1 /* 2 * PowerPC implementation of KVM hooks 3 * 4 * Copyright IBM Corp. 2007 5 * Copyright (C) 2011 Freescale Semiconductor, Inc. 6 * 7 * Authors: 8 * Jerone Young <jyoung5@us.ibm.com> 9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> 10 * Hollis Blanchard <hollisb@us.ibm.com> 11 * 12 * This work is licensed under the terms of the GNU GPL, version 2 or later. 13 * See the COPYING file in the top-level directory. 14 * 15 */ 16 17 #include "qemu/osdep.h" 18 #include <dirent.h> 19 #include <sys/ioctl.h> 20 #include <sys/vfs.h> 21 22 #include <linux/kvm.h> 23 24 #include "qemu-common.h" 25 #include "qapi/error.h" 26 #include "qemu/error-report.h" 27 #include "cpu.h" 28 #include "cpu-models.h" 29 #include "qemu/timer.h" 30 #include "sysemu/hw_accel.h" 31 #include "kvm_ppc.h" 32 #include "sysemu/cpus.h" 33 #include "sysemu/device_tree.h" 34 #include "mmu-hash64.h" 35 36 #include "hw/sysbus.h" 37 #include "hw/ppc/spapr.h" 38 #include "hw/ppc/spapr_cpu_core.h" 39 #include "hw/hw.h" 40 #include "hw/ppc/ppc.h" 41 #include "migration/qemu-file-types.h" 42 #include "sysemu/watchdog.h" 43 #include "trace.h" 44 #include "exec/gdbstub.h" 45 #include "exec/memattrs.h" 46 #include "exec/ram_addr.h" 47 #include "sysemu/hostmem.h" 48 #include "qemu/cutils.h" 49 #include "qemu/main-loop.h" 50 #include "qemu/mmap-alloc.h" 51 #include "elf.h" 52 #include "sysemu/kvm_int.h" 53 54 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/" 55 56 #define DEBUG_RETURN_GUEST 0 57 #define DEBUG_RETURN_GDB 1 58 59 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 60 KVM_CAP_LAST_INFO 61 }; 62 63 static int cap_interrupt_unset; 64 static int cap_segstate; 65 static int cap_booke_sregs; 66 static int cap_ppc_smt; 67 static int cap_ppc_smt_possible; 68 static int cap_spapr_tce; 69 static int cap_spapr_tce_64; 70 static int cap_spapr_multitce; 71 static int cap_spapr_vfio; 72 static int cap_hior; 73 static int cap_one_reg; 74 static int cap_epr; 75 static int cap_ppc_watchdog; 76 static int cap_papr; 77 static int cap_htab_fd; 78 static int cap_fixup_hcalls; 79 static int cap_htm; /* Hardware transactional memory support */ 80 static int cap_mmu_radix; 81 static int cap_mmu_hash_v3; 82 static int cap_xive; 83 static int cap_resize_hpt; 84 static int cap_ppc_pvr_compat; 85 static int cap_ppc_safe_cache; 86 static int cap_ppc_safe_bounds_check; 87 static int cap_ppc_safe_indirect_branch; 88 static int cap_ppc_count_cache_flush_assist; 89 static int cap_ppc_nested_kvm_hv; 90 static int cap_large_decr; 91 static int cap_fwnmi; 92 93 static uint32_t debug_inst_opcode; 94 95 /* 96 * Check whether we are running with KVM-PR (instead of KVM-HV). This 97 * should only be used for fallback tests - generally we should use 98 * explicit capabilities for the features we want, rather than 99 * assuming what is/isn't available depending on the KVM variant. 100 */ 101 static bool kvmppc_is_pr(KVMState *ks) 102 { 103 /* Assume KVM-PR if the GET_PVINFO capability is available */ 104 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0; 105 } 106 107 static int kvm_ppc_register_host_cpu_type(void); 108 static void kvmppc_get_cpu_characteristics(KVMState *s); 109 static int kvmppc_get_dec_bits(void); 110 111 int kvm_arch_init(MachineState *ms, KVMState *s) 112 { 113 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ); 114 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE); 115 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS); 116 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE); 117 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE); 118 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64); 119 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE); 120 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO); 121 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG); 122 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); 123 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); 124 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); 125 /* 126 * Note: we don't set cap_papr here, because this capability is 127 * only activated after this by kvmppc_set_papr() 128 */ 129 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD); 130 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); 131 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT); 132 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM); 133 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX); 134 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3); 135 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE); 136 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT); 137 kvmppc_get_cpu_characteristics(s); 138 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV); 139 cap_large_decr = kvmppc_get_dec_bits(); 140 cap_fwnmi = kvm_vm_check_extension(s, KVM_CAP_PPC_FWNMI); 141 /* 142 * Note: setting it to false because there is not such capability 143 * in KVM at this moment. 144 * 145 * TODO: call kvm_vm_check_extension() with the right capability 146 * after the kernel starts implementing it. 147 */ 148 cap_ppc_pvr_compat = false; 149 150 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) { 151 error_report("KVM: Host kernel doesn't have level irq capability"); 152 exit(1); 153 } 154 155 kvm_ppc_register_host_cpu_type(); 156 157 return 0; 158 } 159 160 int kvm_arch_irqchip_create(KVMState *s) 161 { 162 return 0; 163 } 164 165 static int kvm_arch_sync_sregs(PowerPCCPU *cpu) 166 { 167 CPUPPCState *cenv = &cpu->env; 168 CPUState *cs = CPU(cpu); 169 struct kvm_sregs sregs; 170 int ret; 171 172 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 173 /* 174 * What we're really trying to say is "if we're on BookE, we 175 * use the native PVR for now". This is the only sane way to 176 * check it though, so we potentially confuse users that they 177 * can run BookE guests on BookS. Let's hope nobody dares 178 * enough :) 179 */ 180 return 0; 181 } else { 182 if (!cap_segstate) { 183 fprintf(stderr, "kvm error: missing PVR setting capability\n"); 184 return -ENOSYS; 185 } 186 } 187 188 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 189 if (ret) { 190 return ret; 191 } 192 193 sregs.pvr = cenv->spr[SPR_PVR]; 194 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 195 } 196 197 /* Set up a shared TLB array with KVM */ 198 static int kvm_booke206_tlb_init(PowerPCCPU *cpu) 199 { 200 CPUPPCState *env = &cpu->env; 201 CPUState *cs = CPU(cpu); 202 struct kvm_book3e_206_tlb_params params = {}; 203 struct kvm_config_tlb cfg = {}; 204 unsigned int entries = 0; 205 int ret, i; 206 207 if (!kvm_enabled() || 208 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) { 209 return 0; 210 } 211 212 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN); 213 214 for (i = 0; i < BOOKE206_MAX_TLBN; i++) { 215 params.tlb_sizes[i] = booke206_tlb_size(env, i); 216 params.tlb_ways[i] = booke206_tlb_ways(env, i); 217 entries += params.tlb_sizes[i]; 218 } 219 220 assert(entries == env->nb_tlb); 221 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t)); 222 223 env->tlb_dirty = true; 224 225 cfg.array = (uintptr_t)env->tlb.tlbm; 226 cfg.array_len = sizeof(ppcmas_tlb_t) * entries; 227 cfg.params = (uintptr_t)¶ms; 228 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV; 229 230 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg); 231 if (ret < 0) { 232 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n", 233 __func__, strerror(-ret)); 234 return ret; 235 } 236 237 env->kvm_sw_tlb = true; 238 return 0; 239 } 240 241 242 #if defined(TARGET_PPC64) 243 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp) 244 { 245 int ret; 246 247 assert(kvm_state != NULL); 248 249 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) { 250 error_setg(errp, "KVM doesn't expose the MMU features it supports"); 251 error_append_hint(errp, "Consider switching to a newer KVM\n"); 252 return; 253 } 254 255 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info); 256 if (ret == 0) { 257 return; 258 } 259 260 error_setg_errno(errp, -ret, 261 "KVM failed to provide the MMU features it supports"); 262 } 263 264 struct ppc_radix_page_info *kvm_get_radix_page_info(void) 265 { 266 KVMState *s = KVM_STATE(current_accel()); 267 struct ppc_radix_page_info *radix_page_info; 268 struct kvm_ppc_rmmu_info rmmu_info; 269 int i; 270 271 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) { 272 return NULL; 273 } 274 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) { 275 return NULL; 276 } 277 radix_page_info = g_malloc0(sizeof(*radix_page_info)); 278 radix_page_info->count = 0; 279 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { 280 if (rmmu_info.ap_encodings[i]) { 281 radix_page_info->entries[i] = rmmu_info.ap_encodings[i]; 282 radix_page_info->count++; 283 } 284 } 285 return radix_page_info; 286 } 287 288 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu, 289 bool radix, bool gtse, 290 uint64_t proc_tbl) 291 { 292 CPUState *cs = CPU(cpu); 293 int ret; 294 uint64_t flags = 0; 295 struct kvm_ppc_mmuv3_cfg cfg = { 296 .process_table = proc_tbl, 297 }; 298 299 if (radix) { 300 flags |= KVM_PPC_MMUV3_RADIX; 301 } 302 if (gtse) { 303 flags |= KVM_PPC_MMUV3_GTSE; 304 } 305 cfg.flags = flags; 306 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg); 307 switch (ret) { 308 case 0: 309 return H_SUCCESS; 310 case -EINVAL: 311 return H_PARAMETER; 312 case -ENODEV: 313 return H_NOT_AVAILABLE; 314 default: 315 return H_HARDWARE; 316 } 317 } 318 319 bool kvmppc_hpt_needs_host_contiguous_pages(void) 320 { 321 static struct kvm_ppc_smmu_info smmu_info; 322 323 if (!kvm_enabled()) { 324 return false; 325 } 326 327 kvm_get_smmu_info(&smmu_info, &error_fatal); 328 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL); 329 } 330 331 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp) 332 { 333 struct kvm_ppc_smmu_info smmu_info; 334 int iq, ik, jq, jk; 335 Error *local_err = NULL; 336 337 /* For now, we only have anything to check on hash64 MMUs */ 338 if (!cpu->hash64_opts || !kvm_enabled()) { 339 return; 340 } 341 342 kvm_get_smmu_info(&smmu_info, &local_err); 343 if (local_err) { 344 error_propagate(errp, local_err); 345 return; 346 } 347 348 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG) 349 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) { 350 error_setg(errp, 351 "KVM does not support 1TiB segments which guest expects"); 352 return; 353 } 354 355 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) { 356 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u", 357 smmu_info.slb_size, cpu->hash64_opts->slb_size); 358 return; 359 } 360 361 /* 362 * Verify that every pagesize supported by the cpu model is 363 * supported by KVM with the same encodings 364 */ 365 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) { 366 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq]; 367 struct kvm_ppc_one_seg_page_size *ksps; 368 369 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) { 370 if (qsps->page_shift == smmu_info.sps[ik].page_shift) { 371 break; 372 } 373 } 374 if (ik >= ARRAY_SIZE(smmu_info.sps)) { 375 error_setg(errp, "KVM doesn't support for base page shift %u", 376 qsps->page_shift); 377 return; 378 } 379 380 ksps = &smmu_info.sps[ik]; 381 if (ksps->slb_enc != qsps->slb_enc) { 382 error_setg(errp, 383 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x", 384 ksps->slb_enc, ksps->page_shift, qsps->slb_enc); 385 return; 386 } 387 388 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) { 389 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) { 390 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) { 391 break; 392 } 393 } 394 395 if (jk >= ARRAY_SIZE(ksps->enc)) { 396 error_setg(errp, "KVM doesn't support page shift %u/%u", 397 qsps->enc[jq].page_shift, qsps->page_shift); 398 return; 399 } 400 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) { 401 error_setg(errp, 402 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x", 403 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift, 404 qsps->page_shift, qsps->enc[jq].pte_enc); 405 return; 406 } 407 } 408 } 409 410 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 411 /* 412 * Mostly what guest pagesizes we can use are related to the 413 * host pages used to map guest RAM, which is handled in the 414 * platform code. Cache-Inhibited largepages (64k) however are 415 * used for I/O, so if they're mapped to the host at all it 416 * will be a normal mapping, not a special hugepage one used 417 * for RAM. 418 */ 419 if (qemu_real_host_page_size < 0x10000) { 420 error_setg(errp, 421 "KVM can't supply 64kiB CI pages, which guest expects"); 422 } 423 } 424 } 425 #endif /* !defined (TARGET_PPC64) */ 426 427 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 428 { 429 return POWERPC_CPU(cpu)->vcpu_id; 430 } 431 432 /* 433 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports 434 * only 1 watchpoint, so array size of 4 is sufficient for now. 435 */ 436 #define MAX_HW_BKPTS 4 437 438 static struct HWBreakpoint { 439 target_ulong addr; 440 int type; 441 } hw_debug_points[MAX_HW_BKPTS]; 442 443 static CPUWatchpoint hw_watchpoint; 444 445 /* Default there is no breakpoint and watchpoint supported */ 446 static int max_hw_breakpoint; 447 static int max_hw_watchpoint; 448 static int nb_hw_breakpoint; 449 static int nb_hw_watchpoint; 450 451 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv) 452 { 453 if (cenv->excp_model == POWERPC_EXCP_BOOKE) { 454 max_hw_breakpoint = 2; 455 max_hw_watchpoint = 2; 456 } 457 458 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) { 459 fprintf(stderr, "Error initializing h/w breakpoints\n"); 460 return; 461 } 462 } 463 464 int kvm_arch_init_vcpu(CPUState *cs) 465 { 466 PowerPCCPU *cpu = POWERPC_CPU(cs); 467 CPUPPCState *cenv = &cpu->env; 468 int ret; 469 470 /* Synchronize sregs with kvm */ 471 ret = kvm_arch_sync_sregs(cpu); 472 if (ret) { 473 if (ret == -EINVAL) { 474 error_report("Register sync failed... If you're using kvm-hv.ko," 475 " only \"-cpu host\" is possible"); 476 } 477 return ret; 478 } 479 480 switch (cenv->mmu_model) { 481 case POWERPC_MMU_BOOKE206: 482 /* This target supports access to KVM's guest TLB */ 483 ret = kvm_booke206_tlb_init(cpu); 484 break; 485 case POWERPC_MMU_2_07: 486 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { 487 /* 488 * KVM-HV has transactional memory on POWER8 also without 489 * the KVM_CAP_PPC_HTM extension, so enable it here 490 * instead as long as it's available to userspace on the 491 * host. 492 */ 493 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) { 494 cap_htm = true; 495 } 496 } 497 break; 498 default: 499 break; 500 } 501 502 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode); 503 kvmppc_hw_debug_points_init(cenv); 504 505 return ret; 506 } 507 508 int kvm_arch_destroy_vcpu(CPUState *cs) 509 { 510 return 0; 511 } 512 513 static void kvm_sw_tlb_put(PowerPCCPU *cpu) 514 { 515 CPUPPCState *env = &cpu->env; 516 CPUState *cs = CPU(cpu); 517 struct kvm_dirty_tlb dirty_tlb; 518 unsigned char *bitmap; 519 int ret; 520 521 if (!env->kvm_sw_tlb) { 522 return; 523 } 524 525 bitmap = g_malloc((env->nb_tlb + 7) / 8); 526 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8); 527 528 dirty_tlb.bitmap = (uintptr_t)bitmap; 529 dirty_tlb.num_dirty = env->nb_tlb; 530 531 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb); 532 if (ret) { 533 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n", 534 __func__, strerror(-ret)); 535 } 536 537 g_free(bitmap); 538 } 539 540 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr) 541 { 542 PowerPCCPU *cpu = POWERPC_CPU(cs); 543 CPUPPCState *env = &cpu->env; 544 union { 545 uint32_t u32; 546 uint64_t u64; 547 } val; 548 struct kvm_one_reg reg = { 549 .id = id, 550 .addr = (uintptr_t) &val, 551 }; 552 int ret; 553 554 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 555 if (ret != 0) { 556 trace_kvm_failed_spr_get(spr, strerror(errno)); 557 } else { 558 switch (id & KVM_REG_SIZE_MASK) { 559 case KVM_REG_SIZE_U32: 560 env->spr[spr] = val.u32; 561 break; 562 563 case KVM_REG_SIZE_U64: 564 env->spr[spr] = val.u64; 565 break; 566 567 default: 568 /* Don't handle this size yet */ 569 abort(); 570 } 571 } 572 } 573 574 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr) 575 { 576 PowerPCCPU *cpu = POWERPC_CPU(cs); 577 CPUPPCState *env = &cpu->env; 578 union { 579 uint32_t u32; 580 uint64_t u64; 581 } val; 582 struct kvm_one_reg reg = { 583 .id = id, 584 .addr = (uintptr_t) &val, 585 }; 586 int ret; 587 588 switch (id & KVM_REG_SIZE_MASK) { 589 case KVM_REG_SIZE_U32: 590 val.u32 = env->spr[spr]; 591 break; 592 593 case KVM_REG_SIZE_U64: 594 val.u64 = env->spr[spr]; 595 break; 596 597 default: 598 /* Don't handle this size yet */ 599 abort(); 600 } 601 602 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 603 if (ret != 0) { 604 trace_kvm_failed_spr_set(spr, strerror(errno)); 605 } 606 } 607 608 static int kvm_put_fp(CPUState *cs) 609 { 610 PowerPCCPU *cpu = POWERPC_CPU(cs); 611 CPUPPCState *env = &cpu->env; 612 struct kvm_one_reg reg; 613 int i; 614 int ret; 615 616 if (env->insns_flags & PPC_FLOAT) { 617 uint64_t fpscr = env->fpscr; 618 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 619 620 reg.id = KVM_REG_PPC_FPSCR; 621 reg.addr = (uintptr_t)&fpscr; 622 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 623 if (ret < 0) { 624 trace_kvm_failed_fpscr_set(strerror(errno)); 625 return ret; 626 } 627 628 for (i = 0; i < 32; i++) { 629 uint64_t vsr[2]; 630 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); 631 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); 632 633 #ifdef HOST_WORDS_BIGENDIAN 634 vsr[0] = float64_val(*fpr); 635 vsr[1] = *vsrl; 636 #else 637 vsr[0] = *vsrl; 638 vsr[1] = float64_val(*fpr); 639 #endif 640 reg.addr = (uintptr_t) &vsr; 641 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 642 643 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 644 if (ret < 0) { 645 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i, 646 strerror(errno)); 647 return ret; 648 } 649 } 650 } 651 652 if (env->insns_flags & PPC_ALTIVEC) { 653 reg.id = KVM_REG_PPC_VSCR; 654 reg.addr = (uintptr_t)&env->vscr; 655 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 656 if (ret < 0) { 657 trace_kvm_failed_vscr_set(strerror(errno)); 658 return ret; 659 } 660 661 for (i = 0; i < 32; i++) { 662 reg.id = KVM_REG_PPC_VR(i); 663 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 664 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 665 if (ret < 0) { 666 trace_kvm_failed_vr_set(i, strerror(errno)); 667 return ret; 668 } 669 } 670 } 671 672 return 0; 673 } 674 675 static int kvm_get_fp(CPUState *cs) 676 { 677 PowerPCCPU *cpu = POWERPC_CPU(cs); 678 CPUPPCState *env = &cpu->env; 679 struct kvm_one_reg reg; 680 int i; 681 int ret; 682 683 if (env->insns_flags & PPC_FLOAT) { 684 uint64_t fpscr; 685 bool vsx = !!