xref: /openbmc/qemu/target/ppc/kvm.c (revision 9b3a31c7)
1 /*
2  * PowerPC implementation of KVM hooks
3  *
4  * Copyright IBM Corp. 2007
5  * Copyright (C) 2011 Freescale Semiconductor, Inc.
6  *
7  * Authors:
8  *  Jerone Young <jyoung5@us.ibm.com>
9  *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10  *  Hollis Blanchard <hollisb@us.ibm.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or later.
13  * See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
21 
22 #include <linux/kvm.h>
23 
24 #include "qemu-common.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "cpu.h"
28 #include "cpu-models.h"
29 #include "qemu/timer.h"
30 #include "sysemu/hw_accel.h"
31 #include "kvm_ppc.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/device_tree.h"
34 #include "mmu-hash64.h"
35 
36 #include "hw/sysbus.h"
37 #include "hw/ppc/spapr.h"
38 #include "hw/ppc/spapr_cpu_core.h"
39 #include "hw/hw.h"
40 #include "hw/ppc/ppc.h"
41 #include "migration/qemu-file-types.h"
42 #include "sysemu/watchdog.h"
43 #include "trace.h"
44 #include "exec/gdbstub.h"
45 #include "exec/memattrs.h"
46 #include "exec/ram_addr.h"
47 #include "sysemu/hostmem.h"
48 #include "qemu/cutils.h"
49 #include "qemu/main-loop.h"
50 #include "qemu/mmap-alloc.h"
51 #include "elf.h"
52 #include "sysemu/kvm_int.h"
53 
54 #define PROC_DEVTREE_CPU      "/proc/device-tree/cpus/"
55 
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57     KVM_CAP_LAST_INFO
58 };
59 
60 static int cap_interrupt_unset;
61 static int cap_segstate;
62 static int cap_booke_sregs;
63 static int cap_ppc_smt;
64 static int cap_ppc_smt_possible;
65 static int cap_spapr_tce;
66 static int cap_spapr_tce_64;
67 static int cap_spapr_multitce;
68 static int cap_spapr_vfio;
69 static int cap_hior;
70 static int cap_one_reg;
71 static int cap_epr;
72 static int cap_ppc_watchdog;
73 static int cap_papr;
74 static int cap_htab_fd;
75 static int cap_fixup_hcalls;
76 static int cap_htm;             /* Hardware transactional memory support */
77 static int cap_mmu_radix;
78 static int cap_mmu_hash_v3;
79 static int cap_xive;
80 static int cap_resize_hpt;
81 static int cap_ppc_pvr_compat;
82 static int cap_ppc_safe_cache;
83 static int cap_ppc_safe_bounds_check;
84 static int cap_ppc_safe_indirect_branch;
85 static int cap_ppc_count_cache_flush_assist;
86 static int cap_ppc_nested_kvm_hv;
87 static int cap_large_decr;
88 
89 static uint32_t debug_inst_opcode;
90 
91 /*
92  * Check whether we are running with KVM-PR (instead of KVM-HV).  This
93  * should only be used for fallback tests - generally we should use
94  * explicit capabilities for the features we want, rather than
95  * assuming what is/isn't available depending on the KVM variant.
96  */
97 static bool kvmppc_is_pr(KVMState *ks)
98 {
99     /* Assume KVM-PR if the GET_PVINFO capability is available */
100     return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
101 }
102 
103 static int kvm_ppc_register_host_cpu_type(void);
104 static void kvmppc_get_cpu_characteristics(KVMState *s);
105 static int kvmppc_get_dec_bits(void);
106 
107 int kvm_arch_init(MachineState *ms, KVMState *s)
108 {
109     cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
110     cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
111     cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
112     cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
113     cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
114     cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
115     cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
116     cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
117     cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
118     cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
119     cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
120     cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
121     /*
122      * Note: we don't set cap_papr here, because this capability is
123      * only activated after this by kvmppc_set_papr()
124      */
125     cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
126     cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
127     cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
128     cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
129     cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
130     cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
131     cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
132     cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
133     kvmppc_get_cpu_characteristics(s);
134     cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
135     cap_large_decr = kvmppc_get_dec_bits();
136     /*
137      * Note: setting it to false because there is not such capability
138      * in KVM at this moment.
139      *
140      * TODO: call kvm_vm_check_extension() with the right capability
141      * after the kernel starts implementing it.
142      */
143     cap_ppc_pvr_compat = false;
144 
145     if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
146         error_report("KVM: Host kernel doesn't have level irq capability");
147         exit(1);
148     }
149 
150     kvm_ppc_register_host_cpu_type();
151 
152     return 0;
153 }
154 
155 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
156 {
157     return 0;
158 }
159 
160 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
161 {
162     CPUPPCState *cenv = &cpu->env;
163     CPUState *cs = CPU(cpu);
164     struct kvm_sregs sregs;
165     int ret;
166 
167     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
168         /*
169          * What we're really trying to say is "if we're on BookE, we
170          * use the native PVR for now". This is the only sane way to
171          * check it though, so we potentially confuse users that they
172          * can run BookE guests on BookS. Let's hope nobody dares
173          * enough :)
174          */
175         return 0;
176     } else {
177         if (!cap_segstate) {
178             fprintf(stderr, "kvm error: missing PVR setting capability\n");
179             return -ENOSYS;
180         }
181     }
182 
183     ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
184     if (ret) {
185         return ret;
186     }
187 
188     sregs.pvr = cenv->spr[SPR_PVR];
189     return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
190 }
191 
192 /* Set up a shared TLB array with KVM */
193 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
194 {
195     CPUPPCState *env = &cpu->env;
196     CPUState *cs = CPU(cpu);
197     struct kvm_book3e_206_tlb_params params = {};
198     struct kvm_config_tlb cfg = {};
199     unsigned int entries = 0;
200     int ret, i;
201 
202     if (!kvm_enabled() ||
203         !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
204         return 0;
205     }
206 
207     assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
208 
209     for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
210         params.tlb_sizes[i] = booke206_tlb_size(env, i);
211         params.tlb_ways[i] = booke206_tlb_ways(env, i);
212         entries += params.tlb_sizes[i];
213     }
214 
215     assert(entries == env->nb_tlb);
216     assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
217 
218     env->tlb_dirty = true;
219 
220     cfg.array = (uintptr_t)env->tlb.tlbm;
221     cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
222     cfg.params = (uintptr_t)&params;
223     cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
224 
225     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
226     if (ret < 0) {
227         fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
228                 __func__, strerror(-ret));
229         return ret;
230     }
231 
232     env->kvm_sw_tlb = true;
233     return 0;
234 }
235 
236 
237 #if defined(TARGET_PPC64)
238 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
239 {
240     int ret;
241 
242     assert(kvm_state != NULL);
243 
244     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
245         error_setg(errp, "KVM doesn't expose the MMU features it supports");
246         error_append_hint(errp, "Consider switching to a newer KVM\n");
247         return;
248     }
249 
250     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
251     if (ret == 0) {
252         return;
253     }
254 
255     error_setg_errno(errp, -ret,
256                      "KVM failed to provide the MMU features it supports");
257 }
258 
259 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
260 {
261     KVMState *s = KVM_STATE(current_machine->accelerator);
262     struct ppc_radix_page_info *radix_page_info;
263     struct kvm_ppc_rmmu_info rmmu_info;
264     int i;
265 
266     if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
267         return NULL;
268     }
269     if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
270         return NULL;
271     }
272     radix_page_info = g_malloc0(sizeof(*radix_page_info));
273     radix_page_info->count = 0;
274     for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
275         if (rmmu_info.ap_encodings[i]) {
276             radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
277             radix_page_info->count++;
278         }
279     }
280     return radix_page_info;
281 }
282 
283 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
284                                      bool radix, bool gtse,
285                                      uint64_t proc_tbl)
286 {
287     CPUState *cs = CPU(cpu);
288     int ret;
289     uint64_t flags = 0;
290     struct kvm_ppc_mmuv3_cfg cfg = {
291         .process_table = proc_tbl,
292     };
293 
294     if (radix) {
295         flags |= KVM_PPC_MMUV3_RADIX;
296     }
297     if (gtse) {
298         flags |= KVM_PPC_MMUV3_GTSE;
299     }
300     cfg.flags = flags;
301     ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
302     switch (ret) {
303     case 0:
304         return H_SUCCESS;
305     case -EINVAL:
306         return H_PARAMETER;
307     case -ENODEV:
308         return H_NOT_AVAILABLE;
309     default:
310         return H_HARDWARE;
311     }
312 }
313 
314 bool kvmppc_hpt_needs_host_contiguous_pages(void)
315 {
316     static struct kvm_ppc_smmu_info smmu_info;
317 
318     if (!kvm_enabled()) {
319         return false;
320     }
321 
322     kvm_get_smmu_info(&smmu_info, &error_fatal);
323     return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
324 }
325 
326 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
327 {
328     struct kvm_ppc_smmu_info smmu_info;
329     int iq, ik, jq, jk;
330     Error *local_err = NULL;
331 
332     /* For now, we only have anything to check on hash64 MMUs */
333     if (!cpu->hash64_opts || !kvm_enabled()) {
334         return;
335     }
336 
337     kvm_get_smmu_info(&smmu_info, &local_err);
338     if (local_err) {
339         error_propagate(errp, local_err);
340         return;
341     }
342 
343     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
344         && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
345         error_setg(errp,
346                    "KVM does not support 1TiB segments which guest expects");
347         return;
348     }
349 
350     if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
351         error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
352                    smmu_info.slb_size, cpu->hash64_opts->slb_size);
353         return;
354     }
355 
356     /*
357      * Verify that every pagesize supported by the cpu model is
358      * supported by KVM with the same encodings
359      */
360     for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
361         PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
362         struct kvm_ppc_one_seg_page_size *ksps;
363 
364         for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
365             if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
366                 break;
367             }
368         }
369         if (ik >= ARRAY_SIZE(smmu_info.sps)) {
370             error_setg(errp, "KVM doesn't support for base page shift %u",
371                        qsps->page_shift);
372             return;
373         }
374 
375         ksps = &smmu_info.sps[ik];
376         if (ksps->slb_enc != qsps->slb_enc) {
377             error_setg(errp,
378 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
379                        ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
380             return;
381         }
382 
383         for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
384             for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
385                 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
386                     break;
387                 }
388             }
389 
390             if (jk >= ARRAY_SIZE(ksps->enc)) {
391                 error_setg(errp, "KVM doesn't support page shift %u/%u",
392                            qsps->enc[jq].page_shift, qsps->page_shift);
393                 return;
394             }
395             if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
396                 error_setg(errp,
397 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
398                            ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
399                            qsps->page_shift, qsps->enc[jq].pte_enc);
400                 return;
401             }
402         }
403     }
404 
405     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
406         /*
407          * Mostly what guest pagesizes we can use are related to the
408          * host pages used to map guest RAM, which is handled in the
409          * platform code. Cache-Inhibited largepages (64k) however are
410          * used for I/O, so if they're mapped to the host at all it
411          * will be a normal mapping, not a special hugepage one used
412          * for RAM.
