sysemu/hostmem.h" 47 #include "qemu/cutils.h" 48 #include "qemu/main-loop.h" 49 #include "qemu/mmap-alloc.h" 50 #include "elf.h" 51 #include "sysemu/kvm_int.h" 52 53 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" 54 55 #define DEBUG_RETURN_GUEST 0 56 #define DEBUG_RETURN_GDB 1 57 58 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 59 KVM_CAP_LAST_INFO 60 }; 61 62 static int cap_interrupt_unset; 63 static int cap_segstate; 64 static int cap_booke_sregs; 65 static int cap_ppc_smt; 66 static int cap_ppc_smt_possible; 67 static int cap_spapr_tce; 68 static int cap_spapr_tce_64; 69 static int cap_spapr_multitce; 70 static int cap_spapr_vfio; 71 static int cap_hior; 72 static int cap_one_reg; 73 static int cap_epr; 74 static int cap_ppc_watchdog; 75 static int cap_papr; 76 static int cap_htab_fd; 77 static int cap_fixup_hcalls; 78 static int cap_htm; /* Hardware transactional memory support */ 79 static int cap_mmu_radix; 80 static int cap_mmu_hash_v3; 81 static int cap_xive; 82 static int cap_resize_hpt; 83 static int cap_ppc_pvr_compat; 84 static int cap_ppc_safe_cache; 85 static int cap_ppc_safe_bounds_check; 86 static int cap_ppc_safe_indirect_branch; 87 static int cap_ppc_count_cache_flush_assist; 88 static int cap_ppc_nested_kvm_hv; 89 static int cap_large_decr; 90 static int cap_fwnmi; 91 static int cap_rpt_invalidate; 92 93 static uint32_t debug_inst_opcode; 94 95 /* 96 * Check whether we are running with KVM-PR (instead of KVM-HV). This 97 * should only be used for fallback tests - generally we should use 98 * explicit capabilities for the features we want, rather than 99 * assuming what is/isn't available depending on the KVM variant. 100 */ 101 static bool kvmppc_is_pr(KVMState *ks) 102 { 103 /* Assume KVM-PR if the GET_PVINFO capability is available */ 104 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0; 105 } 106 107 static int kvm_ppc_register_host_cpu_type(void); 108 static void kvmppc_get_cpu_characteristics(KVMState *s); 109 static int kvmppc_get_dec_bits(void); 110 111 int kvm_arch_init(MachineState *ms, KVMState *s) 112 { 113 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); 114 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); 115 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); 116 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE); 117 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); 118 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64); 119 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); 120 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO); 121 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); 122 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); 123 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); 124 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); 125 /* 126 * Note: we don't set cap_papr here, because this capability is 127 * only activated after this by kvmppc_set_papr() 128 */ 129 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD); 130 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); 131 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT); 132 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM); 133 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX); 134 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3); 135 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE); 136 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT); 137 kvmppc_get_cpu_characteristics(s); 138 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV); 139 cap_large_decr = kvmppc_get_dec_bits(); 140 cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI); 141 /* 142 * Note: setting it to false because there is not such capability 143 * in KVM at this moment. 144 * 145 * TODO: call kvm_vm_check_extension() with the right capability 146 * after the kernel starts implementing it. 147 */ 148 cap_ppc_pvr_compat = false; 149 150 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) { 151 error_report("KVM: Host kernel doesn't have level irq capability"); 152 exit(1); 153 } 154 155 cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE); 156 kvm_ppc_register_host_cpu_type(); 157 158 return 0; 159 } 160 161 int kvm_arch_irqchip_create(KVMState *s) 162 { 163 return 0; 164 } 165 166 static int kvm_arch_sync_sregs(PowerPCCPU *cpu) 167 { 168 CPUPPCState *cenv = &cpu->env; 169 CPUState *cs = CPU(cpu); 170 struct kvm_sregs sregs; 171 int ret; 172 173 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 174 /* 175 * What we're really trying to say is "if we're on BookE, we 176 * use the native PVR for now". This is the only sane way to 177 * check it though, so we potentially confuse users that they 178 * can run BookE guests on BookS. Let's hope nobody dares 179 * enough :) 180 */ 181 return 0; 182 } else { 183 if (!cap_segstate) { 184 fprintf(stderr, "kvm error: missing PVR setting capability\n"); 185 return -ENOSYS; 186 } 187 } 188 189 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 190 if (ret) { 191 return ret; 192 } 193 194 sregs.pvr = cenv->spr[SPR_PVR]; 195 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 196 } 197 198 /* Set up a shared TLB array with KVM */ 199 static int kvm_booke206_tlb_init(PowerPCCPU *cpu) 200 { 201 CPUPPCState *env = &cpu->env; 202 CPUState *cs = CPU(cpu); 203 struct kvm_book3e_206_tlb_params params = {}; 204 struct kvm_config_tlb cfg = {}; 205 unsigned int entries = 0; 206 int ret, i; 207 208 if (!kvm_enabled() || 209 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { 210 return 0; 211 } 212 213 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); 214 215 for (i = 0; i < BOOKE206_MAX_TLBN; i++) { 216 params.tlb_sizes[i] = booke206_tlb_size(env, i); 217 params.tlb_ways[i] = booke206_tlb_ways(env, i); 218 entries += params.tlb_sizes[i]; 219 } 220 221 assert(entries == env->nb_tlb); 222 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); 223 224 env->tlb_dirty = true; 225 226 cfg.array = (uintptr_t)env->tlb.tlbm; 227 cfg.array_len = sizeof(ppcmas_tlb_t) * entries; 228 cfg.params = (uintptr_t)¶ms; 229 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; 230 231 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); 232 if (ret < 0) { 233 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", 234 __func__, strerror(-ret)); 235 return ret; 236 } 237 238 env->kvm_sw_tlb = true; 239 return 0; 240 } 241 242 243 #if defined(TARGET_PPC64) 244 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp) 245 { 246 int ret; 247 248 assert(kvm_state != NULL); 249 250 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { 251 error_setg(errp, "KVM doesn't expose the MMU features it supports"); 252 error_append_hint(errp, "Consider switching to a newer KVM\n"); 253 return; 254 } 255 256 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info); 257 if (ret == 0) { 258 return; 259 } 260 261 error_setg_errno(errp, -ret, 262 "KVM failed to provide the MMU features it supports"); 263 } 264 265 struct ppc_radix_page_info *kvm_get_radix_page_info(void) 266 { 267 KVMState *s = KVM_STATE(current_accel()); 268 struct ppc_radix_page_info *radix_page_info; 269 struct kvm_ppc_rmmu_info rmmu_info; 270 int i; 271 272 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) { 273 return NULL; 274 } 275 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) { 276 return NULL; 277 } 278 radix_page_info = g_malloc0(sizeof(*radix_page_info)); 279 radix_page_info->count = 0; 280 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 281 if (rmmu_info.ap_encodings[i]) { 282 radix_page_info->entries[i] = rmmu_info.ap_encodings[i]; 283 radix_page_info->count++; 284 } 285 } 286 return radix_page_info; 287 } 288 289 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu, 290 bool radix, bool gtse, 291 uint64_t proc_tbl) 292 { 293 CPUState *cs = CPU(cpu); 294 int ret; 295 uint64_t flags = 0; 296 struct kvm_ppc_mmuv3_cfg cfg = { 297 .process_table = proc_tbl, 298 }; 299 300 if (radix) { 301 flags |= KVM_PPC_MMUV3_RADIX; 302 } 303 if (gtse) { 304 flags |= KVM_PPC_MMUV3_GTSE; 305 } 306 cfg.flags = flags; 307 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg); 308 switch (ret) { 309 case 0: 310 return H_SUCCESS; 311 case -EINVAL: 312 return H_PARAMETER; 313 case -ENODEV: 314 return H_NOT_AVAILABLE; 315 default: 316 return H_HARDWARE; 317 } 318 } 319 320 bool kvmppc_hpt_needs_host_contiguous_pages(void) 321 { 322 static struct kvm_ppc_smmu_info smmu_info; 323 324 if (!kvm_enabled()) { 325 return false; 326 } 327 328 kvm_get_smmu_info(&smmu_info, &error_fatal); 329 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL); 330 } 331 332 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp) 333 { 334 struct kvm_ppc_smmu_info smmu_info; 335 int iq, ik, jq, jk; 336 Error *local_err = NULL; 337 338 /* For now, we only have anything to check on hash64 MMUs */ 339 if (!cpu->hash64_opts || !kvm_enabled()) { 340 return; 341 } 342 343 kvm_get_smmu_info(&smmu_info, &local_err); 344 if (local_err) { 345 error_propagate(errp, local_err); 346 return; 347 } 348 349 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG) 350 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { 351 error_setg(errp, 352 "KVM does not support 1TiB segments which guest expects"); 353 return; 354 } 355 356 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) { 357 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u", 358 smmu_info.slb_size, cpu->hash64_opts->slb_size); 359 return; 360 } 361 362 /* 363 * Verify that every pagesize supported by the cpu model is 364 * supported by KVM with the same encodings 365 */ 366 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) { 367 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq]; 368 struct kvm_ppc_one_seg_page_size *ksps; 369 370 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) { 371 if (qsps->page_shift == smmu_info.sps[ik].page_shift) { 372 break; 373 } 374 } 375 if (ik >= ARRAY_SIZE(smmu_info.sps)) { 376 error_setg(errp, "KVM doesn't support for base page shift %u", 377 qsps->page_shift); 378 return; 379 } 380 381 ksps = &smmu_info.sps[ik]; 382 if (ksps->slb_enc != qsps->slb_enc) { 383 error_setg(errp, 384 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x", 385 ksps->slb_enc, ksps->page_shift, qsps->slb_enc); 386 return; 387 } 388 389 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) { 390 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) { 391 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) { 392 break; 393 } 394 } 395 396 if (jk >= ARRAY_SIZE(ksps->enc)) { 397 error_setg(errp, "KVM doesn't support page shift %u/%u", 398 qsps->enc[jq].page_shift, qsps->page_shift); 399 return; 400 } 401 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) { 402 error_setg(errp, 403 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x", 404 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift, 405 qsps->page_shift, qsps->enc[jq].pte_enc); 406 return; 407 } 408 } 409 } 410 411 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 412 /* 413 * Mostly what guest pagesizes we can use are related to the 414 * host pages used to map guest RAM, which is handled in the 415 * platform code. Cache-Inhibited largepages (64k) however are 416 * used for I/O, so if they're mapped to the host at all it 417 * will be a normal mapping, not a special hugepage one used 418 * for RAM. 419 */ 420 if (qemu_real_host_page_size() < 0x10000) { 421 error_setg(errp, 422 "KVM can't supply 64kiB CI pages, which guest expects"); 423 } 424 } 425 } 426 #endif /* !defined (TARGET_PPC64) */ 427 428 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 429 { 430 return POWERPC_CPU(cpu)->vcpu_id; 431 } 432 433 /* 434 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports 435 * only 1 watchpoint, so array size of 4 is sufficient for now. 436 */ 437 #define MAX_HW_BKPTS 4 438 439 static struct HWBreakpoint { 440 target_ulong addr; 441 int type; 442 } hw_debug_points[MAX_HW_BKPTS]; 443 444 static CPUWatchpoint hw_watchpoint; 445 446 /* Default there is no breakpoint and watchpoint supported */ 447 static int max_hw_breakpoint; 448 static int max_hw_watchpoint; 449 static int nb_hw_breakpoint; 450 static int nb_hw_watchpoint; 451 452 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) 453 { 454 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 455 max_hw_breakpoint = 2; 456 max_hw_watchpoint = 2; 457 } 458 459 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { 460 fprintf(stderr, "Error initializing h/w breakpoints\n"); 461 return; 462 } 463 } 464 465 int kvm_arch_init_vcpu(CPUState *cs) 466 { 467 PowerPCCPU *cpu = POWERPC_CPU(cs); 468 CPUPPCState *cenv = &cpu->env; 469 int ret; 470 471 /* Synchronize sregs with kvm */ 472 ret = kvm_arch_sync_sregs(cpu); 473 if (ret) { 474 if (ret == -EINVAL) { 475 error_report("Register sync failed... If you're using kvm-hv.ko," 476 " only \"-cpu host\" is possible"); 477 } 478 return ret; 479 } 480 481 switch (cenv->mmu_model) { 482 case POWERPC_MMU_BOOKE206: 483 /* This target supports access to KVM's guest TLB */ 484 ret = kvm_booke206_tlb_init(cpu); 485 break; 486 case POWERPC_MMU_2_07: 487 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { 488 /* 489 * KVM-HV has transactional memory on POWER8 also without 490 * the KVM_CAP_PPC_HTM extension, so enable it here 491 * instead as long as it's available to userspace on the 492 * host. 493 */ 494 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) { 495 cap_htm = true; 496 } 497 } 498 break; 499 default: 500 break; 501 } 502 503 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); 504 kvmppc_hw_debug_points_init(cenv); 505 506 return ret; 507 } 508 509 int kvm_arch_destroy_vcpu(CPUState *cs) 510 { 511 return 0; 512 } 513 514 static void kvm_sw_tlb_put(PowerPCCPU *cpu) 515 { 516 CPUPPCState *env = &cpu->env; 517 CPUState *cs = CPU(cpu); 518 struct kvm_dirty_tlb dirty_tlb; 519 unsigned char *bitmap; 520 int ret; 521 522 if (!env->kvm_sw_tlb) { 523 return; 524 } 525 526 bitmap = g_malloc((env->nb_tlb + 7) / 8); 527 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); 528 529 dirty_tlb.bitmap = (uintptr_t)bitmap; 530 dirty_tlb.num_dirty = env->nb_tlb; 531 532 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); 533 if (ret) { 534 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", 535 __func__, strerror(-ret)); 536 } 537 538 g_free(bitmap); 539 } 540 541 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) 542 { 543 PowerPCCPU *cpu = POWERPC_CPU(cs); 544 CPUPPCState *env = &cpu->env; 545 union { 546 uint32_t u32; 547 uint64_t u64; 548 } val; 549 struct kvm_one_reg reg = { 550 .id = id, 551 .addr = (uintptr_t) &val, 552 }; 553 int ret; 554 555 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 556 if (ret != 0) { 557 trace_kvm_failed_spr_get(spr, strerror(errno)); 558 } else { 559 switch (id & KVM_REG_SIZE_MASK) { 560 case KVM_REG_SIZE_U32: 561 env->spr[spr] = val.u32; 562 break; 563 564 case KVM_REG_SIZE_U64: 565 env->spr[spr] = val.u64; 566 break; 567 568 default: 569 /* Don't handle this size yet */ 570 abort(); 571 } 572 } 573 } 574 575 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) 576 { 577 PowerPCCPU *cpu = POWERPC_CPU(cs); 578 CPUPPCState *env = &cpu->env; 579 union { 580 uint32_t u32; 581 uint64_t u64; 582 } val; 583 struct kvm_one_reg reg = { 584 .id = id, 585 .addr = (uintptr_t) &val, 586 }; 587 int ret; 588 589 switch (id & KVM_REG_SIZE_MASK) { 590 case KVM_REG_SIZE_U32: 591 val.u32 = env->spr[spr]; 592 break; 593 594 case KVM_REG_SIZE_U64: 595 val.u64 = env->spr[spr]; 596 break; 597 598 default: 599 /* Don't handle this size yet */ 600 abort(); 601 } 602 603 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 604 if (ret != 0) { 605 trace_kvm_failed_spr_set(spr, strerror(errno)); 606 } 607 } 608 609 static int kvm_put_fp(CPUState *cs) 610 { 611 PowerPCCPU *cpu = POWERPC_CPU(cs); 612 CPUPPCState *env = &cpu->env; 613 struct kvm_one_reg reg; 614 int i; 615 int ret; 616 617 if (env->insns_flags & PPC_FLOAT) { 618 uint64_t fpscr = env->fpscr; 619 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 620 621 reg.id = KVM_REG_PPC_FPSCR; 622 reg.addr = (uintptr_t)&fpscr; 623 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 624 if (ret < 0) { 625 trace_kvm_failed_fpscr_set(strerror(errno)); 626 return ret; 627 } 628 629 for (i = 0; i < 32; i++) { 630 uint64_t vsr[2]; 631 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); 632 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); 633 634 #if HOST_BIG_ENDIAN 635 vsr[0] = float64_val(*fpr); 636 vsr[1] = *vsrl; 637 #else 638 vsr[0] = *vsrl; 639 vsr[1] = float64_val(*fpr); 640 #endif 641 reg.addr = (uintptr_t) &vsr; 642 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 643 644 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 645 if (ret < 0) { 646 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i, 647 strerror(errno)); 648 return ret; 649 } 650 } 651 } 652 653 if (env->insns_flags & PPC_ALTIVEC) { 654 reg.id = KVM_REG_PPC_VSCR; 655 reg.addr = (uintptr_t)&env->vscr; 656 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 657 if (ret < 0) { 658 trace_kvm_failed_vscr_set(strerror(errno)); 659 return ret; 660 } 661 662 for (i = 0; i < 32; i++) { 663 reg.id = KVM_REG_PPC_VR(i); 664 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 665 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 666 if (ret < 0) { 667 trace_kvm_failed_vr_set(i, strerror(errno)); 668 return ret; 669 } 670 } 671 } 672 673 return 0; 674 } 675 676 static int kvm_get_fp(CPUState *cs) 677 { 678 PowerPCCPU *cpu = POWERPC_CPU(cs); 679 CPUPPCState *env = &cpu->env; 680 struct kvm_one_reg reg; 681 int i; 682 int ret; 683 684 if (env->insns_flags & PPC_FLOAT) { 685 uint64_t fpscr; 686 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 687 688 reg.id = KVM_REG_PPC_FPSCR; 689 reg.addr = (uintptr_t)&fpscr; 690 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 691 if (ret < 0) { 692 trace_kvm_failed_fpscr_get(strerror(errno)); 693 return ret; 694 } else { 695 env->fpscr = fpscr; 696 } 697 698 for (i = 0; i < 32; i++) { 699 uint64_t vsr[2]; 700 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); 701 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); 702 703 reg.addr = (uintptr_t) &vsr; 704 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 705 706 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 707 if (ret < 0) { 708 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i, 709 strerror(errno)); 710 return ret; 711 } else { 712 #if HOST_BIG_ENDIAN 713 *fpr = vsr[0]; 714 if (vsx) { 715 *vsrl = vsr[1]; 716 } 717 #else 718 *fpr = vsr[1]; 719 if (vsx) { 720 *vsrl = vsr[0]; 721 } 722 #endif 723 } 724 } 725 } 726 727 if (env->insns_flags & PPC_ALTIVEC) { 728 reg.id = KVM_REG_PPC_VSCR; 729 reg.addr = (uintptr_t)&env->vscr; 730 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 731 if (ret < 0) { 732 trace_kvm_failed_vscr_get(strerror(errno)); 733 return ret; 734 } 735 736 for (i = 0; i < 32; i++) { 737 reg.id = KVM_REG_PPC_VR(i); 738 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 739 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 740 if (ret < 0) { 741 trace_kvm_failed_vr_get(i, strerror(errno)); 742 return ret; 743 } 744 } 745 } 746 747 return 0; 748 } 749 750 #if defined(TARGET_PPC64) 751 static int kvm_get_vpa(CPUState *cs) 752 { 753 PowerPCCPU *cpu = POWERPC_CPU(cs); 754 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 755 struct kvm_one_reg reg; 756 int ret; 757 758 reg.id = KVM_REG_PPC_VPA_ADDR; 759 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 760 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 761 if (ret < 0) { 762 trace_kvm_failed_vpa_addr_get(strerror(errno)); 763 return ret; 764 } 765 766 assert((uintptr_t)&spapr_cpu->slb_shadow_size 767 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 768 reg.id = KVM_REG_PPC_VPA_SLB; 769 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 770 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 771 if (ret < 0) { 772 trace_kvm_failed_slb_get(strerror(errno)); 773 return ret; 774 } 775 776 assert((uintptr_t)&spapr_cpu->dtl_size 777 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 778 reg.id = KVM_REG_PPC_VPA_DTL; 779 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 780 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 781 if (ret < 0) { 782 trace_kvm_failed_dtl_get(strerror(errno)); 783 return ret; 784 } 785 786 return 0; 787 } 788 789 static int kvm_put_vpa(CPUState *cs) 790 { 791 PowerPCCPU *cpu = POWERPC_CPU(cs); 792 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 793 struct kvm_one_reg reg; 794 int ret; 795 796 /* 797 * SLB shadow or DTL can't be registered unless a master VPA is 798 * registered. That means when restoring state, if a VPA *is* 799 * registered, we need to set that up first. If not, we need to 800 * deregister the others before deregistering the master VPA 801 */ 802 assert(spapr_cpu->vpa_addr 803 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr)); 804 805 if (spapr_cpu->vpa_addr) { 806 reg.id = KVM_REG_PPC_VPA_ADDR; 807 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 808 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 809 if (ret < 0) { 810 trace_kvm_failed_vpa_addr_set(strerror(errno)); 811 return ret; 812 } 813 } 814 815 assert((uintptr_t)&spapr_cpu->slb_shadow_size 816 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 817 reg.id = KVM_REG_PPC_VPA_SLB; 818 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 819 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 820 if (ret < 0) { 821 trace_kvm_failed_slb_set(strerror(errno)); 822 return ret; 823 } 824 825 assert((uintptr_t)&spapr_cpu->dtl_size 826 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 827 reg.id = KVM_REG_PPC_VPA_DTL; 828 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 829 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 830 if (ret < 0) { 831 trace_kvm_failed_dtl_set(strerror(errno)); 832 return ret; 833 } 834 835 if (!spapr_cpu->vpa_addr) { 836 reg.id = KVM_REG_PPC_VPA_ADDR; 837 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 838 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 839 if (ret < 0) { 840 trace_kvm_failed_null_vpa_addr_set(strerror(errno)); 841 return ret; 842 } 843 } 844 845 return 0; 846 } 847 #endif /* TARGET_PPC64 */ 848 849 int kvmppc_put_books_sregs(PowerPCCPU *cpu) 850 { 851 CPUPPCState *env = &cpu->env; 852 struct kvm_sregs sregs; 853 int i; 854 855 sregs.pvr = env->spr[SPR_PVR]; 856 857 if (cpu->vhyp) { 858 PPCVirtualHypervisorClass *vhc = 859 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp); 860 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp); 861 } else { 862 sregs.u.s.sdr1 = env->spr[SPR_SDR1]; 863 } 864 865 /* Sync SLB */ 866 #ifdef TARGET_PPC64 867 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 868 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; 869 if (env->slb[i].esid & SLB_ESID_V) { 870 sregs.u.s.ppc64.slb[i].slbe |= i; 871 } 872 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; 873 } 874 #endif 875 876 /* Sync SRs */ 877 for (i = 0; i < 16; i++) { 878 sregs.u.s.ppc32.sr[i] = env->sr[i]; 879 } 880 881 /* Sync BATs */ 882 for (i = 0; i < 8; i++) { 883 /* Beware. We have to swap upper and lower bits here */ 884 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) 885 | env->DBAT[1][i]; 886 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) 887 | env->IBAT[1][i]; 888 } 889 890 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 891 } 892 893 int kvm_arch_put_registers(CPUState *cs, int level) 894 { 895 PowerPCCPU *cpu = POWERPC_CPU(cs); 896 CPUPPCState *env = &cpu->env; 897 struct kvm_regs regs; 898 int ret; 899 int i; 900 901 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 902 if (ret < 0) { 903 return ret; 904 } 905 906 regs.ctr = env->ctr; 907 regs.lr = env->lr; 908 regs.xer = cpu_read_xer(env); 909 regs.msr = env->msr; 910 regs.pc = env->nip; 911 912 regs.srr0 = env->spr[SPR_SRR0]; 913 regs.srr1 = env->spr[SPR_SRR1]; 914 915 regs.sprg0 = env->spr[SPR_SPRG0]; 916 regs.sprg1 = env->spr[SPR_SPRG1]; 917 regs.sprg2 = env->spr[SPR_SPRG2]; 918 regs.sprg3 = env->spr[SPR_SPRG3]; 919 regs.sprg4 = env->spr[SPR_SPRG4]; 920 regs.sprg5 = env->spr[SPR_SPRG5]; 921 regs.sprg6 = env->spr[SPR_SPRG6]; 922 regs.sprg7 = env->spr[SPR_SPRG7]; 923 924 regs.pid = env->spr[SPR_BOOKE_PID]; 925 926 for (i = 0; i < 32; i++) { 927 regs.gpr[i] = env->gpr[i]; 928 } 929 930 regs.cr = 0; 931 for (i = 0; i < 8; i++) { 932 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); 933 } 934 935 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 936 if (ret < 0) { 937 return ret; 938 } 939 940 kvm_put_fp(cs); 941 942 if (env->tlb_dirty) { 943 kvm_sw_tlb_put(cpu); 944 env->tlb_dirty = false; 945 } 946 947 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { 948 ret = kvmppc_put_books_sregs(cpu); 949 if (ret < 0) { 950 return ret; 951 } 952 } 953 954 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { 955 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 956 } 957 958 if (cap_one_reg) { 959 int i; 960 961 /* 962 * We deliberately ignore errors here, for kernels which have 963 * the ONE_REG calls, but don't support the specific 964 * registers, there's a reasonable chance things will still 965 * work, at least until we try to migrate. 966 */ 967 for (i = 0; i < 1024; i++) { 968 uint64_t id = env->spr_cb[i].one_reg_id; 969 970 if (id != 0) { 971 kvm_put_one_spr(cs, id, i); 972 } 973 } 974 975 #ifdef TARGET_PPC64 976 if (msr_ts) { 977 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 978 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 979 } 980 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 981 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 982 } 983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 991 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 992 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 993 } 994 995 if (cap_papr) { 996 if (kvm_put_vpa(cs) < 0) { 997 trace_kvm_failed_put_vpa(); 998 } 999 } 1000 1001 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1002 1003 if (level > KVM_PUT_RUNTIME_STATE) { 1004 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1005 } 1006 #endif /* TARGET_PPC64 */ 1007 } 1008 1009 return ret; 1010 } 1011 1012 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) 1013 { 1014 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; 1015 } 1016 1017 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu) 1018 { 1019 CPUPPCState *env = &cpu->env; 1020 struct kvm_sregs sregs; 1021 int ret; 1022 1023 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1024 if (ret < 0) { 1025 return ret; 1026 } 1027 1028 if (sregs.u.e.features & KVM_SREGS_E_BASE) { 1029 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; 1030 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; 1031 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; 1032 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; 1033 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; 1034 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; 1035 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; 1036 env->spr[SPR_DECR] = sregs.u.e.dec; 1037 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; 1038 env->spr[SPR_TBU] = sregs.u.e.tb >> 32; 1039 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; 1040 } 1041 1042 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { 1043 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; 1044 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; 1045 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; 1046 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; 1047 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; 1048 } 1049 1050 if (sregs.u.e.features & KVM_SREGS_E_64) { 1051 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; 1052 } 1053 1054 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { 1055 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; 1056 } 1057 1058 if (sregs.u.e.features & KVM_SREGS_E_IVOR) { 1059 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; 1060 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); 1061 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; 1062 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); 1063 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; 1064 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); 1065 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; 1066 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); 1067 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; 1068 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); 1069 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; 1070 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); 1071 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; 1072 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); 1073 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; 1074 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); 1075 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; 1076 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); 1077 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; 1078 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); 