(env->insns_flags2 & PPC2_VSX); 686 687 reg.id = KVM_REG_PPC_FPSCR; 688 reg.addr = (uintptr_t)&fpscr; 689 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 690 if (ret < 0) { 691 trace_kvm_failed_fpscr_get(strerror(errno)); 692 return ret; 693 } else { 694 env->fpscr = fpscr; 695 } 696 697 for (i = 0; i < 32; i++) { 698 uint64_t vsr[2]; 699 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i); 700 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i); 701 702 reg.addr = (uintptr_t) &vsr; 703 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i); 704 705 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 706 if (ret < 0) { 707 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i, 708 strerror(errno)); 709 return ret; 710 } else { 711 #ifdef HOST_WORDS_BIGENDIAN 712 *fpr = vsr[0]; 713 if (vsx) { 714 *vsrl = vsr[1]; 715 } 716 #else 717 *fpr = vsr[1]; 718 if (vsx) { 719 *vsrl = vsr[0]; 720 } 721 #endif 722 } 723 } 724 } 725 726 if (env->insns_flags & PPC_ALTIVEC) { 727 reg.id = KVM_REG_PPC_VSCR; 728 reg.addr = (uintptr_t)&env->vscr; 729 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 730 if (ret < 0) { 731 trace_kvm_failed_vscr_get(strerror(errno)); 732 return ret; 733 } 734 735 for (i = 0; i < 32; i++) { 736 reg.id = KVM_REG_PPC_VR(i); 737 reg.addr = (uintptr_t)cpu_avr_ptr(env, i); 738 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 739 if (ret < 0) { 740 trace_kvm_failed_vr_get(i, strerror(errno)); 741 return ret; 742 } 743 } 744 } 745 746 return 0; 747 } 748 749 #if defined(TARGET_PPC64) 750 static int kvm_get_vpa(CPUState *cs) 751 { 752 PowerPCCPU *cpu = POWERPC_CPU(cs); 753 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 754 struct kvm_one_reg reg; 755 int ret; 756 757 reg.id = KVM_REG_PPC_VPA_ADDR; 758 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 759 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 760 if (ret < 0) { 761 trace_kvm_failed_vpa_addr_get(strerror(errno)); 762 return ret; 763 } 764 765 assert((uintptr_t)&spapr_cpu->slb_shadow_size 766 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 767 reg.id = KVM_REG_PPC_VPA_SLB; 768 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 769 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 770 if (ret < 0) { 771 trace_kvm_failed_slb_get(strerror(errno)); 772 return ret; 773 } 774 775 assert((uintptr_t)&spapr_cpu->dtl_size 776 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 777 reg.id = KVM_REG_PPC_VPA_DTL; 778 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 779 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); 780 if (ret < 0) { 781 trace_kvm_failed_dtl_get(strerror(errno)); 782 return ret; 783 } 784 785 return 0; 786 } 787 788 static int kvm_put_vpa(CPUState *cs) 789 { 790 PowerPCCPU *cpu = POWERPC_CPU(cs); 791 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 792 struct kvm_one_reg reg; 793 int ret; 794 795 /* 796 * SLB shadow or DTL can't be registered unless a master VPA is 797 * registered. That means when restoring state, if a VPA *is* 798 * registered, we need to set that up first. If not, we need to 799 * deregister the others before deregistering the master VPA 800 */ 801 assert(spapr_cpu->vpa_addr 802 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr)); 803 804 if (spapr_cpu->vpa_addr) { 805 reg.id = KVM_REG_PPC_VPA_ADDR; 806 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 807 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 808 if (ret < 0) { 809 trace_kvm_failed_vpa_addr_set(strerror(errno)); 810 return ret; 811 } 812 } 813 814 assert((uintptr_t)&spapr_cpu->slb_shadow_size 815 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8)); 816 reg.id = KVM_REG_PPC_VPA_SLB; 817 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr; 818 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 819 if (ret < 0) { 820 trace_kvm_failed_slb_set(strerror(errno)); 821 return ret; 822 } 823 824 assert((uintptr_t)&spapr_cpu->dtl_size 825 == ((uintptr_t)&spapr_cpu->dtl_addr + 8)); 826 reg.id = KVM_REG_PPC_VPA_DTL; 827 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr; 828 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 829 if (ret < 0) { 830 trace_kvm_failed_dtl_set(strerror(errno)); 831 return ret; 832 } 833 834 if (!spapr_cpu->vpa_addr) { 835 reg.id = KVM_REG_PPC_VPA_ADDR; 836 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr; 837 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 838 if (ret < 0) { 839 trace_kvm_failed_null_vpa_addr_set(strerror(errno)); 840 return ret; 841 } 842 } 843 844 return 0; 845 } 846 #endif /* TARGET_PPC64 */ 847 848 int kvmppc_put_books_sregs(PowerPCCPU *cpu) 849 { 850 CPUPPCState *env = &cpu->env; 851 struct kvm_sregs sregs; 852 int i; 853 854 sregs.pvr = env->spr[SPR_PVR]; 855 856 if (cpu->vhyp) { 857 PPCVirtualHypervisorClass *vhc = 858 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp); 859 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp); 860 } else { 861 sregs.u.s.sdr1 = env->spr[SPR_SDR1]; 862 } 863 864 /* Sync SLB */ 865 #ifdef TARGET_PPC64 866 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 867 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid; 868 if (env->slb[i].esid & SLB_ESID_V) { 869 sregs.u.s.ppc64.slb[i].slbe |= i; 870 } 871 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid; 872 } 873 #endif 874 875 /* Sync SRs */ 876 for (i = 0; i < 16; i++) { 877 sregs.u.s.ppc32.sr[i] = env->sr[i]; 878 } 879 880 /* Sync BATs */ 881 for (i = 0; i < 8; i++) { 882 /* Beware. We have to swap upper and lower bits here */ 883 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32) 884 | env->DBAT[1][i]; 885 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32) 886 | env->IBAT[1][i]; 887 } 888 889 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 890 } 891 892 int kvm_arch_put_registers(CPUState *cs, int level) 893 { 894 PowerPCCPU *cpu = POWERPC_CPU(cs); 895 CPUPPCState *env = &cpu->env; 896 struct kvm_regs regs; 897 int ret; 898 int i; 899 900 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 901 if (ret < 0) { 902 return ret; 903 } 904 905 regs.ctr = env->ctr; 906 regs.lr = env->lr; 907 regs.xer = cpu_read_xer(env); 908 regs.msr = env->msr; 909 regs.pc = env->nip; 910 911 regs.srr0 = env->spr[SPR_SRR0]; 912 regs.srr1 = env->spr[SPR_SRR1]; 913 914 regs.sprg0 = env->spr[SPR_SPRG0]; 915 regs.sprg1 = env->spr[SPR_SPRG1]; 916 regs.sprg2 = env->spr[SPR_SPRG2]; 917 regs.sprg3 = env->spr[SPR_SPRG3]; 918 regs.sprg4 = env->spr[SPR_SPRG4]; 919 regs.sprg5 = env->spr[SPR_SPRG5]; 920 regs.sprg6 = env->spr[SPR_SPRG6]; 921 regs.sprg7 = env->spr[SPR_SPRG7]; 922 923 regs.pid = env->spr[SPR_BOOKE_PID]; 924 925 for (i = 0; i < 32; i++) { 926 regs.gpr[i] = env->gpr[i]; 927 } 928 929 regs.cr = 0; 930 for (i = 0; i < 8; i++) { 931 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i)); 932 } 933 934 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 935 if (ret < 0) { 936 return ret; 937 } 938 939 kvm_put_fp(cs); 940 941 if (env->tlb_dirty) { 942 kvm_sw_tlb_put(cpu); 943 env->tlb_dirty = false; 944 } 945 946 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) { 947 ret = kvmppc_put_books_sregs(cpu); 948 if (ret < 0) { 949 return ret; 950 } 951 } 952 953 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) { 954 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 955 } 956 957 if (cap_one_reg) { 958 int i; 959 960 /* 961 * We deliberately ignore errors here, for kernels which have 962 * the ONE_REG calls, but don't support the specific 963 * registers, there's a reasonable chance things will still 964 * work, at least until we try to migrate. 965 */ 966 for (i = 0; i < 1024; i++) { 967 uint64_t id = env->spr_cb[i].one_reg_id; 968 969 if (id != 0) { 970 kvm_put_one_spr(cs, id, i); 971 } 972 } 973 974 #ifdef TARGET_PPC64 975 if (msr_ts) { 976 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 977 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 978 } 979 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 980 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 981 } 982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 987 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 988 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 989 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 990 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 991 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 992 } 993 994 if (cap_papr) { 995 if (kvm_put_vpa(cs) < 0) { 996 trace_kvm_failed_put_vpa(); 997 } 998 } 999 1000 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1001 1002 if (level > KVM_PUT_RUNTIME_STATE) { 1003 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1004 } 1005 #endif /* TARGET_PPC64 */ 1006 } 1007 1008 return ret; 1009 } 1010 1011 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor) 1012 { 1013 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR]; 1014 } 1015 1016 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu) 1017 { 1018 CPUPPCState *env = &cpu->env; 1019 struct kvm_sregs sregs; 1020 int ret; 1021 1022 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1023 if (ret < 0) { 1024 return ret; 1025 } 1026 1027 if (sregs.u.e.features & KVM_SREGS_E_BASE) { 1028 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0; 1029 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1; 1030 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr; 1031 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear; 1032 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr; 1033 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr; 1034 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr; 1035 env->spr[SPR_DECR] = sregs.u.e.dec; 1036 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff; 1037 env->spr[SPR_TBU] = sregs.u.e.tb >> 32; 1038 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave; 1039 } 1040 1041 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) { 1042 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir; 1043 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0; 1044 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1; 1045 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar; 1046 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr; 1047 } 1048 1049 if (sregs.u.e.features & KVM_SREGS_E_64) { 1050 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr; 1051 } 1052 1053 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) { 1054 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8; 1055 } 1056 1057 if (sregs.u.e.features & KVM_SREGS_E_IVOR) { 1058 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0]; 1059 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0); 1060 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1]; 1061 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1); 1062 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2]; 