1 /* 2 * PowerPC implementation of KVM hooks 3 * 4 * Copyright IBM Corp. 2007 5 * Copyright (C) 2011 Freescale Semiconductor, Inc. 6 * 7 * Authors: 8 * Jerone Young <jyoung5@us.ibm.com> 9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 10 * Hollis Blanchard <hollisb@us.ibm.com> 11 * 12 * This work is licensed under the terms of the GNU GPL, version 2 or later. 13 * See the COPYING file in the top-level directory. 14 * 15 */ 16 17 #include "qemu/osdep.h" 18 #include <dirent.h> 19 #include <sys/ioctl.h> 20 #include <sys/vfs.h> 21 22 #include <linux/kvm.h> 23 24 #include "qemu-common.h" 25 #include "qapi/error.h" 26 #include "qemu/error-report.h" 27 #include "cpu.h" 28 #include "cpu-models.h" 29 #include "qemu/timer.h" 30 #include "sysemu/hw_accel.h" 31 #include "kvm_ppc.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/device_tree.h" 34 #include "mmu-hash64.h" 35 36 #include "hw/sysbus.h" 37 #include "hw/ppc/spapr.h" 38 #include "hw/ppc/spapr_cpu_core.h" 39 #include "hw/hw.h" 40 #include "hw/ppc/ppc.h" 41 #include "migration/qemu-file-types.h" 42 #include "sysemu/watchdog.h" 43 #include "trace.h" 44 #include "exec/gdbstub.h" 45 #include "exec/memattrs.h" 46 #include "exec/ram_addr.h" 47 #include "sysemu/hostmem.h" 48 #include "qemu/cutils.h" 49 #include "qemu/main-loop.h" 50 #include "qemu/mmap-alloc.h" 51 #include "elf.h" 52 #include "sysemu/kvm_int.h" 53 54 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" 55 56 #define DEBUG_RETURN_GUEST 0 57 #define DEBUG_RETURN_GDB 1 58 59 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 60 KVM_CAP_LAST_INFO 61 }; 62 63 static int cap_interrupt_unset; 64 static int cap_segstate; 65 static int cap_booke_sregs; 66 static int cap_ppc_smt; 67 static int cap_ppc_smt_possible; 68 static int cap_spapr_tce; 69 static int cap_spapr_tce_64; 70 static int cap_spapr_multitce; 71 static int cap_spapr_vfio; 72 static int cap_hior; 73 static int cap_one_reg; 74 static int cap_epr; 75 static int cap_ppc_watchdog; 76 static int cap_papr; 77 static int cap_htab_fd; 78 static int cap_fixup_hcalls; 79 static int cap_htm; /* Hardware transactional memory support */ 80 static int cap_mmu_radix; 81 static int cap_mmu_hash_v3; 82 static int cap_xive; 83 static int cap_resize_hpt; 84 static int cap_ppc_pvr_compat; 85 static int cap_ppc_safe_cache; 86 static int cap_ppc_safe_bounds_check; 87 static int cap_ppc_safe_indirect_branch; 88 static int cap_ppc_count_cache_flush_assist; 89 static int cap_ppc_nested_kvm_hv; 90 static int cap_large_decr; 91 static int cap_fwnmi; 92 static int cap_rpt_invalidate; 93 94 static uint32_t debug_inst_opcode; 95 96 /* 97 * Check whether we are running with KVM-PR (instead of KVM-HV). This 98 * should only be used for fallback tests - generally we should use 99 * explicit capabilities for the features we want, rather than 100 * assuming what is/isn't available depending on the KVM variant. 101 */ 102 static bool kvmppc_is_pr(KVMState *ks) 103 { 104 /* Assume KVM-PR if the GET_PVINFO capability is available */ 105 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0; 106 } 107 108 static int kvm_ppc_register_host_cpu_type(void); 109 static void kvmppc_get_cpu_characteristics(KVMState *s); 110 static int kvmppc_get_dec_bits(void); 111 112 int kvm_arch_init(MachineState *ms, KVMState *s) 113 { 114 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); 115 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); 116 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); 117 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE); 118 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); 119 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64); 120 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); 121 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO); 122 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); 123 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); 124 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); 125 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); 126 /* 127 * Note: we don't set cap_papr here, because this capability is 128 * only activated after this by kvmppc_set_papr() 129 */ 130 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD); 131 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); 132 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT); 133 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM); 134 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX); 135 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3); 136 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE); 137 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT); 138 kvmppc_get_cpu_characteristics(s); 139 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV); 140 cap_large_decr = kvmppc_get_dec_bits(); 141 cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI); 142 /* 143 * Note: setting it to false because there is not such capability 144 * in KVM at this moment. 145 * 146 * TODO: call kvm_vm_check_extension() with the right capability 147 * after the kernel starts implementing it. 148 */ 149 cap_ppc_pvr_compat = false; 150 151 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) { 152 error_report("KVM: Host kernel doesn't have level irq capability"); 153 exit(1); 154 } 155 156 cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE); 157 kvm_ppc_register_host_cpu_type(); 158 159 return 0; 160 } 161 162 int kvm_arch_irqchip_create(KVMState *s) 163 { 164 return 0; 165 } 166 167 static int kvm_arch_sync_sregs(PowerPCCPU *cpu) 168 { 169 CPUPPCState *cenv = &cpu->env; 170 CPUState *cs = CPU(cpu); 171 struct kvm_sregs sregs; 172 int ret; 173 174 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 175 /* 176 * What we're really trying to say is "if we're on BookE, we 177 * use the native PVR for now". This is the only sane way to 178 * check it though, so we potentially confuse users that they 179 * can run BookE guests on BookS. Let's hope nobody dares 180 * enough :) 181 */ 182 return 0; 183 } else { 184 if (!cap_segstate) { 185 fprintf(stderr, "kvm error: missing PVR setting capability\n"); 186 return -ENOSYS; 187 } 188 } 189 190 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 191 if (ret) { 192 return ret; 193 } 194 195 sregs.pvr = cenv->spr[SPR_PVR]; 196 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 197 } 198 199 /* Set up a shared TLB array with KVM */ 200 static int kvm_booke206_tlb_init(PowerPCCPU *cpu) 201 { 202 CPUPPCState *env = &cpu->env; 203 CPUState *cs = CPU(cpu); 204 struct kvm_book3e_206_tlb_params params = {}; 205 struct kvm_config_tlb cfg = {}; 206 unsigned int entries = 0; 207 int ret, i; 208 209 if (!kvm_enabled() || 210 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { 211 return 0; 212 } 213 214 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); 215 216 for (i = 0; i < BOOKE206_MAX_TLBN; i++) { 217 params.tlb_sizes[i] = booke206_tlb_size(env, i); 218 params.tlb_ways[i] = booke206_tlb_ways(env, i); 219 entries += params.tlb_sizes[i]; 220 } 221 222 assert(entries == env->nb_tlb); 223 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); 224 225 env->tlb_dirty = true; 226 227 cfg.array = (uintptr_t)env->tlb.tlbm; 228 cfg.array_len = sizeof(ppcmas_tlb_t) * entries; 229 cfg.params = (uintptr_t)¶ms; 230 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; 231 232 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); 233 if (ret < 0) { 234 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", 235 __func__, strerror(-ret)); 236 return ret; 237 } 238 239 env->kvm_sw_tlb = true; 240 return 0; 241 } 242 243 244 #if defined(TARGET_PPC64) 245 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp) 246 { 247 int ret; 248 249 assert(kvm_state != NULL); 250 251 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { 252 error_setg(errp, "KVM doesn't expose the MMU features it supports"); 253 error_append_hint(errp, "Consider switching to a newer KVM\n"); 254 return; 255 } 256 257 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info); 258 if (ret == 0) { 259 return; 260 } 261 262 error_setg_errno(errp, -ret, 263 "KVM failed to provide the MMU features it supports"); 264 } 265 266 struct ppc_radix_page_info *kvm_get_radix_page_info(void) 267 { 268 KVMState *s = KVM_STATE(current_accel()); 269 struct ppc_radix_page_info *radix_page_info; 270 struct kvm_ppc_rmmu_info rmmu_info; 271 int i; 272 273 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) { 274 return NULL; 275 } 276 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) { 277 return NULL; 278 } 279 radix_page_info = g_malloc0(sizeof(*radix_page_info)); 280 radix_page_info->count = 0; 281 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 282 if (rmmu_info.ap_encodings[i]) { 283 radix_page_info->entries[i] = rmmu_info.ap_encodings[i]; 284 radix_page_info->count++; 285 } 286 } 287 return radix_page_info; 288 } 289 290 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu, 291 bool radix, bool gtse, 292 uint64_t proc_tbl) 293 { 294 CPUState *cs = CPU(cpu); 295 int ret; 296 uint64_t flags = 0; 297 struct kvm_ppc_mmuv3_cfg cfg = { 298 .process_table = proc_tbl, 299 }; 300 301 if (radix) { 302 flags |= KVM_PPC_MMUV3_RADIX; 303 } 304 if (gtse) { 305 flags |= KVM_PPC_MMUV3_GTSE; 306 } 307 cfg.flags = flags; 308 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg); 309 switch (ret) { 310 case 0: 311 return H_SUCCESS; 312 case -EINVAL: 313 return H_PARAMETER; 314 case -ENODEV: 315 return H_NOT_AVAILABLE; 316 default: 317 return H_HARDWARE; 318 } 319 } 320 321 bool kvmppc_hpt_needs_host_contiguous_pages(void) 322 { 323 static struct kvm_ppc_smmu_info smmu_info; 324 325 if (!kvm_enabled()) { 326 return false; 327 } 328 329 kvm_get_smmu_info(&smmu_info, &error_fatal); 330 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL); 331 } 332 333 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp) 334 { 335 struct