xref: /openbmc/qemu/target/ppc/kvm.c (revision 9f22020b)
1 /*
2  * PowerPC implementation of KVM hooks
3  *
4  * Copyright IBM Corp. 2007
5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
6  *
7  * Authors:
8  *  Jerone Young <jyoung5@us.ibm.com>
9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10  *  Hollis Blanchard <hollisb@us.ibm.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
13  * See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21 
22 #include <linux/kvm.h>
23 
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "cpu.h"
27 #include "cpu-models.h"
28 #include "qemu/timer.h"
29 #include "sysemu/hw_accel.h"
30 #include "kvm_ppc.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "mmu-hash64.h"
34 
35 #include "hw/sysbus.h"
36 #include "hw/ppc/spapr.h"
37 #include "hw/ppc/spapr_cpu_core.h"
38 #include "hw/hw.h"
39 #include "hw/ppc/ppc.h"
40 #include "migration/qemu-file-types.h"
41 #include "sysemu/watchdog.h"
42 #include "trace.h"
43 #include "exec/gdbstub.h"
44 #include "exec/memattrs.h"
45 #include "exec/ram_addr.h"
46 #include "sysemu/hostmem.h"
47 #include "qemu/cutils.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/mmap-alloc.h"
50 #include "elf.h"
51 #include "sysemu/kvm_int.h"
52 
53 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
54 
55 #define DEBUG_RETURN_GUEST 0
56 #define DEBUG_RETURN_GDB   1
57 
58 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
59     KVM_CAP_LAST_INFO
60 };
61 
62 static int cap_interrupt_unset;
63 static int cap_segstate;
64 static int cap_booke_sregs;
65 static int cap_ppc_smt;
66 static int cap_ppc_smt_possible;
67 static int cap_spapr_tce;
68 static int cap_spapr_tce_64;
69 static int cap_spapr_multitce;
70 static int cap_spapr_vfio;
71 static int cap_hior;
72 static int cap_one_reg;
73 static int cap_epr;
74 static int cap_ppc_watchdog;
75 static int cap_papr;
76 static int cap_htab_fd;
77 static int cap_fixup_hcalls;
78 static int cap_htm;             /* Hardware transactional memory support */
79 static int cap_mmu_radix;
80 static int cap_mmu_hash_v3;
81 static int cap_xive;
82 static int cap_resize_hpt;
83 static int cap_ppc_pvr_compat;
84 static int cap_ppc_safe_cache;
85 static int cap_ppc_safe_bounds_check;
86 static int cap_ppc_safe_indirect_branch;
87 static int cap_ppc_count_cache_flush_assist;
88 static int cap_ppc_nested_kvm_hv;
89 static int cap_large_decr;
90 static int cap_fwnmi;
91 static int cap_rpt_invalidate;
92 
93 static uint32_t debug_inst_opcode;
94 
95 /*
96  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
97  * should only be used for fallback tests - generally we should use
98  * explicit capabilities for the features we want, rather than
99  * assuming what is/isn't available depending on the KVM variant.
100  */
101 static bool kvmppc_is_pr(KVMState *ks)
102 {
103     /* Assume KVM-PR if the GET_PVINFO capability is available */
104     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
105 }
106 
107 static int kvm_ppc_register_host_cpu_type(void);
108 static void kvmppc_get_cpu_characteristics(KVMState *s);
109 static int kvmppc_get_dec_bits(void);
110 
111 int kvm_arch_init(MachineState *ms, KVMState *s)
112 {
113     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
114     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
115     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
116     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
117     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
118     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
119     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
120     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
121     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
122     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
123     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
124     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
125     /*
126      * Note: we don't set cap_papr here, because this capability is
127      * only activated after this by kvmppc_set_papr()
128      */
129     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
130     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
131     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
132     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
133     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
134     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
135     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
136     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
137     kvmppc_get_cpu_characteristics(s);
138     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
139     cap_large_decr = kvmppc_get_dec_bits();
140     cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI);
141     /*
142      * Note: setting it to false because there is not such capability
143      * in KVM at this moment.
144      *
145      * TODO: call kvm_vm_check_extension() with the right capability
146      * after the kernel starts implementing it.
147      */
148     cap_ppc_pvr_compat = false;
149 
150     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
151         error_report("KVM: Host kernel doesn't have level irq capability");
152         exit(1);
153     }
154 
155     cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE);
156     kvm_ppc_register_host_cpu_type();
157 
158     return 0;
159 }
160 
161 int kvm_arch_irqchip_create(KVMState *s)
162 {
163     return 0;
164 }
165 
166 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
167 {
168     CPUPPCState *cenv = &cpu->env;
169     CPUState *cs = CPU(cpu);
170     struct kvm_sregs sregs;
171     int ret;
172 
173     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
174         /*
175          * What we're really trying to say is "if we're on BookE, we
176          * use the native PVR for now". This is the only sane way to
177          * check it though, so we potentially confuse users that they
178          * can run BookE guests on BookS. Let's hope nobody dares
179          * enough :)
180          */
181         return 0;
182     } else {
183         if (!cap_segstate) {
184             fprintf(stderr, "kvm error: missing PVR setting capability\n");
185             return -ENOSYS;
186         }
187     }
188 
189     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
190     if (ret) {
191         return ret;
192     }
193 
194     sregs.pvr = cenv->spr[SPR_PVR];
195     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
196 }
197 
198 /* Set up a shared TLB array with KVM */
199 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
200 {
201     CPUPPCState *env = &cpu->env;
202     CPUState *cs = CPU(cpu);
203     struct kvm_book3e_206_tlb_params params = {};
204     struct kvm_config_tlb cfg = {};
205     unsigned int entries = 0;
206     int ret, i;
207 
208     if (!kvm_enabled() ||
209         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
210         return 0;
211     }
212 
213     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
214 
215     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
216         params.tlb_sizes[i] = booke206_tlb_size(env, i);
217         params.tlb_ways[i] = booke206_tlb_ways(env, i);
218         entries += params.tlb_sizes[i];
219     }
220 
221     assert(entries == env->nb_tlb);
222     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
223 
224     env->tlb_dirty = true;
225 
226     cfg.array = (uintptr_t)env->tlb.tlbm;
227     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
228     cfg.params = (uintptr_t)&params;
229     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
230 
231     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
232     if (ret < 0) {
233         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
234                 __func__, strerror(-ret));
235         return ret;
236     }
237 
238     env->kvm_sw_tlb = true;
239     return 0;
240 }
241 
242 
243 #if defined(TARGET_PPC64)
244 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
245 {
246     int ret;
247 
248     assert(kvm_state != NULL);
249 
250     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
251         error_setg(errp, "KVM doesn't expose the MMU features it supports");
252         error_append_hint(errp, "Consider switching to a newer KVM\n");
253         return;
254     }
255 
256     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
257     if (ret == 0) {
258         return;
259     }
260 
261     error_setg_errno(errp, -ret,
262                      "KVM failed to provide the MMU features it supports");
263 }
264 
265 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
266 {
267     KVMState *s = KVM_STATE(current_accel());
268     struct ppc_radix_page_info *radix_page_info;
269     struct kvm_ppc_rmmu_info rmmu_info = { };
270     int i;
271 
272     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
273         return NULL;
274     }
275     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
276         return NULL;
277     }
278     radix_page_info = g_malloc0(sizeof(*radix_page_info));
279     radix_page_info->count = 0;
280     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
281         if (rmmu_info.ap_encodings[i]) {
282             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
283             radix_page_info->count++;
284         }
285     }
286     return radix_page_info;
287 }
288 
289 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
290                                      bool radix, bool gtse,
291                                      uint64_t proc_tbl)
292 {
293     CPUState *cs = CPU(cpu);
294     int ret;
295     uint64_t flags = 0;
296     struct kvm_ppc_mmuv3_cfg cfg = {
297         .process_table = proc_tbl,
298     };
299 
300     if (radix) {
301         flags |= KVM_PPC_MMUV3_RADIX;
302     }
303     if (gtse) {
304         flags |= KVM_PPC_MMUV3_GTSE;
305     }
306     cfg.flags = flags;
307     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
308     switch (ret) {
309     case 0:
310         return H_SUCCESS;
311     case -EINVAL:
312         return H_PARAMETER;
313     case -ENODEV:
314         return H_NOT_AVAILABLE;
315     default:
316         return H_HARDWARE;
317     }
318 }
319 
320 bool kvmppc_hpt_needs_host_contiguous_pages(void)
321 {
322     static struct kvm_ppc_smmu_info smmu_info;
323 
324     if (!kvm_enabled()) {
325         return false;
326     }
327 
328     kvm_get_smmu_info(&smmu_info, &error_fatal);
329     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
330 }
331 
332 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
333 {
334     struct kvm_ppc_smmu_info smmu_info;
335     int iq, ik, jq, jk;
336     Error *local_err = NULL;
337 
338     /* For now, we only have anything to check on hash64 MMUs */
339     if (!cpu->hash64_opts || !kvm_enabled()) {
340         return;
341     }
342 
343     kvm_get_smmu_info(&smmu_info, &local_err);
344     if (local_err) {
345         error_propagate(errp, local_err);
346         return;
347     }
348 
349     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
350         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
351         error_setg(errp,
352                    "KVM does not support 1TiB segments which guest expects");
353         return;
354     }
355 
356     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
357         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
358                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
359         return;
360     }
361 
362     /*
363      * Verify that every pagesize supported by the cpu model is
364      * supported by KVM with the same encodings
365      */
366     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
367         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
368         struct kvm_ppc_one_seg_page_size *ksps;
369 
370         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
371             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
372                 break;
373             }
374         }
375         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
376             error_setg(errp, "KVM doesn't support for base page shift %u",
377                        qsps->page_shift);
378             return;
379         }
380 
381         ksps = &smmu_info.sps[ik];
382         if (ksps->slb_enc != qsps->slb_enc) {
383             error_setg(errp,
384 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
385                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
386             return;
387         }
388 
389         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
390             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
391                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
392                     break;
393                 }
394             }
395 
396             if (jk >= ARRAY_SIZE(ksps->enc)) {
397                 error_setg(errp, "KVM doesn't support page shift %u/%u",
398                            qsps->enc[jq].page_shift, qsps->page_shift);
399                 return;
400             }
401             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
402                 error_setg(errp,
403 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
404                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
405                            qsps->page_shift, qsps->enc[jq].pte_enc);
406                 return;
407             }
408         }
409     }
410 
411     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
412         /*
413          * Mostly what guest pagesizes we can use are related to the
414          * host pages used to map guest RAM, which is handled in the
415          * platform code. Cache-Inhibited largepages (64k) however are
416          * used for I/O, so if they're mapped to the host at all it
417          * will be a normal mapping, not a special hugepage one used
418          * for RAM.