1079 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; 1080 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); 1081 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; 1082 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); 1083 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; 1084 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); 1085 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; 1086 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); 1087 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; 1088 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); 1089 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; 1090 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); 1091 1092 if (sregs.u.e.features & KVM_SREGS_E_SPE) { 1093 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; 1094 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); 1095 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; 1096 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); 1097 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; 1098 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); 1099 } 1100 1101 if (sregs.u.e.features & KVM_SREGS_E_PM) { 1102 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; 1103 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); 1104 } 1105 1106 if (sregs.u.e.features & KVM_SREGS_E_PC) { 1107 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; 1108 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); 1109 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; 1110 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); 1111 } 1112 } 1113 1114 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { 1115 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; 1116 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; 1117 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; 1118 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; 1119 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; 1120 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; 1121 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; 1122 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; 1123 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; 1124 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; 1125 } 1126 1127 if (sregs.u.e.features & KVM_SREGS_EXP) { 1128 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; 1129 } 1130 1131 if (sregs.u.e.features & KVM_SREGS_E_PD) { 1132 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; 1133 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; 1134 } 1135 1136 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { 1137 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; 1138 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; 1139 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; 1140 1141 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { 1142 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; 1143 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; 1144 } 1145 } 1146 1147 return 0; 1148 } 1149 1150 static int kvmppc_get_books_sregs(PowerPCCPU *cpu) 1151 { 1152 CPUPPCState *env = &cpu->env; 1153 struct kvm_sregs sregs; 1154 int ret; 1155 int i; 1156 1157 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1158 if (ret < 0) { 1159 return ret; 1160 } 1161 1162 if (!cpu->vhyp) { 1163 ppc_store_sdr1(env, sregs.u.s.sdr1); 1164 } 1165 1166 /* Sync SLB */ 1167 #ifdef TARGET_PPC64 1168 /* 1169 * The packed SLB array we get from KVM_GET_SREGS only contains 1170 * information about valid entries. So we flush our internal copy 1171 * to get rid of stale ones, then put all valid SLB entries back 1172 * in. 1173 */ 1174 memset(env->slb, 0, sizeof(env->slb)); 1175 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 1176 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; 1177 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; 1178 /* 1179 * Only restore valid entries 1180 */ 1181 if (rb & SLB_ESID_V) { 1182 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs); 1183 } 1184 } 1185 #endif 1186 1187 /* Sync SRs */ 1188 for (i = 0; i < 16; i++) { 1189 env->sr[i] = sregs.u.s.ppc32.sr[i]; 1190 } 1191 1192 /* Sync BATs */ 1193 for (i = 0; i < 8; i++) { 1194 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; 1195 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; 1196 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; 1197 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; 1198 } 1199 1200 return 0; 1201 } 1202 1203 int kvm_arch_get_registers(CPUState *cs) 1204 { 1205 PowerPCCPU *cpu = POWERPC_CPU(cs); 1206 CPUPPCState *env = &cpu->env; 1207 struct kvm_regs regs; 1208 uint32_t cr; 1209 int i, ret; 1210 1211 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 1212 if (ret < 0) { 1213 return ret; 1214 } 1215 1216 cr = regs.cr; 1217 for (i = 7; i >= 0; i--) { 1218 env->crf[i] = cr & 15; 1219 cr >>= 4; 1220 } 1221 1222 env->ctr = regs.ctr; 1223 env->lr = regs.lr; 1224 cpu_write_xer(env, regs.xer); 1225 env->msr = regs.msr; 1226 env->nip = regs.pc; 1227 1228 env->spr[SPR_SRR0] = regs.srr0; 1229 env->spr[SPR_SRR1] = regs.srr1; 1230 1231 env->spr[SPR_SPRG0] = regs.sprg0; 1232 env->spr[SPR_SPRG1] = regs.sprg1; 1233 env->spr[SPR_SPRG2] = regs.sprg2; 1234 env->spr[SPR_SPRG3] = regs.sprg3; 1235 env->spr[SPR_SPRG4] = regs.sprg4; 1236 env->spr[SPR_SPRG5] = regs.sprg5; 1237 env->spr[SPR_SPRG6] = regs.sprg6; 1238 env->spr[SPR_SPRG7] = regs.sprg7; 1239 1240 env->spr[SPR_BOOKE_PID] = regs.pid; 1241 1242 for (i = 0; i < 32; i++) { 1243 env->gpr[i] = regs.gpr[i]; 1244 } 1245 1246 kvm_get_fp(cs); 1247 1248 if (cap_booke_sregs) { 1249 ret = kvmppc_get_booke_sregs(cpu); 1250 if (ret < 0) { 1251 return ret; 1252 } 1253 } 1254 1255 if (cap_segstate) { 1256 ret = kvmppc_get_books_sregs(cpu); 1257 if (ret < 0) { 1258 return ret; 1259 } 1260 } 1261 1262 if (cap_hior) { 1263 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 1264 } 1265 1266 if (cap_one_reg) { 1267 int i; 1268 1269 /* 1270 * We deliberately ignore errors here, for kernels which have 1271 * the ONE_REG calls, but don't support the specific 1272 * registers, there's a reasonable chance things will still 1273 * work, at least until we try to migrate. 1274 */ 1275 for (i = 0; i < 1024; i++) { 1276 uint64_t id = env->spr_cb[i].one_reg_id; 1277 1278 if (id != 0) { 1279 kvm_get_one_spr(cs, id, i); 1280 } 1281 } 1282 1283 #ifdef TARGET_PPC64 1284 if (msr_ts) { 1285 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 1286 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 1287 } 1288 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 1290 } 1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 1295 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 1296 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 1297 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 1298 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 1299 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 1300 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 1301 } 1302 1303 if (cap_papr) { 1304 if (kvm_get_vpa(cs) < 0) { 1305 trace_kvm_failed_get_vpa(); 1306 } 1307 } 1308 1309 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1310 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1311 #endif 1312 } 1313 1314 return 0; 1315 } 1316 1317 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) 1318 { 1319 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; 1320 1321 if (irq != PPC_INTERRUPT_EXT) { 1322 return 0; 1323 } 1324 1325 if (!kvm_enabled() || !cap_interrupt_unset) { 1326 return 0; 1327 } 1328 1329 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); 1330 1331 return 0; 1332 } 1333 1334 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 1335 { 1336 return; 1337 } 1338 1339 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1340 { 1341 return MEMTXATTRS_UNSPECIFIED; 1342 } 1343 1344 int kvm_arch_process_async_events(CPUState *cs) 1345 { 1346 return cs->halted; 1347 } 1348 1349 static int kvmppc_handle_halt(PowerPCCPU *cpu) 1350 { 1351 CPUState *cs = CPU(cpu); 1352 CPUPPCState *env = &cpu->env; 1353 1354 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { 1355 cs->halted = 1; 1356 cs->exception_index = EXCP_HLT; 1357 } 1358 1359 return 0; 1360 } 1361 1362 /* map dcr access to existing qemu dcr emulation */ 1363 static int kvmppc_handle_dcr_read(CPUPPCState *env, 1364 uint32_t dcrn, uint32_t *data) 1365 { 1366 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) { 1367 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); 1368 } 1369 1370 return 0; 1371 } 1372 1373 static int kvmppc_handle_dcr_write(CPUPPCState *env, 1374 uint32_t dcrn, uint32_t data) 1375 { 1376 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) { 1377 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); 1378 } 1379 1380 return 0; 1381 } 1382 1383 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1384 { 1385 /* Mixed endian case is not handled */ 1386 uint32_t sc = debug_inst_opcode; 1387 1388 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1389 sizeof(sc), 0) || 1390 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { 1391 return -EINVAL; 1392 } 1393 1394 return 0; 1395 } 1396 1397 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1398 { 1399 uint32_t sc; 1400 1401 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || 1402 sc != debug_inst_opcode || 1403 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1404 sizeof(sc), 1)) { 1405 return -EINVAL; 1406 } 1407 1408 return 0; 1409 } 1410 1411 static int find_hw_breakpoint(target_ulong addr, int type) 1412 { 1413 int n; 1414 1415 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1416 <= ARRAY_SIZE(hw_debug_points)); 1417 1418 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1419 if (hw_debug_points[n].addr == addr && 1420 hw_debug_points[n].type == type) { 1421 return n; 1422 } 1423 } 1424 1425 return -1; 1426 } 1427 1428 static int find_hw_watchpoint(target_ulong addr, int *flag) 1429 { 1430 int n; 1431 1432 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); 1433 if (n >= 0) { 1434 *flag = BP_MEM_ACCESS; 1435 return n; 1436 } 1437 1438 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); 1439 if (n >= 0) { 1440 *flag = BP_MEM_WRITE; 1441 return n; 1442 } 1443 1444 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); 1445 if (n >= 0) { 1446 *flag = BP_MEM_READ; 1447 return n; 1448 } 1449 1450 return -1; 1451 } 1452 1453 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 1454 target_ulong len, int type) 1455 { 1456 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) { 1457 return -ENOBUFS; 1458 } 1459 1460 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr; 1461 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type; 1462 1463 switch (type) { 1464 case GDB_BREAKPOINT_HW: 1465 if (nb_hw_breakpoint >= max_hw_breakpoint) { 1466 return -ENOBUFS; 1467 } 1468 1469 if (find_hw_breakpoint(addr, type) >= 0) { 1470 return -EEXIST; 1471 } 1472 1473 nb_hw_breakpoint++; 1474 break; 1475 1476 case GDB_WATCHPOINT_WRITE: 1477 case GDB_WATCHPOINT_READ: 1478 case GDB_WATCHPOINT_ACCESS: 1479 if (nb_hw_watchpoint >= max_hw_watchpoint) { 1480 return -ENOBUFS; 1481 } 1482 1483 if (find_hw_breakpoint(addr, type) >= 0) { 1484 return -EEXIST; 1485 } 1486 1487 nb_hw_watchpoint++; 1488 break; 1489 1490 default: 1491 return -ENOSYS; 1492 } 1493 1494 return 0; 1495 } 1496 1497 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 1498 target_ulong len, int type) 1499 { 1500 int n; 1501 1502 n = find_hw_breakpoint(addr, type); 1503 if (n < 0) { 1504 return -ENOENT; 1505 } 1506 1507 switch (type) { 1508 case GDB_BREAKPOINT_HW: 1509 nb_hw_breakpoint--; 1510 break; 1511 1512 case GDB_WATCHPOINT_WRITE: 1513 case GDB_WATCHPOINT_READ: 1514 case GDB_WATCHPOINT_ACCESS: 1515 nb_hw_watchpoint--; 1516 break; 1517 1518 default: 1519 return -ENOSYS; 1520 } 1521 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; 1522 1523 return 0; 1524 } 1525 1526 void kvm_arch_remove_all_hw_breakpoints(void) 1527 { 1528 nb_hw_breakpoint = nb_hw_watchpoint = 0; 1529 } 1530 1531 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 1532 { 1533 int n; 1534 1535 /* Software Breakpoint updates */ 1536 if (kvm_sw_breakpoints_active(cs)) { 1537 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 1538 } 1539 1540 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1541 <= ARRAY_SIZE(hw_debug_points)); 1542 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); 1543 1544 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1545 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1546 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); 1547 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1548 switch (hw_debug_points[n].type) { 1549 case GDB_BREAKPOINT_HW: 1550 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; 1551 break; 1552 case GDB_WATCHPOINT_WRITE: 1553 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; 1554 break; 1555 case GDB_WATCHPOINT_READ: 1556 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; 1557 break; 1558 case GDB_WATCHPOINT_ACCESS: 1559 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | 1560 KVMPPC_DEBUG_WATCH_READ; 1561 break; 1562 default: 1563 cpu_abort(cs, "Unsupported breakpoint type\n"); 1564 } 1565 dbg->arch.bp[n].addr = hw_debug_points[n].addr; 1566 } 1567 } 1568 } 1569 1570 static int kvm_handle_hw_breakpoint(CPUState *cs, 1571 struct kvm_debug_exit_arch *arch_info) 1572 { 1573 int handle = DEBUG_RETURN_GUEST; 1574 int n; 1575 int flag = 0; 1576 1577 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1578 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { 1579 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); 1580 if (n >= 0) { 1581 handle = DEBUG_RETURN_GDB; 1582 } 1583 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | 1584 KVMPPC_DEBUG_WATCH_WRITE)) { 1585 n = find_hw_watchpoint(arch_info->address, &flag); 1586 if (n >= 0) { 1587 handle = DEBUG_RETURN_GDB; 1588 cs->watchpoint_hit = &hw_watchpoint; 1589 hw_watchpoint.vaddr = hw_debug_points[n].addr; 1590 hw_watchpoint.flags = flag; 1591 } 1592 } 1593 } 1594 return handle; 1595 } 1596 1597 static int kvm_handle_singlestep(void) 1598 { 1599 return DEBUG_RETURN_GDB; 1600 } 1601 1602 static int kvm_handle_sw_breakpoint(void) 1603 { 1604 return DEBUG_RETURN_GDB; 1605 } 1606 1607 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) 1608 { 1609 CPUState *cs = CPU(cpu); 1610 CPUPPCState *env = &cpu->env; 1611 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1612 1613 if (cs->singlestep_enabled) { 1614 return kvm_handle_singlestep(); 1615 } 1616 1617 if (arch_info->status) { 1618 return kvm_handle_hw_breakpoint(cs, arch_info); 1619 } 1620 1621 if (kvm_find_sw_breakpoint(cs, arch_info->address)) { 1622 return kvm_handle_sw_breakpoint(); 1623 } 1624 1625 /* 1626 * QEMU is not able to handle debug exception, so inject 1627 * program exception to guest; 1628 * Yes program exception NOT debug exception !! 1629 * When QEMU is using debug resources then debug exception must 1630 * be always set. To achieve this we set MSR_DE and also set 1631 * MSRP_DEP so guest cannot change MSR_DE. 1632 * When emulating debug resource for guest we want guest 1633 * to control MSR_DE (enable/disable debug interrupt on need). 1634 * Supporting both configurations are NOT possible. 1635 * So the result is that we cannot share debug resources 1636 * between QEMU and Guest on BOOKE architecture. 1637 * In the current design QEMU gets the priority over guest, 1638 * this means that if QEMU is using debug resources then guest 1639 * cannot use them; 1640 * For software breakpoint QEMU uses a privileged instruction; 1641 * So there cannot be any reason that we are here for guest 1642 * set debug exception, only possibility is guest executed a 1643 * privileged / illegal instruction and that's why we are 1644 * injecting a program interrupt. 1645 */ 1646 cpu_synchronize_state(cs); 1647 /* 1648 * env->nip is PC, so increment this by 4 to use 1649 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. 1650 */ 1651 env->nip += 4; 1652 cs->exception_index = POWERPC_EXCP_PROGRAM; 1653 env->error_code = POWERPC_EXCP_INVAL; 1654 ppc_cpu_do_interrupt(cs); 1655 1656 return DEBUG_RETURN_GUEST; 1657 } 1658 1659 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1660 { 1661 PowerPCCPU *cpu = POWERPC_CPU(cs); 1662 CPUPPCState *env = &cpu->env; 1663 int ret; 1664 1665 qemu_mutex_lock_iothread(); 1666 1667 switch (run->exit_reason) { 1668 case KVM_EXIT_DCR: 1669 if (run->dcr.is_write) { 1670 trace_kvm_handle_dcr_write(); 1671 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); 1672 } else { 1673 trace_kvm_handle_dcr_read(); 1674 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); 1675 } 1676 break; 1677 case KVM_EXIT_HLT: 1678 trace_kvm_handle_halt(); 1679 ret = kvmppc_handle_halt(cpu); 1680 break; 1681 #if defined(TARGET_PPC64) 1682 case KVM_EXIT_PAPR_HCALL: 1683 trace_kvm_handle_papr_hcall(run->papr_hcall.nr); 1684 run->papr_hcall.ret = spapr_hypercall(cpu, 1685 run->papr_hcall.nr, 1686 run->papr_hcall.args); 1687 ret = 0; 1688 break; 1689 #endif 1690 case KVM_EXIT_EPR: 1691 trace_kvm_handle_epr(); 1692 run->epr.epr = ldl_phys(cs->as, env->mpic_iack); 1693 ret = 0; 1694 break; 1695 case KVM_EXIT_WATCHDOG: 1696 trace_kvm_handle_watchdog_expiry(); 1697 watchdog_perform_action(); 1698 ret = 0; 1699 break; 1700 1701 case KVM_EXIT_DEBUG: 1702 trace_kvm_handle_debug_exception(); 1703 if (kvm_handle_debug(cpu, run)) { 1704 ret = EXCP_DEBUG; 1705 break; 1706 } 1707 /* re-enter, this exception was guest-internal */ 1708 ret = 0; 1709 break; 1710 1711 #if defined(TARGET_PPC64) 1712 case KVM_EXIT_NMI: 1713 trace_kvm_handle_nmi_exception(); 1714 ret = kvm_handle_nmi(cpu, run); 1715 break; 1716 #endif 1717 1718 default: 1719 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 1720 ret = -1; 1721 break; 1722 } 1723 1724 qemu_mutex_unlock_iothread(); 1725 return ret; 1726 } 1727 1728 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1729 { 1730 CPUState *cs = CPU(cpu); 1731 uint32_t bits = tsr_bits; 1732 struct kvm_one_reg reg = { 1733 .id = KVM_REG_PPC_OR_TSR, 1734 .addr = (uintptr_t) &bits, 1735 }; 1736 1737 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1738 } 1739 1740 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1741 { 1742 1743 CPUState *cs = CPU(cpu); 1744 uint32_t bits = tsr_bits; 1745 struct kvm_one_reg reg = { 1746 .id = KVM_REG_PPC_CLEAR_TSR, 1747 .addr = (uintptr_t) &bits, 1748 }; 1749 1750 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1751 } 1752 1753 int kvmppc_set_tcr(PowerPCCPU *cpu) 1754 { 1755 CPUState *cs = CPU(cpu); 1756 CPUPPCState *env = &cpu->env; 1757 uint32_t tcr = env->spr[SPR_BOOKE_TCR]; 1758 1759 struct kvm_one_reg reg = { 1760 .id = KVM_REG_PPC_TCR, 1761 .addr = (uintptr_t) &tcr, 1762 }; 1763 1764 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1765 } 1766 1767 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) 1768 { 1769 CPUState *cs = CPU(cpu); 1770 int ret; 1771 1772 if (!kvm_enabled()) { 1773 return -1; 1774 } 1775 1776 if (!cap_ppc_watchdog) { 1777 printf("warning: KVM does not support watchdog"); 1778 return -1; 1779 } 1780 1781 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); 1782 if (ret < 0) { 1783 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", 1784 __func__, strerror(-ret)); 1785 return ret; 1786 } 1787 1788 return ret; 1789 } 