1 /* 2 * PowerPC implementation of KVM hooks 3 * 4 * Copyright IBM Corp. 2007 5 * Copyright (C) 2011 Freescale Semiconductor, Inc. 6 * 7 * Authors: 8 * Jerone Young <jyoung5@us.ibm.com> 9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 10 * Hollis Blanchard <hollisb@us.ibm.com> 11 * 12 * This work is licensed under the terms of the GNU GPL, version 2 or later. 13 * See the COPYING file in the top-level directory. 14 * 15 */ 16 17 #include "qemu/osdep.h" 18 #include <dirent.h> 19 #include <sys/ioctl.h> 20 #include <sys/vfs.h> 21 22 #include <linux/kvm.h> 23 24 #include "qapi/error.h" 25 #include "qemu/error-report.h" 26 #include "cpu.h" 27 #include "cpu-models.h" 28 #include "qemu/timer.h" 29 #include "sysemu/hw_accel.h" 30 #include "kvm_ppc.h" 31 #include "sysemu/cpus.h" 32 #include "sysemu/device_tree.h" 33 #include "mmu-hash64.h" 34 35 #include "hw/ppc/spapr.h" 36 #include "hw/ppc/spapr_cpu_core.h" 37 #include "hw/hw.h" 38 #include "hw/ppc/ppc.h" 39 #include "migration/qemu-file-types.h" 40 #include "sysemu/watchdog.h" 41 #include "trace.h" 42 #include "gdbstub/enums.h" 43 #include "exec/memattrs.h" 44 #include "exec/ram_addr.h" 45 #include "sysemu/hostmem.h" 46 #include "qemu/cutils.h" 47 #include "qemu/main-loop.h" 48 #include "qemu/mmap-alloc.h" 49 #include "elf.h" 50 #include "sysemu/kvm_int.h" 51 #include "sysemu/kvm.h" 52 #include "hw/core/accel-cpu.h" 53 54 #include CONFIG_DEVICES 55 56 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" 57 58 #define DEBUG_RETURN_GUEST 0 59 #define DEBUG_RETURN_GDB 1 60 61 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 62 KVM_CAP_LAST_INFO 63 }; 64 65 static int cap_interrupt_unset; 66 static int cap_segstate; 67 static int cap_booke_sregs; 68 static int cap_ppc_smt; 69 static int cap_ppc_smt_possible; 70 static int cap_spapr_tce; 71 static int cap_spapr_tce_64; 72 static int cap_spapr_multitce; 73 static int cap_spapr_vfio; 74 static int cap_hior; 75 static int cap_one_reg; 76 static int cap_epr; 77 static int cap_ppc_watchdog; 78 static int cap_htab_fd; 79 static int cap_fixup_hcalls; 80 static int cap_htm; /* Hardware transactional memory support */ 81 static int cap_mmu_radix; 82 static int cap_mmu_hash_v3; 83 static int cap_xive; 84 static int cap_resize_hpt; 85 static int cap_ppc_pvr_compat; 86 static int cap_ppc_safe_cache; 87 static int cap_ppc_safe_bounds_check; 88 static int cap_ppc_safe_indirect_branch; 89 static int cap_ppc_count_cache_flush_assist; 90 static int cap_ppc_nested_kvm_hv; 91 static int cap_large_decr; 92 static int cap_fwnmi; 93 static int cap_rpt_invalidate; 94 static int cap_ail_mode_3; 95 96 #ifdef CONFIG_PSERIES 97 static int cap_papr; 98 #else 99 #define cap_papr (0) 100 #endif 101 102 static uint32_t debug_inst_opcode; 103 104 /* 105 * Check whether we are running with KVM-PR (instead of KVM-HV). This 106 * should only be used for fallback tests - generally we should use 107 * explicit capabilities for the features we want, rather than 108 * assuming what is/isn't available depending on the KVM variant. 109 */ 110 static bool kvmppc_is_pr(KVMState *ks) 111 { 112 /* Assume KVM-PR if the GET_PVINFO capability is available */ 113 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0; 114 } 115 116 static int kvm_ppc_register_host_cpu_type(void); 117 static void kvmppc_get_cpu_characteristics(KVMState *s); 118 static int kvmppc_get_dec_bits(void); 119 120 int kvm_arch_get_default_type(MachineState *ms) 121 { 122 return 0; 123 } 124 125 int kvm_arch_init(MachineState *ms, KVMState *s) 126 { 127 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); 128 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); 129 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); 130 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE); 131 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); 132 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64); 133 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); 134 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO); 135 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); 136 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); 137 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); 138 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); 139 /* 140 * Note: we don't set cap_papr here, because this capability is 141 * only activated after this by kvmppc_set_papr() 142 */ 143 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD); 144 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); 145 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT); 146 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM); 147 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX); 148 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3); 149 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE); 150 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT); 151 kvmppc_get_cpu_characteristics(s); 152 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV); 153 cap_large_decr = kvmppc_get_dec_bits(); 154 cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI); 155 /* 156 * Note: setting it to false because there is not such capability 157 * in KVM at this moment. 158 * 159 * TODO: call kvm_vm_check_extension() with the right capability 160 * after the kernel starts implementing it. 161 */ 162 cap_ppc_pvr_compat = false; 163 164 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) { 165 error_report("KVM: Host kernel doesn't have level irq capability"); 166 exit(1); 167 } 168 169 cap_rpt_invalidate = kvm_vm_check_extension(s, KVM_CAP_PPC_RPT_INVALIDATE); 170 cap_ail_mode_3 = kvm_vm_check_extension(s, KVM_CAP_PPC_AIL_MODE_3); 171 kvm_ppc_register_host_cpu_type(); 172 173 return 0; 174 } 175 176 int kvm_arch_irqchip_create(KVMState *s) 177 { 178 return 0; 179 } 180 181 static int kvm_arch_sync_sregs(PowerPCCPU *cpu) 182 { 183 CPUPPCState *cenv = &cpu->env; 184 CPUState *cs = CPU(cpu); 185 struct kvm_sregs sregs; 186 int ret; 187 188 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 189 /* 190 * What we're really trying to say is "if we're on BookE, we 191 * use the native PVR for now". This is the only sane way to 192 * check it though, so we potentially confuse users that they 193 * can run BookE guests on BookS. Let's hope nobody dares 194 * enough :) 195 */ 196 return 0; 197 } else { 198 if (!cap_segstate) { 199 fprintf(stderr, "kvm error: missing PVR setting capability\n"); 200 return -ENOSYS; 201 } 202 } 203 204 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 205 if (ret) { 206 return ret; 207 } 208 209 sregs.pvr = cenv->spr[SPR_PVR]; 210 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 211 } 212 213 /* Set up a shared TLB array with KVM */ 214 static int kvm_booke206_tlb_init(PowerPCCPU *cpu) 215 { 216 CPUPPCState *env = &cpu->env; 217 CPUState *cs = CPU(cpu); 218 struct kvm_book3e_206_tlb_params params = {}; 219 struct kvm_config_tlb cfg = {}; 220 unsigned int entries = 0; 221 int ret, i; 222 223 if (!kvm_enabled() || 224 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { 225 return 0; 226 } 227 228 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); 229 230 for (i = 0; i < BOOKE206_MAX_TLBN; i++) { 231 params.tlb_sizes[i] = booke206_tlb_size(env, i); 232 params.tlb_ways[i] = booke206_tlb_ways(env, i); 233 entries += params.tlb_sizes[i]; 234 } 235 236 assert(entries == env->nb_tlb); 237 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); 238 239 env->tlb_dirty = true; 240 241 cfg.array = (uintptr_t)env->tlb.tlbm; 242 cfg.array_len = sizeof(ppcmas_tlb_t) * entries; 243 cfg.params = (uintptr_t)¶ms; 244 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; 245 246 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); 247 if (ret < 0) { 248 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", 249 __func__, strerror(-ret)); 250 return ret; 251 } 252 253 env->kvm_sw_tlb = true; 254 return 0; 255 } 256 257 258 #if defined(TARGET_PPC64) 259 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp) 260 { 261 int ret; 262 263 assert(kvm_state != NULL); 264 265 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { 266 error_setg(errp, "KVM doesn't expose the MMU features it supports"); 267 error_append_hint(errp, "Consider switching to a newer KVM\n"); 268 return; 269 } 270 271 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info); 272 if (ret == 0) { 273 return; 274 } 275 276 error_setg_errno(errp, -ret, 277 "KVM failed to provide the MMU features it supports"); 278 } 279 280 static struct ppc_radix_page_info *kvmppc_get_radix_page_info(void) 281 { 282 KVMState *s = KVM_STATE(current_accel()); 283 struct ppc_radix_page_info *radix_page_info; 284 struct kvm_ppc_rmmu_info rmmu_info = { }; 285 int i; 286 287 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) { 288 return NULL; 289 } 290 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) { 291 return NULL; 292 } 293 radix_page_info = g_malloc0(sizeof(*radix_page_info)); 294 radix_page_info->count = 0; 295 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 296 if (rmmu_info.ap_encodings[i]) { 297 radix_page_info->entries[i] = rmmu_info.ap_encodings[i]; 298 radix_page_info->count++; 299 } 300 } 301 return radix_page_info; 302 } 303 304 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu, 305 bool radix, bool gtse, 306 uint64_t proc_tbl) 307 { 308 CPUState *cs = CPU(cpu); 309 int ret; 310 uint64_t flags = 0; 311 struct kvm_ppc_mmuv3_cfg cfg = { 312 .process_table = proc_tbl, 313 }; 314 315 if (radix) { 316 flags |= KVM_PPC_MMUV3_RADIX; 317 } 318 if (gtse) { 319 flags |= KVM_PPC_MMUV3_GTSE; 320 } 321 cfg.flags = flags; 322 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg); 323 switch (ret) { 324 case 0: 325 return H_SUCCESS; 326 case -EINVAL: 327 return H_PARAMETER; 328 case -ENODEV: 329 return H_NOT_AVAILABLE; 330 default: 331 return H_HARDWARE; 332 } 333 } 334 335 bool kvmppc_hpt_needs_host_contiguous_pages(void) 336 { 337 static struct kvm_ppc_smmu_info smmu_info; 338 339 if (!kvm_enabled()) { 340 return false; 341 } 342 343 