kvm_ppc_smmu_info smmu_info; 336 int iq, ik, jq, jk; 337 Error *local_err = NULL; 338 339 /* For now, we only have anything to check on hash64 MMUs */ 340 if (!cpu->hash64_opts || !kvm_enabled()) { 341 return; 342 } 343 344 kvm_get_smmu_info(&smmu_info, &local_err); 345 if (local_err) { 346 error_propagate(errp, local_err); 347 return; 348 } 349 350 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG) 351 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { 352 error_setg(errp, 353 "KVM does not support 1TiB segments which guest expects"); 354 return; 355 } 356 357 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) { 358 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u", 359 smmu_info.slb_size, cpu->hash64_opts->slb_size); 360 return; 361 } 362 363 /* 364 * Verify that every pagesize supported by the cpu model is 365 * supported by KVM with the same encodings 366 */ 367 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) { 368 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq]; 369 struct kvm_ppc_one_seg_page_size *ksps; 370 371 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) { 372 if (qsps->page_shift == smmu_info.sps[ik].page_shift) { 373 break; 374 } 375 } 376 if (ik >= ARRAY_SIZE(smmu_info.sps)) { 377 error_setg(errp, "KVM doesn't support for base page shift %u", 378 qsps->page_shift); 379 return; 380 } 381 382 ksps = &smmu_info.sps[ik]; 383 if (ksps->slb_enc != qsps->slb_enc) { 384 error_setg(errp, 385 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x", 386 ksps->slb_enc, ksps->page_shift, qsps->slb_enc); 387 return; 388 } 389 390 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) { 391 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) { 392 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) { 393 break; 394 } 395 } 396 397 if (jk >= ARRAY_SIZE(ksps->enc)) { 398 error_setg(errp, "KVM doesn't support page shift %u/%u", 399 qsps->enc[jq].page_shift, qsps->page_shift); 400 return; 401 } 402 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) { 403 error_setg(errp, 404 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x", 405 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift, 406 qsps->page_shift, qsps->enc[jq].pte_enc); 407 return; 408 } 409 } 410 } 411 412 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 413 /* 414 * Mostly what guest pagesizes we can use are related to the 415 * host pages used to map guest RAM, which is handled in the 416 * platform code. Cache-Inhibited largepages (64k) however are 417 * used for I/O, so if they're mapped to the host at all it 418 * will be a normal mapping, not a special hugepage one used 419 * for RAM. 420 */ 421 if (qemu_real_host_page_size() < 0x10000) { 422 error_setg(errp, 423 "KVM can't supply 64kiB CI pages, which guest expects"); 424 } 425 } 426 } 427 #endif /* !defined (TARGET_PPC64) */ 428 429 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 430 { 431 return POWERPC_CPU(cpu)->vcpu_id; 432 } 433 434 /* 435 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports 436 * only 1 watchpoint, so array size of 4 is sufficient for now. 437 */ 438 #define MAX_HW_BKPTS 4 439 440 static struct HWBreakpoint { 441 target_ulong addr; 442 int type; 443 } hw_debug_points[MAX_HW_BKPTS]; 444 445 static CPUWatchpoint hw_watchpoint; 446 447 /* Default there is no breakpoint and watchpoint supported */ 448 static int max_hw_breakpoint; 449 static int max_hw_watchpoint; 450 static int nb_hw_breakpoint; 451 static int nb_hw_watchpoint; 452 453 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) 454 { 455 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 456 max_hw_breakpoint = 2; 457 max_hw_watchpoint = 2; 458 } 459 460 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { 461 fprintf(stderr, "Error initializing h/w breakpoints\n"); 462 return; 463 } 464 } 465 466 int kvm_arch_init_vcpu(CPUState *cs) 467 { 468 PowerPCCPU *cpu = POWERPC_CPU(cs); 469 CPUPPCState *cenv = &cpu->env; 470 int ret; 471 472 /* Synchronize sregs with kvm */ 473 ret = kvm_arch_sync_sregs(cpu); 474 if (ret) { 475 if (ret == -EINVAL) { 476 error_report("Register sync failed... If you're using kvm-hv.ko," 477 " only \"-cpu host\" is possible"); 478 } 479 return ret; 480 } 481 482 switch (cenv->mmu_model) { 483 case POWERPC_MMU_BOOKE206: 484 /* This target supports access to KVM's guest TLB */ 485 ret = kvm_booke206_tlb_init(cpu); 486 break; 487 case POWERPC_MMU_2_07: 488 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { 489 /* 490 * KVM-HV has transactional memory on POWER8 also without 491 * the KVM_CAP_PPC_HTM extension, so enable it here 492 * instead as long as it's available to userspace on the 493 * host. 494 */ 495 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) { 496 cap_htm = true; 497 } 498 } 499 break; 500 default: 501 break; 502 } 503 504 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); 505 kvmppc_hw_debug_points_init(cenv); 506 507 return ret; 508 } 509 510 int kvm_arch_destroy_vcpu(CPUState *cs) 511 { 512 return 0; 513 } 514 515 static void kvm_sw_tlb_put(PowerPCCPU *cpu) 516 { 517 CPUPPCState *env = &cpu->env; 518 CPUState *cs = CPU(cpu); 519 struct kvm_dirty_tlb dirty_tlb; 520 unsigned char *bitmap; 521 int ret; 522 523 if (!env->kvm_sw_tlb) { 524 return; 525 } 526 527 bitmap = g_malloc((env->nb_tlb + 7) / 8); 528 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); 529 530 dirty_tlb.bitmap = (uintptr_t)bitmap; 531 dirty_tlb.num_dirty = env->nb_tlb; 532 533 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); 534 if (ret) { 535 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", 536 __func__, strerror(-ret)); 537 } 538 539 g_free(bitmap); 540 } 541 542 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) 543 { 544 PowerPCCPU *cpu = POWERPC_CPU(cs); 545 CPUPPCState *env = &cpu->env; 546 union { 547 uint32_t u32; 548 uint64_t u64; 549 } val; 550 struct kvm_one_reg reg = { 551 .id = id, 552 .addr = (uintptr_t) &val, 553 }; 554 int ret; 555 556 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 557 if (ret != 0) { 558 trace_kvm_failed_spr_get(spr, strerror(errno)); 559 } else { 560 switch (id & KVM_REG_SIZE_MASK) { 561 case KVM_REG_SIZE_U32: 562 env->spr[spr] = val.u32; 563 break; 564 565 case KVM_REG_SIZE_U64: 566 env->spr[spr] = val.u64; 567 break; 568 569 default: 570 /* Don't handle this size yet */ 571 abort(); 572 } 573 } 574 } 575 576 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) 577 { 578 PowerPCCPU *cpu = POWERPC_CPU(cs); 579 CPUPPCState *env = &cpu->env; 580 union { 581 uint32_t u32; 582 uint64_t u64; 583 } val; 584 struct kvm_one_reg reg = { 585 .id = id, 586 .addr = (uintptr_t) &val, 587 }; 588 int ret; 589 590 switch (id & KVM_REG_SIZE_MASK) { 591 case KVM_REG_SIZE_U32: 592 val.u32 = env->spr[spr]; 593 break; 594 595 case KVM_REG_SIZE_U64: 596 val.u64 = env->spr[spr]; 597 break; 598 599 default: 600 /* Don't handle this size yet */ 601 abort(); 602 } 603 604 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 605 if (ret != 0) { 606 trace_kvm_failed_spr_set(spr, strerror(errno)); 607 } 608 } 609 610 static int kvm_put_fp(CPUState *cs) 611 { 612 PowerPCCPU *cpu = POWERPC_CPU(cs); 613 CPUPPCState *env = &cpu->env; 614 struct kvm_one_reg reg; 615 int i; 616 int ret; 617 618 if (env->insns_flags & PPC_FLOAT) { 619 uint64_t fpscr = env->fpscr; 620 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 621 622 reg.id = KVM_REG_PPC_FPSCR; 623 reg.addr = (uintptr_t)&fpscr; 624 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 625 if (ret < 0) { 626 trace_kvm_failed_fpscr_set(strerror(errno)); 627 return ret; 628 } 629 630 for (i = 0; i < 32; i++) { 631 uint64_t vsr[2]; 632 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); 633 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); 634 635 #if HOST_BIG_ENDIAN 636 vsr[0] = float64_val(*fpr); 637 vsr[1] = *vsrl; 638 #else 639 vsr[0] = *vsrl; 640 vsr[1] = float64_val(*fpr); 641 #endif 642 reg.addr = (uintptr_t) &vsr; 643 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 644 645 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 646 if (ret < 0) { 647 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i, 648 strerror(errno)); 649 return ret; 650 } 651 } 652 } 653 654 if (env->insns_flags & PPC_ALTIVEC) { 655 reg.id = KVM_REG_PPC_VSCR; 656 reg.addr = (uintptr_t)&env->vscr; 657 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 658 if (ret < 0) { 659 trace_kvm_failed_vscr_set(strerror(errno)); 660 return ret; 661 } 662 663 for (i = 0; i < 32; i++) { 664 reg.id = KVM_REG_PPC_VR(i); 665 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 666 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 667 if (ret < 0) { 668 trace_kvm_failed_vr_set(i, strerror(errno)); 669 return ret; 670 } 671 } 672 } 673 674 return 0; 675 } 676 677 static int kvm_get_fp(CPUState *cs) 678 { 679 PowerPCCPU *cpu = POWERPC_CPU(cs); 680 CPUPPCState *env = &cpu->env; 681 struct kvm_one_reg reg; 682 int i; 683 int ret; 684 685 if (env->insns_flags & PPC_FLOAT) { 686 uint64_t fpscr; 687 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 688 689 reg.id = KVM_REG_PPC_FPSCR; 690 reg.addr = (uintptr_t)&fpscr; 691 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 692 if (ret < 0) { 693 trace_kvm_failed_fpscr_get(strerror(errno)); 694 return ret; 695 } else { 696 env->fpscr = fpscr; 697 } 698 699 for (i = 0; i < 32; i++) { 700 uint64_t vsr[2]; 701 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); 702 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); 703 704 reg.addr = (uintptr_t) &vsr; 705 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 706 707 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 708 if (ret < 0) { 709 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i, 710 strerror(errno)); 711 return ret; 712 } else { 713 #if HOST_BIG_ENDIAN 714 *fpr = vsr[0]; 715 if (vsx) { 716 *vsrl = vsr[1]; 717 } 718 #else 719 *fpr = vsr[1]; 720 if (vsx) { 721 *vsrl = vsr[0]; 722 } 723 #endif 724 } 725 } 726 } 727 728 if (env->insns_flags & PPC_ALTIVEC) { 729 reg.id = KVM_REG_PPC_VSCR; 730 reg.addr = (uintptr_t)&env->vscr; 731 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 732 if (ret < 0) { 733 trace_kvm_failed_vscr_get(strerror(errno)); 734 return ret; 735 } 736 737 for (i = 0; i < 32; i++) { 738 reg.id = KVM_REG_PPC_VR(i); 739 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 740 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 741 if (ret < 0) { 742 trace_kvm_failed_vr_get(i, strerror(errno)); 743 return ret; 744 } 745 } 746 } 747 748 return 0; 749 } 750 751 #if defined(TARGET_PPC64) 752 static int kvm_get_vpa(CPUState *cs) 753 { 754 PowerPCCPU *cpu = POWERPC_CPU(cs); 755 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 756 struct kvm_one_reg reg; 757 int ret; 758 759 reg.id = KVM_REG_PPC_VPA_ADDR; 760 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 761 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 762 if (ret < 0) { 763 trace_kvm_failed_vpa_addr_get(strerror(errno)); 764 return ret; 765 } 766 767 assert((uintptr_t)&spapr_cpu->slb_shadow_size 768 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 769 reg.id = KVM_REG_PPC_VPA_SLB; 770 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 771 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 772 if (ret < 0) { 773 trace_kvm_failed_slb_get(strerror(errno)); 774 return ret; 775 } 776 777 assert((uintptr_t)&spapr_cpu->dtl_size 778 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 779 reg.id = KVM_REG_PPC_VPA_DTL; 780 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 781 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 782 if (ret < 0) { 783 trace_kvm_failed_dtl_get(strerror(errno)); 784 return ret; 785 } 786 787 return 0; 788 } 789 790 static int kvm_put_vpa(CPUState *cs) 791 { 792 PowerPCCPU *cpu = POWERPC_CPU(cs); 793 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 794 struct kvm_one_reg reg; 795 int ret; 796 797 /* 798 * SLB shadow or DTL can't be registered unless a master VPA is 799 * registered. That means when restoring state, if a VPA *is* 800 * registered, we need to set that up first. If not, we need to 801 * deregister the others before deregistering the master VPA 802 */ 803 assert(spapr_cpu->vpa_addr 804 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr)); 805 806 if (spapr_cpu->vpa_addr) { 807 reg.id = KVM_REG_PPC_VPA_ADDR; 808 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 809 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 810 if (ret < 0) { 811 trace_kvm_failed_vpa_addr_set(strerror(errno)); 812 return ret; 813 } 814 } 815 816 assert((uintptr_t)&spapr_cpu->slb_shadow_size 817 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 818 reg.id = KVM_REG_PPC_VPA_SLB; 819 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 820 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 821 if (ret < 0) { 822 trace_kvm_failed_slb_set(strerror(errno)); 823 return ret; 824 } 825 826 assert((uintptr_t)&spapr_cpu->dtl_size 827 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 828 reg.id = KVM_REG_PPC_VPA_DTL; 829 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 830 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 831 if (ret < 0) { 832 trace_kvm_failed_dtl_set(strerror(errno)); 833 return ret; 834 } 835 836 if (!spapr_cpu->vpa_addr) { 837 reg.id = KVM_REG_PPC_VPA_ADDR; 838 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 839 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 840 if (ret < 0) { 841 trace_kvm_failed_null_vpa_addr_set(strerror(errno)); 842 return ret; 843 } 844 } 845 846 return 0; 847 } 848 #endif /* TARGET_PPC64 */ 849 850 int kvmppc_put_books_sregs(PowerPCCPU *cpu) 851 { 852 CPUPPCState *env = &cpu->env; 853 struct kvm_sregs sregs; 854 int i; 855 856 sregs.pvr = env->spr[SPR_PVR]; 857 858 if (cpu->vhyp) { 859 PPCVirtualHypervisorClass *vhc = 860 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp); 861 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp); 862 } else { 863 sregs.u.s.sdr1 = env->spr[SPR_SDR1]; 864 } 865 866 /* Sync SLB */ 867 #ifdef TARGET_PPC64 868 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 869 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; 870 if (env->slb[i].esid & SLB_ESID_V) { 871 sregs.u.s.ppc64.slb[i].slbe |= i; 872 } 873 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; 874 } 875 #endif 876 877 /* Sync SRs */ 878 for (i = 0; i < 16; i++) { 879 sregs.u.s.ppc32.sr[i] = env->sr[i]; 880 } 881 882 /* Sync BATs */ 883 for (i = 0; i < 8; i++) { 884 /* Beware. We have to swap upper and lower bits here */ 885 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) 886 | env->DBAT[1][i]; 887 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) 888 | env->IBAT[1][i]; 889 } 890 891 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 892 } 893 894 int kvm_arch_put_registers(CPUState *cs, int level) 895 { 896 PowerPCCPU *cpu = POWERPC_CPU(cs); 897 CPUPPCState *env = &cpu->env; 898 struct kvm_regs regs; 899 int ret; 900 int i; 901 902 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 903 if (ret < 0) { 904 return ret; 905 } 906 907 regs.ctr = env->ctr; 908 regs.lr = env->lr; 909 regs.xer = cpu_read_xer(env); 910 regs.msr = env->msr; 911 regs.pc = env->nip; 912 913 regs.srr0 = env->spr[SPR_SRR0]; 914 regs.srr1 = env->spr[SPR_SRR1]; 915 916 regs.sprg0 = env->spr[SPR_SPRG0]; 917 regs.sprg1 = env->spr[SPR_SPRG1]; 918 regs.sprg2 = env->spr[SPR_SPRG2]; 919 regs.sprg3 = env->spr[SPR_SPRG3]; 920 regs.sprg4 = env->spr[SPR_SPRG4]; 921 regs.sprg5 = env->spr[SPR_SPRG5]; 922 regs.sprg6 = env->spr[SPR_SPRG6]; 923 regs.sprg7 = env->spr[SPR_SPRG7]; 924 925 regs.pid = env->spr[SPR_BOOKE_PID]; 926 927 for (i = 0; i < 32; i++) { 928 regs.gpr[i] = env->gpr[i]; 929 } 930 931 regs.cr = 0; 932 for (i = 0; i < 8; i++) { 933 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); 934 } 935 936 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 937 if (ret < 0) { 938 return ret; 939 } 940 941 kvm_put_fp(cs); 942 943 if (env->tlb_dirty) { 944 kvm_sw_tlb_put(cpu); 945 env->tlb_dirty = false; 946 } 947 948 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { 949 ret = kvmppc_put_books_sregs(cpu); 950 if (ret < 0) { 951 return ret; 952 } 953 } 954 955 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { 956 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 957 } 958 959 if (cap_one_reg) { 960 int i; 961 962 /* 963 * We deliberately ignore errors here, for kernels which have 964 * the ONE_REG calls, but don't support the specific 965 * registers, there's a reasonable chance things will still 966 * work, at least until we try to migrate. 967 */ 968 for (i = 0; i < 1024; i++) { 969 uint64_t id = env->spr_cb[i].one_reg_id; 970 971 if (id != 0) { 972 kvm_put_one_spr(cs, id, i); 973 } 974 } 975 976 #ifdef TARGET_PPC64 977 if (msr_ts) { 978 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 979 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 980 } 981 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 983 } 984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 991 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 992 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 993 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 994 } 995 996 if (cap_papr) { 997 if (kvm_put_vpa(cs) < 0) { 998 trace_kvm_failed_put_vpa(); 999 } 1000 } 1001 1002 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1003 1004 if (level > KVM_PUT_RUNTIME_STATE) { 1005 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1006 } 1007 #endif /* TARGET_PPC64 */ 1008 } 1009 1010 return ret; 1011 } 1012 1013 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) 1014 { 1015 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; 1016 } 1017 1018 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu) 1019 { 1020 CPUPPCState *env = &cpu->env; 1021 struct kvm_sregs sregs; 1022 int ret; 1023 1024 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1025 if (ret < 0) { 1026 return ret; 1027 } 1028 1029 if (sregs.u.e.features & KVM_SREGS_E_BASE) { 1030 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; 1031 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; 1032 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; 1033 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; 1034 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; 1035 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; 1036 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; 1037 env->spr[SPR_DECR] = sregs.u.e.dec; 1038 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; 1039 env->spr[SPR_TBU] = sregs.u.e.tb >> 32; 1040 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; 1041 } 1042 1043 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { 1044 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; 1045 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; 1046 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; 1047 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; 1048 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; 1049 } 1050 1051 if (sregs.u.e.features & KVM_SREGS_E_64) { 1052 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; 1053 } 1054 1055 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { 1056 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; 1057 } 1058 1059 if (sregs.u.e.features & KVM_SREGS_E_IVOR) { 1060 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; 1061 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); 1062 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; 1063 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); 1064 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; 1065 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); 1066 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; 1067 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); 