1 /* 2 * PowerPC interal definitions for qemu. 3 * 4 * This library is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU Lesser General Public 6 * License as published by the Free Software Foundation; either 7 * version 2 of the License, or (at your option) any later version. 8 * 9 * This library is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * Lesser General Public License for more details. 13 * 14 * You should have received a copy of the GNU Lesser General Public 15 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #ifndef PPC_INTERNAL_H 19 #define PPC_INTERNAL_H 20 21 #define FUNC_MASK(name, ret_type, size, max_val) \ 22 static inline ret_type name(uint##size##_t start, \ 23 uint##size##_t end) \ 24 { \ 25 ret_type ret, max_bit = size - 1; \ 26 \ 27 if (likely(start == 0)) { \ 28 ret = max_val << (max_bit - end); \ 29 } else if (likely(end == max_bit)) { \ 30 ret = max_val >> start; \ 31 } else { \ 32 ret = (((uint##size##_t)(-1ULL)) >> (start)) ^ \ 33 (((uint##size##_t)(-1ULL) >> (end)) >> 1); \ 34 if (unlikely(start > end)) { \ 35 return ~ret; \ 36 } \ 37 } \ 38 \ 39 return ret; \ 40 } 41 42 #if defined(TARGET_PPC64) 43 FUNC_MASK(MASK, target_ulong, 64, UINT64_MAX); 44 #else 45 FUNC_MASK(MASK, target_ulong, 32, UINT32_MAX); 46 #endif 47 FUNC_MASK(mask_u32, uint32_t, 32, UINT32_MAX); 48 FUNC_MASK(mask_u64, uint64_t, 64, UINT64_MAX); 49 50 /*****************************************************************************/ 51 /*** Instruction decoding ***/ 52 #define EXTRACT_HELPER(name, shift, nb) \ 53 static inline uint32_t name(uint32_t opcode) \ 54 { \ 55 return extract32(opcode, shift, nb); \ 56 } 57 58 #define EXTRACT_SHELPER(name, shift, nb) \ 59 static inline int32_t name(uint32_t opcode) \ 60 { \ 61 return sextract32(opcode, shift, nb); \ 62 } 63 64 #define EXTRACT_HELPER_SPLIT(name, shift1, nb1, shift2, nb2) \ 65 static inline uint32_t name(uint32_t opcode) \ 66 { \ 67 return extract32(opcode, shift1, nb1) << nb2 | \ 68 extract32(opcode, shift2, nb2); \ 69 } 70 71 #define EXTRACT_HELPER_SPLIT_3(name, \ 72 d0_bits, shift_op_d0, shift_d0, \ 73 d1_bits, shift_op_d1, shift_d1, \ 74 d2_bits, shift_op_d2, shift_d2) \ 75 static inline int16_t name(uint32_t opcode) \ 76 { \ 77 return \ 78 (((opcode >> (shift_op_d0)) & ((1 << (d0_bits)) - 1)) << (shift_d0)) | \ 79 (((opcode >> (shift_op_d1)) & ((1 << (d1_bits)) - 1)) << (shift_d1)) | \ 80 (((opcode >> (shift_op_d2)) & ((1 << (d2_bits)) - 1)) << (shift_d2)); \ 81 } 82 83 84 /* Opcode part 1 */ 85 EXTRACT_HELPER(opc1, 26, 6); 86 /* Opcode part 2 */ 87 EXTRACT_HELPER(opc2, 1, 5); 88 /* Opcode part 3 */ 89 EXTRACT_HELPER(opc3, 6, 5); 90 /* Opcode part 4 */ 91 EXTRACT_HELPER(opc4, 16, 5); 92 /* Update Cr0 flags */ 93 EXTRACT_HELPER(Rc, 0, 1); 94 /* Update Cr6 flags (Altivec) */ 95 EXTRACT_HELPER(Rc21, 10, 1); 96 /* Destination */ 97 EXTRACT_HELPER(rD, 21, 5); 98 /* Source */ 99 EXTRACT_HELPER(rS, 21, 5); 100 /* First operand */ 101 EXTRACT_HELPER(rA, 16, 5); 102 /* Second operand */ 103 EXTRACT_HELPER(rB, 11, 5); 104 /* Third operand */ 105 EXTRACT_HELPER(rC, 6, 5); 106 /*** Get CRn ***/ 107 EXTRACT_HELPER(crfD, 23, 3); 108 EXTRACT_HELPER(BF, 23, 3); 109 EXTRACT_HELPER(crfS, 18, 3); 110 EXTRACT_HELPER(crbD, 21, 5); 111 EXTRACT_HELPER(crbA, 16, 5); 112 EXTRACT_HELPER(crbB, 11, 5); 113 /* SPR / TBL */ 114 EXTRACT_HELPER(_SPR, 11, 10); 115 static inline uint32_t SPR(uint32_t opcode) 116 { 117 uint32_t sprn = _SPR(opcode); 118 119 return ((sprn >> 5) & 0x1F) | ((sprn & 0x1F) << 