kvm_get_smmu_info(&smmu_info, &error_fatal); 344 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL); 345 } 346 347 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp) 348 { 349 struct kvm_ppc_smmu_info smmu_info; 350 int iq, ik, jq, jk; 351 Error *local_err = NULL; 352 353 /* For now, we only have anything to check on hash64 MMUs */ 354 if (!cpu->hash64_opts || !kvm_enabled()) { 355 return; 356 } 357 358 kvm_get_smmu_info(&smmu_info, &local_err); 359 if (local_err) { 360 error_propagate(errp, local_err); 361 return; 362 } 363 364 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG) 365 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { 366 error_setg(errp, 367 "KVM does not support 1TiB segments which guest expects"); 368 return; 369 } 370 371 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) { 372 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u", 373 smmu_info.slb_size, cpu->hash64_opts->slb_size); 374 return; 375 } 376 377 /* 378 * Verify that every pagesize supported by the cpu model is 379 * supported by KVM with the same encodings 380 */ 381 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) { 382 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq]; 383 struct kvm_ppc_one_seg_page_size *ksps; 384 385 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) { 386 if (qsps->page_shift == smmu_info.sps[ik].page_shift) { 387 break; 388 } 389 } 390 if (ik >= ARRAY_SIZE(smmu_info.sps)) { 391 error_setg(errp, "KVM doesn't support for base page shift %u", 392 qsps->page_shift); 393 return; 394 } 395 396 ksps = &smmu_info.sps[ik]; 397 if (ksps->slb_enc != qsps->slb_enc) { 398 error_setg(errp, 399 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x", 400 ksps->slb_enc, ksps->page_shift, qsps->slb_enc); 401 return; 402 } 403 404 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) { 405 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) { 406 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) { 407 break; 408 } 409 } 410 411 if (jk >= ARRAY_SIZE(ksps->enc)) { 412 error_setg(errp, "KVM doesn't support page shift %u/%u", 413 qsps->enc[jq].page_shift, qsps->page_shift); 414 return; 415 } 416 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) { 417 error_setg(errp, 418 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x", 419 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift, 420 qsps->page_shift, qsps->enc[jq].pte_enc); 421 return; 422 } 423 } 424 } 425 426 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 427 /* 428 * Mostly what guest pagesizes we can use are related to the 429 * host pages used to map guest RAM, which is handled in the 430 * platform code. Cache-Inhibited largepages (64k) however are 431 * used for I/O, so if they're mapped to the host at all it 432 * will be a normal mapping, not a special hugepage one used 433 * for RAM. 434 */ 435 if (qemu_real_host_page_size() < 0x10000) { 436 error_setg(errp, 437 "KVM can't supply 64kiB CI pages, which guest expects"); 438 } 439 } 440 } 441 #endif /* !defined (TARGET_PPC64) */ 442 443 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 444 { 445 return POWERPC_CPU(cpu)->vcpu_id; 446 } 447 448 /* 449 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports 450 * only 1 watchpoint, so array size of 4 is sufficient for now. 451 */ 452 #define MAX_HW_BKPTS 4 453 454 static struct HWBreakpoint { 455 target_ulong addr; 456 int type; 457 } hw_debug_points[MAX_HW_BKPTS]; 458 459 static CPUWatchpoint hw_watchpoint; 460 461 /* Default there is no breakpoint and watchpoint supported */ 462 static int max_hw_breakpoint; 463 static int max_hw_watchpoint; 464 static int nb_hw_breakpoint; 465 static int nb_hw_watchpoint; 466 467 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) 468 { 469 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 470 max_hw_breakpoint = 2; 471 max_hw_watchpoint = 2; 472 } 473 474 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { 475 fprintf(stderr, "Error initializing h/w breakpoints\n"); 476 return; 477 } 478 } 479 480 int kvm_arch_init_vcpu(CPUState *cs) 481 { 482 PowerPCCPU *cpu = POWERPC_CPU(cs); 483 CPUPPCState *cenv = &cpu->env; 484 int ret; 485 486 /* Synchronize sregs with kvm */ 487 ret = kvm_arch_sync_sregs(cpu); 488 if (ret) { 489 if (ret == -EINVAL) { 490 error_report("Register sync failed... If you're using kvm-hv.ko," 491 " only \"-cpu host\" is possible"); 492 } 493 return ret; 494 } 495 496 switch (cenv->mmu_model) { 497 case POWERPC_MMU_BOOKE206: 498 /* This target supports access to KVM's guest TLB */ 499 ret = kvm_booke206_tlb_init(cpu); 500 break; 501 case POWERPC_MMU_2_07: 502 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { 503 /* 504 * KVM-HV has transactional memory on POWER8 also without 505 * the KVM_CAP_PPC_HTM extension, so enable it here 506 * instead as long as it's available to userspace on the 507 * host. 508 */ 509 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) { 510 cap_htm = true; 511 } 512 } 513 break; 514 default: 515 break; 516 } 517 518 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); 519 kvmppc_hw_debug_points_init(cenv); 520 521 return ret; 522 } 523 524 int kvm_arch_destroy_vcpu(CPUState *cs) 525 { 526 return 0; 527 } 528 529 static void kvm_sw_tlb_put(PowerPCCPU *cpu) 530 { 531 CPUPPCState *env = &cpu->env; 532 CPUState *cs = CPU(cpu); 533 struct kvm_dirty_tlb dirty_tlb; 534 unsigned char *bitmap; 535 int ret; 536 537 if (!env->kvm_sw_tlb) { 538 return; 539 } 540 541 bitmap = g_malloc((env->nb_tlb + 7) / 8); 542 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); 543 544 dirty_tlb.bitmap = (uintptr_t)bitmap; 545 dirty_tlb.num_dirty = env->nb_tlb; 546 547 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); 548 if (ret) { 549 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", 550 __func__, strerror(-ret)); 551 } 552 553 g_free(bitmap); 554 } 555 556 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) 557 { 558 CPUPPCState *env = cpu_env(cs); 559 /* Init 'val' to avoid "uninitialised value" Valgrind warnings */ 560 union { 561 uint32_t u32; 562 uint64_t u64; 563 } val = { }; 564 struct kvm_one_reg reg = { 565 .id = id, 566 .addr = (uintptr_t) &val, 567 }; 568 int ret; 569 570 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 571 if (ret != 0) { 572 trace_kvm_failed_spr_get(spr, strerror(errno)); 573 } else { 574 switch (id & KVM_REG_SIZE_MASK) { 575 case KVM_REG_SIZE_U32: 576 env->spr[spr] = val.u32; 577 break; 578 579 case KVM_REG_SIZE_U64: 580 env->spr[spr] = val.u64; 581 break; 582 583 default: 584 /* Don't handle this size yet */ 585 abort(); 586 } 587 } 588 } 589 590 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) 591 { 592 CPUPPCState *env = cpu_env(cs); 593 union { 594 uint32_t u32; 595 uint64_t u64; 596 } val; 597 struct kvm_one_reg reg = { 598 .id = id, 599 .addr = (uintptr_t) &val, 600 }; 601 int ret; 602 603 switch (id & KVM_REG_SIZE_MASK) { 604 case KVM_REG_SIZE_U32: 605 val.u32 = env->spr[spr]; 606 break; 607 608 case KVM_REG_SIZE_U64: 609 val.u64 = env->spr[spr]; 610 break; 611 612 default: 613 /* Don't handle this size yet */ 614 abort(); 615 } 616 617 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 618 if (ret != 0) { 619 trace_kvm_failed_spr_set(spr, strerror(errno)); 620 } 621 } 622 623 static int kvm_put_fp(CPUState *cs) 624 { 625 CPUPPCState *env = cpu_env(cs); 626 struct kvm_one_reg reg; 627 int i; 628 int ret; 629 630 if (env->insns_flags & PPC_FLOAT) { 631 uint64_t fpscr = env->fpscr; 632 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 633 634 reg.id = KVM_REG_PPC_FPSCR; 635 reg.addr = (uintptr_t)&fpscr; 636 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 637 if (ret < 0) { 638 trace_kvm_failed_fpscr_set(strerror(errno)); 639 return ret; 640 } 641 642 for (i = 0; i < 32; i++) { 643 uint64_t vsr[2]; 644 uint64_t *fpr = cpu_fpr_ptr(env, i); 645 uint64_t *vsrl = cpu_vsrl_ptr(env, i); 646 647 #if HOST_BIG_ENDIAN 648 vsr[0] = float64_val(*fpr); 649 vsr[1] = *vsrl; 650 #else 651 vsr[0] = *vsrl; 652 vsr[1] = float64_val(*fpr); 653 #endif 654 reg.addr = (uintptr_t) &vsr; 655 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 656 657 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 658 if (ret < 0) { 659 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i, 660 strerror(errno)); 661 return ret; 662 } 663 } 664 } 665 666 if (env->insns_flags & PPC_ALTIVEC) { 667 reg.id = KVM_REG_PPC_VSCR; 668 reg.addr = (uintptr_t)&env->vscr; 669 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 670 if (ret < 0) { 671 trace_kvm_failed_vscr_set(strerror(errno)); 672 return ret; 673 } 674 675 for (i = 0; i < 32; i++) { 676 reg.id = KVM_REG_PPC_VR(i); 677 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 678 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 679 if (ret < 0) { 680 trace_kvm_failed_vr_set(i, strerror(errno)); 681 return ret; 682 } 683 } 684 } 685 686 return 0; 687 } 688 689 static int kvm_get_fp(CPUState *cs) 690 { 691 CPUPPCState *env = cpu_env(cs); 692 struct kvm_one_reg reg; 693 int i; 694 int ret; 695 696 if (env->insns_flags & PPC_FLOAT) { 697 uint64_t fpscr; 698 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 699 700 reg.id = KVM_REG_PPC_FPSCR; 701 reg.addr = (uintptr_t)&fpscr; 702 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 703 if (ret < 0) { 704 trace_kvm_failed_fpscr_get(strerror(errno)); 705 return ret; 706 } else { 707 env->fpscr = fpscr; 708 } 709 710 for (i = 0; i < 32; i++) { 711 uint64_t vsr[2]; 712 uint64_t *fpr = cpu_fpr_ptr(env, i); 713 uint64_t *vsrl = cpu_vsrl_ptr(env, i); 714 715 reg.addr = (uintptr_t) &vsr; 716 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 717 718 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 719 if (ret < 0) { 720 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i, 721 strerror(errno)); 722 return ret; 723 } else { 724 #if HOST_BIG_ENDIAN 725 *fpr = vsr[0]; 726 if (vsx) { 727 *vsrl = vsr[1]; 728 } 729 #else 730 *fpr = vsr[1]; 731 if (vsx) { 732 *vsrl = vsr[0]; 733 } 734 #endif 735 } 736 } 737 } 738 739 if (env->insns_flags & PPC_ALTIVEC) { 740 