413          */
414         if (qemu_real_host_page_size < 0x10000) {
415             error_setg(errp,
416                        "KVM can't supply 64kiB CI pages, which guest expects");
417         }
418     }
419 }
420 #endif /* !defined (TARGET_PPC64) */
421 
422 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
423 {
424     return POWERPC_CPU(cpu)->vcpu_id;
425 }
426 
427 /*
428  * e500 supports 2 h/w breakpoint and 2 watchpoint.  book3s supports
429  * only 1 watchpoint, so array size of 4 is sufficient for now.
430  */
431 #define MAX_HW_BKPTS 4
432 
433 static struct HWBreakpoint {
434     target_ulong addr;
435     int type;
436 } hw_debug_points[MAX_HW_BKPTS];
437 
438 static CPUWatchpoint hw_watchpoint;
439 
440 /* Default there is no breakpoint and watchpoint supported */
441 static int max_hw_breakpoint;
442 static int max_hw_watchpoint;
443 static int nb_hw_breakpoint;
444 static int nb_hw_watchpoint;
445 
446 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
447 {
448     if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
449         max_hw_breakpoint = 2;
450         max_hw_watchpoint = 2;
451     }
452 
453     if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
454         fprintf(stderr, "Error initializing h/w breakpoints\n");
455         return;
456     }
457 }
458 
459 int kvm_arch_init_vcpu(CPUState *cs)
460 {
461     PowerPCCPU *cpu = POWERPC_CPU(cs);
462     CPUPPCState *cenv = &cpu->env;
463     int ret;
464 
465     /* Synchronize sregs with kvm */
466     ret = kvm_arch_sync_sregs(cpu);
467     if (ret) {
468         if (ret == -EINVAL) {
469             error_report("Register sync failed... If you're using kvm-hv.ko,"
470                          " only \"-cpu host\" is possible");
471         }
472         return ret;
473     }
474 
475     switch (cenv->mmu_model) {
476     case POWERPC_MMU_BOOKE206:
477         /* This target supports access to KVM's guest TLB */
478         ret = kvm_booke206_tlb_init(cpu);
479         break;
480     case POWERPC_MMU_2_07:
481         if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
482             /*
483              * KVM-HV has transactional memory on POWER8 also without
484              * the KVM_CAP_PPC_HTM extension, so enable it here
485              * instead as long as it's availble to userspace on the
486              * host.
487              */
488             if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
489                 cap_htm = true;
490             }
491         }
492         break;
493     default:
494         break;
495     }
496 
497     kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
498     kvmppc_hw_debug_points_init(cenv);
499 
500     return ret;
501 }
502 
503 int kvm_arch_destroy_vcpu(CPUState *cs)
504 {
505     return 0;
506 }
507 
508 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
509 {
510     CPUPPCState *env = &cpu->env;
511     CPUState *cs = CPU(cpu);
512     struct kvm_dirty_tlb dirty_tlb;
513     unsigned char *bitmap;
514     int ret;
515 
516     if (!env->kvm_sw_tlb) {
517         return;
518     }
519 
520     bitmap = g_malloc((env->nb_tlb + 7) / 8);
521     memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
522 
523     dirty_tlb.bitmap = (uintptr_t)bitmap;
524     dirty_tlb.num_dirty = env->nb_tlb;
525 
526     ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
527     if (ret) {
528         fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
529                 __func__, strerror(-ret));
530     }
531 
532     g_free(bitmap);
533 }
534 
535 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
536 {
537     PowerPCCPU *cpu = POWERPC_CPU(cs);
538     CPUPPCState *env = &cpu->env;
539     union {
540         uint32_t u32;
541         uint64_t u64;
542     } val;
543     struct kvm_one_reg reg = {
544         .id = id,
545         .addr = (uintptr_t) &val,
546     };
547     int ret;
548 
549     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
550     if (ret != 0) {
551         trace_kvm_failed_spr_get(spr, strerror(errno));
552     } else {
553         switch (id & KVM_REG_SIZE_MASK) {
554         case KVM_REG_SIZE_U32:
555             env->spr[spr] = val.u32;
556             break;
557 
558         case KVM_REG_SIZE_U64:
559             env->spr[spr] = val.u64;
560             break;
561 
562         default:
563             /* Don't handle this size yet */
564             abort();
565         }
566     }
567 }
568 
569 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
570 {
571     PowerPCCPU *cpu = POWERPC_CPU(cs);
572     CPUPPCState *env = &cpu->env;
573     union {
574         uint32_t u32;
575         uint64_t u64;
576     } val;
577     struct kvm_one_reg reg = {
578         .id = id,
579         .addr = (uintptr_t) &val,
580     };
581     int ret;
582 
583     switch (id & KVM_REG_SIZE_MASK) {
584     case KVM_REG_SIZE_U32:
585         val.u32 = env->spr[spr];
586         break;
587 
588     case KVM_REG_SIZE_U64:
589         val.u64 = env->spr[spr];
590         break;
591 
592     default:
593         /* Don't handle this size yet */
594         abort();
595     }
596 
597     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
598     if (ret != 0) {
599         trace_kvm_failed_spr_set(spr, strerror(errno));
600     }
601 }
602 
603 static int kvm_put_fp(CPUState *cs)
604 {
605     PowerPCCPU *cpu = POWERPC_CPU(cs);
606     CPUPPCState *env = &cpu->env;
607     struct kvm_one_reg reg;
608     int i;
609     int ret;
610 
611     if (env->insns_flags & PPC_FLOAT) {
612         uint64_t fpscr = env->fpscr;
613         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
614 
615         reg.id = KVM_REG_PPC_FPSCR;
616         reg.addr = (uintptr_t)&fpscr;
617         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
618         if (ret < 0) {
619             trace_kvm_failed_fpscr_set(strerror(errno));
620             return ret;
621         }
622 
623         for (i = 0; i < 32; i++) {
624             uint64_t vsr[2];
625             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
626             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
627 
628 #ifdef HOST_WORDS_BIGENDIAN
629             vsr[0] = float64_val(*fpr);
630             vsr[1] = *vsrl;
631 #else
632             vsr[0] = *vsrl;
633             vsr[1] = float64_val(*fpr);
634 #endif
635             reg.addr = (uintptr_t) &vsr;
636             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
637 
638             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
639             if (ret < 0) {
640                 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
641                                         strerror(errno));
642                 return ret;
643             }
644         }
645     }
646 
647     if (env->insns_flags & PPC_ALTIVEC) {
648         reg.id = KVM_REG_PPC_VSCR;
649         reg.addr = (uintptr_t)&env->vscr;
650         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
651         if (ret < 0) {
652             trace_kvm_failed_vscr_set(strerror(errno));
653             return ret;
654         }
655 
656         for (i = 0; i < 32; i++) {
657             reg.id = KVM_REG_PPC_VR(i);
658             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
659             ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
660             if (ret < 0) {
661                 trace_kvm_failed_vr_set(i, strerror(errno));
662                 return ret;
663             }
664         }
665     }
666 
667     return 0;
668 }
669 
670 static int kvm_get_fp(CPUState *cs)
671 {
672     PowerPCCPU *cpu = POWERPC_CPU(cs);
673     CPUPPCState *env = &cpu->env;
674     struct kvm_one_reg reg;
675     int i;
676     int ret;
677 
678     if (env->insns_flags & PPC_FLOAT) {
679         uint64_t fpscr;
680         bool vsx = !!(env->insns_flags2 & PPC2_VSX);
681 
682         reg.id = KVM_REG_PPC_FPSCR;
683         reg.addr = (uintptr_t)&fpscr;
684         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
685         if (ret < 0) {
686             trace_kvm_failed_fpscr_get(strerror(errno));
687             return ret;
688         } else {
689             env->fpscr = fpscr;
690         }
691 
692         for (i = 0; i < 32; i++) {
693             uint64_t vsr[2];
694             uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
695             uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
696 
697             reg.addr = (uintptr_t) &vsr;
698             reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
