xref: /openbmc/qemu/target/ppc/gdbstub.c (revision 52f2b8961409be834abaee5189bff2cc9e372851)
1 /*
2  * PowerPC gdb server stub
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  * Copyright (c) 2013 SUSE LINUX Products GmbH
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "cpu.h"
23 #include "exec/gdbstub.h"
24 
25 static int ppc_gdb_register_len_apple(int n)
26 {
27     switch (n) {
28     case 0 ... 31:
29         /* gprs */
30         return 8;
31     case 32 ... 63:
32         /* fprs */
33         return 8;
34     case 64 ... 95:
35         return 16;
36     case 64 + 32: /* nip */
37     case 65 + 32: /* msr */
38     case 67 + 32: /* lr */
39     case 68 + 32: /* ctr */
40     case 70 + 32: /* fpscr */
41         return 8;
42     case 66 + 32: /* cr */
43     case 69 + 32: /* xer */
44         return 4;
45     default:
46         return 0;
47     }
48 }
49 
50 static int ppc_gdb_register_len(int n)
51 {
52     switch (n) {
53     case 0 ... 31:
54         /* gprs */
55         return sizeof(target_ulong);
56     case 32 ... 63:
57         /* fprs */
58         if (gdb_has_xml) {
59             return 0;
60         }
61         return 8;
62     case 66:
63         /* cr */
64     case 69:
65         /* xer */
66         return 4;
67     case 64:
68         /* nip */
69     case 65:
70         /* msr */
71     case 67:
72         /* lr */
73     case 68:
74         /* ctr */
75         return sizeof(target_ulong);
76     case 70:
77         /* fpscr */
78         if (gdb_has_xml) {
79             return 0;
80         }
81         return sizeof(target_ulong);
82     default:
83         return 0;
84     }
85 }
86 
87 /*
88  * We need to present the registers to gdb in the "current" memory
89  * ordering.  For user-only mode we get this for free;
90  * TARGET_WORDS_BIGENDIAN is set to the proper ordering for the
91  * binary, and cannot be changed.  For system mode,
92  * TARGET_WORDS_BIGENDIAN is always set, and we must check the current
93  * mode of the chip to see if we're running in little-endian.
94  */
95 void ppc_maybe_bswap_register(CPUPPCState *env, uint8_t *mem_buf, int len)
96 {
97 #ifndef CONFIG_USER_ONLY
98     if (!msr_le) {
99         /* do nothing */
100     } else if (len == 4) {
101         bswap32s((uint32_t *)mem_buf);
102     } else if (len == 8) {
103         bswap64s((uint64_t *)mem_buf);
104     } else {
105         g_assert_not_reached();
106     }
107 #endif
108 }
109 
110 /*
111  * Old gdb always expects FP registers.  Newer (xml-aware) gdb only
112  * expects whatever the target description contains.  Due to a
113  * historical mishap the FP registers appear in between core integer
114  * regs and PC, MSR, CR, and so forth.  We hack round this by giving
115  * the FP regs zero size when talking to a newer gdb.
116  */
117 
118 int ppc_cpu_gdb_read_register(CPUState *cs, uint8_t *mem_buf, int n)
119 {
120     PowerPCCPU *cpu = POWERPC_CPU(cs);
121     CPUPPCState *env = &cpu->env;
122     int r = ppc_gdb_register_len(n);
123 
124     if (!r) {
125         return r;
126     }
127 
128     if (n < 32) {
129         /* gprs */
130         gdb_get_regl(mem_buf, env->gpr[n]);
131     } else if (n < 64) {
132         /* fprs */
133         stfq_p(mem_buf, *cpu_fpr_ptr(env, n - 32));
134     } else {
135         switch (n) {
136         case 64:
137             gdb_get_regl(mem_buf, env->nip);
138             break;
139         case 65:
140             gdb_get_regl(mem_buf, env->msr);
141             break;
142         case 66:
143             {
144                 uint32_t cr = 0;
145                 int i;
146                 for (i = 0; i < 8; i++) {
147                     cr |= env->crf[i] << (32 - ((i + 1) * 4));
148                 }
149                 gdb_get_reg32(mem_buf, cr);
150                 break;
151             }
152         case 67:
153             gdb_get_regl(mem_buf, env->lr);
154             break;
155         case 68:
156             gdb_get_regl(mem_buf, env->ctr);
157             break;
158         case 69:
159             gdb_get_reg32(mem_buf, env->xer);
160             break;
161         case 70:
162             gdb_get_reg32(mem_buf, env->fpscr);
163             break;
164         }
165     }
166     ppc_maybe_bswap_register(env, mem_buf, r);
167     return r;
168 }
169 
170 int ppc_cpu_gdb_read_register_apple(CPUState *cs, uint8_t *mem_buf, int n)
171 {