reg.id = KVM_REG_PPC_VSCR; 741 reg.addr = (uintptr_t)&env->vscr; 742 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 743 if (ret < 0) { 744 trace_kvm_failed_vscr_get(strerror(errno)); 745 return ret; 746 } 747 748 for (i = 0; i < 32; i++) { 749 reg.id = KVM_REG_PPC_VR(i); 750 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 751 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 752 if (ret < 0) { 753 trace_kvm_failed_vr_get(i, strerror(errno)); 754 return ret; 755 } 756 } 757 } 758 759 return 0; 760 } 761 762 #if defined(TARGET_PPC64) 763 static int kvm_get_vpa(CPUState *cs) 764 { 765 PowerPCCPU *cpu = POWERPC_CPU(cs); 766 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 767 struct kvm_one_reg reg; 768 int ret; 769 770 reg.id = KVM_REG_PPC_VPA_ADDR; 771 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 772 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 773 if (ret < 0) { 774 trace_kvm_failed_vpa_addr_get(strerror(errno)); 775 return ret; 776 } 777 778 assert((uintptr_t)&spapr_cpu->slb_shadow_size 779 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 780 reg.id = KVM_REG_PPC_VPA_SLB; 781 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 782 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 783 if (ret < 0) { 784 trace_kvm_failed_slb_get(strerror(errno)); 785 return ret; 786 } 787 788 assert((uintptr_t)&spapr_cpu->dtl_size 789 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 790 reg.id = KVM_REG_PPC_VPA_DTL; 791 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 792 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 793 if (ret < 0) { 794 trace_kvm_failed_dtl_get(strerror(errno)); 795 return ret; 796 } 797 798 return 0; 799 } 800 801 static int kvm_put_vpa(CPUState *cs) 802 { 803 PowerPCCPU *cpu = POWERPC_CPU(cs); 804 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 805 struct kvm_one_reg reg; 806 int ret; 807 808 /* 809 * SLB shadow or DTL can't be registered unless a master VPA is 810 * registered. That means when restoring state, if a VPA *is* 811 * registered, we need to set that up first. If not, we need to 812 * deregister the others before deregistering the master VPA 813 */ 814 assert(spapr_cpu->vpa_addr 815 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr)); 816 817 if (spapr_cpu->vpa_addr) { 818 reg.id = KVM_REG_PPC_VPA_ADDR; 819 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 820 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 821 if (ret < 0) { 822 trace_kvm_failed_vpa_addr_set(strerror(errno)); 823 return ret; 824 } 825 } 826 827 assert((uintptr_t)&spapr_cpu->slb_shadow_size 828 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 829 reg.id = KVM_REG_PPC_VPA_SLB; 830 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 831 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 832 if (ret < 0) { 833 trace_kvm_failed_slb_set(strerror(errno)); 834 return ret; 835 } 836 837 assert((uintptr_t)&spapr_cpu->dtl_size 838 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 839 reg.id = KVM_REG_PPC_VPA_DTL; 840 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 841 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 842 if (ret < 0) { 843 trace_kvm_failed_dtl_set(strerror(errno)); 844 return ret; 845 } 846 847 if (!spapr_cpu->vpa_addr) { 848 reg.id = KVM_REG_PPC_VPA_ADDR; 849 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 850 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 851 if (ret < 0) { 852 trace_kvm_failed_null_vpa_addr_set(strerror(errno)); 853 return ret; 854 } 855 } 856 857 return 0; 858 } 859 #endif /* TARGET_PPC64 */ 860 861 int kvmppc_put_books_sregs(PowerPCCPU *cpu) 862 { 863 CPUPPCState *env = &cpu->env; 864 struct kvm_sregs sregs = { }; 865 int i; 866 867 sregs.pvr = env->spr[SPR_PVR]; 868 869 if (cpu->vhyp) { 870 sregs.u.s.sdr1 = cpu->vhyp_class->encode_hpt_for_kvm_pr(cpu->vhyp); 871 } else { 872 sregs.u.s.sdr1 = env->spr[SPR_SDR1]; 873 } 874 875 /* Sync SLB */ 876 #ifdef TARGET_PPC64 877 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 878 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; 879 if (env->slb[i].esid & SLB_ESID_V) { 880 sregs.u.s.ppc64.slb[i].slbe |= i; 881 } 882 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; 883 } 884 #endif 885 886 /* Sync SRs */ 887 for (i = 0; i < 16; i++) { 888 sregs.u.s.ppc32.sr[i] = env->sr[i]; 889 } 890 891 /* Sync BATs */ 892 for (i = 0; i < 8; i++) { 893 /* Beware. We have to swap upper and lower bits here */ 894 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) 895 | env->DBAT[1][i]; 896 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) 897 | env->IBAT[1][i]; 898 } 899 900 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 901 } 902 903 int kvm_arch_put_registers(CPUState *cs, int level) 904 { 905 PowerPCCPU *cpu = POWERPC_CPU(cs); 906 CPUPPCState *env = &cpu->env; 907 struct kvm_regs regs; 908 int ret; 909 int i; 910 911 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 912 if (ret < 0) { 913 return ret; 914 } 915 916 regs.ctr = env->ctr; 917 regs.lr = env->lr; 918 regs.xer = cpu_read_xer(env); 919 regs.msr = env->msr; 920 regs.pc = env->nip; 921 922 regs.srr0 = env->spr[SPR_SRR0]; 923 regs.srr1 = env->spr[SPR_SRR1]; 924 925 regs.sprg0 = env->spr[SPR_SPRG0]; 926 regs.sprg1 = env->spr[SPR_SPRG1]; 927 regs.sprg2 = env->spr[SPR_SPRG2]; 928 regs.sprg3 = env->spr[SPR_SPRG3]; 929 regs.sprg4 = env->spr[SPR_SPRG4]; 930 regs.sprg5 = env->spr[SPR_SPRG5]; 931 regs.sprg6 = env->spr[SPR_SPRG6]; 932 regs.sprg7 = env->spr[SPR_SPRG7]; 933 934 regs.pid = env->spr[SPR_BOOKE_PID]; 935 936 for (i = 0; i < 32; i++) { 937 regs.gpr[i] = env->gpr[i]; 938 } 939 940 regs.cr = ppc_get_cr(env); 941 942 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 943 if (ret < 0) { 944 return ret; 945 } 946 947 kvm_put_fp(cs); 948 949 if (env->tlb_dirty) { 950 kvm_sw_tlb_put(cpu); 951 env->tlb_dirty = false; 952 } 953 954 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { 955 ret = kvmppc_put_books_sregs(cpu); 956 if (ret < 0) { 957 return ret; 958 } 959 } 960 961 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { 962 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 963 } 964 965 if (cap_one_reg) { 966 /* 967 * We deliberately ignore errors here, for kernels which have 968 * the ONE_REG calls, but don't support the specific 969 * registers, there's a reasonable chance things will still 970 * work, at least until we try to migrate. 971 */ 972 for (i = 0; i < 1024; i++) { 973 uint64_t id = env->spr_cb[i].one_reg_id; 974 975 if (id != 0) { 976 kvm_put_one_spr(cs, id, i); 977 } 978 } 979 980 #ifdef TARGET_PPC64 981 if (FIELD_EX64(env->msr, MSR, TS)) { 982 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 984 } 985 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 987 } 988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 991 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 992 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 993 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 994 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 995 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 996 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 997 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 998 } 999 1000 if (cap_papr) { 1001 if (kvm_put_vpa(cs) < 0) { 1002 trace_kvm_failed_put_vpa(); 1003 } 1004 } 1005 1006 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1007 1008 if (level > KVM_PUT_RUNTIME_STATE) { 1009 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1010 } 1011 #endif /* TARGET_PPC64 */ 1012 } 1013 1014 return ret; 1015 } 1016 1017 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) 1018 { 1019 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; 1020 } 1021 1022 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu) 1023 { 1024 CPUPPCState *env = &cpu->env; 1025 struct kvm_sregs sregs; 1026 int ret; 1027 1028 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1029 if (ret < 0) { 1030 return ret; 1031 } 1032 1033 if (sregs.u.e.features & KVM_SREGS_E_BASE) { 1034 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; 1035 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; 1036 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; 1037 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; 1038 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; 1039 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; 1040 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; 1041 env->spr[SPR_DECR] = sregs.u.e.dec; 1042 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; 1043 env->spr[SPR_TBU] = sregs.u.e.tb >> 32; 1044 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; 1045 } 1046 1047 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { 1048 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; 1049 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; 1050 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; 1051 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; 1052 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; 1053 } 1054 1055 if (sregs.u.e.features & KVM_SREGS_E_64) { 1056 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; 1057 } 1058 1059 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { 1060 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; 1061 } 1062 1063 if (sregs.u.e.features & KVM_SREGS_E_IVOR) { 1064 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; 1065 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); 1066 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; 1067 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); 1068 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; 1069 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); 1070 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; 1071 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); 1072 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; 1073 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); 1074 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; 1075 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); 