419          */
420         if (qemu_real_host_page_size() < 0x10000) {
421             error_setg(errp,
422                        "KVM can't supply 64kiB CI pages, which guest expects");
423         }
424     }
425 }
426 #endif /* !defined (TARGET_PPC64) */
427 
428 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
429 {
430     return POWERPC_CPU(cpu)->vcpu_id;
431 }
432 
433 /*
434  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
435  * only 1 watchpoint, so array size of 4 is sufficient for now.
436  */
437 #define MAX_HW_BKPTS 4
438 
439 static struct HWBreakpoint {
440     target_ulong addr;
441     int type;
442 } hw_debug_points[MAX_HW_BKPTS];
443 
444 static CPUWatchpoint hw_watchpoint;
445 
446 /* Default there is no breakpoint and watchpoint supported */
447 static int max_hw_breakpoint;
448 static int max_hw_watchpoint;
449 static int nb_hw_breakpoint;
450 static int nb_hw_watchpoint;
451 
452 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
453 {
454     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
455         max_hw_breakpoint = 2;
456         max_hw_watchpoint = 2;
457     }
458 
459     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
460         fprintf(stderr, "Error initializing h/w breakpoints\n");
461         return;
462     }
463 }
464 
465 int kvm_arch_init_vcpu(CPUState *cs)
466 {
467     PowerPCCPU *cpu = POWERPC_CPU(cs);
468     CPUPPCState *cenv = &cpu->env;
469     int ret;
470 
471     /* Synchronize sregs with kvm */
472     ret = kvm_arch_sync_sregs(cpu);
473     if (ret) {
474         if (ret == -EINVAL) {
475             error_report("Register sync failed... If you're using kvm-hv.ko,"
476                          " only \"-cpu host\" is possible");
477         }
478         return ret;
479     }
480 
481     switch (cenv->mmu_model) {
482     case POWERPC_MMU_BOOKE206:
483         /* This target supports access to KVM's guest TLB */
484         ret = kvm_booke206_tlb_init(cpu);
485         break;
486     case POWERPC_MMU_2_07:
487         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
488             /*
489              * KVM-HV has transactional memory on POWER8 also without
490              * the KVM_CAP_PPC_HTM extension, so enable it here
491              * instead as long as it's available to userspace on the
492              * host.
493              */
494             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
495                 cap_htm = true;
496             }
497         }
498         break;
499     default:
500         break;
501     }
502 
503     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
504     kvmppc_hw_debug_points_init(cenv);
505 
506     return ret;
507 }
508 
509 int kvm_arch_destroy_vcpu(CPUState *cs)
510 {
511     return 0;
512 }
513 
514 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
515 {
516     CPUPPCState *env = &cpu->env;
517     CPUState *cs = CPU(cpu);
518     struct kvm_dirty_tlb dirty_tlb;
519     unsigned char *bitmap;
520     int ret;
521 
522     if (!env->kvm_sw_tlb) {
523         return;
524     }
525 
526     bitmap = g_malloc((env->nb_tlb + 7) / 8);
527     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
528 
529     dirty_tlb.bitmap = (uintptr_t)bitmap;
530     dirty_tlb.num_dirty = env->nb_tlb;
531 
532     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
533     if (ret) {
534         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
535                 __func__, strerror(-ret));
536     }
537 
538     g_free(bitmap);
539 }
540 
541 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
542 {
543     PowerPCCPU *cpu = POWERPC_CPU(cs);
544     CPUPPCState *env = &cpu->env;
545     /* Init 'val' to avoid "uninitialised value" Valgrind warnings */
546     union {
547         uint32_t u32;
548         uint64_t u64;
549     } val = { };
550     struct kvm_one_reg reg = {
551         .id = id,
552         .addr = (uintptr_t) &val,
553     };
554     int ret;
555 
556     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
557     if (ret != 0) {
558         trace_kvm_failed_spr_get(spr, strerror(errno));
559     } else {
560         switch (id & KVM_REG_SIZE_MASK) {
561         case KVM_REG_SIZE_U32:
562             env->spr[spr] = val.u32;
563             break;
564 
565         case KVM_REG_SIZE_U64:
566             env->spr[spr] = val.u64;
567             break;
568 
569         default:
570             /* Don't handle this size yet */
571             abort();
572         }
573     }
574 }
575 
576 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
577 {
578     PowerPCCPU *cpu = POWERPC_CPU(cs);
579     CPUPPCState *env = &cpu->env;
580     union {
581         uint32_t u32;
582         uint64_t u64;
583     } val;
584     struct kvm_one_reg reg = {
585         .id = id,
586         .addr = (uintptr_t) &val,
587     };
588     int ret;
589 
590     switch (id & KVM_REG_SIZE_MASK) {
591     case KVM_REG_SIZE_U32:
592         val.u32 = env->spr[spr];
593         break;
594 
595     case KVM_REG_SIZE_U64:
596         val.u64 = env->spr[spr];
597         break;
598 
599     default:
600         /* Don't handle this size yet */
601         abort();
602     }
603 
604     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
605     if (ret != 0) {
606         trace_kvm_failed_spr_set(spr, strerror(errno));
607     }
608 }
609 
610 static int kvm_put_fp(CPUState *cs)
611 {
612     PowerPCCPU *cpu = POWERPC_CPU(cs);
613     CPUPPCState *env = &cpu->env;
614     struct kvm_one_reg reg;
615     int i;
616     int ret;
617 
618     if (env->insns_flags & PPC_FLOAT) {
619         uint64_t fpscr = env->fpscr;
620         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
621 
622         reg.id = KVM_REG_PPC_FPSCR;
623         reg.addr = (uintptr_t)&fpscr;
624         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
625         if (ret < 0) {
626             trace_kvm_failed_fpscr_set(strerror(errno));
627             return ret;
628         }
629 
630         for (i = 0; i < 32; i++) {
631             uint64_t vsr[2];
632             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
633             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
634 
635 #if HOST_BIG_ENDIAN
636             vsr[0] = float64_val(*fpr);
637             vsr[1] = *vsrl;
638 #else
639             vsr[0] = *vsrl;
640             vsr[1] = float64_val(*fpr);
641 #endif
642             reg.addr = (uintptr_t) &vsr;
643             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
644 
645             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
646             if (ret < 0) {
647                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
648                                         strerror(errno));
649                 return ret;
650             }
651         }
652     }
653 
654     if (env->insns_flags & PPC_ALTIVEC) {
655         reg.id = KVM_REG_PPC_VSCR;
656         reg.addr = (uintptr_t)&env->vscr;
657         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
658         if (ret < 0) {
659             trace_kvm_failed_vscr_set(strerror(errno));
660             return ret;
661         }
662 
663         for (i = 0; i < 32; i++) {
664             reg.id = KVM_REG_PPC_VR(i);
665             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
666             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
667             if (ret < 0) {
668                 trace_kvm_failed_vr_set(i, strerror(errno));
669                 return ret;
670             }
671         }
672     }
673 
674     return 0;
675 }
676 
677 static int kvm_get_fp(CPUState *cs)
678 {
679     PowerPCCPU *cpu = POWERPC_CPU(cs);
680     CPUPPCState *env = &cpu->env;
681     struct kvm_one_reg reg;
682     int i;
683     int ret;
684 
685     if (env->insns_flags & PPC_FLOAT) {
686         uint64_t fpscr;
687         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
688 
689         reg.id = KVM_REG_PPC_FPSCR;
690         reg.addr = (uintptr_t)&fpscr;
691         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
692         if (ret < 0) {
693             trace_kvm_failed_fpscr_get(strerror(errno));
694             return ret;
695         } else {
696             env->fpscr = fpscr;
697         }
698 
699         for (i = 0; i < 32; i++) {
700             uint64_t vsr[2];
701             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
702             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
703 
704             reg.addr = (uintptr_t) &vsr;
705             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
706 
707             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
708             if (ret < 0) {
709                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
710                                         strerror(errno));
711                 return ret;
712             } else {
713 #if HOST_BIG_ENDIAN
714                 *fpr = vsr[0];
715                 if (vsx) {
716                     *vsrl = vsr[1];
717                 }
718 #else
719                 *fpr = vsr[1];
720                 if (vsx) {
721                     *vsrl = vsr[0];
722                 }
723 #endif
724             }
725         }
726     }
727 
728     if (env->insns_flags & PPC_ALTIVEC) {
729         reg.id = KVM_REG_PPC_VSCR;
730         reg.addr = (uintptr_t)&env->vscr;
731         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
732         if (ret < 0) {
733             trace_kvm_failed_vscr_get(strerror(errno));
734             return ret;
735         }
736 
737         for (i = 0; i < 32; i++) {
738             reg.id = KVM_REG_PPC_VR(i);
739             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
740             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
741             if (ret < 0) {
742                 trace_kvm_failed_vr_get(i, strerror(errno));
743                 return ret;
744             }
745         }
746     }
747 
748     return 0;
749 }
750 
751 #if defined(TARGET_PPC64)
752 static int kvm_get_vpa(CPUState *cs)
753 {
754     PowerPCCPU *cpu = POWERPC_CPU(cs);
755     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
756     struct kvm_one_reg reg;
757     int ret;
758 
759     reg.id = KVM_REG_PPC_VPA_ADDR;
760     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
761     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
762     if (ret < 0) {
763         trace_kvm_failed_vpa_addr_get(strerror(errno));
764         return ret;
765     }
766 
767     assert((uintptr_t)&spapr_cpu->slb_shadow_size
768            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
769     reg.id = KVM_REG_PPC_VPA_SLB;
770     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
771     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
772     if (ret < 0) {
773         trace_kvm_failed_slb_get(strerror(errno));
774         return ret;
775     }
776 
777     assert((uintptr_t)&spapr_cpu->dtl_size
778            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
779     reg.id = KVM_REG_PPC_VPA_DTL;
780     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
781     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
782     if (ret < 0) {
783         trace_kvm_failed_dtl_get(strerror(errno));
784         return ret;
785     }
786 
787     return 0;
788 }
789 
790 static int kvm_put_vpa(CPUState *cs)
791 {
792     PowerPCCPU *cpu = POWERPC_CPU(cs);
793     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
794     struct kvm_one_reg reg;
795     int ret;
796 
797     /*
798      * SLB shadow or DTL can't be registered unless a master VPA is
799      * registered.  That means when restoring state, if a VPA *is*
800      * registered, we need to set that up first.  If not, we need to
801      * deregister the others before deregistering the master VPA
802      */
803     assert(spapr_cpu->vpa_addr
804            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
805 
806     if (spapr_cpu->vpa_addr) {
807         reg.id = KVM_REG_PPC_VPA_ADDR;
808         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
809         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
810         if (ret < 0) {
811             trace_kvm_failed_vpa_addr_set(strerror(errno));
812             return ret;
813         }
814     }
815 
816     assert((uintptr_t)&spapr_cpu->slb_shadow_size
817            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
818     reg.id = KVM_REG_PPC_VPA_SLB;
819     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
820     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
821     if (ret < 0) {
822         trace_kvm_failed_slb_set(strerror(errno));
823         return ret;
824     }
825 
826     assert((uintptr_t)&spapr_cpu->dtl_size
827            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
828     reg.id = KVM_REG_PPC_VPA_DTL;
829     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
830     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
831     if (ret < 0) {
832         trace_kvm_failed_dtl_set(strerror(errno));
833         return ret;
834     }
835 
836     if (!spapr_cpu->vpa_addr) {