699 
700             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
701             if (ret < 0) {
702                 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
703                                         strerror(errno));
704                 return ret;
705             } else {
706 #ifdef HOST_WORDS_BIGENDIAN
707                 *fpr = vsr[0];
708                 if (vsx) {
709                     *vsrl = vsr[1];
710                 }
711 #else
712                 *fpr = vsr[1];
713                 if (vsx) {
714                     *vsrl = vsr[0];
715                 }
716 #endif
717             }
718         }
719     }
720 
721     if (env->insns_flags & PPC_ALTIVEC) {
722         reg.id = KVM_REG_PPC_VSCR;
723         reg.addr = (uintptr_t)&env->vscr;
724         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
725         if (ret < 0) {
726             trace_kvm_failed_vscr_get(strerror(errno));
727             return ret;
728         }
729 
730         for (i = 0; i < 32; i++) {
731             reg.id = KVM_REG_PPC_VR(i);
732             reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
733             ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
734             if (ret < 0) {
735                 trace_kvm_failed_vr_get(i, strerror(errno));
736                 return ret;
737             }
738         }
739     }
740 
741     return 0;
742 }
743 
744 #if defined(TARGET_PPC64)
745 static int kvm_get_vpa(CPUState *cs)
746 {
747     PowerPCCPU *cpu = POWERPC_CPU(cs);
748     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
749     struct kvm_one_reg reg;
750     int ret;
751 
752     reg.id = KVM_REG_PPC_VPA_ADDR;
753     reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
754     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
755     if (ret < 0) {
756         trace_kvm_failed_vpa_addr_get(strerror(errno));
757         return ret;
758     }
759 
760     assert((uintptr_t)&spapr_cpu->slb_shadow_size
761            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
762     reg.id = KVM_REG_PPC_VPA_SLB;
763     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
764     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
765     if (ret < 0) {
766         trace_kvm_failed_slb_get(strerror(errno));
767         return ret;
768     }
769 
770     assert((uintptr_t)&spapr_cpu->dtl_size
771            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
772     reg.id = KVM_REG_PPC_VPA_DTL;
773     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
774     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
775     if (ret < 0) {
776         trace_kvm_failed_dtl_get(strerror(errno));
777         return ret;
778     }
779 
780     return 0;
781 }
782 
783 static int kvm_put_vpa(CPUState *cs)
784 {
785     PowerPCCPU *cpu = POWERPC_CPU(cs);
786     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
787     struct kvm_one_reg reg;
788     int ret;
789 
790     /*
791      * SLB shadow or DTL can't be registered unless a master VPA is
792      * registered.  That means when restoring state, if a VPA *is*
793      * registered, we need to set that up first.  If not, we need to
794      * deregister the others before deregistering the master VPA
795      */
796     assert(spapr_cpu->vpa_addr
797            || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
798 
799     if (spapr_cpu->vpa_addr) {
800         reg.id = KVM_REG_PPC_VPA_ADDR;
801         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
802         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
803         if (ret < 0) {
804             trace_kvm_failed_vpa_addr_set(strerror(errno));
805             return ret;
806         }
807     }
808 
809     assert((uintptr_t)&spapr_cpu->slb_shadow_size
810            == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
811     reg.id = KVM_REG_PPC_VPA_SLB;
812     reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
813     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
814     if (ret < 0) {
815         trace_kvm_failed_slb_set(strerror(errno));
816         return ret;
817     }
818 
819     assert((uintptr_t)&spapr_cpu->dtl_size
820            == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
821     reg.id = KVM_REG_PPC_VPA_DTL;
822     reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
823     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
824     if (ret < 0) {
825         trace_kvm_failed_dtl_set(strerror(errno));
826         return ret;
827     }
828 
829     if (!spapr_cpu->vpa_addr) {
830         reg.id = KVM_REG_PPC_VPA_ADDR;
831         reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
832         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
833         if (ret < 0) {
834             trace_kvm_failed_null_vpa_addr_set(strerror(errno));
835             return ret;
836         }
837     }
838 
839     return 0;
840 }
841 #endif /* TARGET_PPC64 */
842 
843 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
844 {
845     CPUPPCState *env = &cpu->env;
846     struct kvm_sregs sregs;
847     int i;
848 
849     sregs.pvr = env->spr[SPR_PVR];
850 
851     if (cpu->vhyp) {
852         PPCVirtualHypervisorClass *vhc =
853             PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
854         sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
855     } else {
856         sregs.u.s.sdr1 = env->spr[SPR_SDR1];
857     }
858 
859     /* Sync SLB */
860 #ifdef TARGET_PPC64
861     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
862         sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
863         if (env->slb[i].esid & SLB_ESID_V) {
864             sregs.u.s.ppc64.slb[i].slbe |= i;
865         }
866         sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
867     }
868 #endif
869 
870     /* Sync SRs */
871     for (i = 0; i < 16; i++) {
872         sregs.u.s.ppc32.sr[i] = env->sr[i];
873     }
874 
875     /* Sync BATs */
876     for (i = 0; i < 8; i++) {
877         /* Beware. We have to swap upper and lower bits here */
878         sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
879             | env->DBAT[1][i];
880         sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
881             | env->IBAT[1][i];
882     }
883 
884     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
885 }
886 
887 int kvm_arch_put_registers(CPUState *cs, int level)
888 {
889     PowerPCCPU *cpu = POWERPC_CPU(cs);
890     CPUPPCState *env = &cpu->env;
891     struct kvm_regs regs;
892     int ret;
893     int i;
894 
895     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
896     if (ret < 0) {
897         return ret;
898     }
899 
900     regs.ctr = env->ctr;
901     regs.lr  = env->lr;
902     regs.xer = cpu_read_xer(env);
903     regs.msr = env->msr;
904     regs.pc = env->nip;
905 
906     regs.srr0 = env->spr[SPR_SRR0];
907     regs.srr1 = env->spr[SPR_SRR1];
908 
909     regs.sprg0 = env->spr[SPR_SPRG0];
910     regs.sprg1 = env->spr[SPR_SPRG1];
911     regs.sprg2 = env->spr[SPR_SPRG2];
912     regs.sprg3 = env->spr[SPR_SPRG3];
913     regs.sprg4 = env->spr[SPR_SPRG4];
914     regs.sprg5 = env->spr[SPR_SPRG5];
915     regs.sprg6 = env->spr[SPR_SPRG6];
916     regs.sprg7 = env->spr[SPR_SPRG7];
917 
918     regs.pid = env->spr[SPR_BOOKE_PID];
919 
920     for (i = 0; i < 32; i++) {
921         regs.gpr[i] = env->gpr[i];
922     }
923 
924     regs.cr = 0;
925     for (i = 0; i < 8; i++) {
926         regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
927     }
928 
929     ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
930     if (ret < 0) {
931         return ret;
932     }
933 
934     kvm_put_fp(cs);
935 
936     if (env->tlb_dirty) {
937         kvm_sw_tlb_put(cpu);
938         env->tlb_dirty = false;
939     }
940 
941     if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
942         ret = kvmppc_put_books_sregs(cpu);
943         if (ret < 0) {
944             return ret;
945         }
946     }
947 
948     if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
949         kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
950     }
951 
952     if (cap_one_reg) {
953         int i;
954 
955         /*
956          * We deliberately ignore errors here, for kernels which have
957          * the ONE_REG calls, but don't support the specific
958          * registers, there's a reasonable chance things will still
959          * work, at least until we try to migrate.