1076 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; 1077 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); 1078 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; 1079 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); 1080 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; 1081 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); 1082 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; 1083 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); 1084 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; 1085 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); 1086 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; 1087 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); 1088 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; 1089 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); 1090 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; 1091 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); 1092 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; 1093 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); 1094 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; 1095 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); 1096 1097 if (sregs.u.e.features & KVM_SREGS_E_SPE) { 1098 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; 1099 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); 1100 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; 1101 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); 1102 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; 1103 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); 1104 } 1105 1106 if (sregs.u.e.features & KVM_SREGS_E_PM) { 1107 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; 1108 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); 1109 } 1110 1111 if (sregs.u.e.features & KVM_SREGS_E_PC) { 1112 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; 1113 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); 1114 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; 1115 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); 1116 } 1117 } 1118 1119 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { 1120 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; 1121 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; 1122 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; 1123 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; 1124 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; 1125 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; 1126 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; 1127 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; 1128 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; 1129 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; 1130 } 1131 1132 if (sregs.u.e.features & KVM_SREGS_EXP) { 1133 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; 1134 } 1135 1136 if (sregs.u.e.features & KVM_SREGS_E_PD) { 1137 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; 1138 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; 1139 } 1140 1141 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { 1142 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; 1143 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; 1144 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; 1145 1146 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { 1147 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; 1148 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; 1149 } 1150 } 1151 1152 return 0; 1153 } 1154 1155 static int kvmppc_get_books_sregs(PowerPCCPU *cpu) 1156 { 1157 CPUPPCState *env = &cpu->env; 1158 struct kvm_sregs sregs; 1159 int ret; 1160 int i; 1161 1162 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1163 if (ret < 0) { 1164 return ret; 1165 } 1166 1167 if (!cpu->vhyp) { 1168 ppc_store_sdr1(env, sregs.u.s.sdr1); 1169 } 1170 1171 /* Sync SLB */ 1172 #ifdef TARGET_PPC64 1173 /* 1174 * The packed SLB array we get from KVM_GET_SREGS only contains 1175 * information about valid entries. So we flush our internal copy 1176 * to get rid of stale ones, then put all valid SLB entries back 1177 * in. 1178 */ 1179 memset(env->slb, 0, sizeof(env->slb)); 1180 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 1181 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; 1182 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; 1183 /* 1184 * Only restore valid entries 1185 */ 1186 if (rb & SLB_ESID_V) { 1187 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs); 1188 } 1189 } 1190 #endif 1191 1192 /* Sync SRs */ 1193 for (i = 0; i < 16; i++) { 1194 env->sr[i] = sregs.u.s.ppc32.sr[i]; 1195 } 1196 1197 /* Sync BATs */ 1198 for (i = 0; i < 8; i++) { 1199 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; 1200 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; 1201 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; 1202 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; 1203 } 1204 1205 return 0; 1206 } 1207 1208 int kvm_arch_get_registers(CPUState *cs) 1209 { 1210 PowerPCCPU *cpu = POWERPC_CPU(cs); 1211 CPUPPCState *env = &cpu->env; 1212 struct kvm_regs regs; 1213 int i, ret; 1214 1215 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 1216 if (ret < 0) { 1217 return ret; 1218 } 1219 1220 ppc_set_cr(env, regs.cr); 1221 env->ctr = regs.ctr; 1222 env->lr = regs.lr; 1223 cpu_write_xer(env, regs.xer); 1224 env->msr = regs.msr; 1225 env->nip = regs.pc; 1226 1227 env->spr[SPR_SRR0] = regs.srr0; 1228 env->spr[SPR_SRR1] = regs.srr1; 1229 1230 env->spr[SPR_SPRG0] = regs.sprg0; 1231 env->spr[SPR_SPRG1] = regs.sprg1; 1232 env->spr[SPR_SPRG2] = regs.sprg2; 1233 env->spr[SPR_SPRG3] = regs.sprg3; 1234 env->spr[SPR_SPRG4] = regs.sprg4; 1235 env->spr[SPR_SPRG5] = regs.sprg5; 1236 env->spr[SPR_SPRG6] = regs.sprg6; 1237 env->spr[SPR_SPRG7] = regs.sprg7; 1238 1239 env->spr[SPR_BOOKE_PID] = regs.pid; 1240 1241 for (i = 0; i < 32; i++) { 1242 env->gpr[i] = regs.gpr[i]; 1243 } 1244 1245 kvm_get_fp(cs); 1246 1247 if (cap_booke_sregs) { 1248 ret = kvmppc_get_booke_sregs(cpu); 1249 if (ret < 0) { 1250 return ret; 1251 } 1252 } 1253 1254 if (cap_segstate) { 1255 ret = kvmppc_get_books_sregs(cpu); 1256 if (ret < 0) { 1257 return ret; 1258 } 1259 } 1260 1261 if (cap_hior) { 1262 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 1263 } 1264 1265 if (cap_one_reg) { 1266 /* 1267 * We deliberately ignore errors here, for kernels which have 1268 * the ONE_REG calls, but don't support the specific 1269 * registers, there's a reasonable chance things will still 1270 * work, at least until we try to migrate. 1271 */ 1272 for (i = 0; i < 1024; i++) { 1273 uint64_t id = env->spr_cb[i].one_reg_id; 1274 1275 if (id != 0) { 1276 kvm_get_one_spr(cs, id, i); 1277 } 1278 } 1279 1280 #ifdef TARGET_PPC64 1281 if (FIELD_EX64(env->msr, MSR, TS)) { 1282 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 1283 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 1284 } 1285 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 1286 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 1287 } 1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 1295 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 1296 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 1297 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 1298 } 1299 1300 if (cap_papr) { 1301 if (kvm_get_vpa(cs) < 0) { 1302 trace_kvm_failed_get_vpa(); 1303 } 1304 } 1305 1306 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1307 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1308 #endif 1309 } 1310 1311 return 0; 1312 } 1313 1314 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) 1315 { 1316 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; 1317 1318 if (irq != PPC_INTERRUPT_EXT) { 1319 return 0; 1320 } 1321 1322 if (!cap_interrupt_unset) { 1323 return 0; 1324 } 1325 1326 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); 1327 1328 return 0; 1329 } 1330 1331 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 1332 { 1333 return; 1334 } 1335 1336 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1337 { 1338 return MEMTXATTRS_UNSPECIFIED; 1339 } 1340 1341 int kvm_arch_process_async_events(CPUState *cs) 1342 { 1343 return cs->halted; 1344 } 1345 1346 static int kvmppc_handle_halt(PowerPCCPU *cpu) 1347 { 1348 CPUState *cs = CPU(cpu); 1349 CPUPPCState *env = &cpu->env; 1350 1351 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && 1352 FIELD_EX64(env->msr, MSR, EE)) { 1353 cs->halted = 1; 1354 cs->exception_index = EXCP_HLT; 1355 } 1356 1357 return 0; 1358 } 1359 1360 /* map dcr access to existing qemu dcr emulation */ 1361 static int kvmppc_handle_dcr_read(CPUPPCState *env, 1362 uint32_t dcrn, uint32_t *data) 1363 { 1364 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) { 1365 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); 1366 } 1367 1368 return 0; 1369 } 1370 1371 static int kvmppc_handle_dcr_write(CPUPPCState *env, 1372 uint32_t dcrn, uint32_t data) 1373 { 1374 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) { 1375 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); 1376 } 1377 1378 return 0; 1379 } 1380 1381 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1382 { 1383 /* Mixed endian case is not handled */ 1384 uint32_t sc = debug_inst_opcode; 1385 1386 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1387 sizeof(sc), 0) || 1388 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { 1389 return -EINVAL; 1390 } 1391 1392 return 0; 1393 } 1394 1395 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1396 { 1397 uint32_t sc; 1398 1399 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || 1400 sc != debug_inst_opcode || 1401 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1402 sizeof(sc), 1)) { 1403 return -EINVAL; 1404 } 1405 1406 return 0; 1407 } 1408 1409 static int find_hw_breakpoint(target_ulong addr, int type) 1410 { 1411 int n; 1412 1413 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1414 <= ARRAY_SIZE(hw_debug_points)); 1415 1416 