837         reg.id = KVM_REG_PPC_VPA_ADDR;
838         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
839         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
840         if (ret < 0) {
841             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
842             return ret;
843         }
844     }
845 
846     return 0;
847 }
848 #endif /* TARGET_PPC64 */
849 
850 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
851 {
852     CPUPPCState *env = &cpu->env;
853     struct kvm_sregs sregs = { };
854     int i;
855 
856     sregs.pvr = env->spr[SPR_PVR];
857 
858     if (cpu->vhyp) {
859         PPCVirtualHypervisorClass *vhc =
860             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
861         sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
862     } else {
863         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
864     }
865 
866     /* Sync SLB */
867 #ifdef TARGET_PPC64
868     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
869         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
870         if (env->slb[i].esid & SLB_ESID_V) {
871             sregs.u.s.ppc64.slb[i].slbe |= i;
872         }
873         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
874     }
875 #endif
876 
877     /* Sync SRs */
878     for (i = 0; i < 16; i++) {
879         sregs.u.s.ppc32.sr[i] = env->sr[i];
880     }
881 
882     /* Sync BATs */
883     for (i = 0; i < 8; i++) {
884         /* Beware. We have to swap upper and lower bits here */
885         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
886             | env->DBAT[1][i];
887         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
888             | env->IBAT[1][i];
889     }
890 
891     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
892 }
893 
894 int kvm_arch_put_registers(CPUState *cs, int level)
895 {
896     PowerPCCPU *cpu = POWERPC_CPU(cs);
897     CPUPPCState *env = &cpu->env;
898     struct kvm_regs regs;
899     int ret;
900     int i;
901 
902     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
903     if (ret < 0) {
904         return ret;
905     }
906 
907     regs.ctr = env->ctr;
908     regs.lr  = env->lr;
909     regs.xer = cpu_read_xer(env);
910     regs.msr = env->msr;
911     regs.pc = env->nip;
912 
913     regs.srr0 = env->spr[SPR_SRR0];
914     regs.srr1 = env->spr[SPR_SRR1];
915 
916     regs.sprg0 = env->spr[SPR_SPRG0];
917     regs.sprg1 = env->spr[SPR_SPRG1];
918     regs.sprg2 = env->spr[SPR_SPRG2];
919     regs.sprg3 = env->spr[SPR_SPRG3];
920     regs.sprg4 = env->spr[SPR_SPRG4];
921     regs.sprg5 = env->spr[SPR_SPRG5];
922     regs.sprg6 = env->spr[SPR_SPRG6];
923     regs.sprg7 = env->spr[SPR_SPRG7];
924 
925     regs.pid = env->spr[SPR_BOOKE_PID];
926 
927     for (i = 0; i < 32; i++) {
928         regs.gpr[i] = env->gpr[i];
929     }
930 
931     regs.cr = 0;
932     for (i = 0; i < 8; i++) {
933         regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
934     }
935 
936     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
937     if (ret < 0) {
938         return ret;
939     }
940 
941     kvm_put_fp(cs);
942 
943     if (env->tlb_dirty) {
944         kvm_sw_tlb_put(cpu);
945         env->tlb_dirty = false;
946     }
947 
948     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
949         ret = kvmppc_put_books_sregs(cpu);
950         if (ret < 0) {
951             return ret;
952         }
953     }
954 
955     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
956         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
957     }
958 
959     if (cap_one_reg) {
960         int i;
961 
962         /*
963          * We deliberately ignore errors here, for kernels which have
964          * the ONE_REG calls, but don't support the specific
965          * registers, there's a reasonable chance things will still
966          * work, at least until we try to migrate.
967          */
968         for (i = 0; i < 1024; i++) {
969             uint64_t id = env->spr_cb[i].one_reg_id;
970 
971             if (id != 0) {
972                 kvm_put_one_spr(cs, id, i);
973             }
974         }
975 
976 #ifdef TARGET_PPC64
977         if (FIELD_EX64(env->msr, MSR, TS)) {
978             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
979                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
980             }
981             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
982                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
983             }
984             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
985             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
986             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
987             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
988             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
989             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
990             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
991             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
992             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
993             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
994         }
995 
996         if (cap_papr) {
997             if (kvm_put_vpa(cs) < 0) {
998                 trace_kvm_failed_put_vpa();
999             }
1000         }
1001 
1002         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1003 
1004         if (level > KVM_PUT_RUNTIME_STATE) {
1005             kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1006         }
1007 #endif /* TARGET_PPC64 */
1008     }
1009 
1010     return ret;
1011 }
1012 
1013 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1014 {
1015      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1016 }
1017 
1018 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1019 {
1020     CPUPPCState *env = &cpu->env;
1021     struct kvm_sregs sregs;
1022     int ret;
1023 
1024     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1025     if (ret < 0) {
1026         return ret;
1027     }
1028 
1029     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1030         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1031         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1032         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1033         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1034         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1035         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1036         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1037         env->spr[SPR_DECR] = sregs.u.e.dec;
1038         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1039         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1040         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1041     }
1042 
1043     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1044         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1045         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1046         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1047         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1048         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1049     }
1050 
1051     if (sregs.u.e.features & KVM_SREGS_E_64) {
1052         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1053     }
1054 
1055     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1056         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1057     }
1058 
1059     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1060         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1061         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1062         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1063         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1064         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1065         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1066         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1067         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1068         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1069         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1070         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1071         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1072         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1073         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1074         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1075         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1076         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1077         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1078         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1079         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1080         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1081         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1082         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1083         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1084         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1085         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1086         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1087         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1088         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1089         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1090         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1091         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1092 
1093         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1094             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1095             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1096             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1097             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1098             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1099             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1100         }
1101 
1102         if (sregs.u.e.features & KVM_SREGS_E_PM) {
1103             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1104             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1105         }
1106 
1107         if (sregs.u.e.features & KVM_SREGS_E_PC) {
1108             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1109             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1110             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1111             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1112         }
1113     }
1114 
1115     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1116         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1117         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1118         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1119         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1120         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1121         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1122         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1123         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1124         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1125         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1126     }
1127 
1128     if (sregs.u.e.features & KVM_SREGS_EXP) {
1129         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1130     }
1131 
1132     if (sregs.u.e.features & KVM_SREGS_E_PD) {
1133         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1134         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1135     }
1136 
1137     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1138         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1139         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1140         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1141 
1142         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1143             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1144             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1145         }
1146     }
1147 
1148     return 0;
1149 }
1150 
1151 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1152 {
1153     CPUPPCState *env = &cpu->env;
1154     struct kvm_sregs sregs;
1155     int ret;
1156     int i;
1157 
1158     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1159     if (ret < 0) {
1160         return ret;
1161     }
1162 
1163     if (!cpu->vhyp) {
1164         ppc_store_sdr1(env, sregs.u.s.sdr1);
1165     }
1166 
1167     /* Sync SLB */
1168 #ifdef TARGET_PPC64
1169     /*
1170      * The packed SLB array we get from KVM_GET_SREGS only contains
1171      * information about valid entries. So we flush our internal copy
1172      * to get rid of stale ones, then put all valid SLB entries back
1173      * in.