960          */
961         for (i = 0; i < 1024; i++) {
962             uint64_t id = env->spr_cb[i].one_reg_id;
963 
964             if (id != 0) {
965                 kvm_put_one_spr(cs, id, i);
966             }
967         }
968 
969 #ifdef TARGET_PPC64
970         if (msr_ts) {
971             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
972                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
973             }
974             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
975                 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
976             }
977             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
978             kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
979             kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
980             kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
981             kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
982             kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
983             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
984             kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
985             kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
986             kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
987         }
988 
989         if (cap_papr) {
990             if (kvm_put_vpa(cs) < 0) {
991                 trace_kvm_failed_put_vpa();
992             }
993         }
994 
995         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
996 
997         if (level > KVM_PUT_RUNTIME_STATE) {
998             kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
999         }
1000 #endif /* TARGET_PPC64 */
1001     }
1002 
1003     return ret;
1004 }
1005 
1006 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1007 {
1008      env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1009 }
1010 
1011 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1012 {
1013     CPUPPCState *env = &cpu->env;
1014     struct kvm_sregs sregs;
1015     int ret;
1016 
1017     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1018     if (ret < 0) {
1019         return ret;
1020     }
1021 
1022     if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1023         env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1024         env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1025         env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1026         env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1027         env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1028         env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1029         env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1030         env->spr[SPR_DECR] = sregs.u.e.dec;
1031         env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1032         env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1033         env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1034     }
1035 
1036     if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1037         env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1038         env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1039         env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1040         env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1041         env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1042     }
1043 
1044     if (sregs.u.e.features & KVM_SREGS_E_64) {
1045         env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1046     }
1047 
1048     if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1049         env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1050     }
1051 
1052     if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1053         env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1054         kvm_sync_excp(env, POWERPC_EXCP_CRITICAL,  SPR_BOOKE_IVOR0);
1055         env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1056         kvm_sync_excp(env, POWERPC_EXCP_MCHECK,  SPR_BOOKE_IVOR1);
1057         env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1058         kvm_sync_excp(env, POWERPC_EXCP_DSI,  SPR_BOOKE_IVOR2);
1059         env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1060         kvm_sync_excp(env, POWERPC_EXCP_ISI,  SPR_BOOKE_IVOR3);
1061         env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1062         kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL,  SPR_BOOKE_IVOR4);
1063         env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1064         kvm_sync_excp(env, POWERPC_EXCP_ALIGN,  SPR_BOOKE_IVOR5);
1065         env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1066         kvm_sync_excp(env, POWERPC_EXCP_PROGRAM,  SPR_BOOKE_IVOR6);
1067         env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1068         kvm_sync_excp(env, POWERPC_EXCP_FPU,  SPR_BOOKE_IVOR7);
1069         env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1070         kvm_sync_excp(env, POWERPC_EXCP_SYSCALL,  SPR_BOOKE_IVOR8);
1071         env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1072         kvm_sync_excp(env, POWERPC_EXCP_APU,  SPR_BOOKE_IVOR9);
1073         env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1074         kvm_sync_excp(env, POWERPC_EXCP_DECR,  SPR_BOOKE_IVOR10);
1075         env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1076         kvm_sync_excp(env, POWERPC_EXCP_FIT,  SPR_BOOKE_IVOR11);
1077         env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1078         kvm_sync_excp(env, POWERPC_EXCP_WDT,  SPR_BOOKE_IVOR12);
1079         env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1080         kvm_sync_excp(env, POWERPC_EXCP_DTLB,  SPR_BOOKE_IVOR13);
1081         env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1082         kvm_sync_excp(env, POWERPC_EXCP_ITLB,  SPR_BOOKE_IVOR14);
1083         env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1084         kvm_sync_excp(env, POWERPC_EXCP_DEBUG,  SPR_BOOKE_IVOR15);
1085 
1086         if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1087             env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1088             kvm_sync_excp(env, POWERPC_EXCP_SPEU,  SPR_BOOKE_IVOR32);
1089             env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1090             kvm_sync_excp(env, POWERPC_EXCP_EFPDI,  SPR_BOOKE_IVOR33);
1091             env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1092             kvm_sync_excp(env, POWERPC_EXCP_EFPRI,  SPR_BOOKE_IVOR34);
1093         }
1094 
1095         if (sregs.u.e.features & KVM_SREGS_E_PM) {
1096             env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1097             kvm_sync_excp(env, POWERPC_EXCP_EPERFM,  SPR_BOOKE_IVOR35);
1098         }
1099 
1100         if (sregs.u.e.features & KVM_SREGS_E_PC) {
1101             env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1102             kvm_sync_excp(env, POWERPC_EXCP_DOORI,  SPR_BOOKE_IVOR36);
1103             env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1104             kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1105         }
1106     }
1107 
1108     if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1109         env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1110         env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1111         env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1112         env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1113         env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1114         env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1115         env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1116         env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1117         env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1118         env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1119     }
1120 
1121     if (sregs.u.e.features & KVM_SREGS_EXP) {
1122         env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1123     }
1124 
1125     if (sregs.u.e.features & KVM_SREGS_E_PD) {
1126         env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1127         env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1128     }
1129 
1130     if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1131         env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1132         env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1133         env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1134 
1135         if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1136             env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1137             env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1138         }
1139     }
1140 
1141     return 0;
1142 }
1143 
1144 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1145 {
1146     CPUPPCState *env = &cpu->env;
1147     struct kvm_sregs sregs;
1148     int ret;
1149     int i;
1150 
1151     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1152     if (ret < 0) {
1153         return ret;
1154     }
1155 
1156     if (!cpu->vhyp) {
1157         ppc_store_sdr1(env, sregs.u.s.sdr1);
1158     }
1159 
1160     /* Sync SLB */
1161 #ifdef TARGET_PPC64
1162     /*
1163      * The packed SLB array we get from KVM_GET_SREGS only contains
1164      * information about valid entries. So we flush our internal copy
1165      * to get rid of stale ones, then put all valid SLB entries back
1166      * in.
1167      */
1168     memset(env->slb, 0, sizeof(env->slb));
1169     for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1170         target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1171         target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1172         /*
1173          * Only restore valid entries
1174          */
1175         if (rb & SLB_ESID_V) {
1176             ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1177         }
1178     }
1179 #endif
1180 
1181     /* Sync SRs */
1182     for (i = 0; i < 16; i++) {
1183         env->sr[i] = sregs.u.s.ppc32.sr[i];
1184     }
1185 
1186     /* Sync BATs */
1187     for (i = 0; i < 8; i++) {
1188         env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1189         env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1190         env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1191         env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1192     }
1193 
1194     return 0;
1195 }
1196 
1197 int kvm_arch_get_registers(CPUState *cs)
1198 {
1199     PowerPCCPU *cpu = POWERPC_CPU(cs);
1200     CPUPPCState *env = &cpu->env;
1201     struct kvm_regs regs;
1202     uint32_t cr;
1203     int i, ret;
1204 
1205     ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1206     if (ret < 0) {
1207         return ret;
1208     }
1209 
1210     cr = regs.cr;
1211     for (i = 7; i >= 0; i--) {
1212         env->crf[i] = cr & 15;
1213         cr >>= 4;
1214     }
1215 
1216     env->ctr = regs.ctr;
1217     env->lr = regs.lr;
1218     cpu_write_xer(env, regs.xer);
1219     env->msr = regs.msr;
1220     env->nip = regs.pc;
1221 
1222     env->spr[SPR_SRR0] = regs.srr0;
1223     env->spr[SPR_SRR1] = regs.srr1;
1224 
1225     env->spr[SPR_SPRG0] = regs.sprg0;
1226     env->spr[SPR_SPRG1] = regs.sprg1;
1227     env->spr[SPR_SPRG2] = regs.sprg2;
1228     env->spr[SPR_SPRG3] = regs.sprg3;
1229     env->spr[SPR_SPRG4] = regs.sprg4;
1230     env->spr[SPR_SPRG5] = regs.sprg5;
1231     env->spr[SPR_SPRG6] = regs.sprg6;
1232     env->spr[SPR_SPRG7] = regs.sprg7;
1233 
1234     env->spr[SPR_BOOKE_PID] = regs.pid;
1235 
1236     for (i = 0; i < 32; i++) {
1237         env->gpr[i] = regs.gpr[i];
1238     }
1239 
1240     kvm_get_fp(cs);
1241 
1242     if (cap_booke_sregs) {
1243         ret = kvmppc_get_booke_sregs(cpu);
1244         if (ret < 0) {
1245             return ret;
1246         }
1247     }
1248 
1249     if (cap_segstate) {
1250         ret = kvmppc_get_books_sregs(cpu);
1251         if (ret < 0) {
1252             return ret;
1253         }
1254     }
1255 
1256     if (cap_hior) {
1257         kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1258     }
1259 
1260     if (cap_one_reg) {
1261         int i;
1262 
1263         /*
1264          * We deliberately ignore errors here, for kernels which have
1265          * the ONE_REG calls, but don't support the specific
1266          * registers, there's a reasonable chance things will still
1267          * work, at least until we try to migrate.
1268          */
1269         for (i = 0; i < 1024; i++) {
1270             uint64_t id = env->spr_cb[i].one_reg_id;
1271 
1272             if (id != 0) {
1273                 kvm_get_one_spr(cs, id, i);
1274             }
1275         }
1276 
1277 #ifdef TARGET_PPC64
1278         if (msr_ts) {
1279             for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1280                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1281             }
1282             for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1283                 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1284             }
1285             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1286             kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1287             kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1288             kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1289             kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1290             kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1291             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1292             kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1293             kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1294             kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1295         }
1296 
1297         if (cap_papr) {