1063 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2); 1064 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3]; 1065 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3); 1066 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4]; 1067 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4); 1068 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5]; 1069 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5); 1070 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6]; 1071 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6); 1072 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7]; 1073 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7); 1074 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8]; 1075 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8); 1076 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9]; 1077 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9); 1078 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10]; 1079 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10); 1080 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11]; 1081 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11); 1082 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12]; 1083 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12); 1084 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13]; 1085 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13); 1086 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14]; 1087 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14); 1088 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15]; 1089 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15); 1090 1091 if (sregs.u.e.features & KVM_SREGS_E_SPE) { 1092 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0]; 1093 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32); 1094 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1]; 1095 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33); 1096 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2]; 1097 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34); 1098 } 1099 1100 if (sregs.u.e.features & KVM_SREGS_E_PM) { 1101 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3]; 1102 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35); 1103 } 1104 1105 if (sregs.u.e.features & KVM_SREGS_E_PC) { 1106 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4]; 1107 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36); 1108 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5]; 1109 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37); 1110 } 1111 } 1112 1113 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) { 1114 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0; 1115 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1; 1116 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2; 1117 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff; 1118 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4; 1119 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6; 1120 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32; 1121 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg; 1122 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0]; 1123 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1]; 1124 } 1125 1126 if (sregs.u.e.features & KVM_SREGS_EXP) { 1127 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr; 1128 } 1129 1130 if (sregs.u.e.features & KVM_SREGS_E_PD) { 1131 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc; 1132 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc; 1133 } 1134 1135 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { 1136 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr; 1137 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar; 1138 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0; 1139 1140 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) { 1141 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1; 1142 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2; 1143 } 1144 } 1145 1146 return 0; 1147 } 1148 1149 static int kvmppc_get_books_sregs(PowerPCCPU *cpu) 1150 { 1151 CPUPPCState *env = &cpu->env; 1152 struct kvm_sregs sregs; 1153 int ret; 1154 int i; 1155 1156 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 1157 if (ret < 0) { 1158 return ret; 1159 } 1160 1161 if (!cpu->vhyp) { 1162 ppc_store_sdr1(env, sregs.u.s.sdr1); 1163 } 1164 1165 /* Sync SLB */ 1166 #ifdef TARGET_PPC64 1167 /* 1168 * The packed SLB array we get from KVM_GET_SREGS only contains 1169 * information about valid entries. So we flush our internal copy 1170 * to get rid of stale ones, then put all valid SLB entries back 1171 * in. 1172 */ 1173 memset(env->slb, 0, sizeof(env->slb)); 1174 for (i = 0; i < ARRAY_SIZE(env->slb); i++) { 1175 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe; 1176 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv; 1177 /* 1178 * Only restore valid entries 1179 */ 1180 if (rb & SLB_ESID_V) { 1181 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs); 1182 } 1183 } 1184 #endif 1185 1186 /* Sync SRs */ 1187 for (i = 0; i < 16; i++) { 1188 env->sr[i] = sregs.u.s.ppc32.sr[i]; 1189 } 1190 1191 /* Sync BATs */ 1192 for (i = 0; i < 8; i++) { 1193 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff; 1194 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32; 1195 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff; 1196 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32; 1197 } 1198 1199 return 0; 1200 } 1201 1202 int kvm_arch_get_registers(CPUState *cs) 1203 { 1204 PowerPCCPU *cpu = POWERPC_CPU(cs); 1205 CPUPPCState *env = &cpu->env; 1206 struct kvm_regs regs; 1207 uint32_t cr; 1208 int i, ret; 1209 1210 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 1211 if (ret < 0) { 1212 return ret; 1213 } 1214 1215 cr = regs.cr; 1216 for (i = 7; i >= 0; i--) { 1217 env->crf[i] = cr & 15; 1218 cr >>= 4; 1219 } 1220 1221 env->ctr = regs.ctr; 1222 env->lr = regs.lr; 1223 cpu_write_xer(env, regs.xer); 1224 env->msr = regs.msr; 1225 env->nip = regs.pc; 1226 1227 env->spr[SPR_SRR0] = regs.srr0; 1228 env->spr[SPR_SRR1] = regs.srr1; 1229 1230 env->spr[SPR_SPRG0] = regs.sprg0; 1231 env->spr[SPR_SPRG1] = regs.sprg1; 1232 env->spr[SPR_SPRG2] = regs.sprg2; 1233 env->spr[SPR_SPRG3] = regs.sprg3; 1234 env->spr[SPR_SPRG4] = regs.sprg4; 1235 env->spr[SPR_SPRG5] = regs.sprg5; 1236 env->spr[SPR_SPRG6] = regs.sprg6; 1237 env->spr[SPR_SPRG7] = regs.sprg7; 1238 1239 env->spr[SPR_BOOKE_PID] = regs.pid; 1240 1241 for (i = 0; i < 32; i++) { 1242 env->gpr[i] = regs.gpr[i]; 1243 } 1244 1245 kvm_get_fp(cs); 1246 1247 if (cap_booke_sregs) { 1248 ret = kvmppc_get_booke_sregs(cpu); 1249 if (ret < 0) { 1250 return ret; 1251 } 1252 } 1253 1254 if (cap_segstate) { 1255 ret = kvmppc_get_books_sregs(cpu); 1256 if (ret < 0) { 1257 return ret; 1258 } 1259 } 1260 1261 if (cap_hior) { 1262 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR); 1263 } 1264 1265 if (cap_one_reg) { 1266 int i; 1267 1268 /* 1269 * We deliberately ignore errors here, for kernels which have 1270 * the ONE_REG calls, but don't support the specific 1271 * registers, there's a reasonable chance things will still 1272 * work, at least until we try to migrate. 1273 */ 1274 for (i = 0; i < 1024; i++) { 1275 uint64_t id = env->spr_cb[i].one_reg_id; 1276 1277 if (id != 0) { 1278 kvm_get_one_spr(cs, id, i); 1279 } 1280 } 1281 1282 #ifdef TARGET_PPC64 1283 if (msr_ts) { 1284 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) { 1285 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]); 1286 } 1287 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) { 1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]); 1289 } 1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr); 1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr); 1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr); 1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr); 1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr); 1295 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr); 1296 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave); 1297 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr); 1298 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr); 1299 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar); 1300 } 1301 1302 if (cap_papr) { 1303 if (kvm_get_vpa(cs) < 0) { 1304 trace_kvm_failed_get_vpa(); 1305 } 1306 } 1307 1308 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset); 1309 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES); 1310 #endif 1311 } 1312 1313 return 0; 1314 } 1315 1316 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level) 1317 { 1318 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET; 1319 1320 if (irq != PPC_INTERRUPT_EXT) { 1321 return 0; 1322 } 1323 1324 if (!kvm_enabled() || !cap_interrupt_unset) { 1325 return 0; 1326 } 1327 1328 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq); 1329 1330 return 0; 1331 } 1332 1333 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) 1334 { 1335 return; 1336 } 1337 1338 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1339 { 1340 return MEMTXATTRS_UNSPECIFIED; 1341 } 1342 1343 int kvm_arch_process_async_events(CPUState *cs) 1344 { 1345 return cs->halted; 1346 } 1347 1348 static int kvmppc_handle_halt(PowerPCCPU *cpu) 1349 { 1350 CPUState *cs = CPU(cpu); 1351 CPUPPCState *env = &cpu->env; 1352 1353 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) { 1354 cs->halted = 1; 1355 cs->exception_index = EXCP_HLT; 1356 } 1357 1358 return 0; 1359 } 1360 1361 /* map dcr access to existing qemu dcr emulation */ 1362 static int kvmppc_handle_dcr_read(CPUPPCState *env, 1363 uint32_t dcrn, uint32_t *data) 1364 { 1365 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) { 1366 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); 