1174      */
1175     memset(env->slb, 0, sizeof(env->slb));
1176     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1177         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1178         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1179         /*
1180          * Only restore valid entries
1181          */
1182         if (rb & SLB_ESID_V) {
1183             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1184         }
1185     }
1186 #endif
1187 
1188     /* Sync SRs */
1189     for (i = 0; i < 16; i++) {
1190         env->sr[i] = sregs.u.s.ppc32.sr[i];
1191     }
1192 
1193     /* Sync BATs */
1194     for (i = 0; i < 8; i++) {
1195         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1196         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1197         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1198         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1199     }
1200 
1201     return 0;
1202 }
1203 
1204 int kvm_arch_get_registers(CPUState *cs)
1205 {
1206     PowerPCCPU *cpu = POWERPC_CPU(cs);
1207     CPUPPCState *env = &cpu->env;
1208     struct kvm_regs regs;
1209     uint32_t cr;
1210     int i, ret;
1211 
1212     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1213     if (ret < 0) {
1214         return ret;
1215     }
1216 
1217     cr = regs.cr;
1218     for (i = 7; i >= 0; i--) {
1219         env->crf[i] = cr & 15;
1220         cr >>= 4;
1221     }
1222 
1223     env->ctr = regs.ctr;
1224     env->lr = regs.lr;
1225     cpu_write_xer(env, regs.xer);
1226     env->msr = regs.msr;
1227     env->nip = regs.pc;
1228 
1229     env->spr[SPR_SRR0] = regs.srr0;
1230     env->spr[SPR_SRR1] = regs.srr1;
1231 
1232     env->spr[SPR_SPRG0] = regs.sprg0;
1233     env->spr[SPR_SPRG1] = regs.sprg1;
1234     env->spr[SPR_SPRG2] = regs.sprg2;
1235     env->spr[SPR_SPRG3] = regs.sprg3;
1236     env->spr[SPR_SPRG4] = regs.sprg4;
1237     env->spr[SPR_SPRG5] = regs.sprg5;
1238     env->spr[SPR_SPRG6] = regs.sprg6;
1239     env->spr[SPR_SPRG7] = regs.sprg7;
1240 
1241     env->spr[SPR_BOOKE_PID] = regs.pid;
1242 
1243     for (i = 0; i < 32; i++) {
1244         env->gpr[i] = regs.gpr[i];
1245     }
1246 
1247     kvm_get_fp(cs);
1248 
1249     if (cap_booke_sregs) {
1250         ret = kvmppc_get_booke_sregs(cpu);
1251         if (ret < 0) {
1252             return ret;
1253         }
1254     }
1255 
1256     if (cap_segstate) {
1257         ret = kvmppc_get_books_sregs(cpu);
1258         if (ret < 0) {
1259             return ret;
1260         }
1261     }
1262 
1263     if (cap_hior) {
1264         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1265     }
1266 
1267     if (cap_one_reg) {
1268         int i;
1269 
1270         /*
1271          * We deliberately ignore errors here, for kernels which have
1272          * the ONE_REG calls, but don't support the specific
1273          * registers, there's a reasonable chance things will still
1274          * work, at least until we try to migrate.
1275          */
1276         for (i = 0; i < 1024; i++) {
1277             uint64_t id = env->spr_cb[i].one_reg_id;
1278 
1279             if (id != 0) {
1280                 kvm_get_one_spr(cs, id, i);
1281             }
1282         }
1283 
1284 #ifdef TARGET_PPC64
1285         if (FIELD_EX64(env->msr, MSR, TS)) {
1286             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1287                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1288             }
1289             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1290                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1291             }
1292             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1293             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1294             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1295             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1296             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1297             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1298             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1299             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1300             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1301             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1302         }
1303 
1304         if (cap_papr) {
1305             if (kvm_get_vpa(cs) < 0) {
1306                 trace_kvm_failed_get_vpa();
1307             }
1308         }
1309 
1310         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1311         kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1312 #endif
1313     }
1314 
1315     return 0;
1316 }
1317 
1318 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1319 {
1320     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1321 
1322     if (irq != PPC_INTERRUPT_EXT) {
1323         return 0;
1324     }
1325 
1326     if (!kvm_enabled() || !cap_interrupt_unset) {
1327         return 0;
1328     }
1329 
1330     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1331 
1332     return 0;
1333 }
1334 
1335 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1336 {
1337     return;
1338 }
1339 
1340 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1341 {
1342     return MEMTXATTRS_UNSPECIFIED;
1343 }
1344 
1345 int kvm_arch_process_async_events(CPUState *cs)
1346 {
1347     return cs->halted;
1348 }
1349 
1350 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1351 {
1352     CPUState *cs = CPU(cpu);
1353     CPUPPCState *env = &cpu->env;
1354 
1355     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1356         FIELD_EX64(env->msr, MSR, EE)) {
1357         cs->halted = 1;
1358         cs->exception_index = EXCP_HLT;
1359     }
1360 
1361     return 0;
1362 }
1363 
1364 /* map dcr access to existing qemu dcr emulation */
1365 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1366                                   uint32_t dcrn, uint32_t *data)
1367 {
1368     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1369         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1370     }
1371 
1372     return 0;
1373 }
1374 
1375 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1376                                    uint32_t dcrn, uint32_t data)
1377 {
1378     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1379         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1380     }
1381 
1382     return 0;
1383 }
1384 
1385 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1386 {
1387     /* Mixed endian case is not handled */
1388     uint32_t sc = debug_inst_opcode;
1389 
1390     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1391                             sizeof(sc), 0) ||
1392         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1393         return -EINVAL;
1394     }
1395 
1396     return 0;
1397 }
1398 
1399 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1400 {
1401     uint32_t sc;
1402 
1403     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1404         sc != debug_inst_opcode ||
1405         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1406                             sizeof(sc), 1)) {
1407         return -EINVAL;
1408     }
1409 
1410     return 0;
1411 }
1412 
1413 static int find_hw_breakpoint(target_ulong addr, int type)
1414 {
1415     int n;
1416 
1417     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1418            <= ARRAY_SIZE(hw_debug_points));
1419 
1420     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1421         if (hw_debug_points[n].addr == addr &&
1422              hw_debug_points[n].type == type) {
1423             return n;
1424         }
1425     }
1426 
1427     return -1;
1428 }
1429 
1430 static int find_hw_watchpoint(target_ulong addr, int *flag)
1431 {
1432     int n;
1433 
1434     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1435     if (n >= 0) {
1436         *flag = BP_MEM_ACCESS;
1437         return n;
1438     }
1439 
1440     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1441     if (n >= 0) {
1442         *flag = BP_MEM_WRITE;
1443         return n;
1444     }
1445 
1446     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1447     if (n >= 0) {
1448         *flag = BP_MEM_READ;
1449         return n;
1450     }
1451 
1452     return -1;
1453 }
1454 
1455 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1456                                   target_ulong len, int type)
1457 {
1458     if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1459         return -ENOBUFS;
1460     }
1461 
1462     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1463     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1464 
1465     switch (type) {
1466     case GDB_BREAKPOINT_HW:
1467         if (nb_hw_breakpoint >= max_hw_breakpoint) {
1468             return -ENOBUFS;
1469         }
1470 
1471         if (find_hw_breakpoint(addr, type) >= 0) {
1472             return -EEXIST;
1473         }
1474 
1475         nb_hw_breakpoint++;
1476         break;
1477 
1478     case GDB_WATCHPOINT_WRITE:
1479     case GDB_WATCHPOINT_READ:
1480     case GDB_WATCHPOINT_ACCESS:
1481         if (nb_hw_watchpoint >= max_hw_watchpoint) {
1482             return -ENOBUFS;
1483         }
1484 
1485         if (find_hw_breakpoint(addr, type) >= 0) {
1486             return -EEXIST;
1487         }
1488 
1489         nb_hw_watchpoint++;
1490         break;
1491 
1492     default:
1493         return -ENOSYS;
1494     }
1495 
1496     return 0;
1497 }
1498 
1499 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1500                                   target_ulong len, int type)
1501 {
1502     int n;
1503 
1504     n = find_hw_breakpoint(addr, type);
1505     if (n < 0) {
1506         return -ENOENT;
1507     }
1508 
1509     switch (type) {
1510     case GDB_BREAKPOINT_HW:
1511         nb_hw_breakpoint--;
1512         break;
1513 
1514     case GDB_WATCHPOINT_WRITE:
1515     case GDB_WATCHPOINT_READ:
1516     case GDB_WATCHPOINT_ACCESS:
1517         nb_hw_watchpoint--;
1518         break;
1519 
1520     default:
1521         return -ENOSYS;
1522     }
1523     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1524 
1525     return 0;
1526 }
1527 
1528 void kvm_arch_remove_all_hw_breakpoints(void)
1529 {
1530     nb_hw_breakpoint = nb_hw_watchpoint = 0;
1531 }
1532 
1533 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1534 {
1535     int n;
1536 
1537     /* Software Breakpoint updates */
1538     if (kvm_sw_breakpoints_active(cs)) {
1539         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1540     }
1541 
1542     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1543            <= ARRAY_SIZE(hw_debug_points));
1544     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1545 
1546     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1547         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1548         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1549         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1550             switch (hw_debug_points[n].type) {