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1417 if (hw_debug_points[n].addr == addr && 1418 hw_debug_points[n].type == type) { 1419 return n; 1420 } 1421 } 1422 1423 return -1; 1424 } 1425 1426 static int find_hw_watchpoint(target_ulong addr, int *flag) 1427 { 1428 int n; 1429 1430 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); 1431 if (n >= 0) { 1432 *flag = BP_MEM_ACCESS; 1433 return n; 1434 } 1435 1436 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); 1437 if (n >= 0) { 1438 *flag = BP_MEM_WRITE; 1439 return n; 1440 } 1441 1442 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); 1443 if (n >= 0) { 1444 *flag = BP_MEM_READ; 1445 return n; 1446 } 1447 1448 return -1; 1449 } 1450 1451 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 1452 { 1453 const unsigned breakpoint_index = nb_hw_breakpoint + nb_hw_watchpoint; 1454 if (breakpoint_index >= ARRAY_SIZE(hw_debug_points)) { 1455 return -ENOBUFS; 1456 } 1457 1458 hw_debug_points[breakpoint_index].addr = addr; 1459 hw_debug_points[breakpoint_index].type = type; 1460 1461 switch (type) { 1462 case GDB_BREAKPOINT_HW: 1463 if (nb_hw_breakpoint >= max_hw_breakpoint) { 1464 return -ENOBUFS; 1465 } 1466 1467 if (find_hw_breakpoint(addr, type) >= 0) { 1468 return -EEXIST; 1469 } 1470 1471 nb_hw_breakpoint++; 1472 break; 1473 1474 case GDB_WATCHPOINT_WRITE: 1475 case GDB_WATCHPOINT_READ: 1476 case GDB_WATCHPOINT_ACCESS: 1477 if (nb_hw_watchpoint >= max_hw_watchpoint) { 1478 return -ENOBUFS; 1479 } 1480 1481 if (find_hw_breakpoint(addr, type) >= 0) { 1482 return -EEXIST; 1483 } 1484 1485 nb_hw_watchpoint++; 1486 break; 1487 1488 default: 1489 return -ENOSYS; 1490 } 1491 1492 return 0; 1493 } 1494 1495 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 1496 { 1497 int n; 1498 1499 n = find_hw_breakpoint(addr, type); 1500 if (n < 0) { 1501 return -ENOENT; 1502 } 1503 1504 switch (type) { 1505 case GDB_BREAKPOINT_HW: 1506 nb_hw_breakpoint--; 1507 break; 1508 1509 case GDB_WATCHPOINT_WRITE: 1510 case GDB_WATCHPOINT_READ: 1511 case GDB_WATCHPOINT_ACCESS: 1512 nb_hw_watchpoint--; 1513 break; 1514 1515 default: 1516 return -ENOSYS; 1517 } 1518 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; 1519 1520 return 0; 1521 } 1522 1523 void kvm_arch_remove_all_hw_breakpoints(void) 1524 { 1525 nb_hw_breakpoint = nb_hw_watchpoint = 0; 1526 } 1527 1528 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 1529 { 1530 int n; 1531 1532 /* Software Breakpoint updates */ 1533 if (kvm_sw_breakpoints_active(cs)) { 1534 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 1535 } 1536 1537 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1538 <= ARRAY_SIZE(hw_debug_points)); 1539 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); 1540 1541 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1542 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1543 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); 1544 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1545 switch (hw_debug_points[n].type) { 1546 case GDB_BREAKPOINT_HW: 1547 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; 1548 break; 1549 case GDB_WATCHPOINT_WRITE: 1550 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; 1551 break; 1552 case GDB_WATCHPOINT_READ: 1553 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; 1554 break; 1555 case GDB_WATCHPOINT_ACCESS: 1556 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | 1557 KVMPPC_DEBUG_WATCH_READ; 1558 break; 1559 default: 1560 cpu_abort(cs, "Unsupported breakpoint type\n"); 1561 } 1562 dbg->arch.bp[n].addr = hw_debug_points[n].addr; 1563 } 1564 } 1565 } 1566 1567 static int kvm_handle_hw_breakpoint(CPUState *cs, 1568 struct kvm_debug_exit_arch *arch_info) 1569 { 1570 int handle = DEBUG_RETURN_GUEST; 1571 int n; 1572 int flag = 0; 1573 1574 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1575 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { 1576 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); 1577 if (n >= 0) { 1578 handle = DEBUG_RETURN_GDB; 1579 } 1580 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | 1581 KVMPPC_DEBUG_WATCH_WRITE)) { 1582 n = find_hw_watchpoint(arch_info->address, &flag); 1583 if (n >= 0) { 1584 handle = DEBUG_RETURN_GDB; 1585 cs->watchpoint_hit = &hw_watchpoint; 1586 hw_watchpoint.vaddr = hw_debug_points[n].addr; 1587 hw_watchpoint.flags = flag; 1588 } 1589 } 1590 } 1591 return handle; 1592 } 1593 1594 static int kvm_handle_singlestep(void) 1595 { 1596 return DEBUG_RETURN_GDB; 1597 } 1598 1599 static int kvm_handle_sw_breakpoint(void) 1600 { 1601 return DEBUG_RETURN_GDB; 1602 } 1603 1604 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) 1605 { 1606 CPUState *cs = CPU(cpu); 1607 CPUPPCState *env = &cpu->env; 1608 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1609 1610 if (cs->singlestep_enabled) { 1611 return kvm_handle_singlestep(); 1612 } 1613 1614 if (arch_info->status) { 1615 return kvm_handle_hw_breakpoint(cs, arch_info); 1616 } 1617 1618 if (kvm_find_sw_breakpoint(cs, arch_info->address)) { 1619 return kvm_handle_sw_breakpoint(); 1620 } 1621 1622 /* 1623 * QEMU is not able to handle debug exception, so inject 1624 * program exception to guest; 1625 * Yes program exception NOT debug exception !! 1626 * When QEMU is using debug resources then debug exception must 1627 * be always set. To achieve this we set MSR_DE and also set 1628 * MSRP_DEP so guest cannot change MSR_DE. 1629 * When emulating debug resource for guest we want guest 1630 * to control MSR_DE (enable/disable debug interrupt on need). 1631 * Supporting both configurations are NOT possible. 1632 * So the result is that we cannot share debug resources 1633 * between QEMU and Guest on BOOKE architecture. 1634 * In the current design QEMU gets the priority over guest, 1635 * this means that if QEMU is using debug resources then guest 1636 * cannot use them; 1637 * For software breakpoint QEMU uses a privileged instruction; 1638 * So there cannot be any reason that we are here for guest 1639 * set debug exception, only possibility is guest executed a 1640 * privileged / illegal instruction and that's why we are 1641 * injecting a program interrupt. 1642 */ 1643 cpu_synchronize_state(cs); 1644 /* 1645 * env->nip is PC, so increment this by 4 to use 1646 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. 1647 */ 1648 env->nip += 4; 1649 cs->exception_index = POWERPC_EXCP_PROGRAM; 1650 env->error_code = POWERPC_EXCP_INVAL; 1651 ppc_cpu_do_interrupt(cs); 1652 1653 return DEBUG_RETURN_GUEST; 1654 } 1655 1656 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1657 { 1658 PowerPCCPU *cpu = POWERPC_CPU(cs); 1659 CPUPPCState *env = &cpu->env; 1660 int ret; 1661 1662 bql_lock(); 1663 1664 switch (run->exit_reason) { 1665 case KVM_EXIT_DCR: 1666 if (run->dcr.is_write) { 1667 trace_kvm_handle_dcr_write(); 1668 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); 1669 } else { 1670 trace_kvm_handle_dcr_read(); 1671 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); 1672 } 1673 break; 1674 case KVM_EXIT_HLT: 1675 trace_kvm_handle_halt(); 1676 ret = kvmppc_handle_halt(cpu); 1677 break; 1678 #if defined(CONFIG_PSERIES) 1679 case KVM_EXIT_PAPR_HCALL: 1680 trace_kvm_handle_papr_hcall(run->papr_hcall.nr); 1681 run->papr_hcall.ret = spapr_hypercall(cpu, 1682 run->papr_hcall.nr, 1683 run->papr_hcall.args); 1684 ret = 0; 1685 break; 1686 #endif 1687 case KVM_EXIT_EPR: 1688 trace_kvm_handle_epr(); 1689 run->epr.epr = ldl_phys(cs->as, env->mpic_iack); 1690 ret = 0; 1691 break; 1692 case KVM_EXIT_WATCHDOG: 1693 trace_kvm_handle_watchdog_expiry(); 1694 watchdog_perform_action(); 1695 ret = 0; 1696 break; 1697 1698 case KVM_EXIT_DEBUG: 1699 trace_kvm_handle_debug_exception(); 1700 if (kvm_handle_debug(cpu, run)) { 1701 ret = EXCP_DEBUG; 1702 break; 1703 } 1704 /* re-enter, this exception was guest-internal */ 1705 ret = 0; 1706 break; 1707 1708 #if defined(CONFIG_PSERIES) 1709 case KVM_EXIT_NMI: 1710 trace_kvm_handle_nmi_exception(); 1711 ret = kvm_handle_nmi(cpu, run); 1712 break; 1713 #endif 1714 1715 default: 1716 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 1717 ret = -1; 1718 break; 1719 } 1720 1721 bql_unlock(); 1722 return ret; 1723 } 1724 1725 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1726 { 1727 CPUState *cs = CPU(cpu); 1728 uint32_t bits = tsr_bits; 1729 struct kvm_one_reg reg = { 1730 .id = KVM_REG_PPC_OR_TSR, 1731 .addr = (uintptr_t) &bits, 1732 }; 1733 1734 if (!kvm_enabled()) { 1735 return 0; 1736 } 1737 1738 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1739 } 1740 1741 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1742 { 1743 1744 CPUState *cs = CPU(cpu); 1745 uint32_t bits = tsr_bits; 1746 struct kvm_one_reg reg = { 1747 .id = KVM_REG_PPC_CLEAR_TSR, 1748 .addr = (uintptr_t) &bits, 1749 }; 1750 1751 if (!kvm_enabled()) { 1752 return 0; 1753 } 1754 1755 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1756 } 1757 1758 int kvmppc_set_tcr(PowerPCCPU *cpu) 1759 { 1760 CPUState *cs = CPU(cpu); 1761 CPUPPCState *env = &cpu->env; 1762 uint32_t tcr = env->spr[SPR_BOOKE_TCR]; 1763 1764 struct kvm_one_reg reg = { 1765 .id = KVM_REG_PPC_TCR, 1766 .addr = (uintptr_t) &tcr, 1767 }; 1768 1769 if (!kvm_enabled()) { 1770 return 0; 1771 } 1772 1773 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1774 } 1775 1776 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) 1777 { 1778 CPUState *cs = CPU(cpu); 1779 int ret; 1780 1781 if (!kvm_enabled()) { 1782 return -1; 1783 } 1784 1785 if (!cap_ppc_watchdog) { 1786 printf("warning: KVM does not support watchdog"); 1787 return -1; 1788 } 1789 1790 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); 1791 if (ret < 0) { 1792 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", 1793 __func__, strerror(-ret)); 1794 return ret; 1795 } 1796 1797 return ret; 1798 } 1799 1800 static int read_cpuinfo(const char *field, char *value, int len) 1801 { 1802 FILE *f; 1803 int ret = -1; 1804 int field_len = strlen(field); 1805 char line[512]; 1806 1807 f = fopen("/proc/cpuinfo", "r"); 1808 if (!f) { 1809 return -1; 1810 } 1811 1812 do { 1813 if (!fgets(line, sizeof(line), f)) { 1814 break; 1815 } 1816 if (!strncmp(line, field, field_len)) { 1817 pstrcpy(value, len, line); 1818 ret = 0; 1819 break; 1820 } 1821 } while (*line); 1822 1823 fclose(f); 1824 1825 return ret; 1826 } 1827 1828 static uint32_t kvmppc_get_tbfreq_procfs(void) 1829 { 1830 char line[512]; 1831 char *ns; 1832 uint32_t tbfreq_fallback = NANOSECONDS_PER_SECOND; 1833 uint32_t tbfreq_procfs; 1834 1835 if (read_cpuinfo("timebase", line, sizeof(line))) { 1836 return tbfreq_fallback; 1837 } 1838 1839 ns = strchr(line, ':'); 1840 if (!ns) { 1841 return tbfreq_fallback; 1842 } 1843 1844 tbfreq_procfs = atoi(++ns); 1845 1846 /* 0 is certainly not acceptable by the guest, return fallback value */ 1847 return tbfreq_procfs ? tbfreq_procfs : tbfreq_fallback; 1848 } 1849 1850 uint32_t kvmppc_get_tbfreq(void) 1851 { 1852 static uint32_t cached_tbfreq; 1853 1854 if (!cached_tbfreq) { 1855 cached_tbfreq = kvmppc_get_tbfreq_procfs(); 1856 } 1857 1858 return cached_tbfreq; 1859 } 1860 1861 bool kvmppc_get_host_serial(char **value) 1862 { 1863 return g_file_get_contents("/proc/device-tree/system-id", value, NULL, 1864 NULL); 1865 } 1866 1867 bool kvmppc_get_host_model(char **value) 1868 { 1869 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); 1870 } 1871 1872 /* Try to find a device tree node for a CPU with clock-frequency property */ 1873 static int kvmppc_find_cpu_dt(char *buf, int buf_len) 1874 { 1875 struct dirent *dirp; 1876 DIR *dp; 1877 1878 dp = opendir(PROC_DEVTREE_CPU); 1879 if (!dp) { 1880 printf("Can't open directory " PROC_DEVTREE_CPU "\n"); 1881 return -1; 1882 } 1883 1884 buf[0] = '\0'; 1885 while ((dirp = readdir(dp)) != NULL) { 1886 FILE *f; 1887 1888 /* Don't accidentally read from the current and parent directories */ 1889 if (strcmp(dirp->d_name, ".") == 0 || strcmp(dirp->d_name, "..") == 0) { 1890 continue; 1891 } 1892 1893 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, 1894 dirp->d_name); 1895 f = fopen(buf, "r"); 1896 if (f) { 1897 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); 1898 fclose(f); 1899 break; 1900 } 1901 buf[0] = '\0'; 1902 } 1903 closedir(dp); 1904 if (buf[0] == '\0') { 1905 printf("Unknown host!\n"); 1906 return -1; 1907 } 1908 1909 return 0; 1910 } 1911 1912 static uint64_t kvmppc_read_int_dt(const char *filename) 1913 { 1914 union { 1915 uint32_t v32; 1916 uint64_t v64; 1917 } u; 1918 FILE *f; 1919 int len; 1920 1921 f = fopen(filename, "rb"); 1922 if (!f) { 1923 return -1; 1924 } 1925 1926 len = fread(&u, 1, sizeof(u), f); 1927 fclose(f); 1928 switch (len) { 1929 case 4: 1930 /* property is a 32-bit quantity */ 1931 return be32_to_cpu(u.v32); 1932 case 8: 1933 return be64_to_cpu(u.v64); 1934 } 1935 1936 return 0; 1937 } 1938 1939 /* 1940 * Read a CPU node property from the host device tree that's a single 1941 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong 1942 * (can't find or open the property, or doesn't understand the format) 1943 */ 1944 static uint64_t kvmppc_read_int_cpu_dt(const char *propname) 1945 { 1946 char buf[PATH_MAX], *tmp; 1947 uint64_t val; 1948 1949 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { 1950 return -1; 1951 } 1952 1953 tmp = g_strdup_printf("%s/%s", buf, propname); 1954 val = kvmppc_read_int_dt(tmp); 1955 g_free(tmp); 1956 1957 return val; 1958 } 1959 1960 uint64_t kvmppc_get_clockfreq(void) 1961 { 1962 return kvmppc_read_int_cpu_dt("clock-frequency"); 1963 } 1964 1965 static int kvmppc_get_dec_bits(void) 1966 { 1967 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits"); 1968 1969 if (nr_bits > 0) { 1970 return nr_bits; 1971 } 1972 return 0; 1973 } 1974 1975 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) 1976 { 1977 CPUState *cs = env_cpu(env); 1978 1979 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && 1980 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { 1981 return 0; 1982 } 1983 1984 return 1; 1985 } 1986 1987 int kvmppc_get_hasidle(CPUPPCState *env) 1988 { 1989 struct kvm_ppc_pvinfo pvinfo; 1990 1991 if (!kvmppc_get_pvinfo(env, &pvinfo) && 1992 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { 1993 return 1; 1994 } 1995 1996 return 0; 1997 } 1998 1999 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) 2000 { 2001 uint32_t *hc = (uint32_t *)buf; 2002 struct kvm_ppc_pvinfo pvinfo; 2003 2004 if (!kvmppc_get_pvinfo(env, &pvinfo)) { 2005 memcpy(buf, pvinfo.hcall, buf_len); 2006 return 0; 2007 } 2008 2009 /* 2010 * Fallback to always fail hypercalls regardless of endianness: 2011 * 2012 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) 2013 * li r3, -1 2014 * b .+8 (becomes nop in wrong endian) 2015 * bswap32(li r3, -1) 2016 */ 2017 2018 hc[0] = cpu_to_be32(0x08000048); 2019 hc[1] = cpu_to_be32(0x3860ffff); 2020 hc[2] = cpu_to_be32(0x48000008); 2021 hc[3] = cpu_to_be32(bswap32(0x3860ffff)); 2022 2023 return 1; 2024 } 2025 2026 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) 2027 { 2028 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); 2029 } 2030 2031 void kvmppc_enable_logical_ci_hcalls(void) 2032 { 2033 /* 2034 * FIXME: it would be nice if we could detect the cases where 2035 * we're using a device which requires the in kernel 2036 * implementation of these hcalls, but the kernel lacks them and 2037 * produce a warning. 2038 */ 2039 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); 2040 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); 2041 } 2042 2043 void kvmppc_enable_set_mode_hcall(void) 2044 { 2045 kvmppc_enable_hcall(kvm_state, H_SET_MODE); 2046 } 2047 2048 void kvmppc_enable_clear_ref_mod_hcalls(void) 2049 { 2050 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF); 2051 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD); 2052 } 2053 2054 void kvmppc_enable_h_page_init(void) 2055 { 2056 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT); 2057 } 2058 2059 void kvmppc_enable_h_rpt_invalidate(void) 2060 { 2061 kvmppc_enable_hcall(kvm_state, H_RPT_INVALIDATE); 2062 } 2063 2064 #ifdef CONFIG_PSERIES 2065 void kvmppc_set_papr(PowerPCCPU *cpu) 2066 { 2067 CPUState *cs = CPU(cpu); 2068 int ret; 2069 2070 if (!kvm_enabled()) { 2071 return; 2072 } 2073 2074 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); 2075 if (ret) { 2076 error_report("This vCPU type or KVM version does not support PAPR"); 2077 exit(1); 2078 } 2079 2080 /* 2081 * Update the capability flag so we sync the right information 2082 * with kvm 2083 */ 2084 cap_papr = 1; 2085 } 2086 #endif 2087 2088 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr) 2089 { 2090 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr); 2091 } 2092 2093 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) 2094 { 2095 CPUState *cs = CPU(cpu); 2096 int ret; 2097 2098 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); 2099 if (ret && mpic_proxy) { 2100 error_report("This KVM version does not support EPR"); 2101 exit(1); 2102 } 2103 } 2104 2105 bool kvmppc_get_fwnmi(void) 2106 { 2107 return cap_fwnmi; 2108 } 2109 2110 int kvmppc_set_fwnmi(PowerPCCPU *cpu) 2111 { 2112 CPUState *cs = CPU(cpu); 2113 2114 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0); 2115 } 2116 2117 int kvmppc_smt_threads(void) 2118 { 2119 return cap_ppc_smt ? cap_ppc_smt : 1; 2120 } 2121 2122 int kvmppc_set_smt_threads(int smt) 2123 { 2124 int ret; 2125 2126 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0); 2127 if (!ret) { 2128 cap_ppc_smt = smt; 2129 } 2130 return ret; 2131 } 2132 2133 void kvmppc_error_append_smt_possible_hint(Error *const *errp) 2134 { 2135 int i; 2136 GString *g; 2137 char *s; 2138 2139 assert(kvm_enabled()); 2140 if (cap_ppc_smt_possible) { 2141 g = g_string_new("Available VSMT modes:"); 2142 for (i = 63; i >= 0; i--) { 2143 if ((1UL << i) & cap_ppc_smt_possible) { 2144 g_string_append_printf(g, " %lu", (1UL << i)); 2145 } 2146 } 2147 s = g_string_free(g, false); 2148 error_append_hint(errp, "%s.\n", s); 2149 g_free(s); 2150 } else { 2151 error_append_hint(errp, 2152 "This KVM seems to be too old to support VSMT.\n"); 2153 } 2154 } 2155 2156 2157 #ifdef TARGET_PPC64 2158 uint64_t kvmppc_vrma_limit(unsigned int hash_shift) 2159 { 2160 struct kvm_ppc_smmu_info info; 2161 long rampagesize, best_page_shift; 2162 int i; 2163 2164 /* 2165 * Find the largest hardware supported page size that's less than 2166 * or equal to the (logical) backing page size of guest RAM 2167 */ 2168 kvm_get_smmu_info(&info, &error_fatal); 2169 rampagesize = qemu_minrampagesize(); 2170 best_page_shift = 0; 2171 2172 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { 2173 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; 2174 2175 if (!sps->page_shift) { 2176 continue; 2177 } 2178 2179 if ((sps->page_shift > best_page_shift) 2180 && ((1UL << sps->page_shift) <= rampagesize)) { 2181 best_page_shift = sps->page_shift; 2182 } 2183 } 2184 2185 return 1ULL << (best_page_shift + hash_shift - 7); 2186 } 2187 #endif 2188 2189 bool kvmppc_spapr_use_multitce(void) 2190 { 2191 return cap_spapr_multitce; 2192 } 2193 2194 int kvmppc_spapr_enable_inkernel_multitce(void) 2195 { 2196 int ret; 2197 2198 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2199 H_PUT_TCE_INDIRECT, 1); 2200 if (!ret) { 2201 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2202 H_STUFF_TCE, 1); 2203 } 2204 2205 return ret; 2206 } 2207 2208 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift, 2209 uint64_t bus_offset, uint32_t nb_table, 2210 int *pfd, bool need_vfio) 2211 { 2212 long len; 2213 int fd; 2214 void *table; 2215 2216 /* 2217 * Must set fd to -1 so we don't try to munmap when called for 2218 * destroying the table, which the upper layers -will- do 2219 */ 2220 *pfd = -1; 2221 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) { 2222 return NULL; 2223 } 2224 2225 if (cap_spapr_tce_64) { 2226 struct kvm_create_spapr_tce_64 args = { 2227 .liobn = liobn, 2228 .page_shift = page_shift, 2229 .offset = bus_offset >> page_shift, 2230 .size = nb_table, 2231 .flags = 0 2232 }; 2233 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args); 