1367 } 1368 1369 return 0; 1370 } 1371 1372 static int kvmppc_handle_dcr_write(CPUPPCState *env, 1373 uint32_t dcrn, uint32_t data) 1374 { 1375 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) { 1376 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); 1377 } 1378 1379 return 0; 1380 } 1381 1382 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1383 { 1384 /* Mixed endian case is not handled */ 1385 uint32_t sc = debug_inst_opcode; 1386 1387 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1388 sizeof(sc), 0) || 1389 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) { 1390 return -EINVAL; 1391 } 1392 1393 return 0; 1394 } 1395 1396 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 1397 { 1398 uint32_t sc; 1399 1400 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) || 1401 sc != debug_inst_opcode || 1402 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1403 sizeof(sc), 1)) { 1404 return -EINVAL; 1405 } 1406 1407 return 0; 1408 } 1409 1410 static int find_hw_breakpoint(target_ulong addr, int type) 1411 { 1412 int n; 1413 1414 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1415 <= ARRAY_SIZE(hw_debug_points)); 1416 1417 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1418 if (hw_debug_points[n].addr == addr && 1419 hw_debug_points[n].type == type) { 1420 return n; 1421 } 1422 } 1423 1424 return -1; 1425 } 1426 1427 static int find_hw_watchpoint(target_ulong addr, int *flag) 1428 { 1429 int n; 1430 1431 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS); 1432 if (n >= 0) { 1433 *flag = BP_MEM_ACCESS; 1434 return n; 1435 } 1436 1437 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE); 1438 if (n >= 0) { 1439 *flag = BP_MEM_WRITE; 1440 return n; 1441 } 1442 1443 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ); 1444 if (n >= 0) { 1445 *flag = BP_MEM_READ; 1446 return n; 1447 } 1448 1449 return -1; 1450 } 1451 1452 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 1453 target_ulong len, int type) 1454 { 1455 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) { 1456 return -ENOBUFS; 1457 } 1458 1459 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr; 1460 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type; 1461 1462 switch (type) { 1463 case GDB_BREAKPOINT_HW: 1464 if (nb_hw_breakpoint >= max_hw_breakpoint) { 1465 return -ENOBUFS; 1466 } 1467 1468 if (find_hw_breakpoint(addr, type) >= 0) { 1469 return -EEXIST; 1470 } 1471 1472 nb_hw_breakpoint++; 1473 break; 1474 1475 case GDB_WATCHPOINT_WRITE: 1476 case GDB_WATCHPOINT_READ: 1477 case GDB_WATCHPOINT_ACCESS: 1478 if (nb_hw_watchpoint >= max_hw_watchpoint) { 1479 return -ENOBUFS; 1480 } 1481 1482 if (find_hw_breakpoint(addr, type) >= 0) { 1483 return -EEXIST; 1484 } 1485 1486 nb_hw_watchpoint++; 1487 break; 1488 1489 default: 1490 return -ENOSYS; 1491 } 1492 1493 return 0; 1494 } 1495 1496 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 1497 target_ulong len, int type) 1498 { 1499 int n; 1500 1501 n = find_hw_breakpoint(addr, type); 1502 if (n < 0) { 1503 return -ENOENT; 1504 } 1505 1506 switch (type) { 1507 case GDB_BREAKPOINT_HW: 1508 nb_hw_breakpoint--; 1509 break; 1510 1511 case GDB_WATCHPOINT_WRITE: 1512 case GDB_WATCHPOINT_READ: 1513 case GDB_WATCHPOINT_ACCESS: 1514 nb_hw_watchpoint--; 1515 break; 1516 1517 default: 1518 return -ENOSYS; 1519 } 1520 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint]; 1521 1522 return 0; 1523 } 1524 1525 void kvm_arch_remove_all_hw_breakpoints(void) 1526 { 1527 nb_hw_breakpoint = nb_hw_watchpoint = 0; 1528 } 1529 1530 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) 1531 { 1532 int n; 1533 1534 /* Software Breakpoint updates */ 1535 if (kvm_sw_breakpoints_active(cs)) { 1536 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 1537 } 1538 1539 assert((nb_hw_breakpoint + nb_hw_watchpoint) 1540 <= ARRAY_SIZE(hw_debug_points)); 1541 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp)); 1542 1543 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1544 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1545 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp)); 1546 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) { 1547 switch (hw_debug_points[n].type) { 1548 case GDB_BREAKPOINT_HW: 1549 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT; 1550 break; 1551 case GDB_WATCHPOINT_WRITE: 1552 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE; 1553 break; 1554 case GDB_WATCHPOINT_READ: 1555 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ; 1556 break; 1557 case GDB_WATCHPOINT_ACCESS: 1558 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE | 1559 KVMPPC_DEBUG_WATCH_READ; 1560 break; 1561 default: 1562 cpu_abort(cs, "Unsupported breakpoint type\n"); 1563 } 1564 dbg->arch.bp[n].addr = hw_debug_points[n].addr; 1565 } 1566 } 1567 } 1568 1569 static int kvm_handle_hw_breakpoint(CPUState *cs, 1570 struct kvm_debug_exit_arch *arch_info) 1571 { 1572 int handle = DEBUG_RETURN_GUEST; 1573 int n; 1574 int flag = 0; 1575 1576 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) { 1577 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) { 1578 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW); 1579 if (n >= 0) { 1580 handle = DEBUG_RETURN_GDB; 1581 } 1582 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ | 1583 KVMPPC_DEBUG_WATCH_WRITE)) { 1584 n = find_hw_watchpoint(arch_info->address, &flag); 1585 if (n >= 0) { 1586 handle = DEBUG_RETURN_GDB; 1587 cs->watchpoint_hit = &hw_watchpoint; 1588 hw_watchpoint.vaddr = hw_debug_points[n].addr; 1589 hw_watchpoint.flags = flag; 1590 } 1591 } 1592 } 1593 return handle; 1594 } 1595 1596 static int kvm_handle_singlestep(void) 1597 { 1598 return DEBUG_RETURN_GDB; 1599 } 1600 1601 static int kvm_handle_sw_breakpoint(void) 1602 { 1603 return DEBUG_RETURN_GDB; 1604 } 1605 1606 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run) 1607 { 1608 CPUState *cs = CPU(cpu); 1609 CPUPPCState *env = &cpu->env; 1610 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1611 1612 if (cs->singlestep_enabled) { 1613 return kvm_handle_singlestep(); 1614 } 1615 1616 if (arch_info->status) { 1617 return kvm_handle_hw_breakpoint(cs, arch_info); 1618 } 1619 1620 if (kvm_find_sw_breakpoint(cs, arch_info->address)) { 1621 return kvm_handle_sw_breakpoint(); 1622 } 1623 1624 /* 1625 * QEMU is not able to handle debug exception, so inject 1626 * program exception to guest; 1627 * Yes program exception NOT debug exception !! 1628 * When QEMU is using debug resources then debug exception must 1629 * be always set. To achieve this we set MSR_DE and also set 1630 * MSRP_DEP so guest cannot change MSR_DE. 1631 * When emulating debug resource for guest we want guest 1632 * to control MSR_DE (enable/disable debug interrupt on need). 1633 * Supporting both configurations are NOT possible. 1634 * So the result is that we cannot share debug resources 1635 * between QEMU and Guest on BOOKE architecture. 1636 * In the current design QEMU gets the priority over guest, 1637 * this means that if QEMU is using debug resources then guest 1638 * cannot use them; 1639 * For software breakpoint QEMU uses a privileged instruction; 1640 * So there cannot be any reason that we are here for guest 1641 * set debug exception, only possibility is guest executed a 1642 * privileged / illegal instruction and that's why we are 1643 * injecting a program interrupt. 1644 */ 1645 cpu_synchronize_state(cs); 1646 /* 1647 * env->nip is PC, so increment this by 4 to use 1648 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4. 1649 */ 1650 env->nip += 4; 1651 cs->exception_index = POWERPC_EXCP_PROGRAM; 1652 env->error_code = POWERPC_EXCP_INVAL; 1653 ppc_cpu_do_interrupt(cs); 1654 1655 return DEBUG_RETURN_GUEST; 1656 } 1657 1658 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1659 { 1660 PowerPCCPU *cpu = POWERPC_CPU(cs); 1661 CPUPPCState *env = &cpu->env; 1662 int ret; 1663 1664 qemu_mutex_lock_iothread(); 1665 1666 switch (run->exit_reason) { 1667 case KVM_EXIT_DCR: 1668 if (run->dcr.is_write) { 1669 trace_kvm_handle_dcr_write(); 1670 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data); 1671 } else { 1672 trace_kvm_handle_dcr_read(); 1673 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data); 1674 } 1675 break; 1676 case KVM_EXIT_HLT: 1677 trace_kvm_handle_halt(); 1678 ret = kvmppc_handle_halt(cpu); 1679 break; 1680 #if defined(TARGET_PPC64) 1681 case KVM_EXIT_PAPR_HCALL: 1682 trace_kvm_handle_papr_hcall(); 1683 run->papr_hcall.ret = spapr_hypercall(cpu, 1684 run->papr_hcall.nr, 1685 run->papr_hcall.args); 1686 ret = 0; 1687 break; 1688 #endif 1689 case KVM_EXIT_EPR: 1690 trace_kvm_handle_epr(); 1691 run->epr.epr = ldl_phys(cs->as, env->mpic_iack); 1692 ret = 0; 1693 break; 1694 case KVM_EXIT_WATCHDOG: 1695 trace_kvm_handle_watchdog_expiry(); 1696 watchdog_perform_action(); 1697 ret = 0; 1698 break; 1699 1700 case KVM_EXIT_DEBUG: 1701 trace_kvm_handle_debug_exception(); 1702 if (kvm_handle_debug(cpu, run)) { 1703 ret = EXCP_DEBUG; 1704 break; 1705 } 1706 /* re-enter, this exception was guest-internal */ 1707 ret = 0; 1708 break; 1709 1710 #if defined(TARGET_PPC64) 1711 case KVM_EXIT_NMI: 1712 trace_kvm_handle_nmi_exception(); 1713 ret = kvm_handle_nmi(cpu, run); 1714 break; 1715 #endif 1716 1717 default: 1718 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 1719 ret = -1; 1720 break; 1721 } 1722 1723 qemu_mutex_unlock_iothread(); 1724 return ret; 1725 } 1726 1727 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1728 { 1729 CPUState *cs = CPU(cpu); 1730 uint32_t bits = tsr_bits; 1731 struct kvm_one_reg reg = { 1732 .id = KVM_REG_PPC_OR_TSR, 1733 .addr = (uintptr_t) &bits, 1734 }; 1735 1736 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1737 } 1738 1739 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits) 1740 { 1741 1742 CPUState *cs = CPU(cpu); 1743 uint32_t bits = tsr_bits; 1744 struct