1551             case GDB_BREAKPOINT_HW:
1552                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1553                 break;
1554             case GDB_WATCHPOINT_WRITE:
1555                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1556                 break;
1557             case GDB_WATCHPOINT_READ:
1558                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1559                 break;
1560             case GDB_WATCHPOINT_ACCESS:
1561                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1562                                         KVMPPC_DEBUG_WATCH_READ;
1563                 break;
1564             default:
1565                 cpu_abort(cs, "Unsupported breakpoint type\n");
1566             }
1567             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1568         }
1569     }
1570 }
1571 
1572 static int kvm_handle_hw_breakpoint(CPUState *cs,
1573                                     struct kvm_debug_exit_arch *arch_info)
1574 {
1575     int handle = DEBUG_RETURN_GUEST;
1576     int n;
1577     int flag = 0;
1578 
1579     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1580         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1581             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1582             if (n >= 0) {
1583                 handle = DEBUG_RETURN_GDB;
1584             }
1585         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1586                                         KVMPPC_DEBUG_WATCH_WRITE)) {
1587             n = find_hw_watchpoint(arch_info->address,  &flag);
1588             if (n >= 0) {
1589                 handle = DEBUG_RETURN_GDB;
1590                 cs->watchpoint_hit = &hw_watchpoint;
1591                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1592                 hw_watchpoint.flags = flag;
1593             }
1594         }
1595     }
1596     return handle;
1597 }
1598 
1599 static int kvm_handle_singlestep(void)
1600 {
1601     return DEBUG_RETURN_GDB;
1602 }
1603 
1604 static int kvm_handle_sw_breakpoint(void)
1605 {
1606     return DEBUG_RETURN_GDB;
1607 }
1608 
1609 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1610 {
1611     CPUState *cs = CPU(cpu);
1612     CPUPPCState *env = &cpu->env;
1613     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1614 
1615     if (cs->singlestep_enabled) {
1616         return kvm_handle_singlestep();
1617     }
1618 
1619     if (arch_info->status) {
1620         return kvm_handle_hw_breakpoint(cs, arch_info);
1621     }
1622 
1623     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1624         return kvm_handle_sw_breakpoint();
1625     }
1626 
1627     /*
1628      * QEMU is not able to handle debug exception, so inject
1629      * program exception to guest;
1630      * Yes program exception NOT debug exception !!
1631      * When QEMU is using debug resources then debug exception must
1632      * be always set. To achieve this we set MSR_DE and also set
1633      * MSRP_DEP so guest cannot change MSR_DE.
1634      * When emulating debug resource for guest we want guest
1635      * to control MSR_DE (enable/disable debug interrupt on need).
1636      * Supporting both configurations are NOT possible.
1637      * So the result is that we cannot share debug resources
1638      * between QEMU and Guest on BOOKE architecture.
1639      * In the current design QEMU gets the priority over guest,
1640      * this means that if QEMU is using debug resources then guest
1641      * cannot use them;
1642      * For software breakpoint QEMU uses a privileged instruction;
1643      * So there cannot be any reason that we are here for guest
1644      * set debug exception, only possibility is guest executed a
1645      * privileged / illegal instruction and that's why we are
1646      * injecting a program interrupt.
1647      */
1648     cpu_synchronize_state(cs);
1649     /*
1650      * env->nip is PC, so increment this by 4 to use
1651      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1652      */
1653     env->nip += 4;
1654     cs->exception_index = POWERPC_EXCP_PROGRAM;
1655     env->error_code = POWERPC_EXCP_INVAL;
1656     ppc_cpu_do_interrupt(cs);
1657 
1658     return DEBUG_RETURN_GUEST;
1659 }
1660 
1661 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1662 {
1663     PowerPCCPU *cpu = POWERPC_CPU(cs);
1664     CPUPPCState *env = &cpu->env;
1665     int ret;
1666 
1667     qemu_mutex_lock_iothread();
1668 
1669     switch (run->exit_reason) {
1670     case KVM_EXIT_DCR:
1671         if (run->dcr.is_write) {
1672             trace_kvm_handle_dcr_write();
1673             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1674         } else {
1675             trace_kvm_handle_dcr_read();
1676             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1677         }
1678         break;
1679     case KVM_EXIT_HLT:
1680         trace_kvm_handle_halt();
1681         ret = kvmppc_handle_halt(cpu);
1682         break;
1683 #if defined(TARGET_PPC64)
1684     case KVM_EXIT_PAPR_HCALL:
1685         trace_kvm_handle_papr_hcall(run->papr_hcall.nr);
1686         run->papr_hcall.ret = spapr_hypercall(cpu,
1687                                               run->papr_hcall.nr,
1688                                               run->papr_hcall.args);
1689         ret = 0;
1690         break;
1691 #endif
1692     case KVM_EXIT_EPR:
1693         trace_kvm_handle_epr();
1694         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1695         ret = 0;
1696         break;
1697     case KVM_EXIT_WATCHDOG:
1698         trace_kvm_handle_watchdog_expiry();
1699         watchdog_perform_action();
1700         ret = 0;
1701         break;
1702 
1703     case KVM_EXIT_DEBUG:
1704         trace_kvm_handle_debug_exception();
1705         if (kvm_handle_debug(cpu, run)) {
1706             ret = EXCP_DEBUG;
1707             break;
1708         }
1709         /* re-enter, this exception was guest-internal */
1710         ret = 0;
1711         break;
1712 
1713 #if defined(TARGET_PPC64)
1714     case KVM_EXIT_NMI:
1715         trace_kvm_handle_nmi_exception();
1716         ret = kvm_handle_nmi(cpu, run);
1717         break;
1718 #endif
1719 
1720     default:
1721         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1722         ret = -1;
1723         break;
1724     }
1725 
1726     qemu_mutex_unlock_iothread();
1727     return ret;
1728 }
1729 
1730 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1731 {
1732     CPUState *cs = CPU(cpu);
1733     uint32_t bits = tsr_bits;
1734     struct kvm_one_reg reg = {
1735         .id = KVM_REG_PPC_OR_TSR,
1736         .addr = (uintptr_t) &bits,
1737     };
1738 
1739     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1740 }
1741 
1742 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1743 {
1744 
1745     CPUState *cs = CPU(cpu);
1746     uint32_t bits = tsr_bits;
1747     struct kvm_one_reg reg = {
1748         .id = KVM_REG_PPC_CLEAR_TSR,
1749         .addr = (uintptr_t) &bits,
1750     };
1751 
1752     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1753 }
1754 
1755 int kvmppc_set_tcr(PowerPCCPU *cpu)
1756 {
1757     CPUState *cs = CPU(cpu);
1758     CPUPPCState *env = &cpu->env;
1759     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1760 
1761     struct kvm_one_reg reg = {
1762         .id = KVM_REG_PPC_TCR,
1763         .addr = (uintptr_t) &tcr,
1764     };
1765 
1766     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1767 }
1768 
1769 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1770 {
1771     CPUState *cs = CPU(cpu);
1772     int ret;
1773 
1774     if (!kvm_enabled()) {
1775         return -1;
1776     }
1777 
1778     if (!cap_ppc_watchdog) {
1779         printf("warning: KVM does not support watchdog");
1780         return -1;
1781     }
1782 
1783     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1784     if (ret < 0) {
1785         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1786                 __func__, strerror(-ret));
1787         return ret;
1788     }
1789 
1790     return ret;
1791 }
1792 
1793 static int read_cpuinfo(const char *field, char *value, int len)
1794 {
1795     FILE *f;
1796     int ret = -1;
1797     int field_len = strlen(field);
1798     char line[512];
1799 
1800     f = fopen("/proc/cpuinfo", "r");
1801     if (!f) {
1802         return -1;
1803     }
1804 
1805     do {
1806         if (!fgets(line, sizeof(line), f)) {
1807             break;
1808         }
1809         if (!strncmp(line, field, field_len)) {
1810             pstrcpy(value, len, line);
1811             ret = 0;
1812             break;
1813         }
1814     } while (*line);
1815 
1816     fclose(f);
1817 
1818     return ret;
1819 }
1820 
1821 static uint32_t kvmppc_get_tbfreq_procfs(void)
1822 {
1823     char line[512];
1824     char *ns;
1825     uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND;
1826     uint32_t tbfreq_procfs;
1827 
1828     if (read_cpuinfo("timebase", line, sizeof(line))) {
1829         return tbfreq_fallback;
1830     }
1831 
1832     ns = strchr(line, ':');
1833     if (!ns) {
1834         return tbfreq_fallback;
1835     }
1836 
1837     tbfreq_procfs = atoi(++ns);
1838 
1839     /* 0 is certainly not acceptable by the guest, return fallback value */
1840     return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback;
1841 }
1842 
1843 uint32_t kvmppc_get_tbfreq(void)
1844 {
1845     static uint32_t cached_tbfreq;
1846 
1847     if (!cached_tbfreq) {
1848         cached_tbfreq = kvmppc_get_tbfreq_procfs();
1849     }
1850 
1851     return cached_tbfreq;
1852 }
1853 
1854 bool kvmppc_get_host_serial(char **value)
1855 {
1856     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1857                                NULL);
1858 }
1859 
1860 bool kvmppc_get_host_model(char **value)
1861 {
1862     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1863 }
1864 
1865 /* Try to find a device tree node for a CPU with clock-frequency property */
1866 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1867 {
1868     struct dirent *dirp;
1869     DIR *dp;
1870 
1871     dp = opendir(PROC_DEVTREE_CPU);
1872     if (!dp) {
1873         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1874         return -1;
1875     }
1876 
1877     buf[0] = '\0';
1878     while ((dirp = readdir(dp)) != NULL) {
1879         FILE *f;
1880 
1881         /* Don't accidentally read from the current and parent directories */
1882         if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) {
1883             continue;
1884         }
1885 
1886         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1887                  dirp->d_name);
1888         f = fopen(buf, "r");
1889         if (f) {
1890             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1891             fclose(f);
1892             break;
1893         }
1894         buf[0] = '\0';
1895     }
1896     closedir(dp);
1897     if (buf[0] == '\0') {
1898         printf("Unknown host!\n");
1899         return -1;
1900     }
1901 
1902     return 0;
1903 }
1904 
1905 static uint64_t kvmppc_read_int_dt(const char *filename)