1298             if (kvm_get_vpa(cs) < 0) {
1299                 trace_kvm_failed_get_vpa();
1300             }
1301         }
1302 
1303         kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1304         kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1305 #endif
1306     }
1307 
1308     return 0;
1309 }
1310 
1311 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1312 {
1313     unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1314 
1315     if (irq != PPC_INTERRUPT_EXT) {
1316         return 0;
1317     }
1318 
1319     if (!kvm_enabled() || !cap_interrupt_unset) {
1320         return 0;
1321     }
1322 
1323     kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1324 
1325     return 0;
1326 }
1327 
1328 #if defined(TARGET_PPC64)
1329 #define PPC_INPUT_INT PPC970_INPUT_INT
1330 #else
1331 #define PPC_INPUT_INT PPC6xx_INPUT_INT
1332 #endif
1333 
1334 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1335 {
1336     return;
1337 }
1338 
1339 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1340 {
1341     return MEMTXATTRS_UNSPECIFIED;
1342 }
1343 
1344 int kvm_arch_process_async_events(CPUState *cs)
1345 {
1346     return cs->halted;
1347 }
1348 
1349 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1350 {
1351     CPUState *cs = CPU(cpu);
1352     CPUPPCState *env = &cpu->env;
1353 
1354     if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1355         cs->halted = 1;
1356         cs->exception_index = EXCP_HLT;
1357     }
1358 
1359     return 0;
1360 }
1361 
1362 /* map dcr access to existing qemu dcr emulation */
1363 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1364                                   uint32_t dcrn, uint32_t *data)
1365 {
1366     if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1367         fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1368     }
1369 
1370     return 0;
1371 }
1372 
1373 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1374                                    uint32_t dcrn, uint32_t data)
1375 {
1376     if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1377         fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1378     }
1379 
1380     return 0;
1381 }
1382 
1383 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1384 {
1385     /* Mixed endian case is not handled */
1386     uint32_t sc = debug_inst_opcode;
1387 
1388     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1389                             sizeof(sc), 0) ||
1390         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1391         return -EINVAL;
1392     }
1393 
1394     return 0;
1395 }
1396 
1397 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1398 {
1399     uint32_t sc;
1400 
1401     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1402         sc != debug_inst_opcode ||
1403         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1404                             sizeof(sc), 1)) {
1405         return -EINVAL;
1406     }
1407 
1408     return 0;
1409 }
1410 
1411 static int find_hw_breakpoint(target_ulong addr, int type)
1412 {
1413     int n;
1414 
1415     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1416            <= ARRAY_SIZE(hw_debug_points));
1417 
1418     for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1419         if (hw_debug_points[n].addr == addr &&
1420              hw_debug_points[n].type == type) {
1421             return n;
1422         }
1423     }
1424 
1425     return -1;
1426 }
1427 
1428 static int find_hw_watchpoint(target_ulong addr, int *flag)
1429 {
1430     int n;
1431 
1432     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1433     if (n >= 0) {
1434         *flag = BP_MEM_ACCESS;
1435         return n;
1436     }
1437 
1438     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1439     if (n >= 0) {
1440         *flag = BP_MEM_WRITE;
1441         return n;
1442     }
1443 
1444     n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1445     if (n >= 0) {
1446         *flag = BP_MEM_READ;
1447         return n;
1448     }
1449 
1450     return -1;
1451 }
1452 
1453 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1454                                   target_ulong len, int type)
1455 {
1456     if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1457         return -ENOBUFS;
1458     }
1459 
1460     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1461     hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1462 
1463     switch (type) {
1464     case GDB_BREAKPOINT_HW:
1465         if (nb_hw_breakpoint >= max_hw_breakpoint) {
1466             return -ENOBUFS;
1467         }
1468 
1469         if (find_hw_breakpoint(addr, type) >= 0) {
1470             return -EEXIST;
1471         }
1472 
1473         nb_hw_breakpoint++;
1474         break;
1475 
1476     case GDB_WATCHPOINT_WRITE:
1477     case GDB_WATCHPOINT_READ:
1478     case GDB_WATCHPOINT_ACCESS:
1479         if (nb_hw_watchpoint >= max_hw_watchpoint) {
1480             return -ENOBUFS;
1481         }
1482 
1483         if (find_hw_breakpoint(addr, type) >= 0) {
1484             return -EEXIST;
1485         }
1486 
1487         nb_hw_watchpoint++;
1488         break;
1489 
1490     default:
1491         return -ENOSYS;
1492     }
1493 
1494     return 0;
1495 }
1496 
1497 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1498                                   target_ulong len, int type)
1499 {
1500     int n;
1501 
1502     n = find_hw_breakpoint(addr, type);
1503     if (n < 0) {
1504         return -ENOENT;
1505     }
1506 
1507     switch (type) {
1508     case GDB_BREAKPOINT_HW:
1509         nb_hw_breakpoint--;
1510         break;
1511 
1512     case GDB_WATCHPOINT_WRITE:
1513     case GDB_WATCHPOINT_READ:
1514     case GDB_WATCHPOINT_ACCESS:
1515         nb_hw_watchpoint--;
1516         break;
1517 
1518     default:
1519         return -ENOSYS;
1520     }
1521     hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1522 
1523     return 0;
1524 }
1525 
1526 void kvm_arch_remove_all_hw_breakpoints(void)
1527 {
1528     nb_hw_breakpoint = nb_hw_watchpoint = 0;
1529 }
1530 
1531 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1532 {
1533     int n;
1534 
1535     /* Software Breakpoint updates */
1536     if (kvm_sw_breakpoints_active(cs)) {
1537         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1538     }
1539 
1540     assert((nb_hw_breakpoint + nb_hw_watchpoint)
1541            <= ARRAY_SIZE(hw_debug_points));
1542     assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1543 
1544     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1545         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1546         memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1547         for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1548             switch (hw_debug_points[n].type) {
1549             case GDB_BREAKPOINT_HW:
1550                 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1551                 break;
1552             case GDB_WATCHPOINT_WRITE:
1553                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1554                 break;
1555             case GDB_WATCHPOINT_READ:
1556                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1557                 break;
1558             case GDB_WATCHPOINT_ACCESS:
1559                 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1560                                         KVMPPC_DEBUG_WATCH_READ;
1561                 break;
1562             default:
1563                 cpu_abort(cs, "Unsupported breakpoint type\n");
1564             }
1565             dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1566         }
1567     }
1568 }
1569 
1570 static int kvm_handle_hw_breakpoint(CPUState *cs,
1571                                     struct kvm_debug_exit_arch *arch_info)
1572 {
1573     int handle = 0;
1574     int n;
1575     int flag = 0;
1576 
1577     if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1578         if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1579             n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1580             if (n >= 0) {
1581                 handle = 1;
1582             }
1583         } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1584                                         KVMPPC_DEBUG_WATCH_WRITE)) {
1585             n = find_hw_watchpoint(arch_info->address,  &flag);
1586             if (n >= 0) {
1587                 handle = 1;
1588                 cs->watchpoint_hit = &hw_watchpoint;
1589                 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1590                 hw_watchpoint.flags = flag;
1591             }
1592         }
1593     }
1594     return handle;
1595 }
1596 
1597 static int kvm_handle_singlestep(void)
1598 {
1599     return 1;
1600 }
1601 
1602 static int kvm_handle_sw_breakpoint(void)
1603 {
1604     return 1;
1605 }
1606 
1607 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1608 {
1609     CPUState *cs = CPU(cpu);
1610     CPUPPCState *env = &cpu->env;
1611     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1612 
1613     if (cs->singlestep_enabled) {
1614         return kvm_handle_singlestep();
1615     }
1616 
1617     if (arch_info->status) {
1618         return kvm_handle_hw_breakpoint(cs, arch_info);
1619     }
1620 
1621     if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1622         return kvm_handle_sw_breakpoint();
1623     }
1624 
1625     /*
1626      * QEMU is not able to handle debug exception, so inject
1627      * program exception to guest;
1628      * Yes program exception NOT debug exception !!
1629      * When QEMU is using debug resources then debug exception must
1630      * be always set. To achieve this we set MSR_DE and also set
1631      * MSRP_DEP so guest cannot change MSR_DE.
1632      * When emulating debug resource for guest we want guest
1633      * to control MSR_DE (enable/disable debug interrupt on need).
1634      * Supporting both configurations are NOT possible.
1635      * So the result is that we cannot share debug resources
1636      * between QEMU and Guest on BOOKE architecture.
1637      * In the current design QEMU gets the priority over guest,
1638      * this means that if QEMU is using debug resources then guest
1639      * cannot use them;
1640      * For software breakpoint QEMU uses a privileged instruction;
1641      * So there cannot be any reason that we are here for guest
1642      * set debug exception, only possibility is guest executed a
1643      * privileged / illegal instruction and that's why we are
1644      * injecting a program interrupt.
1645      */
1646     cpu_synchronize_state(cs);
1647     /*
1648      * env->nip is PC, so increment this by 4 to use
1649      * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1650      */
1651     env->nip += 4;
1652     cs->exception_index = POWERPC_EXCP_PROGRAM;
1653     env->error_code = POWERPC_EXCP_INVAL;
1654     ppc_cpu_do_interrupt(cs);
1655 
1656     return 0;
1657 }
1658 
1659 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1660 {
1661     PowerPCCPU *cpu = POWERPC_CPU(cs);
1662     CPUPPCState *env = &cpu->env;
1663     int ret;
1664 
1665     qemu_mutex_lock_iothread();
1666 
1667     switch (run->exit_reason) {
1668     case KVM_EXIT_DCR:
1669         if (run->dcr.is_write) {
1670             trace_kvm_handle_dcr_write();
1671             ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1672         } else {
1673             trace_kvm_handle_dcr_read();
1674             ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1675         }
1676         break;
1677     case KVM_EXIT_HLT:
1678         trace_kvm_handle_halt();
1679         ret = kvmppc_handle_halt(cpu);
1680         break;
1681 #if defined(TARGET_PPC64)
1682     case KVM_EXIT_PAPR_HCALL:
1683         trace_kvm_handle_papr_hcall();
1684         run->papr_hcall.ret = spapr_hypercall(cpu,
1685                                               run->papr_hcall.nr,
1686                                               run->papr_hcall.args);
1687         ret = 0;
1688         break;
1689 #endif
1690     case KVM_EXIT_EPR:
1691         trace_kvm_handle_epr();
1692         run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1693         ret = 0;
1694         break;
1695     case KVM_EXIT_WATCHDOG:
1696         trace_kvm_handle_watchdog_expiry();
1697         watchdog_perform_action();
1698         ret = 0;
1699         break;
1700 
1701     case KVM_EXIT_DEBUG:
1702         trace_kvm_handle_debug_exception();
1703         if (kvm_handle_debug(cpu, run)) {
1704             ret = EXCP_DEBUG;
1705             break;
1706         }
1707         /* re-enter, this exception was guest-internal */
1708         ret = 0;
1709         break;
1710 
1711     default:
1712         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1713         ret = -1;
1714         break;
1715     }
1716 
1717     qemu_mutex_unlock_iothread();
1718     return ret;
1719 }
1720 
1721 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1722 {
1723     CPUState *cs = CPU(cpu);
1724     uint32_t bits = tsr_bits;
1725     struct kvm_one_reg reg = {
1726         .id = KVM_REG_PPC_OR_TSR,
1727         .addr = (uintptr_t) &bits,
1728     };
1729 
1730     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1731 }
1732 
1733 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1734 {
1735 
1736     CPUState *cs = CPU(cpu);
1737     uint32_t bits = tsr_bits;
1738     struct kvm_one_reg reg = {
1739         .id = KVM_REG_PPC_CLEAR_TSR,
1740         .addr = (uintptr_t) &bits,
1741     };
1742 
1743     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1744 }
1745 
1746 int kvmppc_set_tcr(PowerPCCPU *cpu)
1747 {
1748     CPUState *cs = CPU(cpu);
1749     CPUPPCState *env = &cpu->env;
1750     uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1751 
1752     struct kvm_one_reg reg = {
1753         .id = KVM_REG_PPC_TCR,