kvm_one_reg reg = { 1745 .id = KVM_REG_PPC_CLEAR_TSR, 1746 .addr = (uintptr_t) &bits, 1747 }; 1748 1749 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1750 } 1751 1752 int kvmppc_set_tcr(PowerPCCPU *cpu) 1753 { 1754 CPUState *cs = CPU(cpu); 1755 CPUPPCState *env = &cpu->env; 1756 uint32_t tcr = env->spr[SPR_BOOKE_TCR]; 1757 1758 struct kvm_one_reg reg = { 1759 .id = KVM_REG_PPC_TCR, 1760 .addr = (uintptr_t) &tcr, 1761 }; 1762 1763 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); 1764 } 1765 1766 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu) 1767 { 1768 CPUState *cs = CPU(cpu); 1769 int ret; 1770 1771 if (!kvm_enabled()) { 1772 return -1; 1773 } 1774 1775 if (!cap_ppc_watchdog) { 1776 printf("warning: KVM does not support watchdog"); 1777 return -1; 1778 } 1779 1780 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0); 1781 if (ret < 0) { 1782 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n", 1783 __func__, strerror(-ret)); 1784 return ret; 1785 } 1786 1787 return ret; 1788 } 1789 1790 static int read_cpuinfo(const char *field, char *value, int len) 1791 { 1792 FILE *f; 1793 int ret = -1; 1794 int field_len = strlen(field); 1795 char line[512]; 1796 1797 f = fopen("/proc/cpuinfo", "r"); 1798 if (!f) { 1799 return -1; 1800 } 1801 1802 do { 1803 if (!fgets(line, sizeof(line), f)) { 1804 break; 1805 } 1806 if (!strncmp(line, field, field_len)) { 1807 pstrcpy(value, len, line); 1808 ret = 0; 1809 break; 1810 } 1811 } while (*line); 1812 1813 fclose(f); 1814 1815 return ret; 1816 } 1817 1818 uint32_t kvmppc_get_tbfreq(void) 1819 { 1820 char line[512]; 1821 char *ns; 1822 uint32_t retval = NANOSECONDS_PER_SECOND; 1823 1824 if (read_cpuinfo("timebase", line, sizeof(line))) { 1825 return retval; 1826 } 1827 1828 ns = strchr(line, ':'); 1829 if (!ns) { 1830 return retval; 1831 } 1832 1833 ns++; 1834 1835 return atoi(ns); 1836 } 1837 1838 bool kvmppc_get_host_serial(char **value) 1839 { 1840 return g_file_get_contents("/proc/device-tree/system-id", value, NULL, 1841 NULL); 1842 } 1843 1844 bool kvmppc_get_host_model(char **value) 1845 { 1846 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL); 1847 } 1848 1849 /* Try to find a device tree node for a CPU with clock-frequency property */ 1850 static int kvmppc_find_cpu_dt(char *buf, int buf_len) 1851 { 1852 struct dirent *dirp; 1853 DIR *dp; 1854 1855 dp = opendir(PROC_DEVTREE_CPU); 1856 if (!dp) { 1857 printf("Can't open directory " PROC_DEVTREE_CPU "\n"); 1858 return -1; 1859 } 1860 1861 buf[0] = '\0'; 1862 while ((dirp = readdir(dp)) != NULL) { 1863 FILE *f; 1864 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU, 1865 dirp->d_name); 1866 f = fopen(buf, "r"); 1867 if (f) { 1868 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name); 1869 fclose(f); 1870 break; 1871 } 1872 buf[0] = '\0'; 1873 } 1874 closedir(dp); 1875 if (buf[0] == '\0') { 1876 printf("Unknown host!\n"); 1877 return -1; 1878 } 1879 1880 return 0; 1881 } 1882 1883 static uint64_t kvmppc_read_int_dt(const char *filename) 1884 { 1885 union { 1886 uint32_t v32; 1887 uint64_t v64; 1888 } u; 1889 FILE *f; 1890 int len; 1891 1892 f = fopen(filename, "rb"); 1893 if (!f) { 1894 return -1; 1895 } 1896 1897 len = fread(&u, 1, sizeof(u), f); 1898 fclose(f); 1899 switch (len) { 1900 case 4: 1901 /* property is a 32-bit quantity */ 1902 return be32_to_cpu(u.v32); 1903 case 8: 1904 return be64_to_cpu(u.v64); 1905 } 1906 1907 return 0; 1908 } 1909 1910 /* 1911 * Read a CPU node property from the host device tree that's a single 1912 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong 1913 * (can't find or open the property, or doesn't understand the format) 1914 */ 1915 static uint64_t kvmppc_read_int_cpu_dt(const char *propname) 1916 { 1917 char buf[PATH_MAX], *tmp; 1918 uint64_t val; 1919 1920 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) { 1921 return -1; 1922 } 1923 1924 tmp = g_strdup_printf("%s/%s", buf, propname); 1925 val = kvmppc_read_int_dt(tmp); 1926 g_free(tmp); 1927 1928 return val; 1929 } 1930 1931 uint64_t kvmppc_get_clockfreq(void) 1932 { 1933 return kvmppc_read_int_cpu_dt("clock-frequency"); 1934 } 1935 1936 static int kvmppc_get_dec_bits(void) 1937 { 1938 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits"); 1939 1940 if (nr_bits > 0) { 1941 return nr_bits; 1942 } 1943 return 0; 1944 } 1945 1946 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo) 1947 { 1948 CPUState *cs = env_cpu(env); 1949 1950 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) && 1951 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) { 1952 return 0; 1953 } 1954 1955 return 1; 1956 } 1957 1958 int kvmppc_get_hasidle(CPUPPCState *env) 1959 { 1960 struct kvm_ppc_pvinfo pvinfo; 1961 1962 if (!kvmppc_get_pvinfo(env, &pvinfo) && 1963 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) { 1964 return 1; 1965 } 1966 1967 return 0; 1968 } 1969 1970 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) 1971 { 1972 uint32_t *hc = (uint32_t *)buf; 1973 struct kvm_ppc_pvinfo pvinfo; 1974 1975 if (!kvmppc_get_pvinfo(env, &pvinfo)) { 1976 memcpy(buf, pvinfo.hcall, buf_len); 1977 return 0; 1978 } 1979 1980 /* 1981 * Fallback to always fail hypercalls regardless of endianness: 1982 * 1983 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian) 1984 * li r3, -1 1985 * b .+8 (becomes nop in wrong endian) 1986 * bswap32(li r3, -1) 1987 */ 1988 1989 hc[0] = cpu_to_be32(0x08000048); 1990 hc[1] = cpu_to_be32(0x3860ffff); 1991 hc[2] = cpu_to_be32(0x48000008); 1992 hc[3] = cpu_to_be32(bswap32(0x3860ffff)); 1993 1994 return 1; 1995 } 1996 1997 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall) 1998 { 1999 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1); 2000 } 2001 2002 void kvmppc_enable_logical_ci_hcalls(void) 2003 { 2004 /* 2005 * FIXME: it would be nice if we could detect the cases where 2006 * we're using a device which requires the in kernel 2007 * implementation of these hcalls, but the kernel lacks them and 2008 * produce a warning. 2009 */ 2010 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD); 2011 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE); 2012 } 2013 2014 void kvmppc_enable_set_mode_hcall(void) 2015 { 2016 kvmppc_enable_hcall(kvm_state, H_SET_MODE); 2017 } 2018 2019 void kvmppc_enable_clear_ref_mod_hcalls(void) 2020 { 2021 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF); 2022 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD); 2023 } 2024 2025 void kvmppc_enable_h_page_init(void) 2026 { 2027 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT); 2028 } 2029 2030 void kvmppc_set_papr(PowerPCCPU *cpu) 2031 { 2032 CPUState *cs = CPU(cpu); 2033 int ret; 2034 2035 if (!kvm_enabled()) { 2036 return; 2037 } 2038 2039 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0); 2040 if (ret) { 2041 error_report("This vCPU type or KVM version does not support PAPR"); 2042 exit(1); 2043 } 2044 2045 /* 2046 * Update the capability flag so we sync the right information 2047 * with kvm 2048 */ 2049 cap_papr = 1; 2050 } 2051 2052 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr) 2053 { 2054 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr); 2055 } 2056 2057 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy) 2058 { 2059 CPUState *cs = CPU(cpu); 2060 int ret; 2061 2062 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy); 2063 if (ret && mpic_proxy) { 2064 error_report("This KVM version does not support EPR"); 2065 exit(1); 2066 } 2067 } 2068 2069 bool kvmppc_get_fwnmi(void) 2070 { 2071 return cap_fwnmi; 2072 } 2073 2074 int kvmppc_set_fwnmi(PowerPCCPU *cpu) 2075 { 2076 CPUState *cs = CPU(cpu); 2077 2078 return kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_FWNMI, 0); 2079 } 2080 2081 int kvmppc_smt_threads(void) 2082 { 2083 return cap_ppc_smt ? cap_ppc_smt : 1; 2084 } 2085 2086 int kvmppc_set_smt_threads(int smt) 2087 { 2088 int ret; 2089 2090 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0); 2091 if (!ret) { 2092 cap_ppc_smt = smt; 2093 } 2094 return ret; 2095 } 2096 2097 void kvmppc_error_append_smt_possible_hint(Error *const *errp) 2098 { 2099 int i; 2100 GString *g; 2101 char *s; 2102 2103 assert(kvm_enabled()); 2104 if (cap_ppc_smt_possible) { 2105 g = g_string_new("Available VSMT modes:"); 2106 for (i = 63; i >= 0; i--) { 2107 if ((1UL << i) & cap_ppc_smt_possible) { 2108 g_string_append_printf(g, " %lu", (1UL << i)); 2109 } 2110 } 2111 s = g_string_free(g, false); 2112 error_append_hint(errp, "%s.\n", s); 2113 g_free(s); 2114 } else { 2115 error_append_hint(errp, 2116 "This KVM seems to be too old to support VSMT.