1906 {
1907     union {
1908         uint32_t v32;
1909         uint64_t v64;
1910     } u;
1911     FILE *f;
1912     int len;
1913 
1914     f = fopen(filename, "rb");
1915     if (!f) {
1916         return -1;
1917     }
1918 
1919     len = fread(&u, 1, sizeof(u), f);
1920     fclose(f);
1921     switch (len) {
1922     case 4:
1923         /* property is a 32-bit quantity */
1924         return be32_to_cpu(u.v32);
1925     case 8:
1926         return be64_to_cpu(u.v64);
1927     }
1928 
1929     return 0;
1930 }
1931 
1932 /*
1933  * Read a CPU node property from the host device tree that's a single
1934  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1935  * (can't find or open the property, or doesn't understand the format)
1936  */
1937 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1938 {
1939     char buf[PATH_MAX], *tmp;
1940     uint64_t val;
1941 
1942     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1943         return -1;
1944     }
1945 
1946     tmp = g_strdup_printf("%s/%s", buf, propname);
1947     val = kvmppc_read_int_dt(tmp);
1948     g_free(tmp);
1949 
1950     return val;
1951 }
1952 
1953 uint64_t kvmppc_get_clockfreq(void)
1954 {
1955     return kvmppc_read_int_cpu_dt("clock-frequency");
1956 }
1957 
1958 static int kvmppc_get_dec_bits(void)
1959 {
1960     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1961 
1962     if (nr_bits > 0) {
1963         return nr_bits;
1964     }
1965     return 0;
1966 }
1967 
1968 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1969 {
1970     CPUState *cs = env_cpu(env);
1971 
1972     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1973         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1974         return 0;
1975     }
1976 
1977     return 1;
1978 }
1979 
1980 int kvmppc_get_hasidle(CPUPPCState *env)
1981 {
1982     struct kvm_ppc_pvinfo pvinfo;
1983 
1984     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1985         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1986         return 1;
1987     }
1988 
1989     return 0;
1990 }
1991 
1992 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1993 {
1994     uint32_t *hc = (uint32_t *)buf;
1995     struct kvm_ppc_pvinfo pvinfo;
1996 
1997     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1998         memcpy(buf, pvinfo.hcall, buf_len);
1999         return 0;
2000     }
2001 
2002     /*
2003      * Fallback to always fail hypercalls regardless of endianness:
2004      *
2005      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
2006      *     li r3, -1
2007      *     b .+8       (becomes nop in wrong endian)
2008      *     bswap32(li r3, -1)
2009      */
2010 
2011     hc[0] = cpu_to_be32(0x08000048);
2012     hc[1] = cpu_to_be32(0x3860ffff);
2013     hc[2] = cpu_to_be32(0x48000008);
2014     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
2015 
2016     return 1;
2017 }
2018 
2019 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
2020 {
2021     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
2022 }
2023 
2024 void kvmppc_enable_logical_ci_hcalls(void)
2025 {
2026     /*
2027      * FIXME: it would be nice if we could detect the cases where
2028      * we're using a device which requires the in kernel
2029      * implementation of these hcalls, but the kernel lacks them and
2030      * produce a warning.
2031      */
2032     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2033     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2034 }
2035 
2036 void kvmppc_enable_set_mode_hcall(void)
2037 {
2038     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2039 }
2040 
2041 void kvmppc_enable_clear_ref_mod_hcalls(void)
2042 {
2043     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2044     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2045 }
2046 
2047 void kvmppc_enable_h_page_init(void)
2048 {
2049     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2050 }
2051 
2052 void kvmppc_enable_h_rpt_invalidate(void)
2053 {
2054     kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE);
2055 }
2056 
2057 void kvmppc_set_papr(PowerPCCPU *cpu)
2058 {
2059     CPUState *cs = CPU(cpu);
2060     int ret;
2061 
2062     if (!kvm_enabled()) {
2063         return;
2064     }
2065 
2066     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2067     if (ret) {
2068         error_report("This vCPU type or KVM version does not support PAPR");
2069         exit(1);
2070     }
2071 
2072     /*
2073      * Update the capability flag so we sync the right information
2074      * with kvm
2075      */
2076     cap_papr = 1;
2077 }
2078 
2079 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2080 {
2081     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2082 }
2083 
2084 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2085 {
2086     CPUState *cs = CPU(cpu);
2087     int ret;
2088 
2089     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2090     if (ret && mpic_proxy) {
2091         error_report("This KVM version does not support EPR");
2092         exit(1);
2093     }
2094 }
2095 
2096 bool kvmppc_get_fwnmi(void)
2097 {
2098     return cap_fwnmi;
2099 }
2100 
2101 int kvmppc_set_fwnmi(PowerPCCPU *cpu)
2102 {
2103     CPUState *cs = CPU(cpu);
2104 
2105     return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0);
2106 }
2107 
2108 int kvmppc_smt_threads(void)
2109 {
2110     return cap_ppc_smt ? cap_ppc_smt : 1;
2111 }
2112 
2113 int kvmppc_set_smt_threads(int smt)
2114 {
2115     int ret;
2116 
2117     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2118     if (!ret) {
2119         cap_ppc_smt = smt;
2120     }
2121     return ret;
2122 }
2123 
2124 void kvmppc_error_append_smt_possible_hint(Error *const *errp)
2125 {
2126     int i;
2127     GString *g;
2128     char *s;
2129 
2130     assert(kvm_enabled());
2131     if (cap_ppc_smt_possible) {
2132         g = g_string_new("Available VSMT modes:");
2133         for (i = 63; i >= 0; i--) {
2134             if ((1UL << i) & cap_ppc_smt_possible) {
2135                 g_string_append_printf(g, " %lu", (1UL << i));
2136             }
2137         }
2138         s = g_string_free(g, false);
2139         error_append_hint(errp, "%s.\n", s);
2140         g_free(s);
2141     } else {
2142         error_append_hint(errp,
2143                           "This KVM seems to be too old to support VSMT.\n");
2144     }
2145 }
2146 
2147 
2148 #ifdef TARGET_PPC64
2149 uint64_t kvmppc_vrma_limit(unsigned int hash_shift)
2150 {
2151     struct kvm_ppc_smmu_info info;
2152     long rampagesize, best_page_shift;
2153     int i;
2154 
2155     /*
2156      * Find the largest hardware supported page size that's less than
2157      * or equal to the (logical) backing page size of guest RAM
2158      */
2159     kvm_get_smmu_info(&info, &error_fatal);
2160     rampagesize = qemu_minrampagesize();
2161     best_page_shift = 0;
2162 
2163     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2164         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2165 
2166         if (!sps->page_shift) {
2167             continue;
2168         }
2169 
2170         if ((sps->page_shift > best_page_shift)
2171             && ((1UL << sps->page_shift) <= rampagesize)) {
2172             best_page_shift = sps->page_shift;
2173         }
2174     }
2175 
2176     return 1ULL << (best_page_shift + hash_shift - 7);
2177 }
2178 #endif
2179 
2180 bool kvmppc_spapr_use_multitce(void)
2181 {
2182     return cap_spapr_multitce;
2183 }
2184 
2185 int kvmppc_spapr_enable_inkernel_multitce(void)
2186 {
2187     int ret;
2188 
2189     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2190                             H_PUT_TCE_INDIRECT, 1);
2191     if (!ret) {
2192         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2193                                 H_STUFF_TCE, 1);
2194     }
2195 
2196     return ret;
2197 }
2198 
2199 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2200                               uint64_t bus_offset, uint32_t nb_table,
2201                               int *pfd, bool need_vfio)
2202 {
2203     long len;
2204     int fd;
2205     void *table;
2206 
2207     /*
2208      * Must set fd to -1 so we don't try to munmap when called for
2209      * destroying the table, which the upper layers -will- do
2210      */
2211     *pfd = -1;
2212     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2213         return NULL;
2214     }
2215 
2216     if (cap_spapr_tce_64) {
2217         struct kvm_create_spapr_tce_64 args = {
2218             .liobn = liobn,
2219             .page_shift = page_shift,
2220             .offset = bus_offset >> page_shift,
2221             .size = nb_table,
2222             .flags = 0
2223         };
2224         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2225         if (fd < 0) {
2226             fprintf(stderr,
2227                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2228                     liobn);
2229             return NULL;
2230         }
2231     } else if (cap_spapr_tce) {
2232         uint64_t window_size = (uint64_t) nb_table << page_shift;
2233         struct kvm_create_spapr_tce args = {
2234             .liobn = liobn,
2235             .window_size = window_size,
2236         };
2237         if ((window_size != args.window_size) || bus_offset) {
2238             return NULL;
2239         }
2240         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2241         if (fd < 0) {
2242             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2243                     liobn);
2244             return NULL;
2245         }
2246     } else {
2247         return NULL;
2248     }
2249 
2250     len = nb_table * sizeof(uint64_t);
2251     /* FIXME: round this up to page size */
2252 
2253     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2254     if (table == MAP_FAILED) {
2255         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2256                 liobn);
2257         close(fd);
2258         return NULL;
2259     }
2260 
2261     *pfd = fd;
2262     return table;
2263 }
2264 
2265 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2266 {
2267     long len;
2268 
2269     if (fd < 0) {
2270         return -1;
2271     }
2272 
2273     len = nb_table * sizeof(uint64_t);
2274     if ((munmap(table, len) < 0) ||
2275         (close(fd) < 0)) {
2276         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2277                 strerror(errno));
2278         /* Leak the table */
2279     }
2280 
2281     return 0;
2282 }
2283 
2284 int kvmppc_reset_htab(int shift_hint)
2285 {
2286     uint32_t shift = shift_hint;
2287 
2288     if (!kvm_enabled()) {
2289         /* Full emulation, tell caller to allocate htab itself */
2290         return 0;
2291     }
2292     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2293         int ret;
2294         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2295         if (ret == -ENOTTY) {
2296             /*
2297              * At least some versions of PR KVM advertise the
2298              * capability, but don't implement the ioctl().  Oops.