1790 1791 static int read_cpuinfo(const char *field, char *value, int len) 1792 { 1793 FILE *f; 1794 int ret = -1; 1795 int field_len = strlen(field); 1796 char line[512]; 1797 1798 f = fopen("/proc/cpuinfo", "r"); 1799 if (!f) { 1800 return -1; 1801 } 1802 1803 do { 1804 if (!fgets(line, sizeof(line), f)) { 1805 break; 1806 } 1807 if (!strncmp(line, field, field_len)) { 1808 pstrcpy(value, len, line); 1809 ret = 0; 1810 break; 1811 } 1812 } while (*line); 1813 1814 fclose(f); 1815 1816 return ret; 1817 } 1818 1819 static uint32_t kvmppc_get_tbfreq_procfs(void) 1820 { 1821 char line[512]; 1822 char *ns; 1823 uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND; 1824 uint32_t tbfreq_procfs; 1825 1826 if (read_cpuinfo("timebase", line, sizeof(line))) { 1827 return tbfreq_fallback; 1828 } 1829 1830 ns = strchr(line, ':'); 1831 if (!ns) { 1832 return tbfreq_fallback; 1833 } 1834 1835 tbfreq_procfs = atoi(++ns); 1836 1837 /* 0 is certainly not acceptable by the guest, return fallback value */ 1838 return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback; 1839 } 1840 1841 uint32_t kvmppc_get_tbfreq(void) 1842 { 1843 static uint32_t cached_tbfreq; 1844 1845 if (!cached_tbfreq) { 1846 cached_tbfreq = kvmppc_get_tbfreq_procfs(); 1847 } 1848 1849 return cached_tbfreq; 1850 } 1851 1852 bool kvmppc_get_host_serial(char **value) 1853 { 1854 return g_file_get_contents("/proc/device-tree/system-id", value, NULL, 1855 NULL); 1856 } 1857 1858 bool kvmppc_get_host_model(char **value) 1859 { 1860 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); 1861 } 1862 1863 /* Try to find a device tree node for a CPU with clock-frequency property */ 1864 static int kvmppc_find_cpu_dt(char *buf, int buf_len) 1865 { 1866 struct dirent *dirp; 1867 DIR *dp; 1868 1869 dp = opendir(PROC_DEVTREE_CPU); 1870 if (!dp) { 1871 printf("Can't open directory " PROC_DEVTREE_CPU "\n"); 1872 return -1; 1873 } 1874 1875 buf[0] = '\0'; 1876 while ((dirp = readdir(dp)) != NULL) { 1877 FILE *f; 1878 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, 1879 dirp->d_name); 1880 f = fopen(buf, "r"); 1881 if (f) { 1882 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); 1883 fclose(f); 1884 break; 1885 } 1886 buf[0] = '\0'; 1887 } 1888 closedir(dp); 1889 if (buf[0] == '\0') { 1890 printf("Unknown host!\n"); 1891 return -1; 1892 } 1893 1894 return 0; 1895 } 1896 1897 static uint64_t kvmppc_read_int_dt(const char *filename) 1898 { 1899 union { 1900 uint32_t v32; 1901 uint64_t v64; 1902 } u; 1903 FILE *f; 1904 int len; 1905 1906 f = fopen(filename, "rb"); 1907 if (!f) { 1908 return -1; 1909 } 1910 1911 len = fread(&u, 1, sizeof(u), f); 1912 fclose(f); 1913 switch (len) { 1914 case 4: 1915 /* property is a 32-bit quantity */ 1916 return be32_to_cpu(u.v32); 1917 case 8: 1918 return be64_to_cpu(u.v64); 1919 } 1920 1921 return 0; 1922 } 1923 1924 /* 1925 * Read a CPU node property from the host device tree that's a single 1926 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong 1927 * (can't find or open the property, or doesn't understand the format) 1928 */ 1929 static uint64_t kvmppc_read_int_cpu_dt(const char *propname) 1930 { 1931 char buf[PATH_MAX], *tmp; 1932 uint64_t val; 1933 1934 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { 1935 return -1; 1936 } 1937 1938 tmp = g_strdup_printf("%s/%s", buf, propname); 1939 val = kvmppc_read_int_dt(tmp); 1940 g_free(tmp); 1941 1942 return val; 1943 } 1944 1945 uint64_t kvmppc_get_clockfreq(void) 1946 { 1947 return kvmppc_read_int_cpu_dt("clock-frequency"); 1948 } 1949 1950 static int kvmppc_get_dec_bits(void) 1951 { 1952 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits"); 1953 1954 if (nr_bits > 0) { 1955 return nr_bits; 1956 } 1957 return 0; 1958 } 1959 1960 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) 1961 { 1962 CPUState *cs = env_cpu(env); 1963 1964 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && 1965 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { 1966 return 0; 1967 } 1968 1969 return 1; 1970 } 1971 1972 int kvmppc_get_hasidle(CPUPPCState *env) 1973 { 1974 struct kvm_ppc_pvinfo pvinfo; 1975 1976 if (!kvmppc_get_pvinfo(env, &pvinfo) && 1977 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { 1978 return 1; 1979 } 1980 1981 return 0; 1982 } 1983 1984 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) 1985 { 1986 uint32_t *hc = (uint32_t *)buf; 1987 struct kvm_ppc_pvinfo pvinfo; 1988 1989 if (!kvmppc_get_pvinfo(env, &pvinfo)) { 1990 memcpy(buf, pvinfo.hcall, buf_len); 1991 return 0; 1992 } 1993 1994 /* 1995 * Fallback to always fail hypercalls regardless of endianness: 1996 * 1997 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) 1998 * li r3, -1 1999 * b .+8 (becomes nop in wrong endian) 2000 * bswap32(li r3, -1) 2001 */ 2002 2003 hc[0] = cpu_to_be32(0x08000048); 2004 hc[1] = cpu_to_be32(0x3860ffff); 2005 hc[2] = cpu_to_be32(0x48000008); 2006 hc[3] = cpu_to_be32(bswap32(0x3860ffff)); 2007 2008 return 1; 2009 } 2010 2011 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) 2012 { 2013 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); 2014 } 2015 2016 void kvmppc_enable_logical_ci_hcalls(void) 2017 { 2018 /* 2019 * FIXME: it would be nice if we could detect the cases where 2020 * we're using a device which requires the in kernel 2021 * implementation of these hcalls, but the kernel lacks them and 2022 * produce a warning. 2023 */ 2024 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); 2025 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); 2026 } 2027 2028 void kvmppc_enable_set_mode_hcall(void) 2029 { 2030 kvmppc_enable_hcall(kvm_state, H_SET_MODE); 2031 } 2032 2033 void kvmppc_enable_clear_ref_mod_hcalls(void) 2034 { 2035 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF); 2036 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD); 2037 } 2038 2039 void kvmppc_enable_h_page_init(void) 2040 { 2041 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT); 2042 } 2043 2044 void kvmppc_enable_h_rpt_invalidate(void) 2045 { 2046 kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE); 2047 } 2048 2049 void kvmppc_set_papr(PowerPCCPU *cpu) 2050 { 2051 CPUState *cs = CPU(cpu); 2052 int ret; 2053 2054 if (!kvm_enabled()) { 2055 return; 2056 } 2057 2058 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); 2059 if (ret) { 2060 error_report("This vCPU type or KVM version does not support PAPR"); 2061 exit(1); 2062 } 2063 2064 /* 2065 * Update the capability flag so we sync the right information 2066 * with kvm 2067 */ 2068 cap_papr = 1; 2069 } 2070 2071 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr) 2072 { 2073 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr); 2074 } 2075 2076 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) 2077 { 2078 CPUState *cs = CPU(cpu); 2079 int ret; 2080 2081 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); 2082 if (ret && mpic_proxy) { 2083 error_report("This KVM version does not support EPR"); 2084 exit(1); 2085 } 2086 } 2087 2088 bool kvmppc_get_fwnmi(void) 2089 { 2090 return cap_fwnmi; 2091 } 2092 2093 int kvmppc_set_fwnmi(PowerPCCPU *cpu) 2094 { 2095 CPUState *cs = CPU(cpu); 2096 2097 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0); 2098 } 2099 2100 int kvmppc_smt_threads(void) 2101 { 2102 return cap_ppc_smt ? cap_ppc_smt : 1; 2103 } 2104 2105 int kvmppc_set_smt_threads(int smt) 2106 { 2107 int ret; 2108 2109 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0); 2110 if (!ret) { 2111 cap_ppc_smt = smt; 2112 } 2113 return ret; 2114 } 2115 2116 void kvmppc_error_append_smt_possible_hint(Error *const *errp) 2117 { 2118 int i; 2119 GString *g; 2120 char *s; 2121 2122 assert(kvm_enabled()); 2123 if (cap_ppc_smt_possible) { 2124 g = g_string_new("Available VSMT modes:"); 2125 for (i = 63; i >= 0; i--) { 2126 if ((1UL << i) & cap_ppc_smt_possible) { 2127 g_string_append_printf(g, " %lu", (1UL << i)); 2128 } 2129 } 2130 s = g_string_free(g, false); 2131 error_append_hint(errp, "%s.\n", s); 2132 g_free(s); 2133 } else { 2134 error_append_hint(errp, 2135 "This KVM seems to be too old to support VSMT.\n"); 2136 } 2137 } 2138 2139 2140 #ifdef TARGET_PPC64 2141 uint64_t kvmppc_vrma_limit(unsigned int hash_shift) 2142 { 2143 struct kvm_ppc_smmu_info info; 2144 long rampagesize, best_page_shift; 2145 int i; 2146 2147 /* 2148 * Find the largest hardware supported page size that's less than 2149 * or equal to the (logical) backing page size of guest RAM 2150 */ 2151 kvm_get_smmu_info(&info, &error_fatal); 2152 rampagesize = qemu_minrampagesize(); 2153 best_page_shift = 0; 2154 2155 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { 2156 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; 2157 2158 if (!sps->page_shift) { 2159 continue; 2160 } 2161 2162 if ((sps->page_shift > best_page_shift) 2163 && ((1UL << sps->page_shift) <= rampagesize)) { 2164 best_page_shift = sps->page_shift; 2165 } 2166 } 2167 2168 return 1ULL << (best_page_shift + hash_shift - 7); 2169 } 2170 #endif 2171 2172 bool kvmppc_spapr_use_multitce(void) 2173 { 2174 return cap_spapr_multitce; 2175 } 2176 2177 int kvmppc_spapr_enable_inkernel_multitce(void) 2178 { 2179 int ret; 2180 2181 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2182 H_PUT_TCE_INDIRECT, 1); 2183 if (!ret) { 2184 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2185 H_STUFF_TCE, 1); 2186 } 2187 2188 return ret; 2189 } 2190 2191 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift, 2192 uint64_t bus_offset, uint32_t nb_table, 2193 int *pfd, bool need_vfio) 2194 { 2195 long len; 2196 int fd; 2197 void *table; 2198 2199 /* 2200 * Must set fd to -1 so we don't try to munmap when called for 2201 * destroying the table, which the upper layers -will- do 2202 */ 2203 *pfd = -1; 