\n"); 2117 } 2118 } 2119 2120 2121 #ifdef TARGET_PPC64 2122 uint64_t kvmppc_vrma_limit(unsigned int hash_shift) 2123 { 2124 struct kvm_ppc_smmu_info info; 2125 long rampagesize, best_page_shift; 2126 int i; 2127 2128 /* 2129 * Find the largest hardware supported page size that's less than 2130 * or equal to the (logical) backing page size of guest RAM 2131 */ 2132 kvm_get_smmu_info(&info, &error_fatal); 2133 rampagesize = qemu_minrampagesize(); 2134 best_page_shift = 0; 2135 2136 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) { 2137 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i]; 2138 2139 if (!sps->page_shift) { 2140 continue; 2141 } 2142 2143 if ((sps->page_shift > best_page_shift) 2144 && ((1UL << sps->page_shift) <= rampagesize)) { 2145 best_page_shift = sps->page_shift; 2146 } 2147 } 2148 2149 return 1ULL << (best_page_shift + hash_shift - 7); 2150 } 2151 #endif 2152 2153 bool kvmppc_spapr_use_multitce(void) 2154 { 2155 return cap_spapr_multitce; 2156 } 2157 2158 int kvmppc_spapr_enable_inkernel_multitce(void) 2159 { 2160 int ret; 2161 2162 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2163 H_PUT_TCE_INDIRECT, 1); 2164 if (!ret) { 2165 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0, 2166 H_STUFF_TCE, 1); 2167 } 2168 2169 return ret; 2170 } 2171 2172 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift, 2173 uint64_t bus_offset, uint32_t nb_table, 2174 int *pfd, bool need_vfio) 2175 { 2176 long len; 2177 int fd; 2178 void *table; 2179 2180 /* 2181 * Must set fd to -1 so we don't try to munmap when called for 2182 * destroying the table, which the upper layers -will- do 2183 */ 2184 *pfd = -1; 2185 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) { 2186 return NULL; 2187 } 2188 2189 if (cap_spapr_tce_64) { 2190 struct kvm_create_spapr_tce_64 args = { 2191 .liobn = liobn, 2192 .page_shift = page_shift, 2193 .offset = bus_offset >> page_shift, 2194 .size = nb_table, 2195 .flags = 0 2196 }; 2197 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args); 2198 if (fd < 0) { 2199 fprintf(stderr, 2200 "KVM: Failed to create TCE64 table for liobn 0x%x\n", 2201 liobn); 2202 return NULL; 2203 } 2204 } else if (cap_spapr_tce) { 2205 uint64_t window_size = (uint64_t) nb_table << page_shift; 2206 struct kvm_create_spapr_tce args = { 2207 .liobn = liobn, 2208 .window_size = window_size, 2209 }; 2210 if ((window_size != args.window_size) || bus_offset) { 2211 return NULL; 2212 } 2213 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args); 2214 if (fd < 0) { 2215 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n", 2216 liobn); 2217 return NULL; 2218 } 2219 } else { 2220 return NULL; 2221 } 2222 2223 len = nb_table * sizeof(uint64_t); 2224 /* FIXME: round this up to page size */ 2225 2226 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); 2227 if (table == MAP_FAILED) { 2228 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n", 2229 liobn); 2230 close(fd); 2231 return NULL; 2232 } 2233 2234 *pfd = fd; 2235 return table; 2236 } 2237 2238 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table) 2239 { 2240 long len; 2241 2242 if (fd < 0) { 2243 return -1; 2244 } 2245 2246 len = nb_table * sizeof(uint64_t); 2247 if ((munmap(table, len) < 0) || 2248 (close(fd) < 0)) { 2249 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s", 2250 strerror(errno)); 2251 /* Leak the table */ 2252 } 2253 2254 return 0; 2255 } 2256 2257 int kvmppc_reset_htab(int shift_hint) 2258 { 2259 uint32_t shift = shift_hint; 2260 2261 if (!kvm_enabled()) { 2262 /* Full emulation, tell caller to allocate htab itself */ 2263 return 0; 2264 } 2265 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) { 2266 int ret; 2267 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); 2268 if (ret == -ENOTTY) { 2269 /* 2270 * At least some versions of PR KVM advertise the 2271 * capability, but don't implement the ioctl(). Oops. 2272 * Return 0 so that we allocate the htab in qemu, as is 2273 * correct for PR. 2274 */ 2275 return 0; 2276 } else if (ret < 0) { 2277 return ret; 2278 } 2279 return shift; 2280 } 2281 2282 /* 2283 * We have a kernel that predates the htab reset calls. For PR 2284 * KVM, we need to allocate the htab ourselves, for an HV KVM of 2285 * this era, it has allocated a 16MB fixed size hash table 2286 * already. 2287 */ 2288 if (kvmppc_is_pr(kvm_state)) { 2289 /* PR - tell caller to allocate htab */ 2290 return 0; 2291 } else { 2292 /* HV - assume 16MB kernel allocated htab */ 2293 return 24; 2294 } 2295 } 2296 2297 static inline uint32_t mfpvr(void) 2298 { 2299 uint32_t pvr; 2300 2301 asm ("mfpvr %0" 2302 : "=r"(pvr)); 2303 return pvr; 2304 } 2305 2306 static void alter_insns(uint64_t *word, uint64_t flags, bool on) 2307 { 2308 if (on) { 2309 *word |= flags; 2310 } else { 2311 *word &= ~flags; 2312 } 2313 } 2314 2315 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data) 2316 { 2317 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); 2318 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size"); 2319 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size"); 2320 2321 /* Now fix up the class with information we can query from the host */ 2322 pcc->pvr = mfpvr(); 2323 2324 alter_insns(&pcc->insns_flags, PPC_ALTIVEC, 2325 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC); 2326 alter_insns(&pcc->insns_flags2, PPC2_VSX, 2327 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX); 2328 alter_insns(&pcc->insns_flags2, PPC2_DFP, 2329 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP); 2330 2331 if (dcache_size != -1) { 2332 pcc->l1_dcache_size = dcache_size; 2333 } 2334 2335 if (icache_size != -1) { 2336 pcc->l1_icache_size = icache_size; 2337 } 2338 2339 #if defined(TARGET_PPC64) 2340 pcc->radix_page_info = kvm_get_radix_page_info(); 2341 2342 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) { 2343 /* 2344 * POWER9 DD1 has some bugs which make it not really ISA 3.00 2345 * compliant. More importantly, advertising ISA 3.00 2346 * architected mode may prevent guests from activating 2347 * necessary DD1 workarounds. 2348 */ 2349 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07 2350 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05); 2351 } 2352 #endif /* defined(TARGET_PPC64) */ 2353 } 2354 2355 bool kvmppc_has_cap_epr(void) 2356 { 2357 return cap_epr; 2358 } 2359 2360 bool kvmppc_has_cap_fixup_hcalls(void) 2361 { 2362 return cap_fixup_hcalls; 2363 } 2364 2365 bool kvmppc_has_cap_htm(void) 2366 { 2367 return cap_htm; 2368 } 2369 2370 bool kvmppc_has_cap_mmu_radix(void) 2371 { 2372 return cap_mmu_radix; 2373 } 2374 2375 bool kvmppc_has_cap_mmu_hash_v3(void) 2376 { 2377 return cap_mmu_hash_v3; 2378 } 2379 2380 static bool kvmppc_power8_host(void) 2381 { 2382 bool ret = false; 2383 #ifdef TARGET_PPC64 2384 { 2385 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr(); 2386 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) || 2387 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) || 2388 (base_pvr == CPU_POWERPC_POWER8_BASE); 2389 } 2390 #endif /* TARGET_PPC64 */ 2391 return ret; 2392 } 2393 2394 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c) 2395 { 2396 bool l1d_thread_priv_req = !kvmppc_power8_host(); 2397 2398 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) { 2399 return 2; 2400 } else if ((!l1d_thread_priv_req || 2401 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) && 2402 (c.character & c.character_mask 2403 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) { 2404 return 1; 2405 } 2406 2407 return 0; 2408 } 2409 2410 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c) 2411 { 2412 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) { 2413 return 2; 2414 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) { 2415 return 1; 2416 } 2417 2418 return 0; 2419 } 2420 2421 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c) 2422 { 2423 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) && 2424 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) && 2425 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) { 2426 return SPAPR_CAP_FIXED_NA; 2427 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) { 2428 return SPAPR_CAP_WORKAROUND; 2429 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) { 2430 return SPAPR_CAP_FIXED_CCD; 2431 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) { 2432 return SPAPR_CAP_FIXED_IBS; 2433 } 2434 2435 return 0; 2436 } 2437 2438 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c) 2439 { 2440 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) { 2441 return 1; 2442 } 2443 return 0; 2444 } 2445 2446 bool kvmppc_has_cap_xive(void) 2447 { 2448 return cap_xive; 2449 } 2450 2451 static void kvmppc_get_cpu_characteristics(KVMState *s) 2452 { 2453 struct kvm_ppc_cpu_char c; 2454 int ret; 2455 2456 /* Assume broken */ 2457 cap_ppc_safe_cache = 0; 2458 cap_ppc_safe_bounds_check = 0; 2459 cap_ppc_safe_indirect_branch = 0; 2460 2461 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR); 2462 if (!ret) { 2463 return; 2464 } 2465 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c); 2466 if (ret < 0) { 2467 return; 2468 } 2469 2470 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c); 2471 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c); 2472 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c); 2473 cap_ppc_count_cache_flush_assist = 2474 parse_cap_ppc_count_cache_flush_assist(c); 2475 } 2476 2477 int kvmppc_get_cap_safe_cache(void) 2478 { 2479 return cap_ppc_safe_cache; 2480 } 2481 2482 int kvmppc_get_cap_safe_bounds_check(void) 2483 { 2484 return cap_ppc_safe_bounds_check; 2485 } 2486 2487 int kvmppc_get_cap_safe_indirect_branch(void) 2488 { 2489 return cap_ppc_safe_indirect_branch; 2490 } 2491 2492 int kvmppc_get_cap_count_cache_flush_assist(void) 2493 { 2494 return cap_ppc_count_cache_flush_assist; 2495 } 2496 2497 bool kvmppc_has_cap_nested_kvm_hv(void) 2498 { 2499 return !!cap_ppc_nested_kvm_hv; 2500 } 2501 2502 int kvmppc_set_cap_nested_kvm_hv(int enable) 2503 { 2504 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable); 2505 } 2506 2507 bool kvmppc_has_cap_spapr_vfio(void) 2508 { 2509 return cap_spapr_vfio; 2510 } 2511 2512 int kvmppc_get_cap_large_decr(void) 2513 { 2514 return cap_large_decr; 2515 } 2516 2517 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable) 2518 { 2519 CPUState *cs = CPU(cpu); 2520 uint64_t lpcr; 2521 2522 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2523 /* Do we need to modify the LPCR? */ 2524 if (!!(lpcr & LPCR_LD) != !!enable) { 2525 if (enable) { 2526 lpcr |= LPCR_LD; 2527 } else { 2528 lpcr &= ~LPCR_LD; 2529 } 2530 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2531 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr); 2532 2533 if (!!