1068 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; 1069 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); 1070 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; 1071 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); 1072 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; 1073 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); 1074 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; 1075 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); 1076 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; 1077 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); 1078 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; 1079 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); 1080 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; 1081 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); 1082 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; 1083 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); 1084 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; 1085 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); 1086 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; 1087 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); 1088 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; 1089 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); 1090 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; 1091 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); 1092 1093 if (sregs.u.e.features & KVM_SREGS_E_SPE) { 1094 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; 1095 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); 1096 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; 1097 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); 1098 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; 1099 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); 1100 } 1101 1102 if (sregs.u.e.features & KVM_SREGS_E_PM) { 1103 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; 1104 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); 1105 } 1106 1107 if (sregs.u.e.features & KVM_SREGS_E_PC) { 1108 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; 1109 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); 1110 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; 1111 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); 1112 } 1113 } 1114 1115 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { 1116 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; 1117 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; 1118 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; 1119 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; 1120 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; 1121 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; 1122 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; 1123 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; 1124 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; 1125 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; 1126 } 1127 1128 if (sregs.u.e.features & KVM_SREGS_EXP) { 1129 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; 1130 } 1131 1132 if (sregs.u.e.features & KVM_SREGS_E_PD) { 1133 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; 1134 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; 1135 } 1136 1137 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { 1138 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; 1139 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; 1140 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; 1141 1142 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { 1143 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; 1144 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; 1145 } 1146 } 1147 1148 return 0; 1149 } 1150 1151 static int kvmppc_get_books_sregs(PowerPCCPU *cpu) 1152 { 1153 CPUPPCState *env = &cpu->env; 1154 struct kvm_sregs sregs; 1155 int ret; 1156 int i; 1157 1158 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1159 if (ret < 0) { 1160 return ret; 1161 } 1162 1163 if (!cpu->vhyp) { 1164 ppc_store_sdr1(env, sregs.u.s.sdr1); 1165 } 1166 1167 /* Sync SLB */ 1168 #ifdef TARGET_PPC64 1169 /* 1170 * The packed SLB array we get from KVM_GET_SREGS only contains 1171 * information about valid entries. So we flush our internal copy 1172 * to get rid of stale ones, then put all valid SLB entries back 1173 * in. 1174 */ 1175 memset(env->slb, 0, sizeof(env->slb)); 1176 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 1177 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; 1178 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; 1179 /* 1180 * Only restore valid entries 1181 */ 1182 if (rb & SLB_ESID_V) { 1183 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs); 1184 } 1185 } 1186 #endif 1187 1188 /* Sync SRs */ 1189 for (i = 0; i < 16; i++) { 1190 env->sr[i] = sregs.u.s.ppc32.sr[i]; 1191 } 1192 1193 /* Sync BATs */ 1194 for (i = 0; i < 8; i++) { 1195 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; 1196 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; 1197 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; 1198 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; 1199 } 1200 1201 return 0; 1202 } 1203 1204 int kvm_arch_get_registers(CPUState *cs) 1205 { 1206 PowerPCCPU *cpu = POWERPC_CPU(cs); 1207 CPUPPCState *env = &cpu->env; 1208 struct kvm_regs regs; 1209 uint32_t cr; 1210 int i, ret; 1211 1212 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 1213 if (ret < 0) { 1214 return ret; 1215 } 1216 1217 cr = regs.cr; 1218 for (i = 7; i >= 0; i--) { 1219 env->crf[i] = cr & 15; 1220 cr >>= 4; 1221 } 1222 1223 env->ctr = regs.ctr; 1224 env->lr = regs.lr; 1225 cpu_write_xer(env, regs.xer); 1226 env->msr = regs.msr; 1227 env->nip = regs.pc; 1228 1229 env->spr[SPR_SRR0] = regs.srr0; 1230 env->spr[SPR_SRR1] = regs.srr1; 1231 1232 env->spr[SPR_SPRG0] = regs.sprg0; 1233 env->spr[SPR_SPRG1] = regs.sprg1; 1234 env->spr[SPR_SPRG2] = regs.sprg2; 1235 env->spr[SPR_SPRG3] = regs.sprg3; 1236 env->spr[SPR_SPRG4] = regs.sprg4; 1237 env->spr[SPR_SPRG5] = regs.sprg5; 1238 env->spr[SPR_SPRG6] = regs.sprg6; 1239 env->spr[SPR_SPRG7] = regs.sprg7; 1240 1241 env->spr[SPR_BOOKE_PID] = regs.pid; 1242 1243 for (i = 0; i < 32; i++) { 1244 env->gpr[i] = regs.gpr[i]; 1245 } 1246 1247 kvm_get_fp(cs); 1248 1249 if (cap_booke_sregs) { 1250 ret = kvmppc_get_booke_sregs(cpu); 1251 if (ret < 0) { 1252 return ret; 1253 } 1254 } 1255 1256 if (cap_segstate) { 1257 ret = kvmppc_get_books_sregs(cpu); 1258 if (ret < 0) { 1259 return ret; 1260 } 1261 } 1262 1263 if (cap_hior) { 1264 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 1265 } 1266 1267 if (cap_one_reg) { 1268 int i; 1269 1270 /* 1271 * We deliberately ignore errors here, for kernels which have 1272 * the ONE_REG calls, but don't support the specific 1273 * registers, there's a reasonable chance things will still 1274 * work, at least until we try to migrate. 1275 */ 1276 for (i = 0; i < 1024; i++) { 1277 uint64_t id = env->spr_cb[i].one_reg_id; 1278 1279 if (id != 0) { 1280 kvm_get_one_spr(cs, id, i); 1281 } 1282 } 1283 1284 #ifdef TARGET_PPC64 1285 if (msr_ts) { 1286 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 1287 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 1288 } 1289 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 1291 } 1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 1295 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 1296 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 1297 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 1298 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 1299 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 1300 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 1301 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 1302 } 1303 1304 if (cap_papr) { 1305 if (kvm_get_vpa(cs) < 0) { 1306 trace_kvm_failed_get_vpa(); 1307 } 1308 } 1309 1310 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1311 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1312 #endif 1313 } 1314 1315 return 0; 1316 } 1317 1318 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) 1319 { 1320 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; 1321 1322 if (irq != PPC_INTERRUPT_EXT) { 1323 return 0; 1324 } 1325 1326 if (!kvm_enabled() || !cap_interrupt_unset) { 1327 return 0; 1328 } 1329 1330 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); 1331 1332 return 0; 1333 } 1334 1335 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 1336 { 1337 return; 1338 } 1339 1340 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1341 { 1342 return MEMTXATTRS_UNSPECIFIED; 1343 } 1344 1345 int kvm_arch_process_async_events(CPUState *cs) 1346 { 1347 return cs->halted; 1348 } 1349 1350 static int kvmppc_handle_halt(PowerPCCPU *cpu) 1351 { 1352 CPUState *cs = CPU(cpu); 1353 CPUPPCState *env = &cpu->env; 1354 1355 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { 1356 cs->halted = 1; 1357 cs->exception_index = EXCP_HLT; 1358 } 1359 1360 return 0; 1361 } 1362 1363 /* map dcr access to existing qemu dcr emulation */ 1364 static int kvmppc_handle_dcr_read(CPUPPCState *env, 1365 uint32_t dcrn, uint32_t *data) 1366 { 1367 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) { 1368 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); 1369 } 1370 1371 return 0; 1372 } 1373 1374 static int kvmppc_handle_dcr_write(CPUPPCState *env, 1375 uint32_t dcrn, uint32_t data) 1376 { 1377 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) { 1378 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); 1379 } 1380 1381 return 0; 1382 } 1383 1384 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1385 { 1386 /* Mixed endian case is not handled */ 1387 uint32_t sc = debug_inst_opcode; 1388 1389 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1390 