2299              * Return 0 so that we allocate the htab in qemu, as is
2300              * correct for PR.
2301              */
2302             return 0;
2303         } else if (ret < 0) {
2304             return ret;
2305         }
2306         return shift;
2307     }
2308 
2309     /*
2310      * We have a kernel that predates the htab reset calls.  For PR
2311      * KVM, we need to allocate the htab ourselves, for an HV KVM of
2312      * this era, it has allocated a 16MB fixed size hash table
2313      * already.
2314      */
2315     if (kvmppc_is_pr(kvm_state)) {
2316         /* PR - tell caller to allocate htab */
2317         return 0;
2318     } else {
2319         /* HV - assume 16MB kernel allocated htab */
2320         return 24;
2321     }
2322 }
2323 
2324 static inline uint32_t mfpvr(void)
2325 {
2326     uint32_t pvr;
2327 
2328     asm ("mfpvr %0"
2329          : "=r"(pvr));
2330     return pvr;
2331 }
2332 
2333 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2334 {
2335     if (on) {
2336         *word |= flags;
2337     } else {
2338         *word &= ~flags;
2339     }
2340 }
2341 
2342 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2343 {
2344     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2345     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2346     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2347 
2348     /* Now fix up the class with information we can query from the host */
2349     pcc->pvr = mfpvr();
2350 
2351     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2352                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2353     alter_insns(&pcc->insns_flags2, PPC2_VSX,
2354                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2355     alter_insns(&pcc->insns_flags2, PPC2_DFP,
2356                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2357 
2358     if (dcache_size != -1) {
2359         pcc->l1_dcache_size = dcache_size;
2360     }
2361 
2362     if (icache_size != -1) {
2363         pcc->l1_icache_size = icache_size;
2364     }
2365 
2366 #if defined(TARGET_PPC64)
2367     pcc->radix_page_info = kvm_get_radix_page_info();
2368 
2369     if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2370         /*
2371          * POWER9 DD1 has some bugs which make it not really ISA 3.00
2372          * compliant.  More importantly, advertising ISA 3.00
2373          * architected mode may prevent guests from activating
2374          * necessary DD1 workarounds.
2375          */
2376         pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2377                                 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2378     }
2379 #endif /* defined(TARGET_PPC64) */
2380 }
2381 
2382 bool kvmppc_has_cap_epr(void)
2383 {
2384     return cap_epr;
2385 }
2386 
2387 bool kvmppc_has_cap_fixup_hcalls(void)
2388 {
2389     return cap_fixup_hcalls;
2390 }
2391 
2392 bool kvmppc_has_cap_htm(void)
2393 {
2394     return cap_htm;
2395 }
2396 
2397 bool kvmppc_has_cap_mmu_radix(void)
2398 {
2399     return cap_mmu_radix;
2400 }
2401 
2402 bool kvmppc_has_cap_mmu_hash_v3(void)
2403 {
2404     return cap_mmu_hash_v3;
2405 }
2406 
2407 static bool kvmppc_power8_host(void)
2408 {
2409     bool ret = false;
2410 #ifdef TARGET_PPC64
2411     {
2412         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2413         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2414               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2415               (base_pvr == CPU_POWERPC_POWER8_BASE);
2416     }
2417 #endif /* TARGET_PPC64 */
2418     return ret;
2419 }
2420 
2421 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2422 {
2423     bool l1d_thread_priv_req = !kvmppc_power8_host();
2424 
2425     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2426         return 2;
2427     } else if ((!l1d_thread_priv_req ||
2428                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2429                (c.character & c.character_mask
2430                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2431         return 1;
2432     }
2433 
2434     return 0;
2435 }
2436 
2437 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2438 {
2439     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2440         return 2;
2441     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2442         return 1;
2443     }
2444 
2445     return 0;
2446 }
2447 
2448 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2449 {
2450     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2451         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2452         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2453         return SPAPR_CAP_FIXED_NA;
2454     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2455         return SPAPR_CAP_WORKAROUND;
2456     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2457         return  SPAPR_CAP_FIXED_CCD;
2458     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2459         return SPAPR_CAP_FIXED_IBS;
2460     }
2461 
2462     return 0;
2463 }
2464 
2465 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2466 {
2467     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2468         return 1;
2469     }
2470     return 0;
2471 }
2472 
2473 bool kvmppc_has_cap_xive(void)
2474 {
2475     return cap_xive;
2476 }
2477 
2478 static void kvmppc_get_cpu_characteristics(KVMState *s)
2479 {
2480     struct kvm_ppc_cpu_char c;
2481     int ret;
2482 
2483     /* Assume broken */
2484     cap_ppc_safe_cache = 0;
2485     cap_ppc_safe_bounds_check = 0;
2486     cap_ppc_safe_indirect_branch = 0;
2487 
2488     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2489     if (!ret) {
2490         return;
2491     }
2492     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2493     if (ret < 0) {
2494         return;
2495     }
2496 
2497     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2498     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2499     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2500     cap_ppc_count_cache_flush_assist =
2501         parse_cap_ppc_count_cache_flush_assist(c);
2502 }
2503 
2504 int kvmppc_get_cap_safe_cache(void)
2505 {
2506     return cap_ppc_safe_cache;
2507 }
2508 
2509 int kvmppc_get_cap_safe_bounds_check(void)
2510 {
2511     return cap_ppc_safe_bounds_check;
2512 }
2513 
2514 int kvmppc_get_cap_safe_indirect_branch(void)
2515 {
2516     return cap_ppc_safe_indirect_branch;
2517 }
2518 
2519 int kvmppc_get_cap_count_cache_flush_assist(void)
2520 {
2521     return cap_ppc_count_cache_flush_assist;
2522 }
2523 
2524 bool kvmppc_has_cap_nested_kvm_hv(void)
2525 {
2526     return !!cap_ppc_nested_kvm_hv;
2527 }
2528 
2529 int kvmppc_set_cap_nested_kvm_hv(int enable)
2530 {
2531     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2532 }
2533 
2534 bool kvmppc_has_cap_spapr_vfio(void)
2535 {
2536     return cap_spapr_vfio;
2537 }
2538 
2539 int kvmppc_get_cap_large_decr(void)
2540 {
2541     return cap_large_decr;
2542 }
2543 
2544 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2545 {
2546     CPUState *cs = CPU(cpu);
2547     uint64_t lpcr = 0;
2548 
2549     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2550     /* Do we need to modify the LPCR? */
2551     if (!!(lpcr & LPCR_LD) != !!enable) {
2552         if (enable) {
2553             lpcr |= LPCR_LD;
2554         } else {
2555             lpcr &= ~LPCR_LD;
2556         }
2557         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2558         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2559 
2560         if (!!(lpcr & LPCR_LD) != !!enable) {
2561             return -1;
2562         }
2563     }
2564 
2565     return 0;
2566 }
2567 
2568 int kvmppc_has_cap_rpt_invalidate(void)
2569 {
2570     return cap_rpt_invalidate;
2571 }
2572 
2573 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2574 {
2575     uint32_t host_pvr = mfpvr();
2576     PowerPCCPUClass *pvr_pcc;
2577 
2578     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2579     if (pvr_pcc == NULL) {
2580         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2581     }
2582 
2583     return pvr_pcc;
2584 }
2585 
2586 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2587 {
2588     MachineClass *mc = MACHINE_CLASS(oc);
2589 
2590     mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2591 }
2592 
2593 static int kvm_ppc_register_host_cpu_type(void)
2594 {
2595     TypeInfo type_info = {
2596         .name = TYPE_HOST_POWERPC_CPU,
2597         .class_init = kvmppc_host_cpu_class_init,
2598     };
2599     PowerPCCPUClass *pvr_pcc;
2600     ObjectClass *oc;
2601     DeviceClass *dc;
2602     int i;
2603 
2604     pvr_pcc = kvm_ppc_get_host_cpu_class();
2605     if (pvr_pcc == NULL) {
2606         return -1;
2607     }
2608     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2609     type_register(&type_info);
2610     /* override TCG default cpu type with 'host' cpu model */
2611     object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2612                          false, NULL);
2613 
2614     oc = object_class_by_name(type_info.name);
2615     g_assert(oc);
2616 
2617     /*
2618      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2619      * we want "POWER8" to be a "family" alias that points to the current
2620      * host CPU type, too)
2621      */
2622     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2623     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2624         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2625             char *suffix;
2626 
2627             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2628             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2629             if (suffix) {
2630                 *suffix = 0;
2631             }
2632             break;