(lpcr & LPCR_LD) != !!enable) { 2534 return -1; 2535 } 2536 } 2537 2538 return 0; 2539 } 2540 2541 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void) 2542 { 2543 uint32_t host_pvr = mfpvr(); 2544 PowerPCCPUClass *pvr_pcc; 2545 2546 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr); 2547 if (pvr_pcc == NULL) { 2548 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr); 2549 } 2550 2551 return pvr_pcc; 2552 } 2553 2554 static void pseries_machine_class_fixup(ObjectClass *oc, void *opaque) 2555 { 2556 MachineClass *mc = MACHINE_CLASS(oc); 2557 2558 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU; 2559 } 2560 2561 static int kvm_ppc_register_host_cpu_type(void) 2562 { 2563 TypeInfo type_info = { 2564 .name = TYPE_HOST_POWERPC_CPU, 2565 .class_init = kvmppc_host_cpu_class_init, 2566 }; 2567 PowerPCCPUClass *pvr_pcc; 2568 ObjectClass *oc; 2569 DeviceClass *dc; 2570 int i; 2571 2572 pvr_pcc = kvm_ppc_get_host_cpu_class(); 2573 if (pvr_pcc == NULL) { 2574 return -1; 2575 } 2576 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc)); 2577 type_register(&type_info); 2578 /* override TCG default cpu type with 'host' cpu model */ 2579 object_class_foreach(pseries_machine_class_fixup, TYPE_SPAPR_MACHINE, 2580 false, NULL); 2581 2582 oc = object_class_by_name(type_info.name); 2583 g_assert(oc); 2584 2585 /* 2586 * Update generic CPU family class alias (e.g. on a POWER8NVL host, 2587 * we want "POWER8" to be a "family" alias that points to the current 2588 * host CPU type, too) 2589 */ 2590 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc)); 2591 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) { 2592 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) { 2593 char *suffix; 2594 2595 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc)); 2596 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX); 2597 if (suffix) { 2598 *suffix = 0; 2599 } 2600 break; 2601 } 2602 } 2603 2604 return 0; 2605 } 2606 2607 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function) 2608 { 2609 struct kvm_rtas_token_args args = { 2610 .token = token, 2611 }; 2612 2613 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) { 2614 return -ENOENT; 2615 } 2616 2617 strncpy(args.name, function, sizeof(args.name) - 1); 2618 2619 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args); 2620 } 2621 2622 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp) 2623 { 2624 struct kvm_get_htab_fd s = { 2625 .flags = write ? KVM_GET_HTAB_WRITE : 0, 2626 .start_index = index, 2627 }; 2628 int ret; 2629 2630 if (!cap_htab_fd) { 2631 error_setg(errp, "KVM version doesn't support %s the HPT", 2632 write ? "writing" : "reading"); 2633 return -ENOTSUP; 2634 } 2635 2636 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s); 2637 if (ret < 0) { 2638 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s", 2639 write ? "writing" : "reading", write ? "to" : "from", 2640 strerror(errno)); 2641 return -errno; 2642 } 2643 2644 return ret; 2645 } 2646 2647 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns) 2648 { 2649 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2650 uint8_t buf[bufsize]; 2651 ssize_t rc; 2652 2653 do { 2654 rc = read(fd, buf, bufsize); 2655 if (rc < 0) { 2656 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n", 2657 strerror(errno)); 2658 return rc; 2659 } else if (rc) { 2660 uint8_t *buffer = buf; 2661 ssize_t n = rc; 2662 while (n) { 2663 struct kvm_get_htab_header *head = 2664 (struct kvm_get_htab_header *) buffer; 2665 size_t chunksize = sizeof(*head) + 2666 HASH_PTE_SIZE_64 * head->n_valid; 2667 2668 qemu_put_be32(f, head->index); 2669 qemu_put_be16(f, head->n_valid); 2670 qemu_put_be16(f, head->n_invalid); 2671 qemu_put_buffer(f, (void *)(head + 1), 2672 HASH_PTE_SIZE_64 * head->n_valid); 2673 2674 buffer += chunksize; 2675 n -= chunksize; 2676 } 2677 } 2678 } while ((rc != 0) 2679 && ((max_ns < 0) || 2680 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); 2681 2682 return (rc == 0) ? 1 : 0; 2683 } 2684 2685 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index, 2686 uint16_t n_valid, uint16_t n_invalid, Error **errp) 2687 { 2688 struct kvm_get_htab_header *buf; 2689 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64; 2690 ssize_t rc; 2691 2692 buf = alloca(chunksize); 2693 buf->index = index; 2694 buf->n_valid = n_valid; 2695 buf->n_invalid = n_invalid; 2696 2697 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid); 2698 2699 rc = write(fd, buf, chunksize); 2700 if (rc < 0) { 2701 error_setg_errno(errp, errno, "Error writing the KVM hash table"); 2702 return -errno; 2703 } 2704 if (rc != chunksize) { 2705 /* We should never get a short write on a single chunk */ 2706 error_setg(errp, "Short write while restoring the KVM hash table"); 2707 return -ENOSPC; 2708 } 2709 return 0; 2710 } 2711 2712 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 2713 { 2714 return true; 2715 } 2716 2717 void kvm_arch_init_irq_routing(KVMState *s) 2718 { 2719 } 2720 2721 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n) 2722 { 2723 int fd, rc; 2724 int i; 2725 2726 fd = kvmppc_get_htab_fd(false, ptex, &error_abort); 2727 2728 i = 0; 2729 while (i < n) { 2730 struct kvm_get_htab_header *hdr; 2731 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP; 2732 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64]; 2733 2734 rc = read(fd, buf, sizeof(buf)); 2735 if (rc < 0) { 2736 hw_error("kvmppc_read_hptes: Unable to read HPTEs"); 2737 } 2738 2739 hdr = (struct kvm_get_htab_header *)buf; 2740 while ((i < n) && ((char *)hdr < (buf + rc))) { 2741 int invalid = hdr->n_invalid, valid = hdr->n_valid; 2742 2743 if (hdr->index != (ptex + i)) { 2744 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32 2745 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i); 2746 } 2747 2748 if (n - i < valid) { 2749 valid = n - i; 2750 } 2751 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid); 2752 i += valid; 2753 2754 if ((n - i) < invalid) { 2755 invalid = n - i; 2756 } 2757 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64); 2758 i += invalid; 2759 2760 hdr = (struct kvm_get_htab_header *) 2761 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid); 2762 } 2763 } 2764 2765 close(fd); 2766 } 2767 2768 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1) 2769 { 2770 int fd, rc; 2771 struct { 2772 struct kvm_get_htab_header hdr; 2773 uint64_t pte0; 2774 uint64_t pte1; 2775 } buf; 2776 2777 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort); 2778 2779 buf.hdr.n_valid = 1; 2780 buf.hdr.n_invalid = 0; 2781 buf.hdr.index = ptex; 2782 buf.pte0 = cpu_to_be64(pte0); 2783 buf.pte1 = cpu_to_be64(pte1); 2784 2785 rc = write(fd, &buf, sizeof(buf)); 2786 if (rc != sizeof(buf)) { 2787 hw_error("kvmppc_write_hpte: Unable to update KVM HPT"); 2788 } 2789 close(fd); 2790 } 2791 2792 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2793 uint64_t address, uint32_t data, PCIDevice *dev) 2794 { 2795 return 0; 2796 } 2797 2798 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2799 int vector, PCIDevice *dev) 2800 { 2801 return 0; 2802 } 2803 2804 int kvm_arch_release_virq_post(int virq) 2805 { 2806 return 0; 2807 } 2808 2809 int kvm_arch_msi_data_to_gsi(uint32_t data) 2810 { 2811 return data & 0xffff; 2812 } 2813 2814 #if defined(TARGET_PPC64) 2815 int kvm_handle_nmi(PowerPCCPU *cpu, struct kvm_run *run) 2816 { 2817 uint16_t flags = run->flags & KVM_RUN_PPC_NMI_DISP_MASK; 2818 2819 cpu_synchronize_state(CPU(cpu)); 2820 2821 spapr_mce_req_event(cpu, flags == KVM_RUN_PPC_NMI_DISP_FULLY_RECOV); 2822 2823 return 0; 2824 } 2825 #endif 2826 2827 int kvmppc_enable_hwrng(void) 2828 { 2829 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) { 2830 return -1; 2831 } 2832 2833 return kvmppc_enable_hcall(kvm_state, H_RANDOM); 2834 } 2835 2836 void kvmppc_check_papr_resize_hpt(Error **errp) 2837 { 2838 if (!kvm_enabled()) { 2839 return; /* No KVM, we're good */ 2840 } 2841 2842 if (cap_resize_hpt) { 2843 return; /* Kernel has explicit support, we're good */ 2844 } 2845 2846 /* Otherwise fallback on looking for PR KVM */ 2847 if (kvmppc_is_pr(kvm_state)) { 2848 return; 2849 } 2850 2851 error_setg(errp, 2852 "Hash page table resizing not available with this KVM version"); 2853 } 2854 2855 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift) 2856 { 2857 CPUState *cs = CPU(cpu); 2858 struct kvm_ppc_resize_hpt rhpt = { 2859 .flags = flags, 2860 .shift = shift, 2861 }; 2862 2863 if (!cap_resize_hpt) { 2864 return -ENOSYS; 2865 } 2866 2867 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt); 2868 } 2869 2870 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift) 2871 { 2872 CPUState *cs = CPU(cpu); 2873 struct kvm_ppc_resize_hpt rhpt = { 2874 .flags = flags, 2875 .shift = shift, 2876 }; 2877 2878 if (!cap_resize_hpt) { 2879 return -ENOSYS; 2880 } 2881 2882 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt); 2883 } 2884 2885 /* 2886 * This is a helper function to detect a post migration scenario 2887 * in which a guest, running as KVM-HV, freezes in cpu_post_load because 2888 * the guest kernel can't handle a PVR value other than the actual host 2889 * PVR in KVM_SET_SREGS, even if pvr_match() returns true. 2890 * 2891 * If we don't have cap_ppc_pvr_compat and we're not running in PR 2892 * (so, we're HV), return true. The workaround itself is done in 2893 * cpu_post_load. 2894 * 2895 * The order here is important: we'll only check for KVM PR as a 2896 * fallback if the guest kernel can't handle the situation itself. 2897 * We need to avoid as much as possible querying the running KVM type 2898 * in QEMU level. 2899 */ 2900 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu) 2901 { 2902 CPUState *cs = CPU(cpu); 2903 2904 if (!kvm_enabled()) { 2905 return false; 2906 } 2907 2908 if (cap_ppc_pvr_compat) { 2909 return false; 2910 } 2911 2912 return !kvmppc_is_pr(cs->kvm_state); 2913 } 2914 2915 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online) 2916 { 2917 CPUState *cs = CPU(cpu); 2918 2919 if (kvm_enabled()) { 2920 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online); 2921 } 2922 } 2923 2924 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset) 2925 { 2926 CPUState *cs = CPU(cpu); 2927 2928 if (kvm_enabled()) { 2929 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset); 2930 } 2931 } 2932