2204 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) { 2205 return NULL; 2206 } 2207 2208 if (cap_spapr_tce_64) { 2209 struct kvm_create_spapr_tce_64 args = { 2210 .liobn = liobn, 2211 .page_shift = page_shift, 2212 .offset = bus_offset >> page_shift, 2213 .size = nb_table, 2214 .flags = 0 2215 }; 2216 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args); 2217 if (fd < 0) { 2218 fprintf(stderr, 2219 "KVM: Failed to create TCE64 table for liobn 0x%x\n", 2220 liobn); 2221 return NULL; 2222 } 2223 } else if (cap_spapr_tce) { 2224 uint64_t window_size = (uint64_t) nb_table << page_shift; 2225 struct kvm_create_spapr_tce args = { 2226 .liobn = liobn, 2227 .window_size = window_size, 2228 }; 2229 if ((window_size != args.window_size) || bus_offset) { 2230 return NULL; 2231 } 2232 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); 2233 if (fd < 0) { 2234 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", 2235 liobn); 2236 return NULL; 2237 } 2238 } else { 2239 return NULL; 2240 } 2241 2242 len = nb_table * sizeof(uint64_t); 2243 /* FIXME: round this up to page size */ 2244 2245 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 2246 if (table == MAP_FAILED) { 2247 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", 2248 liobn); 2249 close(fd); 2250 return NULL; 2251 } 2252 2253 *pfd = fd; 2254 return table; 2255 } 2256 2257 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) 2258 { 2259 long len; 2260 2261 if (fd < 0) { 2262 return -1; 2263 } 2264 2265 len = nb_table * sizeof(uint64_t); 2266 if ((munmap(table, len) < 0) || 2267 (close(fd) < 0)) { 2268 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", 2269 strerror(errno)); 2270 /* Leak the table */ 2271 } 2272 2273 return 0; 2274 } 2275 2276 int kvmppc_reset_htab(int shift_hint) 2277 { 2278 uint32_t shift = shift_hint; 2279 2280 if (!kvm_enabled()) { 2281 /* Full emulation, tell caller to allocate htab itself */ 2282 return 0; 2283 } 2284 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { 2285 int ret; 2286 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); 2287 if (ret == -ENOTTY) { 2288 /* 2289 * At least some versions of PR KVM advertise the 2290 * capability, but don't implement the ioctl(). Oops. 2291 * Return 0 so that we allocate the htab in qemu, as is 2292 * correct for PR. 2293 */ 2294 return 0; 2295 } else if (ret < 0) { 2296 return ret; 2297 } 2298 return shift; 2299 } 2300 2301 /* 2302 * We have a kernel that predates the htab reset calls. For PR 2303 * KVM, we need to allocate the htab ourselves, for an HV KVM of 2304 * this era, it has allocated a 16MB fixed size hash table 2305 * already. 2306 */ 2307 if (kvmppc_is_pr(kvm_state)) { 2308 /* PR - tell caller to allocate htab */ 2309 return 0; 2310 } else { 2311 /* HV - assume 16MB kernel allocated htab */ 2312 return 24; 2313 } 2314 } 2315 2316 static inline uint32_t mfpvr(void) 2317 { 2318 uint32_t pvr; 2319 2320 asm ("mfpvr %0" 2321 : "=r"(pvr)); 2322 return pvr; 2323 } 2324 2325 static void alter_insns(uint64_t *word, uint64_t flags, bool on) 2326 { 2327 if (on) { 2328 *word |= flags; 2329 } else { 2330 *word &= ~flags; 2331 } 2332 } 2333 2334 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) 2335 { 2336 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); 2337 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); 2338 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); 2339 2340 /* Now fix up the class with information we can query from the host */ 2341 pcc->pvr = mfpvr(); 2342 2343 alter_insns(&pcc->insns_flags, PPC_ALTIVEC, 2344 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC); 2345 alter_insns(&pcc->insns_flags2, PPC2_VSX, 2346 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX); 2347 alter_insns(&pcc->insns_flags2, PPC2_DFP, 2348 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP); 2349 2350 if (dcache_size != -1) { 2351 pcc->l1_dcache_size = dcache_size; 2352 } 2353 2354 if (icache_size != -1) { 2355 pcc->l1_icache_size = icache_size; 2356 } 2357 2358 #if defined(TARGET_PPC64) 2359 pcc->radix_page_info = kvm_get_radix_page_info(); 2360 2361 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) { 2362 /* 2363 * POWER9 DD1 has some bugs which make it not really ISA 3.00 2364 * compliant. More importantly, advertising ISA 3.00 2365 * architected mode may prevent guests from activating 2366 * necessary DD1 workarounds. 2367 */ 2368 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07 2369 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05); 2370 } 2371 #endif /* defined(TARGET_PPC64) */ 2372 } 2373 2374 bool kvmppc_has_cap_epr(void) 2375 { 2376 return cap_epr; 2377 } 2378 2379 bool kvmppc_has_cap_fixup_hcalls(void) 2380 { 2381 return cap_fixup_hcalls; 2382 } 2383 2384 bool kvmppc_has_cap_htm(void) 2385 { 2386 return cap_htm; 2387 } 2388 2389 bool kvmppc_has_cap_mmu_radix(void) 2390 { 2391 return cap_mmu_radix; 2392 } 2393 2394 bool kvmppc_has_cap_mmu_hash_v3(void) 2395 { 2396 return cap_mmu_hash_v3; 2397 } 2398 2399 static bool kvmppc_power8_host(void) 2400 { 2401 bool ret = false; 2402 #ifdef TARGET_PPC64 2403 { 2404 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr(); 2405 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) || 2406 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) || 2407 (base_pvr == CPU_POWERPC_POWER8_BASE); 2408 } 2409 #endif /* TARGET_PPC64 */ 2410 return ret; 2411 } 2412 2413 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c) 2414 { 2415 bool l1d_thread_priv_req = !kvmppc_power8_host(); 2416 2417 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) { 2418 return 2; 2419 } else if ((!l1d_thread_priv_req || 2420 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) && 2421 (c.character & c.character_mask 2422 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) { 2423 return 1; 2424 } 2425 2426 return 0; 2427 } 2428 2429 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c) 2430 { 2431 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) { 2432 return 2; 2433 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) { 2434 return 1; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c) 2441 { 2442 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) && 2443 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) && 2444 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) { 2445 return SPAPR_CAP_FIXED_NA; 2446 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) { 2447 return SPAPR_CAP_WORKAROUND; 2448 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) { 2449 return SPAPR_CAP_FIXED_CCD; 2450 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) { 2451 return SPAPR_CAP_FIXED_IBS; 2452 } 2453 2454 return 0; 2455 } 2456 2457 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c) 2458 { 2459 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) { 2460 return 1; 2461 } 2462 return 0; 2463 } 2464 2465 bool kvmppc_has_cap_xive(void) 2466 { 2467 return cap_xive; 2468 } 2469 2470 static void kvmppc_get_cpu_characteristics(KVMState *s) 2471 { 2472 struct kvm_ppc_cpu_char c; 2473 int ret; 2474 2475 /* Assume broken */ 2476 cap_ppc_safe_cache = 0; 2477 cap_ppc_safe_bounds_check = 0; 2478 cap_ppc_safe_indirect_branch = 0; 2479 2480 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR); 2481 if (!ret) { 2482 return; 2483 } 2484 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c); 2485 if (ret < 0) { 2486 return; 2487 } 2488 2489 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c); 2490 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c); 2491 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c); 2492 cap_ppc_count_cache_flush_assist = 2493 parse_cap_ppc_count_cache_flush_assist(c); 2494 } 2495 2496 int kvmppc_get_cap_safe_cache(void) 2497 { 2498 return cap_ppc_safe_cache; 2499 } 2500 2501 int kvmppc_get_cap_safe_bounds_check(void) 2502 { 2503 return cap_ppc_safe_bounds_check; 2504 } 2505 2506 int kvmppc_get_cap_safe_indirect_branch(void) 2507 { 2508 return cap_ppc_safe_indirect_branch; 2509 } 2510 2511 int kvmppc_get_cap_count_cache_flush_assist(void) 2512 { 2513 return cap_ppc_count_cache_flush_assist; 2514 } 2515 2516 bool kvmppc_has_cap_nested_kvm_hv(void) 2517 { 2518 return !!cap_ppc_nested_kvm_hv; 2519 } 2520 2521 int kvmppc_set_cap_nested_kvm_hv(int enable) 2522 { 2523 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable); 2524 } 2525 2526 bool kvmppc_has_cap_spapr_vfio(void) 2527 { 2528 return cap_spapr_vfio; 2529 } 2530 2531 int kvmppc_get_cap_large_decr(void) 2532 { 2533 return cap_large_decr; 2534 } 2535 2536 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable) 2537 { 2538 CPUState *cs = CPU(cpu); 2539 uint64_t lpcr; 2540 2541 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2542 /* Do we need to modify the LPCR? */ 2543 if (!!(lpcr & LPCR_LD) != !!enable) { 2544 if (enable) { 2545 lpcr |= LPCR_LD; 2546 } else { 2547 lpcr &= ~LPCR_LD; 2548 } 2549 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2550 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2551 2552 if (!!