1754         .addr = (uintptr_t) &tcr,
1755     };
1756 
1757     return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1758 }
1759 
1760 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1761 {
1762     CPUState *cs = CPU(cpu);
1763     int ret;
1764 
1765     if (!kvm_enabled()) {
1766         return -1;
1767     }
1768 
1769     if (!cap_ppc_watchdog) {
1770         printf("warning: KVM does not support watchdog");
1771         return -1;
1772     }
1773 
1774     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1775     if (ret < 0) {
1776         fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1777                 __func__, strerror(-ret));
1778         return ret;
1779     }
1780 
1781     return ret;
1782 }
1783 
1784 static int read_cpuinfo(const char *field, char *value, int len)
1785 {
1786     FILE *f;
1787     int ret = -1;
1788     int field_len = strlen(field);
1789     char line[512];
1790 
1791     f = fopen("/proc/cpuinfo", "r");
1792     if (!f) {
1793         return -1;
1794     }
1795 
1796     do {
1797         if (!fgets(line, sizeof(line), f)) {
1798             break;
1799         }
1800         if (!strncmp(line, field, field_len)) {
1801             pstrcpy(value, len, line);
1802             ret = 0;
1803             break;
1804         }
1805     } while (*line);
1806 
1807     fclose(f);
1808 
1809     return ret;
1810 }
1811 
1812 uint32_t kvmppc_get_tbfreq(void)
1813 {
1814     char line[512];
1815     char *ns;
1816     uint32_t retval = NANOSECONDS_PER_SECOND;
1817 
1818     if (read_cpuinfo("timebase", line, sizeof(line))) {
1819         return retval;
1820     }
1821 
1822     ns = strchr(line, ':');
1823     if (!ns) {
1824         return retval;
1825     }
1826 
1827     ns++;
1828 
1829     return atoi(ns);
1830 }
1831 
1832 bool kvmppc_get_host_serial(char **value)
1833 {
1834     return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1835                                NULL);
1836 }
1837 
1838 bool kvmppc_get_host_model(char **value)
1839 {
1840     return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1841 }
1842 
1843 /* Try to find a device tree node for a CPU with clock-frequency property */
1844 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1845 {
1846     struct dirent *dirp;
1847     DIR *dp;
1848 
1849     dp = opendir(PROC_DEVTREE_CPU);
1850     if (!dp) {
1851         printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1852         return -1;
1853     }
1854 
1855     buf[0] = '\0';
1856     while ((dirp = readdir(dp)) != NULL) {
1857         FILE *f;
1858         snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1859                  dirp->d_name);
1860         f = fopen(buf, "r");
1861         if (f) {
1862             snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1863             fclose(f);
1864             break;
1865         }
1866         buf[0] = '\0';
1867     }
1868     closedir(dp);
1869     if (buf[0] == '\0') {
1870         printf("Unknown host!\n");
1871         return -1;
1872     }
1873 
1874     return 0;
1875 }
1876 
1877 static uint64_t kvmppc_read_int_dt(const char *filename)
1878 {
1879     union {
1880         uint32_t v32;
1881         uint64_t v64;
1882     } u;
1883     FILE *f;
1884     int len;
1885 
1886     f = fopen(filename, "rb");
1887     if (!f) {
1888         return -1;
1889     }
1890 
1891     len = fread(&u, 1, sizeof(u), f);
1892     fclose(f);
1893     switch (len) {
1894     case 4:
1895         /* property is a 32-bit quantity */
1896         return be32_to_cpu(u.v32);
1897     case 8:
1898         return be64_to_cpu(u.v64);
1899     }
1900 
1901     return 0;
1902 }
1903 
1904 /*
1905  * Read a CPU node property from the host device tree that's a single
1906  * integer (32-bit or 64-bit).  Returns 0 if anything goes wrong
1907  * (can't find or open the property, or doesn't understand the format)
1908  */
1909 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1910 {
1911     char buf[PATH_MAX], *tmp;
1912     uint64_t val;
1913 
1914     if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1915         return -1;
1916     }
1917 
1918     tmp = g_strdup_printf("%s/%s", buf, propname);
1919     val = kvmppc_read_int_dt(tmp);
1920     g_free(tmp);
1921 
1922     return val;
1923 }
1924 
1925 uint64_t kvmppc_get_clockfreq(void)
1926 {
1927     return kvmppc_read_int_cpu_dt("clock-frequency");
1928 }
1929 
1930 static int kvmppc_get_dec_bits(void)
1931 {
1932     int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1933 
1934     if (nr_bits > 0) {
1935         return nr_bits;
1936     }
1937     return 0;
1938 }
1939 
1940 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1941 {
1942     CPUState *cs = env_cpu(env);
1943 
1944     if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1945         !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1946         return 0;
1947     }
1948 
1949     return 1;
1950 }
1951 
1952 int kvmppc_get_hasidle(CPUPPCState *env)
1953 {
1954     struct kvm_ppc_pvinfo pvinfo;
1955 
1956     if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1957         (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1958         return 1;
1959     }
1960 
1961     return 0;
1962 }
1963 
1964 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1965 {
1966     uint32_t *hc = (uint32_t *)buf;
1967     struct kvm_ppc_pvinfo pvinfo;
1968 
1969     if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1970         memcpy(buf, pvinfo.hcall, buf_len);
1971         return 0;
1972     }
1973 
1974     /*
1975      * Fallback to always fail hypercalls regardless of endianness:
1976      *
1977      *     tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1978      *     li r3, -1
1979      *     b .+8       (becomes nop in wrong endian)
1980      *     bswap32(li r3, -1)
1981      */
1982 
1983     hc[0] = cpu_to_be32(0x08000048);
1984     hc[1] = cpu_to_be32(0x3860ffff);
1985     hc[2] = cpu_to_be32(0x48000008);
1986     hc[3] = cpu_to_be32(bswap32(0x3860ffff));
1987 
1988     return 1;
1989 }
1990 
1991 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
1992 {
1993     return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
1994 }
1995 
1996 void kvmppc_enable_logical_ci_hcalls(void)
1997 {
1998     /*
1999      * FIXME: it would be nice if we could detect the cases where
2000      * we're using a device which requires the in kernel
2001      * implementation of these hcalls, but the kernel lacks them and
2002      * produce a warning.
2003      */
2004     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2005     kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2006 }
2007 
2008 void kvmppc_enable_set_mode_hcall(void)
2009 {
2010     kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2011 }
2012 
2013 void kvmppc_enable_clear_ref_mod_hcalls(void)
2014 {
2015     kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2016     kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2017 }
2018 
2019 void kvmppc_enable_h_page_init(void)
2020 {
2021     kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2022 }
2023 
2024 void kvmppc_set_papr(PowerPCCPU *cpu)
2025 {
2026     CPUState *cs = CPU(cpu);
2027     int ret;
2028 
2029     if (!kvm_enabled()) {
2030         return;
2031     }
2032 
2033     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2034     if (ret) {
2035         error_report("This vCPU type or KVM version does not support PAPR");
2036         exit(1);
2037     }
2038 
2039     /*
2040      * Update the capability flag so we sync the right information
2041      * with kvm
2042      */
2043     cap_papr = 1;
2044 }
2045 
2046 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2047 {
2048     return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2049 }
2050 
2051 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2052 {
2053     CPUState *cs = CPU(cpu);
2054     int ret;
2055 
2056     ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2057     if (ret && mpic_proxy) {
2058         error_report("This KVM version does not support EPR");
2059         exit(1);
2060     }
2061 }
2062 
2063 int kvmppc_smt_threads(void)
2064 {
2065     return cap_ppc_smt ? cap_ppc_smt : 1;
2066 }
2067 
2068 int kvmppc_set_smt_threads(int smt)
2069 {
2070     int ret;
2071 
2072     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2073     if (!ret) {
2074         cap_ppc_smt = smt;
2075     }
2076     return ret;
2077 }
2078 
2079 void kvmppc_error_append_smt_possible_hint(Error **errp_in)
2080 {
2081     int i;
2082     GString *g;
2083     char *s;
2084 
2085     assert(kvm_enabled());
2086     if (cap_ppc_smt_possible) {
2087         g = g_string_new("Available VSMT modes:");
2088         for (i = 63; i >= 0; i--) {
2089             if ((1UL << i) & cap_ppc_smt_possible) {
2090                 g_string_append_printf(g, " %lu", (1UL << i));
2091             }
2092         }
2093         s = g_string_free(g, false);
2094         error_append_hint(errp_in, "%s.\n", s);
2095         g_free(s);
2096     } else {
2097         error_append_hint(errp_in,
2098                           "This KVM seems to be too old to support VSMT.\n");
2099     }
2100 }
2101 
2102 
2103 #ifdef TARGET_PPC64
2104 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2105 {
2106     struct kvm_ppc_smmu_info info;
2107     long rampagesize, best_page_shift;
2108     int i;
2109 
2110     /*
2111      * Find the largest hardware supported page size that's less than
2112      * or equal to the (logical) backing page size of guest RAM
2113      */
2114     kvm_get_smmu_info(&info, &error_fatal);
2115     rampagesize = qemu_minrampagesize();
2116     best_page_shift = 0;
2117 
2118     for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2119         struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2120 
2121         if (!sps->page_shift) {
2122             continue;
2123         }
2124 
2125         if ((sps->page_shift > best_page_shift)
2126             && ((1UL << sps->page_shift) <= rampagesize)) {
2127             best_page_shift = sps->page_shift;
2128         }
2129     }
2130 
2131     return MIN(current_size,
2132                1ULL << (best_page_shift + hash_shift - 7));
2133 }
2134 #endif
2135 
2136 bool kvmppc_spapr_use_multitce(void)
2137 {
2138     return cap_spapr_multitce;
2139 }
2140 
2141 int kvmppc_spapr_enable_inkernel_multitce(void)
2142 {
2143     int ret;
2144 
2145     ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2146                             H_PUT_TCE_INDIRECT, 1);
2147     if (!ret) {
2148         ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2149                                 H_STUFF_TCE, 1);
2150     }
2151 
2152     return ret;
2153 }
2154 
2155 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2156                               uint64_t bus_offset, uint32_t nb_table,
2157                               int *pfd, bool need_vfio)
2158 {
2159     long len;
2160     int fd;
2161     void *table;
2162 
2163     /*
2164      * Must set fd to -1 so we don't try to munmap when called for
2165      * destroying the table, which the upper layers -will- do
2166      */
2167     *pfd = -1;
2168     if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2169         return NULL;
2170     }
2171 
2172     if (cap_spapr_tce_64) {
2173         struct kvm_create_spapr_tce_64 args = {
2174             .liobn = liobn,
2175             .page_shift = page_shift,
2176             .offset = bus_offset >> page_shift,
2177             .size = nb_table,
2178             .flags = 0
2179         };
2180         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2181         if (fd < 0) {
2182             fprintf(stderr,
2183                     "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2184                     liobn);
2185             return NULL;
2186         }
2187     } else if (cap_spapr_tce) {
2188         uint64_t window_size = (uint64_t) nb_table << page_shift;
2189         struct kvm_create_spapr_tce args = {
2190             .liobn = liobn,
2191             .window_size = window_size,
2192         };
2193         if ((window_size != args.window_size) || bus_offset) {
2194             return NULL;
2195         }
2196         fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2197         if (fd < 0) {
2198             fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2199                     liobn);
2200             return NULL;
2201         }
2202     } else {
2203         return NULL;
2204     }
2205 
2206     len = nb_table * sizeof(uint64_t);
2207     /* FIXME: round this up to page size */
2208 
2209     table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2210     if (table == MAP_FAILED) {
2211         fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2212                 liobn);
2213         close(fd);
2214         return NULL;
2215     }
2216 
2217     *pfd = fd;
2218     return table;
2219 }
2220 
2221 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2222 {
2223     long len;
2224 
2225     if (fd < 0) {
2226         return -1;
2227     }
2228 
2229     len = nb_table * sizeof(uint64_t);
2230     if ((munmap(table, len) < 0) ||
2231         (close(fd) < 0)) {
2232         fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2233                 strerror(errno));
2234         /* Leak the table */
2235     }
2236 
2237     return 0;
2238 }
2239 
2240 int kvmppc_reset_htab(int shift_hint)
2241 {
2242     uint32_t shift = shift_hint;
2243 
2244     if (!kvm_enabled()) {
2245         /* Full emulation, tell caller to allocate htab itself */
2246         return 0;
2247     }
2248     if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2249         int ret;
2250         ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2251         if (ret == -ENOTTY) {
2252             /*
2253              * At least some versions of PR KVM advertise the
2254              * capability, but don't implement the ioctl().  Oops.