sizeof(sc), 0) || 1391 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { 1392 return -EINVAL; 1393 } 1394 1395 return 0; 1396 } 1397 1398 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1399 { 1400 uint32_t sc; 1401 1402 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || 1403 sc != debug_inst_opcode || 1404 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1405 sizeof(sc), 1)) { 1406 return -EINVAL; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static int find_hw_breakpoint(target_ulong addr, int type) 1413 { 1414 int n; 1415 1416 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1417 <= ARRAY_SIZE(hw_debug_points)); 1418 1419 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1420 if (hw_debug_points[n].addr == addr && 1421 hw_debug_points[n].type == type) { 1422 return n; 1423 } 1424 } 1425 1426 return -1; 1427 } 1428 1429 static int find_hw_watchpoint(target_ulong addr, int *flag) 1430 { 1431 int n; 1432 1433 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); 1434 if (n >= 0) { 1435 *flag = BP_MEM_ACCESS; 1436 return n; 1437 } 1438 1439 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); 1440 if (n >= 0) { 1441 *flag = BP_MEM_WRITE; 1442 return n; 1443 } 1444 1445 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); 1446 if (n >= 0) { 1447 *flag = BP_MEM_READ; 1448 return n; 1449 } 1450 1451 return -1; 1452 } 1453 1454 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 1455 target_ulong len, int type) 1456 { 1457 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) { 1458 return -ENOBUFS; 1459 } 1460 1461 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr; 1462 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type; 1463 1464 switch (type) { 1465 case GDB_BREAKPOINT_HW: 1466 if (nb_hw_breakpoint >= max_hw_breakpoint) { 1467 return -ENOBUFS; 1468 } 1469 1470 if (find_hw_breakpoint(addr, type) >= 0) { 1471 return -EEXIST; 1472 } 1473 1474 nb_hw_breakpoint++; 1475 break; 1476 1477 case GDB_WATCHPOINT_WRITE: 1478 case GDB_WATCHPOINT_READ: 1479 case GDB_WATCHPOINT_ACCESS: 1480 if (nb_hw_watchpoint >= max_hw_watchpoint) { 1481 return -ENOBUFS; 1482 } 1483 1484 if (find_hw_breakpoint(addr, type) >= 0) { 1485 return -EEXIST; 1486 } 1487 1488 nb_hw_watchpoint++; 1489 break; 1490 1491 default: 1492 return -ENOSYS; 1493 } 1494 1495 return 0; 1496 } 1497 1498 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 1499 target_ulong len, int type) 1500 { 1501 int n; 1502 1503 n = find_hw_breakpoint(addr, type); 1504 if (n < 0) { 1505 return -ENOENT; 1506 } 1507 1508 switch (type) { 1509 case GDB_BREAKPOINT_HW: 1510 nb_hw_breakpoint--; 1511 break; 1512 1513 case GDB_WATCHPOINT_WRITE: 1514 case GDB_WATCHPOINT_READ: 1515 case GDB_WATCHPOINT_ACCESS: 1516 nb_hw_watchpoint--; 1517 break; 1518 1519 default: 1520 return -ENOSYS; 1521 } 1522 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; 1523 1524 return 0; 1525 } 1526 1527 void kvm_arch_remove_all_hw_breakpoints(void) 1528 { 1529 nb_hw_breakpoint = nb_hw_watchpoint = 0; 1530 } 1531 1532 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 1533 { 1534 int n; 1535 1536 /* Software Breakpoint updates */ 1537 if (kvm_sw_breakpoints_active(cs)) { 1538 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 1539 } 1540 1541 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1542 <= ARRAY_SIZE(hw_debug_points)); 1543 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); 1544 1545 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1546 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1547 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); 1548 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1549 switch (hw_debug_points[n].type) { 1550 case GDB_BREAKPOINT_HW: 1551 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; 1552 break; 1553 case GDB_WATCHPOINT_WRITE: 1554 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; 1555 break; 1556 case GDB_WATCHPOINT_READ: 1557 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; 1558 break; 1559 case GDB_WATCHPOINT_ACCESS: 1560 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | 1561 KVMPPC_DEBUG_WATCH_READ; 1562 break; 1563 default: 1564 cpu_abort(cs, "Unsupported breakpoint type\n"); 1565 } 1566 dbg->arch.bp[n].addr = hw_debug_points[n].addr; 1567 } 1568 } 1569 } 1570 1571 static int kvm_handle_hw_breakpoint(CPUState *cs, 1572 struct kvm_debug_exit_arch *arch_info) 1573 { 1574 int handle = DEBUG_RETURN_GUEST; 1575 int n; 1576 int flag = 0; 1577 1578 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1579 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { 1580 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); 1581 if (n >= 0) { 1582 handle = DEBUG_RETURN_GDB; 1583 } 1584 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | 1585 KVMPPC_DEBUG_WATCH_WRITE)) { 1586 n = find_hw_watchpoint(arch_info->address, &flag); 1587 if (n >= 0) { 1588 handle = DEBUG_RETURN_GDB; 1589 cs->watchpoint_hit = &hw_watchpoint; 1590 hw_watchpoint.vaddr = hw_debug_points[n].addr; 1591 hw_watchpoint.flags = flag; 1592 } 1593 } 1594 } 1595 return handle; 1596 } 1597 1598 static int kvm_handle_singlestep(void) 1599 { 1600 return DEBUG_RETURN_GDB; 1601 } 1602 1603 static int kvm_handle_sw_breakpoint(void) 1604 { 1605 return DEBUG_RETURN_GDB; 1606 } 1607 1608 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) 1609 { 1610 CPUState *cs = CPU(cpu); 1611 CPUPPCState *env = &cpu->env; 1612 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1613 1614 if (cs->singlestep_enabled) { 1615 return kvm_handle_singlestep(); 1616 } 1617 1618 if (arch_info->status) { 1619 return kvm_handle_hw_breakpoint(cs, arch_info); 1620 } 1621 1622 if (kvm_find_sw_breakpoint(cs, arch_info->address)) { 1623 return kvm_handle_sw_breakpoint(); 1624 } 1625 1626 /* 1627 * QEMU is not able to handle debug exception, so inject 1628 * program exception to guest; 1629 * Yes program exception NOT debug exception !! 1630 * When QEMU is using debug resources then debug exception must 1631 * be always set. To achieve this we set MSR_DE and also set 1632 * MSRP_DEP so guest cannot change MSR_DE. 1633 * When emulating debug resource for guest we want guest 1634 * to control MSR_DE (enable/disable debug interrupt on need). 1635 * Supporting both configurations are NOT possible. 1636 * So the result is that we cannot share debug resources 1637 * between QEMU and Guest on BOOKE architecture. 1638 * In the current design QEMU gets the priority over guest, 1639 * this means that if QEMU is using debug resources then guest 1640 * cannot use them; 1641 * For software breakpoint QEMU uses a privileged instruction; 1642 * So there cannot be any reason that we are here for guest 1643 * set debug exception, only possibility is guest executed a 1644 * privileged / illegal instruction and that's why we are 1645 * injecting a program interrupt. 1646 */ 1647 cpu_synchronize_state(cs); 1648 /* 1649 * env->nip is PC, so increment this by 4 to use 1650 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. 1651 */ 1652 env->nip += 4; 1653 cs->exception_index = POWERPC_EXCP_PROGRAM; 1654 env->error_code = POWERPC_EXCP_INVAL; 1655 ppc_cpu_do_interrupt(cs); 1656 1657 return DEBUG_RETURN_GUEST; 1658 } 1659 1660 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1661 { 1662 PowerPCCPU *cpu = POWERPC_CPU(cs); 1663 CPUPPCState *env = &cpu->env; 1664 int ret; 1665 1666 qemu_mutex_lock_iothread(); 1667 1668 switch (run->exit_reason) { 1669 case KVM_EXIT_DCR: 1670 if (run->dcr.is_write) { 1671 trace_kvm_handle_dcr_write(); 1672 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); 1673 } else { 1674 trace_kvm_handle_dcr_read(); 1675 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); 1676 } 1677 break; 1678 case KVM_EXIT_HLT: 1679 trace_kvm_handle_halt(); 1680 ret = kvmppc_handle_halt(cpu); 1681 break; 1682 #if defined(TARGET_PPC64) 1683 case KVM_EXIT_PAPR_HCALL: 1684 trace_kvm_handle_papr_hcall(); 1685 run->papr_hcall.ret = spapr_hypercall(cpu, 1686 run->papr_hcall.nr, 1687 run->papr_hcall.args); 1688 ret = 0; 1689 break; 1690 #endif 1691 case KVM_EXIT_EPR: 1692 trace_kvm_handle_epr(); 1693 run->epr.epr = ldl_phys(cs->as, env->mpic_iack); 1694 ret = 0; 1695 break; 1696 case KVM_EXIT_WATCHDOG: 1697 trace_kvm_handle_watchdog_expiry(); 1698 watchdog_perform_action(); 1699 ret = 0; 1700 break; 1701 1702 case KVM_EXIT_DEBUG: 1703 trace_kvm_handle_debug_exception(); 1704 if (kvm_handle_debug(cpu, run)) { 1705 ret = EXCP_DEBUG; 1706 break; 1707 } 1708 /* re-enter, this exception was guest-internal */ 1709 ret = 0; 1710 break; 1711 1712 #if defined(TARGET_PPC64) 1713 case KVM_EXIT_NMI: 1714 trace_kvm_handle_nmi_exception(); 1715 ret = kvm_handle_nmi(cpu, run); 1716 break; 1717 #endif 1718 1719 default: 1720 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 1721 ret = -1; 1722 break; 1723 } 1724 1725 qemu_mutex_unlock_iothread(); 1726 return ret; 1727 } 1728 1729 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1730 { 1731 CPUState *cs = CPU(cpu); 1732 uint32_t bits = tsr_bits; 1733 struct kvm_one_reg reg = { 1734 .id = KVM_REG_PPC_OR_TSR, 1735 .addr = (uintptr_t) &bits, 1736 }; 1737 1738 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1739 } 1740 1741 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1742 { 1743 1744 CPUState *cs = CPU(cpu); 1745 uint32_t bits = tsr_bits; 1746 struct kvm_one_reg reg = { 1747 .id = KVM_REG_PPC_CLEAR_TSR, 1748 .addr = (uintptr_t) &bits, 1749 }; 1750 1751 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1752 } 1753 1754 int kvmppc_set_tcr(PowerPCCPU *cpu) 1755 { 1756 CPUState *cs = CPU(cpu); 1757 CPUPPCState *env = &cpu->env; 1758 uint32_t tcr = env->spr[SPR_BOOKE_TCR]; 1759 1760 struct kvm_one_reg reg = { 1761 .id = KVM_REG_PPC_TCR, 1762 .addr = (uintptr_t) &tcr, 1763 }; 1764 1765 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1766 } 1767 1768 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) 1769 { 1770 CPUState *cs = CPU(cpu); 1771 int ret; 1772 1773 if (!kvm_enabled()) { 1774 return -1; 1775 } 1776 1777 if (!cap_ppc_watchdog) { 1778 printf("warning: KVM does not support watchdog"); 1779 return -1; 1780 } 1781 1782 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); 1783 if (ret < 0) { 1784 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", 1785 __func__, strerror(-ret)); 1786 return ret; 1787 } 1788 1789 return ret; 1790 } 1791 1792 static int read_cpuinfo(const char *field, char *value, int len) 1793 { 1794 FILE *f; 1795 int ret = -1; 1796 int field_len = strlen(field); 1797 char line[512]; 1798 1799 f = fopen("/proc/cpuinfo", "r"); 1800 if (!f) { 1801 return -1; 1802 } 1803 1804 do { 1805 if (!fgets(line, sizeof(line), f)) { 1806 break; 1807 } 1808 if (!strncmp(line, field, field_len)) { 1809 pstrcpy(value, len, line); 1810 ret = 0; 1811 break; 1812 } 1813 } while (*line); 1814 1815 fclose(f); 1816 1817 return ret; 1818 } 1819 1820 static uint32_t kvmppc_get_tbfreq_procfs(void) 1821 { 1822 char line[512]; 1823 char *ns; 1824 uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND; 1825 uint32_t tbfreq_procfs; 1826 1827 if (read_cpuinfo("timebase", line, sizeof(line))) { 1828 return tbfreq_fallback; 1829 } 1830 1831 ns = strchr(line, ':'); 1832 if (!ns) { 1833 return tbfreq_fallback; 1834 } 1835 1836 tbfreq_procfs = atoi(++ns); 1837 1838 /* 0 is certainly not acceptable by the guest, return fallback value */ 1839 return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback; 1840 } 1841 1842 uint32_t kvmppc_get_tbfreq(void) 1843 { 1844 static uint32_t cached_tbfreq; 1845 1846 if (!cached_tbfreq) { 1847 cached_tbfreq = kvmppc_get_tbfreq_procfs(); 1848 } 1849 1850 return cached_tbfreq; 1851 } 1852 1853 bool kvmppc_get_host_serial(char **value) 1854 { 1855 return g_file_get_contents("/proc/device-tree/system-id", value, NULL, 1856 NULL); 1857 } 1858 1859 bool kvmppc_get_host_model(char **value) 1860 { 1861 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); 1862 } 1863 1864 /* Try to find a device tree node for a CPU with clock-frequency property */ 1865 static int kvmppc_find_cpu_dt(char *buf, int buf_len) 1866 { 1867 struct dirent *dirp; 1868 DIR *dp; 1869 1870 dp = opendir(PROC_DEVTREE_CPU); 1871 if (!dp) { 1872 printf("Can't open directory " PROC_DEVTREE_CPU "\n"); 1873 return -1; 1874 } 1875 1876 buf[0] = '\0'; 1877 while ((dirp = readdir(dp)) != NULL) { 1878 FILE *f; 1879 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, 1880 dirp->d_name); 1881 f = fopen(buf, "r"); 1882 if (f) { 1883 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); 1884 fclose(f); 1885 break; 1886 } 1887 buf[0] = '\0'; 1888 } 1889 closedir(dp); 1890 if (buf[0] == '\0') { 1891 printf("Unknown host!\n"); 1892 return -1; 1893 } 1894 1895 return 0; 1896 } 1897 1898 static uint64_t kvmppc_read_int_dt(const char *filename) 1899 { 1900 union { 1901 uint32_t v32; 1902 uint64_t v64; 1903 } u; 1904 FILE *f; 1905 int len; 1906 1907 f = fopen(filename, "rb"); 1908 if (!f) { 1909 return -1; 1910 } 1911 1912 len = fread(&u, 1, sizeof(u), f); 1913 fclose(f); 1914 switch (len) { 1915 case 4: 1916 /* property is a 32-bit quantity */ 1917 return be32_to_cpu(u.v32); 1918 case 8: 1919 return be64_to_cpu(u.v64); 1920 } 1921 1922 return 0; 1923 } 1924 1925 /* 1926 * Read a CPU node property from the host device tree that's a single 1927 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong 1928 * (can't find or open the property, or doesn't understand the format) 1929 */ 1930 static uint64_t kvmppc_read_int_cpu_dt(const char *propname) 1931 { 1932 char buf[PATH_MAX], *tmp; 1933 uint64_t val; 1934 1935 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { 1936 return -1; 1937 } 1938 1939 tmp = g_strdup_printf("%s/%s", buf, propname); 1940 val = kvmppc_read_int_dt(tmp); 1941 g_free(tmp); 1942 1943 return val; 1944 } 1945 1946 uint64_t kvmppc_get_clockfreq(void) 1947 { 1948 return kvmppc_read_int_cpu_dt("clock-frequency"); 1949 } 1950 1951 static int kvmppc_get_dec_bits(void) 1952 { 1953 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits"); 1954 1955 if (nr_bits > 0) { 1956 return nr_bits; 1957 } 1958 return 0; 1959 } 1960 1961 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) 1962 { 1963 CPUState *cs = env_cpu(env); 1964 1965 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && 1966 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { 1967 return 0; 1968 } 1969 1970 return 1; 1971 } 1972 1973 int kvmppc_get_hasidle(CPUPPCState *env) 1974 { 1975 struct kvm_ppc_pvinfo pvinfo; 1976 1977 if (!kvmppc_get_pvinfo(env, &pvinfo) && 1978 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { 1979 return 1; 1980 } 1981 1982 return 0; 1983 } 1984 1985 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) 1986 { 1987 uint32_t *hc = (uint32_t *)buf; 1988 struct kvm_ppc_pvinfo pvinfo; 1989 1990 if (!kvmppc_get_pvinfo(env, &pvinfo)) { 1991 memcpy(buf, pvinfo.hcall, buf_len); 1992 return 0; 1993 } 1994 1995 /* 1996 * Fallback to always fail hypercalls regardless of endianness: 1997 * 1998 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) 1999 * li r3, -1 2000 * b .+8 (becomes nop in wrong endian) 2001 * bswap32(li r3, -1) 2002 */ 2003 2004 hc[0] = cpu_to_be32(0x08000048); 2005 hc[1] = cpu_to_be32(0x3860ffff); 2006 hc[2] = cpu_to_be32(0x48000008); 2007 hc[3] = cpu_to_be32(bswap32(0x3860ffff)); 2008 2009 return 1; 2010 } 2011 2012 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) 2013 { 2014 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); 2015 } 2016 2017 void kvmppc_enable_logical_ci_hcalls(void) 2018 { 2019 /* 2020 * FIXME: it would be nice if we could detect the cases where 2021 * we're using a device which requires the in kernel 2022 * implementation of these hcalls, but the kernel lacks them and 2023 * produce a warning. 2024 */ 2025 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); 2026 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); 2027 } 2028 2029 void kvmppc_enable_set_mode_hcall(void) 2030 { 2031 kvmppc_enable_hcall(kvm_state, H_SET_MODE); 2032 } 2033 2034 void kvmppc_enable_clear_ref_mod_hcalls(void) 2035 { 2036 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF); 2037 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD); 2038 } 2039 2040 void kvmppc_enable_h_page_init(void) 2041 { 2042 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT); 2043 } 2044 2045 void kvmppc_enable_h_rpt_invalidate(void) 2046 { 2047 kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE); 2048 } 2049 2050 void kvmppc_set_papr(PowerPCCPU *cpu) 2051 { 2052 CPUState *cs = CPU(cpu); 2053 int ret; 2054 2055 if (!kvm_enabled()) { 2056 return; 2057 } 2058 2059 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); 2060 if (ret) { 2061 error_report("This vCPU type or KVM version does not support PAPR"); 2062 exit(1); 2063 } 2064 2065 /* 2066 * Update the capability flag so we sync the right information 2067 * with kvm 2068 */ 2069 cap_papr = 1; 2070 } 2071 2072 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr) 2073 { 2074 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr); 2075 } 2076 2077 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) 2078 { 2079 CPUState *cs = CPU(cpu); 2080 int ret; 2081 2082 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); 2083 if (ret && mpic_proxy) { 2084 error_report("This KVM version does not support EPR"); 2085 exit(1); 2086 } 2087 } 2088 2089 bool kvmppc_get_fwnmi(void) 2090 { 2091 return cap_fwnmi; 2092 } 2093 2094 int kvmppc_set_fwnmi(PowerPCCPU *cpu) 2095 { 2096 CPUState *cs = CPU(cpu); 2097 2098 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0); 2099 } 2100 2101 int kvmppc_smt_threads(void) 2102 { 2103 return cap_ppc_smt ? cap_ppc_smt : 1; 2104 } 2105 2106 int kvmppc_set_smt_threads(int smt) 2107 { 2108 int ret; 2109 2110 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0); 2111 if (!ret) { 2112 cap_ppc_smt = smt; 2113 } 2114 return ret; 2115 } 2116 2117 void kvmppc_error_append_smt_possible_hint(Error *const *errp) 2118 { 2119 int i; 2120 GString *g; 2121 char *s; 2122 2123 assert(kvm_enabled()); 2124 if (cap_ppc_smt_possible) { 2125 g = g_string_new("Available VSMT modes:"); 2126 for (i = 63; i >= 0; i--) { 2127 if ((1UL << i) & cap_ppc_smt_possible) { 2128 g_string_append_printf(g, " %lu", (1UL << i)); 2129 } 2130 } 2131 s = g_string_free(g, false); 2132 error_append_hint(errp, "%s.\n", s); 2133 g_free(s); 2134 } else { 2135 error_append_hint(errp, 2136 "This KVM seems to be too old to support VSMT.