2234 if (fd < 0) { 2235 fprintf(stderr, 2236 "KVM: Failed to create TCE64 table for liobn 0x%x\n", 2237 liobn); 2238 return NULL; 2239 } 2240 } else if (cap_spapr_tce) { 2241 uint64_t window_size = (uint64_t) nb_table << page_shift; 2242 struct kvm_create_spapr_tce args = { 2243 .liobn = liobn, 2244 .window_size = window_size, 2245 }; 2246 if ((window_size != args.window_size) || bus_offset) { 2247 return NULL; 2248 } 2249 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); 2250 if (fd < 0) { 2251 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", 2252 liobn); 2253 return NULL; 2254 } 2255 } else { 2256 return NULL; 2257 } 2258 2259 len = nb_table * sizeof(uint64_t); 2260 /* FIXME: round this up to page size */ 2261 2262 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 2263 if (table == MAP_FAILED) { 2264 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", 2265 liobn); 2266 close(fd); 2267 return NULL; 2268 } 2269 2270 *pfd = fd; 2271 return table; 2272 } 2273 2274 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) 2275 { 2276 long len; 2277 2278 if (fd < 0) { 2279 return -1; 2280 } 2281 2282 len = nb_table * sizeof(uint64_t); 2283 if ((munmap(table, len) < 0) || 2284 (close(fd) < 0)) { 2285 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", 2286 strerror(errno)); 2287 /* Leak the table */ 2288 } 2289 2290 return 0; 2291 } 2292 2293 int kvmppc_reset_htab(int shift_hint) 2294 { 2295 uint32_t shift = shift_hint; 2296 2297 if (!kvm_enabled()) { 2298 /* Full emulation, tell caller to allocate htab itself */ 2299 return 0; 2300 } 2301 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { 2302 int ret; 2303 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); 2304 if (ret == -ENOTTY) { 2305 /* 2306 * At least some versions of PR KVM advertise the 2307 * capability, but don't implement the ioctl(). Oops. 2308 * Return 0 so that we allocate the htab in qemu, as is 2309 * correct for PR. 2310 */ 2311 return 0; 2312 } else if (ret < 0) { 2313 return ret; 2314 } 2315 return shift; 2316 } 2317 2318 /* 2319 * We have a kernel that predates the htab reset calls. For PR 2320 * KVM, we need to allocate the htab ourselves, for an HV KVM of 2321 * this era, it has allocated a 16MB fixed size hash table 2322 * already. 2323 */ 2324 if (kvmppc_is_pr(kvm_state)) { 2325 /* PR - tell caller to allocate htab */ 2326 return 0; 2327 } else { 2328 /* HV - assume 16MB kernel allocated htab */ 2329 return 24; 2330 } 2331 } 2332 2333 static inline uint32_t mfpvr(void) 2334 { 2335 uint32_t pvr; 2336 2337 asm ("mfpvr %0" 2338 : "=r"(pvr)); 2339 return pvr; 2340 } 2341 2342 static void alter_insns(uint64_t *word, uint64_t flags, bool on) 2343 { 2344 if (on) { 2345 *word |= flags; 2346 } else { 2347 *word &= ~flags; 2348 } 2349 } 2350 2351 static bool kvmppc_cpu_realize(CPUState *cs, Error **errp) 2352 { 2353 int ret; 2354 const char *vcpu_str = (cs->parent_obj.hotplugged == true) ? 2355 "hotplug" : "create"; 2356 cs->cpu_index = cpu_get_free_index(); 2357 2358 POWERPC_CPU(cs)->vcpu_id = cs->cpu_index; 2359 2360 /* create and park to fail gracefully in case vcpu hotplug fails */ 2361 ret = kvm_create_and_park_vcpu(cs); 2362 if (ret) { 2363 /* 2364 * This causes QEMU to terminate if initial CPU creation 2365 * fails, and only CPU hotplug failure if the error happens 2366 * there. 2367 */ 2368 error_setg(errp, "%s: vcpu %s failed with %d", 2369 __func__, vcpu_str, ret); 2370 return false; 2371 } 2372 return true; 2373 } 2374 2375 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) 2376 { 2377 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); 2378 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); 2379 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); 2380 2381 /* Now fix up the class with information we can query from the host */ 2382 pcc->pvr = mfpvr(); 2383 2384 alter_insns(&pcc->insns_flags, PPC_ALTIVEC, 2385 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC); 2386 alter_insns(&pcc->insns_flags2, PPC2_VSX, 2387 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX); 2388 alter_insns(&pcc->insns_flags2, PPC2_DFP, 2389 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP); 2390 2391 if (dcache_size != -1) { 2392 pcc->l1_dcache_size = dcache_size; 2393 } 2394 2395 if (icache_size != -1) { 2396 pcc->l1_icache_size = icache_size; 2397 } 2398 2399 #if defined(TARGET_PPC64) 2400 pcc->radix_page_info = kvmppc_get_radix_page_info(); 2401 #endif /* defined(TARGET_PPC64) */ 2402 } 2403 2404 bool kvmppc_has_cap_epr(void) 2405 { 2406 return cap_epr; 2407 } 2408 2409 bool kvmppc_has_cap_fixup_hcalls(void) 2410 { 2411 return cap_fixup_hcalls; 2412 } 2413 2414 bool kvmppc_has_cap_htm(void) 2415 { 2416 return cap_htm; 2417 } 2418 2419 bool kvmppc_has_cap_mmu_radix(void) 2420 { 2421 return cap_mmu_radix; 2422 } 2423 2424 bool kvmppc_has_cap_mmu_hash_v3(void) 2425 { 2426 return cap_mmu_hash_v3; 2427 } 2428 2429 static bool kvmppc_power8_host(void) 2430 { 2431 bool ret = false; 2432 #ifdef TARGET_PPC64 2433 { 2434 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr(); 2435 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) || 2436 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) || 2437 (base_pvr == CPU_POWERPC_POWER8_BASE); 2438 } 2439 #endif /* TARGET_PPC64 */ 2440 return ret; 2441 } 2442 2443 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c) 2444 { 2445 bool l1d_thread_priv_req = !kvmppc_power8_host(); 2446 2447 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) { 2448 return 2; 2449 } else if ((!l1d_thread_priv_req || 2450 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) && 2451 (c.character & c.character_mask 2452 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) { 2453 return 1; 2454 } 2455 2456 return 0; 2457 } 2458 2459 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c) 2460 { 2461 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) { 2462 return 2; 2463 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) { 2464 return 1; 2465 } 2466 2467 return 0; 2468 } 2469 2470 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c) 2471 { 2472 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) && 2473 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) && 2474 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) { 2475 return SPAPR_CAP_FIXED_NA; 2476 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) { 2477 return SPAPR_CAP_WORKAROUND; 2478 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) { 2479 return SPAPR_CAP_FIXED_CCD; 2480 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) { 2481 return SPAPR_CAP_FIXED_IBS; 2482 } 2483 2484 return 0; 2485 } 2486 2487 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c) 2488 { 2489 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) { 2490 return 1; 2491 } 2492 return 0; 2493 } 2494 2495 bool kvmppc_has_cap_xive(void) 2496 { 2497 return cap_xive; 2498 } 2499 2500 static void kvmppc_get_cpu_characteristics(KVMState *s) 2501 { 2502 struct kvm_ppc_cpu_char c; 2503 int ret; 2504 2505 /* Assume broken */ 2506 cap_ppc_safe_cache = 0; 2507 cap_ppc_safe_bounds_check = 0; 2508 cap_ppc_safe_indirect_branch = 0; 2509 2510 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR); 2511 if (!ret) { 2512 return; 2513 } 2514 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c); 2515 if (ret < 0) { 2516 return; 2517 } 2518 2519 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c); 2520 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c); 2521 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c); 2522 cap_ppc_count_cache_flush_assist = 2523 parse_cap_ppc_count_cache_flush_assist(c); 2524 } 2525 2526 int kvmppc_get_cap_safe_cache(void) 2527 { 2528 return cap_ppc_safe_cache; 2529 } 2530 2531 int kvmppc_get_cap_safe_bounds_check(void) 2532 { 2533 return cap_ppc_safe_bounds_check; 2534 } 2535 2536 int kvmppc_get_cap_safe_indirect_branch(void) 2537 { 2538 return cap_ppc_safe_indirect_branch; 2539 } 2540 2541 int kvmppc_get_cap_count_cache_flush_assist(void) 2542 { 2543 return cap_ppc_count_cache_flush_assist; 2544 } 2545 2546 bool kvmppc_has_cap_nested_kvm_hv(void) 2547 { 2548 return !!cap_ppc_nested_kvm_hv; 2549 } 2550 2551 int kvmppc_set_cap_nested_kvm_hv(int enable) 2552 { 2553 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable); 2554 } 2555 2556 bool kvmppc_has_cap_spapr_vfio(void) 2557 { 2558 return cap_spapr_vfio; 2559 } 2560 2561 int kvmppc_get_cap_large_decr(void) 2562 { 2563 return cap_large_decr; 2564 } 2565 2566 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable) 2567 { 2568 CPUState *cs = CPU(cpu); 2569 uint64_t lpcr = 0; 2570 2571 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2572 /* Do we need to modify the LPCR? */ 2573 if (!!(lpcr & LPCR_LD) != !!enable) { 2574 if (enable) { 2575 lpcr |= LPCR_LD; 2576 } else { 2577 lpcr &= ~LPCR_LD; 2578 } 2579 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2580 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2581 2582 if (!!