2255              * Return 0 so that we allocate the htab in qemu, as is
2256              * correct for PR.
2257              */
2258             return 0;
2259         } else if (ret < 0) {
2260             return ret;
2261         }
2262         return shift;
2263     }
2264 
2265     /*
2266      * We have a kernel that predates the htab reset calls.  For PR
2267      * KVM, we need to allocate the htab ourselves, for an HV KVM of
2268      * this era, it has allocated a 16MB fixed size hash table
2269      * already.
2270      */
2271     if (kvmppc_is_pr(kvm_state)) {
2272         /* PR - tell caller to allocate htab */
2273         return 0;
2274     } else {
2275         /* HV - assume 16MB kernel allocated htab */
2276         return 24;
2277     }
2278 }
2279 
2280 static inline uint32_t mfpvr(void)
2281 {
2282     uint32_t pvr;
2283 
2284     asm ("mfpvr %0"
2285          : "=r"(pvr));
2286     return pvr;
2287 }
2288 
2289 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2290 {
2291     if (on) {
2292         *word |= flags;
2293     } else {
2294         *word &= ~flags;
2295     }
2296 }
2297 
2298 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2299 {
2300     PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2301     uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2302     uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2303 
2304     /* Now fix up the class with information we can query from the host */
2305     pcc->pvr = mfpvr();
2306 
2307     alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2308                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2309     alter_insns(&pcc->insns_flags2, PPC2_VSX,
2310                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2311     alter_insns(&pcc->insns_flags2, PPC2_DFP,
2312                 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2313 
2314     if (dcache_size != -1) {
2315         pcc->l1_dcache_size = dcache_size;
2316     }
2317 
2318     if (icache_size != -1) {
2319         pcc->l1_icache_size = icache_size;
2320     }
2321 
2322 #if defined(TARGET_PPC64)
2323     pcc->radix_page_info = kvm_get_radix_page_info();
2324 
2325     if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2326         /*
2327          * POWER9 DD1 has some bugs which make it not really ISA 3.00
2328          * compliant.  More importantly, advertising ISA 3.00
2329          * architected mode may prevent guests from activating
2330          * necessary DD1 workarounds.
2331          */
2332         pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2333                                 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2334     }
2335 #endif /* defined(TARGET_PPC64) */
2336 }
2337 
2338 bool kvmppc_has_cap_epr(void)
2339 {
2340     return cap_epr;
2341 }
2342 
2343 bool kvmppc_has_cap_fixup_hcalls(void)
2344 {
2345     return cap_fixup_hcalls;
2346 }
2347 
2348 bool kvmppc_has_cap_htm(void)
2349 {
2350     return cap_htm;
2351 }
2352 
2353 bool kvmppc_has_cap_mmu_radix(void)
2354 {
2355     return cap_mmu_radix;
2356 }
2357 
2358 bool kvmppc_has_cap_mmu_hash_v3(void)
2359 {
2360     return cap_mmu_hash_v3;
2361 }
2362 
2363 static bool kvmppc_power8_host(void)
2364 {
2365     bool ret = false;
2366 #ifdef TARGET_PPC64
2367     {
2368         uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2369         ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2370               (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2371               (base_pvr == CPU_POWERPC_POWER8_BASE);
2372     }
2373 #endif /* TARGET_PPC64 */
2374     return ret;
2375 }
2376 
2377 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2378 {
2379     bool l1d_thread_priv_req = !kvmppc_power8_host();
2380 
2381     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2382         return 2;
2383     } else if ((!l1d_thread_priv_req ||
2384                 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2385                (c.character & c.character_mask
2386                 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2387         return 1;
2388     }
2389 
2390     return 0;
2391 }
2392 
2393 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2394 {
2395     if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2396         return 2;
2397     } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2398         return 1;
2399     }
2400 
2401     return 0;
2402 }
2403 
2404 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2405 {
2406     if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2407         (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2408         (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2409         return SPAPR_CAP_FIXED_NA;
2410     } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2411         return SPAPR_CAP_WORKAROUND;
2412     } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2413         return  SPAPR_CAP_FIXED_CCD;
2414     } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2415         return SPAPR_CAP_FIXED_IBS;
2416     }
2417 
2418     return 0;
2419 }
2420 
2421 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2422 {
2423     if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2424         return 1;
2425     }
2426     return 0;
2427 }
2428 
2429 bool kvmppc_has_cap_xive(void)
2430 {
2431     return cap_xive;
2432 }
2433 
2434 static void kvmppc_get_cpu_characteristics(KVMState *s)
2435 {
2436     struct kvm_ppc_cpu_char c;
2437     int ret;
2438 
2439     /* Assume broken */
2440     cap_ppc_safe_cache = 0;
2441     cap_ppc_safe_bounds_check = 0;
2442     cap_ppc_safe_indirect_branch = 0;
2443 
2444     ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2445     if (!ret) {
2446         return;
2447     }
2448     ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2449     if (ret < 0) {
2450         return;
2451     }
2452 
2453     cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2454     cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2455     cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2456     cap_ppc_count_cache_flush_assist =
2457         parse_cap_ppc_count_cache_flush_assist(c);
2458 }
2459 
2460 int kvmppc_get_cap_safe_cache(void)
2461 {
2462     return cap_ppc_safe_cache;
2463 }
2464 
2465 int kvmppc_get_cap_safe_bounds_check(void)
2466 {
2467     return cap_ppc_safe_bounds_check;
2468 }
2469 
2470 int kvmppc_get_cap_safe_indirect_branch(void)
2471 {
2472     return cap_ppc_safe_indirect_branch;
2473 }
2474 
2475 int kvmppc_get_cap_count_cache_flush_assist(void)
2476 {
2477     return cap_ppc_count_cache_flush_assist;
2478 }
2479 
2480 bool kvmppc_has_cap_nested_kvm_hv(void)
2481 {
2482     return !!cap_ppc_nested_kvm_hv;
2483 }
2484 
2485 int kvmppc_set_cap_nested_kvm_hv(int enable)
2486 {
2487     return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2488 }
2489 
2490 bool kvmppc_has_cap_spapr_vfio(void)
2491 {
2492     return cap_spapr_vfio;
2493 }
2494 
2495 int kvmppc_get_cap_large_decr(void)
2496 {
2497     return cap_large_decr;
2498 }
2499 
2500 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2501 {
2502     CPUState *cs = CPU(cpu);
2503     uint64_t lpcr;
2504 
2505     kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2506     /* Do we need to modify the LPCR? */
2507     if (!!(lpcr & LPCR_LD) != !!enable) {
2508         if (enable) {
2509             lpcr |= LPCR_LD;
2510         } else {
2511             lpcr &= ~LPCR_LD;
2512         }
2513         kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2514         kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2515 
2516         if (!!(lpcr & LPCR_LD) != !!enable) {
2517             return -1;
2518         }
2519     }
2520 
2521     return 0;
2522 }
2523 
2524 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2525 {
2526     uint32_t host_pvr = mfpvr();
2527     PowerPCCPUClass *pvr_pcc;
2528 
2529     pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2530     if (pvr_pcc == NULL) {
2531         pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2532     }
2533 
2534     return pvr_pcc;
2535 }
2536 
2537 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque)
2538 {
2539     MachineClass *mc = MACHINE_CLASS(oc);
2540 
2541     mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2542 }
2543 
2544 static int kvm_ppc_register_host_cpu_type(void)
2545 {
2546     TypeInfo type_info = {
2547         .name = TYPE_HOST_POWERPC_CPU,
2548         .class_init = kvmppc_host_cpu_class_init,
2549     };
2550     PowerPCCPUClass *pvr_pcc;
2551     ObjectClass *oc;
2552     DeviceClass *dc;
2553     int i;
2554 
2555     pvr_pcc = kvm_ppc_get_host_cpu_class();
2556     if (pvr_pcc == NULL) {
2557         return -1;
2558     }
2559     type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2560     type_register(&type_info);
2561     /* override TCG default cpu type with 'host' cpu model */
2562     object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE,
2563                          false, NULL);
2564 
2565     oc = object_class_by_name(type_info.name);
2566     g_assert(oc);
2567 
2568     /*
2569      * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2570      * we want "POWER8" to be a "family" alias that points to the current
2571      * host CPU type, too)
2572      */
2573     dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2574     for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2575         if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2576             char *suffix;
2577 