\n"); 2137 } 2138 } 2139 2140 2141 #ifdef TARGET_PPC64 2142 uint64_t kvmppc_vrma_limit(unsigned int hash_shift) 2143 { 2144 struct kvm_ppc_smmu_info info; 2145 long rampagesize, best_page_shift; 2146 int i; 2147 2148 /* 2149 * Find the largest hardware supported page size that's less than 2150 * or equal to the (logical) backing page size of guest RAM 2151 */ 2152 kvm_get_smmu_info(&info, &error_fatal); 2153 rampagesize = qemu_minrampagesize(); 2154 best_page_shift = 0; 2155 2156 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { 2157 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; 2158 2159 if (!sps->page_shift) { 2160 continue; 2161 } 2162 2163 if ((sps->page_shift > best_page_shift) 2164 && ((1UL << sps->page_shift) <= rampagesize)) { 2165 best_page_shift = sps->page_shift; 2166 } 2167 } 2168 2169 return 1ULL << (best_page_shift + hash_shift - 7); 2170 } 2171 #endif 2172 2173 bool kvmppc_spapr_use_multitce(void) 2174 { 2175 return cap_spapr_multitce; 2176 } 2177 2178 int kvmppc_spapr_enable_inkernel_multitce(void) 2179 { 2180 int ret; 2181 2182 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2183 H_PUT_TCE_INDIRECT, 1); 2184 if (!ret) { 2185 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2186 H_STUFF_TCE, 1); 2187 } 2188 2189 return ret; 2190 } 2191 2192 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift, 2193 uint64_t bus_offset, uint32_t nb_table, 2194 int *pfd, bool need_vfio) 2195 { 2196 long len; 2197 int fd; 2198 void *table; 2199 2200 /* 2201 * Must set fd to -1 so we don't try to munmap when called for 2202 * destroying the table, which the upper layers -will- do 2203 */ 2204 *pfd = -1; 2205 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) { 2206 return NULL; 2207 } 2208 2209 if (cap_spapr_tce_64) { 2210 struct kvm_create_spapr_tce_64 args = { 2211 .liobn = liobn, 2212 .page_shift = page_shift, 2213 .offset = bus_offset >> page_shift, 2214 .size = nb_table, 2215 .flags = 0 2216 }; 2217 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args); 2218 if (fd < 0) { 2219 fprintf(stderr, 2220 "KVM: Failed to create TCE64 table for liobn 0x%x\n", 2221 liobn); 2222 return NULL; 2223 } 2224 } else if (cap_spapr_tce) { 2225 uint64_t window_size = (uint64_t) nb_table << page_shift; 2226 struct kvm_create_spapr_tce args = { 2227 .liobn = liobn, 2228 .window_size = window_size, 2229 }; 2230 if ((window_size != args.window_size) || bus_offset) { 2231 return NULL; 2232 } 2233 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); 2234 if (fd < 0) { 2235 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", 2236 liobn); 2237 return NULL; 2238 } 2239 } else { 2240 return NULL; 2241 } 2242 2243 len = nb_table * sizeof(uint64_t); 2244 /* FIXME: round this up to page size */ 2245 2246 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 2247 if (table == MAP_FAILED) { 2248 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", 2249 liobn); 2250 close(fd); 2251 return NULL; 2252 } 2253 2254 *pfd = fd; 2255 return table; 2256 } 2257 2258 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) 2259 { 2260 long len; 2261 2262 if (fd < 0) { 2263 return -1; 2264 } 2265 2266 len = nb_table * sizeof(uint64_t); 2267 if ((munmap(table, len) < 0) || 2268 (close(fd) < 0)) { 2269 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", 2270 strerror(errno)); 2271 /* Leak the table */ 2272 } 2273 2274 return 0; 2275 } 2276 2277 int kvmppc_reset_htab(int shift_hint) 2278 { 2279 uint32_t shift = shift_hint; 2280 2281 if (!kvm_enabled()) { 2282 /* Full emulation, tell caller to allocate htab itself */ 2283 return 0; 2284 } 2285 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { 2286 int ret; 2287 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); 2288 if (ret == -ENOTTY) { 2289 /* 2290 * At least some versions of PR KVM advertise the 2291 * capability, but don't implement the ioctl(). Oops. 2292 * Return 0 so that we allocate the htab in qemu, as is 2293 * correct for PR. 2294 */ 2295 return 0; 2296 } else if (ret < 0) { 2297 return ret; 2298 } 2299 return shift; 2300 } 2301 2302 /* 2303 * We have a kernel that predates the htab reset calls. For PR 2304 * KVM, we need to allocate the htab ourselves, for an HV KVM of 2305 * this era, it has allocated a 16MB fixed size hash table 2306 * already. 2307 */ 2308 if (kvmppc_is_pr(kvm_state)) { 2309 /* PR - tell caller to allocate htab */ 2310 return 0; 2311 } else { 2312 /* HV - assume 16MB kernel allocated htab */ 2313 return 24; 2314 } 2315 } 2316 2317 static inline uint32_t mfpvr(void) 2318 { 2319 uint32_t pvr; 2320 2321 asm ("mfpvr %0" 2322 : "=r"(pvr)); 2323 return pvr; 2324 } 2325 2326 static void alter_insns(uint64_t *word, uint64_t flags, bool on) 2327 { 2328 if (on) { 2329 *word |= flags; 2330 } else { 2331 *word &= ~flags; 2332 } 2333 } 2334 2335 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) 2336 { 2337 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); 2338 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); 2339 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); 2340 2341 /* Now fix up the class with information we can query from the host */ 2342 pcc->pvr = mfpvr(); 2343 2344 alter_insns(&pcc->insns_flags, PPC_ALTIVEC, 2345 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC); 2346 alter_insns(&pcc->insns_flags2, PPC2_VSX, 2347 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX); 2348 alter_insns(&pcc->insns_flags2, PPC2_DFP, 2349 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP); 2350 2351 if (dcache_size != -1) { 2352 pcc->l1_dcache_size = dcache_size; 2353 } 2354 2355 if (icache_size != -1) { 2356 pcc->l1_icache_size = icache_size; 2357 } 2358 2359 #if defined(TARGET_PPC64) 2360 pcc->radix_page_info = kvm_get_radix_page_info(); 2361 2362 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) { 2363 /* 2364 * POWER9 DD1 has some bugs which make it not really ISA 3.00 2365 * compliant. More importantly, advertising ISA 3.00 2366 * architected mode may prevent guests from activating 2367 * necessary DD1 workarounds. 2368 */ 2369 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07 2370 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05); 2371 } 2372 #endif /* defined(TARGET_PPC64) */ 2373 } 2374 2375 bool kvmppc_has_cap_epr(void) 2376 { 2377 return cap_epr; 2378 } 2379 2380 bool kvmppc_has_cap_fixup_hcalls(void) 2381 { 2382 return cap_fixup_hcalls; 2383 } 2384 2385 bool kvmppc_has_cap_htm(void) 2386 { 2387 return cap_htm; 2388 } 2389 2390 bool kvmppc_has_cap_mmu_radix(void) 2391 { 2392 return cap_mmu_radix; 2393 } 2394 2395 bool kvmppc_has_cap_mmu_hash_v3(void) 2396 { 2397 return cap_mmu_hash_v3; 2398 } 2399 2400 static bool kvmppc_power8_host(void) 2401 { 2402 bool ret = false; 2403 #ifdef TARGET_PPC64 2404 { 2405 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr(); 2406 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) || 2407 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) || 2408 (base_pvr == CPU_POWERPC_POWER8_BASE); 2409 } 2410 #endif /* TARGET_PPC64 */ 2411 return ret; 2412 } 2413 2414 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c) 2415 { 2416 bool l1d_thread_priv_req = !kvmppc_power8_host(); 2417 2418 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) { 2419 return 2; 2420 } else if ((!l1d_thread_priv_req || 2421 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) && 2422 (c.character & c.character_mask 2423 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) { 2424 return 1; 2425 } 2426 2427 return 0; 2428 } 2429 2430 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c) 2431 { 2432 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) { 2433 return 2; 2434 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) { 2435 return 1; 2436 } 2437 2438 return 0; 2439 } 2440 2441 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c) 2442 { 2443 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) && 2444 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) && 2445 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) { 2446 return SPAPR_CAP_FIXED_NA; 2447 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) { 2448 return SPAPR_CAP_WORKAROUND; 2449 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) { 2450 return SPAPR_CAP_FIXED_CCD; 2451 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) { 2452 return SPAPR_CAP_FIXED_IBS; 2453 } 2454 2455 return 0; 2456 } 2457 2458 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c) 2459 { 2460 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) { 2461 return 1; 2462 } 2463 return 0; 2464 } 2465 2466 bool kvmppc_has_cap_xive(void) 2467 { 2468 return cap_xive; 2469 } 2470 2471 static void kvmppc_get_cpu_characteristics(KVMState *s) 2472 { 2473 struct kvm_ppc_cpu_char c; 2474 int ret; 2475 2476 /* Assume broken */ 2477 cap_ppc_safe_cache = 0; 2478 cap_ppc_safe_bounds_check = 0; 2479 cap_ppc_safe_indirect_branch = 0; 2480 2481 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR); 2482 if (!ret) { 2483 return; 2484 } 2485 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c); 2486 if (ret < 0) { 2487 return; 2488 } 2489 2490 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c); 2491 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c); 2492 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c); 2493 cap_ppc_count_cache_flush_assist = 2494 parse_cap_ppc_count_cache_flush_assist(c); 2495 } 2496 2497 int kvmppc_get_cap_safe_cache(void) 2498 { 2499 return cap_ppc_safe_cache; 2500 } 2501 2502 int kvmppc_get_cap_safe_bounds_check(void) 2503 { 2504 return cap_ppc_safe_bounds_check; 2505 } 2506 2507 int kvmppc_get_cap_safe_indirect_branch(void) 2508 { 2509 return cap_ppc_safe_indirect_branch; 2510 } 2511 2512 int kvmppc_get_cap_count_cache_flush_assist(void) 2513 { 2514 return cap_ppc_count_cache_flush_assist; 2515 } 2516 2517 bool kvmppc_has_cap_nested_kvm_hv(void) 2518 { 2519 return !!cap_ppc_nested_kvm_hv; 2520 } 2521 2522 int kvmppc_set_cap_nested_kvm_hv(int enable) 2523 { 2524 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable); 2525 } 2526 2527 bool kvmppc_has_cap_spapr_vfio(void) 2528 { 2529 return cap_spapr_vfio; 2530 } 2531 2532 int kvmppc_get_cap_large_decr(void) 2533 { 2534 return cap_large_decr; 2535 } 2536 2537 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable) 2538 { 2539 CPUState *cs = CPU(cpu); 2540 uint64_t lpcr; 2541 2542 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2543 /* Do we need to modify the LPCR? */ 2544 if (!!(lpcr & LPCR_LD) != !!enable) { 2545 if (enable) { 2546 lpcr |= LPCR_LD; 2547 } else { 2548 lpcr &= ~LPCR_LD; 2549 } 2550 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2551 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2552 2553 if (!!