(lpcr & LPCR_LD) != !!enable) { 2583 return -1; 2584 } 2585 } 2586 2587 return 0; 2588 } 2589 2590 int kvmppc_has_cap_rpt_invalidate(void) 2591 { 2592 return cap_rpt_invalidate; 2593 } 2594 2595 bool kvmppc_supports_ail_3(void) 2596 { 2597 return cap_ail_mode_3; 2598 } 2599 2600 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void) 2601 { 2602 uint32_t host_pvr = mfpvr(); 2603 PowerPCCPUClass *pvr_pcc; 2604 2605 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); 2606 if (pvr_pcc == NULL) { 2607 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); 2608 } 2609 2610 return pvr_pcc; 2611 } 2612 2613 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque) 2614 { 2615 MachineClass *mc = MACHINE_CLASS(oc); 2616 2617 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU; 2618 } 2619 2620 static int kvm_ppc_register_host_cpu_type(void) 2621 { 2622 TypeInfo type_info = { 2623 .name = TYPE_HOST_POWERPC_CPU, 2624 .class_init = kvmppc_host_cpu_class_init, 2625 }; 2626 PowerPCCPUClass *pvr_pcc; 2627 ObjectClass *oc; 2628 DeviceClass *dc; 2629 int i; 2630 2631 pvr_pcc = kvm_ppc_get_host_cpu_class(); 2632 if (pvr_pcc == NULL) { 2633 return -1; 2634 } 2635 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); 2636 type_register(&type_info); 2637 /* override TCG default cpu type with 'host' cpu model */ 2638 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE, 2639 false, NULL); 2640 2641 oc = object_class_by_name(type_info.name); 2642 g_assert(oc); 2643 2644 /* 2645 * Update generic CPU family class alias (e.g. on a POWER8NVL host, 2646 * we want "POWER8" to be a "family" alias that points to the current 2647 * host CPU type, too) 2648 */ 2649 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc)); 2650 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) { 2651 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) { 2652 char *suffix; 2653 2654 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc)); 2655 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX); 2656 if (suffix) { 2657 *suffix = 0; 2658 } 2659 break; 2660 } 2661 } 2662 2663 return 0; 2664 } 2665 2666 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) 2667 { 2668 struct kvm_rtas_token_args args = { 2669 .token = token, 2670 }; 2671 2672 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { 2673 return -ENOENT; 2674 } 2675 2676 strncpy(args.name, function, sizeof(args.name) - 1); 2677 2678 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); 2679 } 2680 2681 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp) 2682 { 2683 struct kvm_get_htab_fd s = { 2684 .flags = write ? KVM_GET_HTAB_WRITE : 0, 2685 .start_index = index, 2686 }; 2687 int ret; 2688 2689 if (!cap_htab_fd) { 2690 error_setg(errp, "KVM version doesn't support %s the HPT", 2691 write ? "writing" : "reading"); 2692 return -ENOTSUP; 2693 } 2694 2695 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); 2696 if (ret < 0) { 2697 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s", 2698 write ? "writing" : "reading", write ? "to" : "from", 2699 strerror(errno)); 2700 return -errno; 2701 } 2702 2703 return ret; 2704 } 2705 2706 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) 2707 { 2708 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2709 g_autofree uint8_t *buf = g_malloc(bufsize); 2710 ssize_t rc; 2711 2712 do { 2713 rc = read(fd, buf, bufsize); 2714 if (rc < 0) { 2715 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", 2716 strerror(errno)); 2717 return rc; 2718 } else if (rc) { 2719 uint8_t *buffer = buf; 2720 ssize_t n = rc; 2721 while (n) { 2722 struct kvm_get_htab_header *head = 2723 (struct kvm_get_htab_header *) buffer; 2724 size_t chunksize = sizeof(*head) + 2725 HASH_PTE_SIZE_64 * head->n_valid; 2726 2727 qemu_put_be32(f, head->index); 2728 qemu_put_be16(f, head->n_valid); 2729 qemu_put_be16(f, head->n_invalid); 2730 qemu_put_buffer(f, (void *)(head + 1), 2731 HASH_PTE_SIZE_64 * head->n_valid); 2732 2733 buffer += chunksize; 2734 n -= chunksize; 2735 } 2736 } 2737 } while ((rc != 0) 2738 && ((max_ns < 0) || 2739 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); 2740 2741 return (rc == 0) ? 1 : 0; 2742 } 2743 2744 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, 2745 uint16_t n_valid, uint16_t n_invalid, Error **errp) 2746 { 2747 struct kvm_get_htab_header *buf; 2748 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64; 2749 ssize_t rc; 2750 2751 buf = alloca(chunksize); 2752 buf->index = index; 2753 buf->n_valid = n_valid; 2754 buf->n_invalid = n_invalid; 2755 2756 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid); 2757 2758 rc = write(fd, buf, chunksize); 2759 if (rc < 0) { 2760 error_setg_errno(errp, errno, "Error writing the KVM hash table"); 2761 return -errno; 2762 } 2763 if (rc != chunksize) { 2764 /* We should never get a short write on a single chunk */ 2765 error_setg(errp, "Short write while restoring the KVM hash table"); 2766 return -ENOSPC; 2767 } 2768 return 0; 2769 } 2770 2771 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 2772 { 2773 return true; 2774 } 2775 2776 void kvm_arch_init_irq_routing(KVMState *s) 2777 { 2778 } 2779 2780 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n) 2781 { 2782 int fd, rc; 2783 int i; 2784 2785 fd = kvmppc_get_htab_fd(false, ptex, &error_abort); 2786 2787 i = 0; 2788 while (i < n) { 2789 struct kvm_get_htab_header *hdr; 2790 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP; 2791 char buf[sizeof(*hdr) + HPTES_PER_GROUP * HASH_PTE_SIZE_64]; 2792 2793 rc = read(fd, buf, sizeof(*hdr) + m * HASH_PTE_SIZE_64); 2794 if (rc < 0) { 2795 hw_error("kvmppc_read_hptes: Unable to read HPTEs"); 2796 } 2797 2798 hdr = (struct kvm_get_htab_header *)buf; 2799 while ((i < n) && ((char *)hdr < (buf + rc))) { 2800 int invalid = hdr->n_invalid, valid = hdr->n_valid; 2801 2802 if (hdr->index != (ptex + i)) { 2803 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32 2804 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i); 2805 } 2806 2807 if (n - i < valid) { 2808 valid = n - i; 2809 } 2810 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid); 2811 i += valid; 2812 2813 if ((n - i) < invalid) { 2814 invalid = n - i; 2815 } 2816 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64); 2817 i += invalid; 2818 2819 hdr = (struct kvm_get_htab_header *) 2820 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid); 2821 } 2822 } 2823 2824 close(fd); 2825 } 2826 2827 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1) 2828 { 2829 int fd, rc; 2830 struct { 2831 struct kvm_get_htab_header hdr; 2832 uint64_t pte0; 2833 uint64_t pte1; 2834 } buf; 2835 2836 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort); 2837 2838 buf.hdr.n_valid = 1; 2839 buf.hdr.n_invalid = 0; 2840 buf.hdr.index = ptex; 2841 buf.pte0 = cpu_to_be64(pte0); 2842 buf.pte1 = cpu_to_be64(pte1); 2843 2844 rc = write(fd, &buf, sizeof(buf)); 2845 if (rc != sizeof(buf)) { 2846 hw_error("kvmppc_write_hpte: Unable to update KVM HPT"); 2847 } 2848 close(fd); 2849 } 2850 2851 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2852 uint64_t address, uint32_t data, PCIDevice *dev) 2853 { 2854 return 0; 2855 } 2856 2857 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2858 int vector, PCIDevice *dev) 2859 { 2860 return 0; 2861 } 2862 2863 int kvm_arch_release_virq_post(int virq) 2864 { 2865 return 0; 2866 } 2867 2868 int kvm_arch_msi_data_to_gsi(uint32_t data) 2869 { 2870 return data & 0xffff; 2871 } 2872 2873 #if defined(CONFIG_PSERIES) 2874 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run) 2875 { 2876 uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK; 2877 2878 cpu_synchronize_state(CPU(cpu)); 2879 2880 spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV); 2881 2882 return 0; 2883 } 2884 #endif 2885 2886 int kvmppc_enable_hwrng(void) 2887 { 2888 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) { 2889 return -1; 2890 } 2891 2892 return kvmppc_enable_hcall(kvm_state, H_RANDOM); 2893 } 2894 2895 void kvmppc_check_papr_resize_hpt(Error **errp) 2896 { 2897 if (!kvm_enabled()) { 2898 return; /* No KVM, we're good */ 2899 } 2900 2901 if (cap_resize_hpt) { 2902 return; /* Kernel has explicit support, we're good */ 2903 } 2904 2905 /* Otherwise fallback on looking for PR KVM */ 2906 if (kvmppc_is_pr(kvm_state)) { 2907 return; 2908 } 2909 2910 error_setg(errp, 2911 "Hash page table resizing not available with this KVM version"); 2912 } 2913 2914 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift) 2915 { 2916 CPUState *cs = CPU(cpu); 2917 struct kvm_ppc_resize_hpt rhpt = { 2918 .flags = flags, 2919 .shift = shift, 2920 }; 2921 2922 if (!cap_resize_hpt) { 2923 return -ENOSYS; 2924 } 2925 2926 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt); 2927 } 2928 2929 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift) 2930 { 2931 CPUState *cs = CPU(cpu); 2932 struct kvm_ppc_resize_hpt rhpt = { 2933 .flags = flags, 2934 .shift = shift, 2935 }; 2936 2937 if (!cap_resize_hpt) { 2938 return -ENOSYS; 2939 } 2940 2941 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt); 2942 } 2943 2944 /* 2945 * This is a helper function to detect a post migration scenario 2946 * in which a guest, running as KVM-HV, freezes in cpu_post_load because 2947 * the guest kernel can't handle a PVR value other than the actual host 2948 * PVR in KVM_SET_SREGS, even if pvr_match() returns true. 2949 * 2950 * If we don't have cap_ppc_pvr_compat and we're not running in PR 2951 * (so, we're HV), return true. The workaround itself is done in 2952 * cpu_post_load. 2953 * 2954 * The order here is important: we'll only check for KVM PR as a 2955 * fallback if the guest kernel can't handle the situation itself. 2956 * We need to avoid as much as possible querying the running KVM type 2957 * in QEMU level. 2958 */ 2959 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu) 2960 { 2961 CPUState *cs = CPU(cpu); 2962 2963 if (!kvm_enabled()) { 2964 return false; 2965 } 2966 2967 if (cap_ppc_pvr_compat) { 2968 return false; 2969 } 2970 2971 return !kvmppc_is_pr(cs->kvm_state); 2972 } 2973 2974 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online) 2975 { 2976 CPUState *cs = CPU(cpu); 2977 2978 if (kvm_enabled()) { 2979 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online); 2980 } 2981 } 2982 2983 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset) 2984 { 2985 CPUState *cs = CPU(cpu); 2986 2987 if (kvm_enabled()) { 2988 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset); 2989 } 2990 } 2991 2992 void kvm_arch_accel_class_init(ObjectClass *oc) 2993 { 2994 } 2995 2996 static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data) 2997 { 2998 AccelCPUClass *acc = ACCEL_CPU_CLASS(oc); 2999 3000 acc->cpu_target_realize = kvmppc_cpu_realize; 3001 } 3002 3003 static const TypeInfo kvm_cpu_accel_type_info = { 3004 .name = ACCEL_CPU_NAME("kvm"), 3005 3006 .parent = TYPE_ACCEL_CPU, 3007 .class_init = kvm_cpu_accel_class_init, 3008 .abstract = true, 3009 }; 3010 static void kvm_cpu_accel_register_types(void) 3011 { 3012 type_register_static(&kvm_cpu_accel_type_info); 3013 } 3014 type_init(kvm_cpu_accel_register_types); 3015