(lpcr & LPCR_LD) != !!enable) { 2553 return -1; 2554 } 2555 } 2556 2557 return 0; 2558 } 2559 2560 int kvmppc_has_cap_rpt_invalidate(void) 2561 { 2562 return cap_rpt_invalidate; 2563 } 2564 2565 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void) 2566 { 2567 uint32_t host_pvr = mfpvr(); 2568 PowerPCCPUClass *pvr_pcc; 2569 2570 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); 2571 if (pvr_pcc == NULL) { 2572 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); 2573 } 2574 2575 return pvr_pcc; 2576 } 2577 2578 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque) 2579 { 2580 MachineClass *mc = MACHINE_CLASS(oc); 2581 2582 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU; 2583 } 2584 2585 static int kvm_ppc_register_host_cpu_type(void) 2586 { 2587 TypeInfo type_info = { 2588 .name = TYPE_HOST_POWERPC_CPU, 2589 .class_init = kvmppc_host_cpu_class_init, 2590 }; 2591 PowerPCCPUClass *pvr_pcc; 2592 ObjectClass *oc; 2593 DeviceClass *dc; 2594 int i; 2595 2596 pvr_pcc = kvm_ppc_get_host_cpu_class(); 2597 if (pvr_pcc == NULL) { 2598 return -1; 2599 } 2600 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); 2601 type_register(&type_info); 2602 /* override TCG default cpu type with 'host' cpu model */ 2603 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE, 2604 false, NULL); 2605 2606 oc = object_class_by_name(type_info.name); 2607 g_assert(oc); 2608 2609 /* 2610 * Update generic CPU family class alias (e.g. on a POWER8NVL host, 2611 * we want "POWER8" to be a "family" alias that points to the current 2612 * host CPU type, too) 2613 */ 2614 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc)); 2615 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) { 2616 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) { 2617 char *suffix; 2618 2619 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc)); 2620 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX); 2621 if (suffix) { 2622 *suffix = 0; 2623 } 2624 break; 2625 } 2626 } 2627 2628 return 0; 2629 } 2630 2631 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) 2632 { 2633 struct kvm_rtas_token_args args = { 2634 .token = token, 2635 }; 2636 2637 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { 2638 return -ENOENT; 2639 } 2640 2641 strncpy(args.name, function, sizeof(args.name) - 1); 2642 2643 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); 2644 } 2645 2646 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp) 2647 { 2648 struct kvm_get_htab_fd s = { 2649 .flags = write ? KVM_GET_HTAB_WRITE : 0, 2650 .start_index = index, 2651 }; 2652 int ret; 2653 2654 if (!cap_htab_fd) { 2655 error_setg(errp, "KVM version doesn't support %s the HPT", 2656 write ? "writing" : "reading"); 2657 return -ENOTSUP; 2658 } 2659 2660 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); 2661 if (ret < 0) { 2662 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s", 2663 write ? "writing" : "reading", write ? "to" : "from", 2664 strerror(errno)); 2665 return -errno; 2666 } 2667 2668 return ret; 2669 } 2670 2671 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) 2672 { 2673 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2674 uint8_t buf[bufsize]; 2675 ssize_t rc; 2676 2677 do { 2678 rc = read(fd, buf, bufsize); 2679 if (rc < 0) { 2680 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", 2681 strerror(errno)); 2682 return rc; 2683 } else if (rc) { 2684 uint8_t *buffer = buf; 2685 ssize_t n = rc; 2686 while (n) { 2687 struct kvm_get_htab_header *head = 2688 (struct kvm_get_htab_header *) buffer; 2689 size_t chunksize = sizeof(*head) + 2690 HASH_PTE_SIZE_64 * head->n_valid; 2691 2692 qemu_put_be32(f, head->index); 2693 qemu_put_be16(f, head->n_valid); 2694 qemu_put_be16(f, head->n_invalid); 2695 qemu_put_buffer(f, (void *)(head + 1), 2696 HASH_PTE_SIZE_64 * head->n_valid); 2697 2698 buffer += chunksize; 2699 n -= chunksize; 2700 } 2701 } 2702 } while ((rc != 0) 2703 && ((max_ns < 0) || 2704 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); 2705 2706 return (rc == 0) ? 1 : 0; 2707 } 2708 2709 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, 2710 uint16_t n_valid, uint16_t n_invalid, Error **errp) 2711 { 2712 struct kvm_get_htab_header *buf; 2713 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64; 2714 ssize_t rc; 2715 2716 buf = alloca(chunksize); 2717 buf->index = index; 2718 buf->n_valid = n_valid; 2719 buf->n_invalid = n_invalid; 2720 2721 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid); 2722 2723 rc = write(fd, buf, chunksize); 2724 if (rc < 0) { 2725 error_setg_errno(errp, errno, "Error writing the KVM hash table"); 2726 return -errno; 2727 } 2728 if (rc != chunksize) { 2729 /* We should never get a short write on a single chunk */ 2730 error_setg(errp, "Short write while restoring the KVM hash table"); 2731 return -ENOSPC; 2732 } 2733 return 0; 2734 } 2735 2736 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 2737 { 2738 return true; 2739 } 2740 2741 void kvm_arch_init_irq_routing(KVMState *s) 2742 { 2743 } 2744 2745 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n) 2746 { 2747 int fd, rc; 2748 int i; 2749 2750 fd = kvmppc_get_htab_fd(false, ptex, &error_abort); 2751 2752 i = 0; 2753 while (i < n) { 2754 struct kvm_get_htab_header *hdr; 2755 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP; 2756 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64]; 2757 2758 rc = read(fd, buf, sizeof(buf)); 2759 if (rc < 0) { 2760 hw_error("kvmppc_read_hptes: Unable to read HPTEs"); 2761 } 2762 2763 hdr = (struct kvm_get_htab_header *)buf; 2764 while ((i < n) && ((char *)hdr < (buf + rc))) { 2765 int invalid = hdr->n_invalid, valid = hdr->n_valid; 2766 2767 if (hdr->index != (ptex + i)) { 2768 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32 2769 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i); 2770 } 2771 2772 if (n - i < valid) { 2773 valid = n - i; 2774 } 2775 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid); 2776 i += valid; 2777 2778 if ((n - i) < invalid) { 2779 invalid = n - i; 2780 } 2781 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64); 2782 i += invalid; 2783 2784 hdr = (struct kvm_get_htab_header *) 2785 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid); 2786 } 2787 } 2788 2789 close(fd); 2790 } 2791 2792 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1) 2793 { 2794 int fd, rc; 2795 struct { 2796 struct kvm_get_htab_header hdr; 2797 uint64_t pte0; 2798 uint64_t pte1; 2799 } buf; 2800 2801 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort); 2802 2803 buf.hdr.n_valid = 1; 2804 buf.hdr.n_invalid = 0; 2805 buf.hdr.index = ptex; 2806 buf.pte0 = cpu_to_be64(pte0); 2807 buf.pte1 = cpu_to_be64(pte1); 2808 2809 rc = write(fd, &buf, sizeof(buf)); 2810 if (rc != sizeof(buf)) { 2811 hw_error("kvmppc_write_hpte: Unable to update KVM HPT"); 2812 } 2813 close(fd); 2814 } 2815 2816 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2817 uint64_t address, uint32_t data, PCIDevice *dev) 2818 { 2819 return 0; 2820 } 2821 2822 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2823 int vector, PCIDevice *dev) 2824 { 2825 return 0; 2826 } 2827 2828 int kvm_arch_release_virq_post(int virq) 2829 { 2830 return 0; 2831 } 2832 2833 int kvm_arch_msi_data_to_gsi(uint32_t data) 2834 { 2835 return data & 0xffff; 2836 } 2837 2838 #if defined(TARGET_PPC64) 2839 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run) 2840 { 2841 uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK; 2842 2843 cpu_synchronize_state(CPU(cpu)); 2844 2845 spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV); 2846 2847 return 0; 2848 } 2849 #endif 2850 2851 int kvmppc_enable_hwrng(void) 2852 { 2853 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) { 2854 return -1; 2855 } 2856 2857 return kvmppc_enable_hcall(kvm_state, H_RANDOM); 2858 } 2859 2860 void kvmppc_check_papr_resize_hpt(Error **errp) 2861 { 2862 if (!kvm_enabled()) { 2863 return; /* No KVM, we're good */ 2864 } 2865 2866 if (cap_resize_hpt) { 2867 return; /* Kernel has explicit support, we're good */ 2868 } 2869 2870 /* Otherwise fallback on looking for PR KVM */ 2871 if (kvmppc_is_pr(kvm_state)) { 2872 return; 2873 } 2874 2875 error_setg(errp, 2876 "Hash page table resizing not available with this KVM version"); 2877 } 2878 2879 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift) 2880 { 2881 CPUState *cs = CPU(cpu); 2882 struct kvm_ppc_resize_hpt rhpt = { 2883 .flags = flags, 2884 .shift = shift, 2885 }; 2886 2887 if (!cap_resize_hpt) { 2888 return -ENOSYS; 2889 } 2890 2891 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt); 2892 } 2893 2894 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift) 2895 { 2896 CPUState *cs = CPU(cpu); 2897 struct kvm_ppc_resize_hpt rhpt = { 2898 .flags = flags, 2899 .shift = shift, 2900 }; 2901 2902 if (!cap_resize_hpt) { 2903 return -ENOSYS; 2904 } 2905 2906 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt); 2907 } 2908 2909 /* 2910 * This is a helper function to detect a post migration scenario 2911 * in which a guest, running as KVM-HV, freezes in cpu_post_load because 2912 * the guest kernel can't handle a PVR value other than the actual host 2913 * PVR in KVM_SET_SREGS, even if pvr_match() returns true. 2914 * 2915 * If we don't have cap_ppc_pvr_compat and we're not running in PR 2916 * (so, we're HV), return true. The workaround itself is done in 2917 * cpu_post_load. 2918 * 2919 * The order here is important: we'll only check for KVM PR as a 2920 * fallback if the guest kernel can't handle the situation itself. 2921 * We need to avoid as much as possible querying the running KVM type 2922 * in QEMU level. 2923 */ 2924 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu) 2925 { 2926 CPUState *cs = CPU(cpu); 2927 2928 if (!kvm_enabled()) { 2929 return false; 2930 } 2931 2932 if (cap_ppc_pvr_compat) { 2933 return false; 2934 } 2935 2936 return !kvmppc_is_pr(cs->kvm_state); 2937 } 2938 2939 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online) 2940 { 2941 CPUState *cs = CPU(cpu); 2942 2943 if (kvm_enabled()) { 2944 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online); 2945 } 2946 } 2947 2948 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset) 2949 { 2950 CPUState *cs = CPU(cpu); 2951 2952 if (kvm_enabled()) { 2953 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset); 2954 } 2955 } 2956 2957 bool kvm_arch_cpu_check_are_resettable(void) 2958 { 2959 return true; 2960 } 2961