(lpcr & LPCR_LD) != !!enable) { 2554 return -1; 2555 } 2556 } 2557 2558 return 0; 2559 } 2560 2561 int kvmppc_has_cap_rpt_invalidate(void) 2562 { 2563 return cap_rpt_invalidate; 2564 } 2565 2566 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void) 2567 { 2568 uint32_t host_pvr = mfpvr(); 2569 PowerPCCPUClass *pvr_pcc; 2570 2571 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); 2572 if (pvr_pcc == NULL) { 2573 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); 2574 } 2575 2576 return pvr_pcc; 2577 } 2578 2579 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque) 2580 { 2581 MachineClass *mc = MACHINE_CLASS(oc); 2582 2583 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU; 2584 } 2585 2586 static int kvm_ppc_register_host_cpu_type(void) 2587 { 2588 TypeInfo type_info = { 2589 .name = TYPE_HOST_POWERPC_CPU, 2590 .class_init = kvmppc_host_cpu_class_init, 2591 }; 2592 PowerPCCPUClass *pvr_pcc; 2593 ObjectClass *oc; 2594 DeviceClass *dc; 2595 int i; 2596 2597 pvr_pcc = kvm_ppc_get_host_cpu_class(); 2598 if (pvr_pcc == NULL) { 2599 return -1; 2600 } 2601 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); 2602 type_register(&type_info); 2603 /* override TCG default cpu type with 'host' cpu model */ 2604 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE, 2605 false, NULL); 2606 2607 oc = object_class_by_name(type_info.name); 2608 g_assert(oc); 2609 2610 /* 2611 * Update generic CPU family class alias (e.g. on a POWER8NVL host, 2612 * we want "POWER8" to be a "family" alias that points to the current 2613 * host CPU type, too) 2614 */ 2615 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc)); 2616 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) { 2617 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) { 2618 char *suffix; 2619 2620 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc)); 2621 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX); 2622 if (suffix) { 2623 *suffix = 0; 2624 } 2625 break; 2626 } 2627 } 2628 2629 return 0; 2630 } 2631 2632 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) 2633 { 2634 struct kvm_rtas_token_args args = { 2635 .token = token, 2636 }; 2637 2638 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { 2639 return -ENOENT; 2640 } 2641 2642 strncpy(args.name, function, sizeof(args.name) - 1); 2643 2644 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); 2645 } 2646 2647 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp) 2648 { 2649 struct kvm_get_htab_fd s = { 2650 .flags = write ? KVM_GET_HTAB_WRITE : 0, 2651 .start_index = index, 2652 }; 2653 int ret; 2654 2655 if (!cap_htab_fd) { 2656 error_setg(errp, "KVM version doesn't support %s the HPT", 2657 write ? "writing" : "reading"); 2658 return -ENOTSUP; 2659 } 2660 2661 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); 2662 if (ret < 0) { 2663 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s", 2664 write ? "writing" : "reading", write ? "to" : "from", 2665 strerror(errno)); 2666 return -errno; 2667 } 2668 2669 return ret; 2670 } 2671 2672 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) 2673 { 2674 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2675 uint8_t buf[bufsize]; 2676 ssize_t rc; 2677 2678 do { 2679 rc = read(fd, buf, bufsize); 2680 if (rc < 0) { 2681 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", 2682 strerror(errno)); 2683 return rc; 2684 } else if (rc) { 2685 uint8_t *buffer = buf; 2686 ssize_t n = rc; 2687 while (n) { 2688 struct kvm_get_htab_header *head = 2689 (struct kvm_get_htab_header *) buffer; 2690 size_t chunksize = sizeof(*head) + 2691 HASH_PTE_SIZE_64 * head->n_valid; 2692 2693 qemu_put_be32(f, head->index); 2694 qemu_put_be16(f, head->n_valid); 2695 qemu_put_be16(f, head->n_invalid); 2696 qemu_put_buffer(f, (void *)(head + 1), 2697 HASH_PTE_SIZE_64 * head->n_valid); 2698 2699 buffer += chunksize; 2700 n -= chunksize; 2701 } 2702 } 2703 } while ((rc != 0) 2704 && ((max_ns < 0) || 2705 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); 2706 2707 return (rc == 0) ? 1 : 0; 2708 } 2709 2710 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, 2711 uint16_t n_valid, uint16_t n_invalid, Error **errp) 2712 { 2713 struct kvm_get_htab_header *buf; 2714 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64; 2715 ssize_t rc; 2716 2717 buf = alloca(chunksize); 2718 buf->index = index; 2719 buf->n_valid = n_valid; 2720 buf->n_invalid = n_invalid; 2721 2722 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid); 2723 2724 rc = write(fd, buf, chunksize); 2725 if (rc < 0) { 2726 error_setg_errno(errp, errno, "Error writing the KVM hash table"); 2727 return -errno; 2728 } 2729 if (rc != chunksize) { 2730 /* We should never get a short write on a single chunk */ 2731 error_setg(errp, "Short write while restoring the KVM hash table"); 2732 return -ENOSPC; 2733 } 2734 return 0; 2735 } 2736 2737 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 2738 { 2739 return true; 2740 } 2741 2742 void kvm_arch_init_irq_routing(KVMState *s) 2743 { 2744 } 2745 2746 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n) 2747 { 2748 int fd, rc; 2749 int i; 2750 2751 fd = kvmppc_get_htab_fd(false, ptex, &error_abort); 2752 2753 i = 0; 2754 while (i < n) { 2755 struct kvm_get_htab_header *hdr; 2756 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP; 2757 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64]; 2758 2759 rc = read(fd, buf, sizeof(buf)); 2760 if (rc < 0) { 2761 hw_error("kvmppc_read_hptes: Unable to read HPTEs"); 2762 } 2763 2764 hdr = (struct kvm_get_htab_header *)buf; 2765 while ((i < n) && ((char *)hdr < (buf + rc))) { 2766 int invalid = hdr->n_invalid, valid = hdr->n_valid; 2767 2768 if (hdr->index != (ptex + i)) { 2769 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32 2770 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i); 2771 } 2772 2773 if (n - i < valid) { 2774 valid = n - i; 2775 } 2776 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid); 2777 i += valid; 2778 2779 if ((n - i) < invalid) { 2780 invalid = n - i; 2781 } 2782 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64); 2783 i += invalid; 2784 2785 hdr = (struct kvm_get_htab_header *) 2786 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid); 2787 } 2788 } 2789 2790 close(fd); 2791 } 2792 2793 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1) 2794 { 2795 int fd, rc; 2796 struct { 2797 struct kvm_get_htab_header hdr; 2798 uint64_t pte0; 2799 uint64_t pte1; 2800 } buf; 2801 2802 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort); 2803 2804 buf.hdr.n_valid = 1; 2805 buf.hdr.n_invalid = 0; 2806 buf.hdr.index = ptex; 2807 buf.pte0 = cpu_to_be64(pte0); 2808 buf.pte1 = cpu_to_be64(pte1); 2809 2810 rc = write(fd, &buf, sizeof(buf)); 2811 if (rc != sizeof(buf)) { 2812 hw_error("kvmppc_write_hpte: Unable to update KVM HPT"); 2813 } 2814 close(fd); 2815 } 2816 2817 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2818 uint64_t address, uint32_t data, PCIDevice *dev) 2819 { 2820 return 0; 2821 } 2822 2823 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2824 int vector, PCIDevice *dev) 2825 { 2826 return 0; 2827 } 2828 2829 int kvm_arch_release_virq_post(int virq) 2830 { 2831 return 0; 2832 } 2833 2834 int kvm_arch_msi_data_to_gsi(uint32_t data) 2835 { 2836 return data & 0xffff; 2837 } 2838 2839 #if defined(TARGET_PPC64) 2840 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run) 2841 { 2842 uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK; 2843 2844 cpu_synchronize_state(CPU(cpu)); 2845 2846 spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV); 2847 2848 return 0; 2849 } 2850 #endif 2851 2852 int kvmppc_enable_hwrng(void) 2853 { 2854 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) { 2855 return -1; 2856 } 2857 2858 return kvmppc_enable_hcall(kvm_state, H_RANDOM); 2859 } 2860 2861 void kvmppc_check_papr_resize_hpt(Error **errp) 2862 { 2863 if (!kvm_enabled()) { 2864 return; /* No KVM, we're good */ 2865 } 2866 2867 if (cap_resize_hpt) { 2868 return; /* Kernel has explicit support, we're good */ 2869 } 2870 2871 /* Otherwise fallback on looking for PR KVM */ 2872 if (kvmppc_is_pr(kvm_state)) { 2873 return; 2874 } 2875 2876 error_setg(errp, 2877 "Hash page table resizing not available with this KVM version"); 2878 } 2879 2880 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift) 2881 { 2882 CPUState *cs = CPU(cpu); 2883 struct kvm_ppc_resize_hpt rhpt = { 2884 .flags = flags, 2885 .shift = shift, 2886 }; 2887 2888 if (!cap_resize_hpt) { 2889 return -ENOSYS; 2890 } 2891 2892 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt); 2893 } 2894 2895 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift) 2896 { 2897 CPUState *cs = CPU(cpu); 2898 struct kvm_ppc_resize_hpt rhpt = { 2899 .flags = flags, 2900 .shift = shift, 2901 }; 2902 2903 if (!cap_resize_hpt) { 2904 return -ENOSYS; 2905 } 2906 2907 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt); 2908 } 2909 2910 /* 2911 * This is a helper function to detect a post migration scenario 2912 * in which a guest, running as KVM-HV, freezes in cpu_post_load because 2913 * the guest kernel can't handle a PVR value other than the actual host 2914 * PVR in KVM_SET_SREGS, even if pvr_match() returns true. 2915 * 2916 * If we don't have cap_ppc_pvr_compat and we're not running in PR 2917 * (so, we're HV), return true. The workaround itself is done in 2918 * cpu_post_load. 2919 * 2920 * The order here is important: we'll only check for KVM PR as a 2921 * fallback if the guest kernel can't handle the situation itself. 2922 * We need to avoid as much as possible querying the running KVM type 2923 * in QEMU level. 2924 */ 2925 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu) 2926 { 2927 CPUState *cs = CPU(cpu); 2928 2929 if (!kvm_enabled()) { 2930 return false; 2931 } 2932 2933 if (cap_ppc_pvr_compat) { 2934 return false; 2935 } 2936 2937 return !kvmppc_is_pr(cs->kvm_state); 2938 } 2939 2940 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online) 2941 { 2942 CPUState *cs = CPU(cpu); 2943 2944 if (kvm_enabled()) { 2945 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online); 2946 } 2947 } 2948 2949 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset) 2950 { 2951 CPUState *cs = CPU(cpu); 2952 2953 if (kvm_enabled()) { 2954 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset); 2955 } 2956 } 2957 2958 bool kvm_arch_cpu_check_are_resettable(void) 2959 { 2960 return true; 2961 } 2962