2578             ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2579             suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2580             if (suffix) {
2581                 *suffix = 0;
2582             }
2583             break;
2584         }
2585     }
2586 
2587     return 0;
2588 }
2589 
2590 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2591 {
2592     struct kvm_rtas_token_args args = {
2593         .token = token,
2594     };
2595 
2596     if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2597         return -ENOENT;
2598     }
2599 
2600     strncpy(args.name, function, sizeof(args.name) - 1);
2601 
2602     return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2603 }
2604 
2605 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2606 {
2607     struct kvm_get_htab_fd s = {
2608         .flags = write ? KVM_GET_HTAB_WRITE : 0,
2609         .start_index = index,
2610     };
2611     int ret;
2612 
2613     if (!cap_htab_fd) {
2614         error_setg(errp, "KVM version doesn't support %s the HPT",
2615                    write ? "writing" : "reading");
2616         return -ENOTSUP;
2617     }
2618 
2619     ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2620     if (ret < 0) {
2621         error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2622                    write ? "writing" : "reading", write ? "to" : "from",
2623                    strerror(errno));
2624         return -errno;
2625     }
2626 
2627     return ret;
2628 }
2629 
2630 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2631 {
2632     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2633     uint8_t buf[bufsize];
2634     ssize_t rc;
2635 
2636     do {
2637         rc = read(fd, buf, bufsize);
2638         if (rc < 0) {
2639             fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2640                     strerror(errno));
2641             return rc;
2642         } else if (rc) {
2643             uint8_t *buffer = buf;
2644             ssize_t n = rc;
2645             while (n) {
2646                 struct kvm_get_htab_header *head =
2647                     (struct kvm_get_htab_header *) buffer;
2648                 size_t chunksize = sizeof(*head) +
2649                      HASH_PTE_SIZE_64 * head->n_valid;
2650 
2651                 qemu_put_be32(f, head->index);
2652                 qemu_put_be16(f, head->n_valid);
2653                 qemu_put_be16(f, head->n_invalid);
2654                 qemu_put_buffer(f, (void *)(head + 1),
2655                                 HASH_PTE_SIZE_64 * head->n_valid);
2656 
2657                 buffer += chunksize;
2658                 n -= chunksize;
2659             }
2660         }
2661     } while ((rc != 0)
2662              && ((max_ns < 0) ||
2663                  ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2664 
2665     return (rc == 0) ? 1 : 0;
2666 }
2667 
2668 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2669                            uint16_t n_valid, uint16_t n_invalid)
2670 {
2671     struct kvm_get_htab_header *buf;
2672     size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2673     ssize_t rc;
2674 
2675     buf = alloca(chunksize);
2676     buf->index = index;
2677     buf->n_valid = n_valid;
2678     buf->n_invalid = n_invalid;
2679 
2680     qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2681 
2682     rc = write(fd, buf, chunksize);
2683     if (rc < 0) {
2684         fprintf(stderr, "Error writing KVM hash table: %s\n",
2685                 strerror(errno));
2686         return rc;
2687     }
2688     if (rc != chunksize) {
2689         /* We should never get a short write on a single chunk */
2690         fprintf(stderr, "Short write, restoring KVM hash table\n");
2691         return -1;
2692     }
2693     return 0;
2694 }
2695 
2696 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2697 {
2698     return true;
2699 }
2700 
2701 void kvm_arch_init_irq_routing(KVMState *s)
2702 {
2703 }
2704 
2705 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2706 {
2707     int fd, rc;
2708     int i;
2709 
2710     fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2711 
2712     i = 0;
2713     while (i < n) {
2714         struct kvm_get_htab_header *hdr;
2715         int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2716         char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2717 
2718         rc = read(fd, buf, sizeof(buf));
2719         if (rc < 0) {
2720             hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2721         }
2722 
2723         hdr = (struct kvm_get_htab_header *)buf;
2724         while ((i < n) && ((char *)hdr < (buf + rc))) {
2725             int invalid = hdr->n_invalid, valid = hdr->n_valid;
2726 
2727             if (hdr->index != (ptex + i)) {
2728                 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2729                          " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2730             }
2731 
2732             if (n - i < valid) {
2733                 valid = n - i;
2734             }
2735             memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2736             i += valid;
2737 
2738             if ((n - i) < invalid) {
2739                 invalid = n - i;
2740             }
2741             memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2742             i += invalid;
2743 
2744             hdr = (struct kvm_get_htab_header *)
2745                 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2746         }
2747     }
2748 
2749     close(fd);
2750 }
2751 
2752 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2753 {
2754     int fd, rc;
2755     struct {
2756         struct kvm_get_htab_header hdr;
2757         uint64_t pte0;
2758         uint64_t pte1;
2759     } buf;
2760 
2761     fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2762 
2763     buf.hdr.n_valid = 1;
2764     buf.hdr.n_invalid = 0;
2765     buf.hdr.index = ptex;
2766     buf.pte0 = cpu_to_be64(pte0);
2767     buf.pte1 = cpu_to_be64(pte1);
2768 
2769     rc = write(fd, &buf, sizeof(buf));
2770     if (rc != sizeof(buf)) {
2771         hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2772     }
2773     close(fd);
2774 }
2775 
2776 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2777                              uint64_t address, uint32_t data, PCIDevice *dev)
2778 {
2779     return 0;
2780 }
2781 
2782 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2783                                 int vector, PCIDevice *dev)
2784 {
2785     return 0;
2786 }
2787 
2788 int kvm_arch_release_virq_post(int virq)
2789 {
2790     return 0;
2791 }
2792 
2793 int kvm_arch_msi_data_to_gsi(uint32_t data)
2794 {
2795     return data & 0xffff;
2796 }
2797 
2798 int kvmppc_enable_hwrng(void)
2799 {
2800     if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2801         return -1;
2802     }
2803 
2804     return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2805 }
2806 
2807 void kvmppc_check_papr_resize_hpt(Error **errp)
2808 {
2809     if (!kvm_enabled()) {
2810         return; /* No KVM, we're good */
2811     }
2812 
2813     if (cap_resize_hpt) {
2814         return; /* Kernel has explicit support, we're good */
2815     }
2816 
2817     /* Otherwise fallback on looking for PR KVM */
2818     if (kvmppc_is_pr(kvm_state)) {
2819         return;
2820     }
2821 
2822     error_setg(errp,
2823                "Hash page table resizing not available with this KVM version");
2824 }
2825 
2826 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2827 {
2828     CPUState *cs = CPU(cpu);
2829     struct kvm_ppc_resize_hpt rhpt = {
2830         .flags = flags,
2831         .shift = shift,
2832     };
2833 
2834     if (!cap_resize_hpt) {
2835         return -ENOSYS;
2836     }
2837 
2838     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2839 }
2840 
2841 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2842 {
2843     CPUState *cs = CPU(cpu);
2844     struct kvm_ppc_resize_hpt rhpt = {
2845         .flags = flags,
2846         .shift = shift,
2847     };
2848 
2849     if (!cap_resize_hpt) {
2850         return -ENOSYS;
2851     }
2852 
2853     return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2854 }
2855 
2856 /*
2857  * This is a helper function to detect a post migration scenario
2858  * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2859  * the guest kernel can't handle a PVR value other than the actual host
2860  * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2861  *
2862  * If we don't have cap_ppc_pvr_compat and we're not running in PR
2863  * (so, we're HV), return true. The workaround itself is done in
2864  * cpu_post_load.
2865  *
2866  * The order here is important: we'll only check for KVM PR as a
2867  * fallback if the guest kernel can't handle the situation itself.
2868  * We need to avoid as much as possible querying the running KVM type
2869  * in QEMU level.
2870  */
2871 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2872 {
2873     CPUState *cs = CPU(cpu);
2874 
2875     if (!kvm_enabled()) {
2876         return false;
2877     }
2878 
2879     if (cap_ppc_pvr_compat) {
2880         return false;
2881     }
2882 
2883     return !kvmppc_is_pr(cs->kvm_state);
2884 }
2885 
2886 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2887 {
2888     CPUState *cs = CPU(cpu);
2889 
2890     if (kvm_enabled()) {
2891         kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2892     }
2893 }
2894 
2895 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2896 {
2897     CPUState *cs = CPU(cpu);
2898 
2899     if (kvm_enabled()) {
2900         kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);
2901     }
2902 }
2903