2633         }
2634     }
2635 
2636     return 0;
2637 }
2638 
2639 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2640 {
2641     struct kvm_rtas_token_args args = {
2642         .token = token,
2643     };
2644 
2645     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2646         return -ENOENT;
2647     }
2648 
2649     strncpy(args.name, function, sizeof(args.name) - 1);
2650 
2651     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2652 }
2653 
2654 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2655 {
2656     struct kvm_get_htab_fd s = {
2657         .flags = write ? KVM_GET_HTAB_WRITE : 0,
2658         .start_index = index,
2659     };
2660     int ret;
2661 
2662     if (!cap_htab_fd) {
2663         error_setg(errp, "KVM version doesn't support %s the HPT",
2664                    write ? "writing" : "reading");
2665         return -ENOTSUP;
2666     }
2667 
2668     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2669     if (ret < 0) {
2670         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2671                    write ? "writing" : "reading", write ? "to" : "from",
2672                    strerror(errno));
2673         return -errno;
2674     }
2675 
2676     return ret;
2677 }
2678 
2679 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2680 {
2681     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2682     uint8_t buf[bufsize];
2683     ssize_t rc;
2684 
2685     do {
2686         rc = read(fd, buf, bufsize);
2687         if (rc < 0) {
2688             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2689                     strerror(errno));
2690             return rc;
2691         } else if (rc) {
2692             uint8_t *buffer = buf;
2693             ssize_t n = rc;
2694             while (n) {
2695                 struct kvm_get_htab_header *head =
2696                     (struct kvm_get_htab_header *) buffer;
2697                 size_t chunksize = sizeof(*head) +
2698                      HASH_PTE_SIZE_64 * head->n_valid;
2699 
2700                 qemu_put_be32(f, head->index);
2701                 qemu_put_be16(f, head->n_valid);
2702                 qemu_put_be16(f, head->n_invalid);
2703                 qemu_put_buffer(f, (void *)(head + 1),
2704                                 HASH_PTE_SIZE_64 * head->n_valid);
2705 
2706                 buffer += chunksize;
2707                 n -= chunksize;
2708             }
2709         }
2710     } while ((rc != 0)
2711              && ((max_ns < 0) ||
2712                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2713 
2714     return (rc == 0) ? 1 : 0;
2715 }
2716 
2717 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2718                            uint16_t n_valid, uint16_t n_invalid, Error **errp)
2719 {
2720     struct kvm_get_htab_header *buf;
2721     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2722     ssize_t rc;
2723 
2724     buf = alloca(chunksize);
2725     buf->index = index;
2726     buf->n_valid = n_valid;
2727     buf->n_invalid = n_invalid;
2728 
2729     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2730 
2731     rc = write(fd, buf, chunksize);
2732     if (rc < 0) {
2733         error_setg_errno(errp, errno, "Error writing the KVM hash table");
2734         return -errno;
2735     }
2736     if (rc != chunksize) {
2737         /* We should never get a short write on a single chunk */
2738         error_setg(errp, "Short write while restoring the KVM hash table");
2739         return -ENOSPC;
2740     }
2741     return 0;
2742 }
2743 
2744 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2745 {
2746     return true;
2747 }
2748 
2749 void kvm_arch_init_irq_routing(KVMState *s)
2750 {
2751 }
2752 
2753 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2754 {
2755     int fd, rc;
2756     int i;
2757 
2758     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2759 
2760     i = 0;
2761     while (i < n) {
2762         struct kvm_get_htab_header *hdr;
2763         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2764         char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2765 
2766         rc = read(fd, buf, sizeof(buf));
2767         if (rc < 0) {
2768             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2769         }
2770 
2771         hdr = (struct kvm_get_htab_header *)buf;
2772         while ((i < n) && ((char *)hdr < (buf + rc))) {
2773             int invalid = hdr->n_invalid, valid = hdr->n_valid;
2774 
2775             if (hdr->index != (ptex + i)) {
2776                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2777                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2778             }
2779 
2780             if (n - i < valid) {
2781                 valid = n - i;
2782             }
2783             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2784             i += valid;
2785 
2786             if ((n - i) < invalid) {
2787                 invalid = n - i;
2788             }
2789             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2790             i += invalid;
2791 
2792             hdr = (struct kvm_get_htab_header *)
2793                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2794         }
2795     }
2796 
2797     close(fd);
2798 }
2799 
2800 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2801 {
2802     int fd, rc;
2803     struct {
2804         struct kvm_get_htab_header hdr;
2805         uint64_t pte0;
2806         uint64_t pte1;
2807     } buf;
2808 
2809     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2810 
2811     buf.hdr.n_valid = 1;
2812     buf.hdr.n_invalid = 0;
2813     buf.hdr.index = ptex;
2814     buf.pte0 = cpu_to_be64(pte0);
2815     buf.pte1 = cpu_to_be64(pte1);
2816 
2817     rc = write(fd, &buf, sizeof(buf));
2818     if (rc != sizeof(buf)) {
2819         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2820     }
2821     close(fd);
2822 }
2823 
2824 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2825                              uint64_t address, uint32_t data, PCIDevice *dev)
2826 {
2827     return 0;
2828 }
2829 
2830 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2831                                 int vector, PCIDevice *dev)
2832 {
2833     return 0;
2834 }
2835 
2836 int kvm_arch_release_virq_post(int virq)
2837 {
2838     return 0;
2839 }
2840 
2841 int kvm_arch_msi_data_to_gsi(uint32_t data)
2842 {
2843     return data & 0xffff;
2844 }
2845 
2846 #if defined(TARGET_PPC64)
2847 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run)
2848 {
2849     uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK;
2850 
2851     cpu_synchronize_state(CPU(cpu));
2852 
2853     spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV);
2854 
2855     return 0;
2856 }
2857 #endif
2858 
2859 int kvmppc_enable_hwrng(void)
2860 {
2861     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2862         return -1;
2863     }
2864 
2865     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2866 }
2867 
2868 void kvmppc_check_papr_resize_hpt(Error **errp)
2869 {
2870     if (!kvm_enabled()) {
2871         return; /* No KVM, we're good */
2872     }
2873 
2874     if (cap_resize_hpt) {
2875         return; /* Kernel has explicit support, we're good */
2876     }
2877 
2878     /* Otherwise fallback on looking for PR KVM */
2879     if (kvmppc_is_pr(kvm_state)) {
2880         return;
2881     }
2882 
2883     error_setg(errp,
2884                "Hash page table resizing not available with this KVM version");
2885 }
2886 
2887 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2888 {
2889     CPUState *cs = CPU(cpu);
2890     struct kvm_ppc_resize_hpt rhpt = {
2891         .flags = flags,
2892         .shift = shift,
2893     };
2894 
2895     if (!cap_resize_hpt) {
2896         return -ENOSYS;
2897     }
2898 
2899     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2900 }
2901 
2902 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2903 {
2904     CPUState *cs = CPU(cpu);
2905     struct kvm_ppc_resize_hpt rhpt = {
2906         .flags = flags,
2907         .shift = shift,
2908     };
2909 
2910     if (!cap_resize_hpt) {
2911         return -ENOSYS;
2912     }
2913 
2914     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2915 }
2916 
2917 /*
2918  * This is a helper function to detect a post migration scenario
2919  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2920  * the guest kernel can't handle a PVR value other than the actual host
2921  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2922  *
2923  * If we don't have cap_ppc_pvr_compat and we're not running in PR
2924  * (so, we're HV), return true. The workaround itself is done in
2925  * cpu_post_load.
2926  *
2927  * The order here is important: we'll only check for KVM PR as a
2928  * fallback if the guest kernel can't handle the situation itself.
2929  * We need to avoid as much as possible querying the running KVM type
2930  * in QEMU level.
2931  */
2932 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2933 {
2934     CPUState *cs = CPU(cpu);
2935 
2936     if (!kvm_enabled()) {
2937         return false;
2938     }
2939 
2940     if (cap_ppc_pvr_compat) {
2941         return false;
2942     }
2943 
2944     return !kvmppc_is_pr(cs->kvm_state);
2945 }
2946 
2947 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2948 {
2949     CPUState *cs = CPU(cpu);
2950 
2951     if (kvm_enabled()) {
2952         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2953     }
2954 }
2955 
2956 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2957 {
2958     CPUState *cs = CPU(cpu);
2959 
2960     if (kvm_enabled()) {
2961         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2962     }
2963 }
2964 
2965 bool kvm_arch_cpu_check_are_resettable(void)
2966 {
2967     return true;
2968 }
2969