5); 120 } 121 /*** Get constants ***/ 122 /* 16 bits signed immediate value */ 123 EXTRACT_SHELPER(SIMM, 0, 16); 124 /* 16 bits unsigned immediate value */ 125 EXTRACT_HELPER(UIMM, 0, 16); 126 /* 5 bits signed immediate value */ 127 EXTRACT_SHELPER(SIMM5, 16, 5); 128 /* 5 bits signed immediate value */ 129 EXTRACT_HELPER(UIMM5, 16, 5); 130 /* 4 bits unsigned immediate value */ 131 EXTRACT_HELPER(UIMM4, 16, 4); 132 /* Bit count */ 133 EXTRACT_HELPER(NB, 11, 5); 134 /* Shift count */ 135 EXTRACT_HELPER(SH, 11, 5); 136 /* lwat/stwat/ldat/lwat */ 137 EXTRACT_HELPER(FC, 11, 5); 138 /* Vector shift count */ 139 EXTRACT_HELPER(VSH, 6, 4); 140 /* Mask start */ 141 EXTRACT_HELPER(MB, 6, 5); 142 /* Mask end */ 143 EXTRACT_HELPER(ME, 1, 5); 144 /* Trap operand */ 145 EXTRACT_HELPER(TO, 21, 5); 146 147 EXTRACT_HELPER(CRM, 12, 8); 148 149 #ifndef CONFIG_USER_ONLY 150 EXTRACT_HELPER(SR, 16, 4); 151 #endif 152 153 /* mtfsf/mtfsfi */ 154 EXTRACT_HELPER(FPBF, 23, 3); 155 EXTRACT_HELPER(FPIMM, 12, 4); 156 EXTRACT_HELPER(FPL, 25, 1); 157 EXTRACT_HELPER(FPFLM, 17, 8); 158 EXTRACT_HELPER(FPW, 16, 1); 159 160 /* addpcis */ 161 EXTRACT_HELPER_SPLIT_3(DX, 10, 6, 6, 5, 16, 1, 1, 0, 0) 162 #if defined(TARGET_PPC64) 163 /* darn */ 164 EXTRACT_HELPER(L, 16, 2); 165 #endif 166 167 /*** Jump target decoding ***/ 168 /* Immediate address */ 169 static inline target_ulong LI(uint32_t opcode) 170 { 171 return (opcode >> 0) & 0x03FFFFFC; 172 } 173 174 static inline uint32_t BD(uint32_t opcode) 175 { 176 return (opcode >> 0) & 0xFFFC; 177 } 178 179 EXTRACT_HELPER(BO, 21, 5); 180 EXTRACT_HELPER(BI, 16, 5); 181 /* Absolute/relative address */ 182 EXTRACT_HELPER(AA, 1, 1); 183 /* Link */ 184 EXTRACT_HELPER(LK, 0, 1); 185 186 /* DFP Z22-form */ 187 EXTRACT_HELPER(DCM, 10, 6) 188 189 /* DFP Z23-form */ 190 EXTRACT_HELPER(RMC, 9, 2) 191 EXTRACT_HELPER(Rrm, 16, 1) 192 193 EXTRACT_HELPER_SPLIT(DQxT, 3, 1, 21, 5); 194 EXTRACT_HELPER_SPLIT(xT, 0, 1, 21, 5); 195 EXTRACT_HELPER_SPLIT(xS, 0, 1, 21, 5); 196 EXTRACT_HELPER_SPLIT(xA, 2, 1, 16, 5); 197 EXTRACT_HELPER_SPLIT(xB, 1, 1, 11, 5); 198 EXTRACT_HELPER_SPLIT(xC, 3, 1, 6, 5); 199 EXTRACT_HELPER(DM, 8, 2); 200 EXTRACT_HELPER(UIM, 16, 2); 201 EXTRACT_HELPER(SHW, 8, 2); 202 EXTRACT_HELPER(SP, 19, 2); 203 EXTRACT_HELPER(IMM8, 11, 8); 204 EXTRACT_HELPER(DCMX, 16, 7); 205 EXTRACT_HELPER_SPLIT_3(DCMX_XV, 5, 16, 0, 1, 2, 5, 1, 6, 6); 206 207 #if defined(HOST_WORDS_BIGENDIAN) 208 #define VsrB(i) u8[i] 209 #define VsrH(i) u16[i] 210 #define VsrW(i) u32[i] 211 #define VsrD(i) u64[i] 212 #else 213 #define VsrB(i) u8[15 - (i)] 214 #define VsrH(i) u16[7 - (i)] 215 #define VsrW(i) u32[3 - (i)] 216 #define VsrD(i) u64[1 - (i)] 217 #endif 218 219 static inline void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) 220 { 221 vsr->VsrD(0) = env->vsr[n].u64[0]; 222 vsr->VsrD(1) = env->vsr[n].u64[1]; 223 } 224 225 static inline void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env) 226 { 227 env->vsr[n].u64[0] = vsr->VsrD(0); 228 env->vsr[n].u64[1] = vsr->VsrD(1); 229 } 230 231 void helper_compute_fprf_float16(CPUPPCState *env, float16 arg); 232 void helper_compute_fprf_float32(CPUPPCState *env, float32 arg); 233 void helper_compute_fprf_float128(CPUPPCState *env, float128 arg); 234 235 /* Raise a data fault alignment exception for the specified virtual address */ 236 void ppc_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 237 MMUAccessType access_type, 238 int mmu_idx, uintptr_t retaddr); 239 #endif /* PPC_INTERNAL_H */ 240