172     PowerPCCPU *cpu = POWERPC_CPU(cs);
173     CPUPPCState *env = &cpu->env;
174     int r = ppc_gdb_register_len_apple(n);
175 
176     if (!r) {
177         return r;
178     }
179 
180     if (n < 32) {
181         /* gprs */
182         gdb_get_reg64(mem_buf, env->gpr[n]);
183     } else if (n < 64) {
184         /* fprs */
185         stfq_p(mem_buf, *cpu_fpr_ptr(env, n - 32));
186     } else if (n < 96) {
187         /* Altivec */
188         stq_p(mem_buf, n - 64);
189         stq_p(mem_buf + 8, 0);
190     } else {
191         switch (n) {
192         case 64 + 32:
193             gdb_get_reg64(mem_buf, env->nip);
194             break;
195         case 65 + 32:
196             gdb_get_reg64(mem_buf, env->msr);
197             break;
198         case 66 + 32:
199             {
200                 uint32_t cr = 0;
201                 int i;
202                 for (i = 0; i < 8; i++) {
203                     cr |= env->crf[i] << (32 - ((i + 1) * 4));
204                 }
205                 gdb_get_reg32(mem_buf, cr);
206                 break;
207             }
208         case 67 + 32:
209             gdb_get_reg64(mem_buf, env->lr);
210             break;
211         case 68 + 32:
212             gdb_get_reg64(mem_buf, env->ctr);
213             break;
214         case 69 + 32:
215             gdb_get_reg32(mem_buf, env->xer);
216             break;
217         case 70 + 32:
218             gdb_get_reg64(mem_buf, env->fpscr);
219             break;
220         }
221     }
222     ppc_maybe_bswap_register(env, mem_buf, r);
223     return r;
224 }
225 
226 int ppc_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
227 {
228     PowerPCCPU *cpu = POWERPC_CPU(cs);
229     CPUPPCState *env = &cpu->env;
230     int r = ppc_gdb_register_len(n);
231 
232     if (!r) {
233         return r;
234     }
235     ppc_maybe_bswap_register(env, mem_buf, r);
236     if (n < 32) {
237         /* gprs */
238         env->gpr[n] = ldtul_p(mem_buf);
239     } else if (n < 64) {
240         /* fprs */
241         *cpu_fpr_ptr(env, n - 32) = ldfq_p(mem_buf);
242     } else {
243         switch (n) {
244         case 64:
245             env->nip = ldtul_p(mem_buf);
246             break;
247         case 65:
248             ppc_store_msr(env, ldtul_p(mem_buf));
249             break;
250         case 66:
251             {
252                 uint32_t cr = ldl_p(mem_buf);
253                 int i;
254                 for (i = 0; i < 8; i++) {
255                     env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
256                 }
257                 break;
258             }
259         case 67:
260             env->lr = ldtul_p(mem_buf);
261             break;
262         case 68:
263             env->ctr = ldtul_p(mem_buf);
264             break;
265         case 69:
266             env->xer = ldl_p(mem_buf);
267             break;
268         case 70:
269             /* fpscr */
270             store_fpscr(env, ldtul_p(mem_buf), 0xffffffff);
271             break;
272         }
273     }
274     return r;
275 }
276 int ppc_cpu_gdb_write_register_apple(CPUState *cs, uint8_t *mem_buf, int n)
277 {
278     PowerPCCPU *cpu = POWERPC_CPU(cs);
279     CPUPPCState *env = &cpu->env;
280     int r = ppc_gdb_register_len_apple(n);
281 
282     if (!r) {
283         return r;
284     }
285     ppc_maybe_bswap_register(env, mem_buf, r);
286     if (n < 32) {
287         /* gprs */
288         env->gpr[n] = ldq_p(mem_buf);
289     } else if (n < 64) {
290         /* fprs */
291         *cpu_fpr_ptr(env, n - 32) = ldfq_p(mem_buf);
292     } else {
293         switch (n) {
294         case 64 + 32:
295             env->nip = ldq_p(mem_buf);
296             break;
297         case 65 + 32:
298             ppc_store_msr(env, ldq_p(mem_buf));
299             break;
300         case 66 + 32:
301             {
302                 uint32_t cr = ldl_p(mem_buf);
303                 int i;
304                 for (i = 0; i < 8; i++) {
305                     env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
306                 }
307                 break;
308             }
309         case 67 + 32:
310             env->lr = ldq_p(mem_buf);
311             break;
312         case 68 + 32:
313             env->ctr = ldq_p(mem_buf);
314             break;
315         case 69 + 32:
316             env->xer = ldl_p(mem_buf);
317             break;
318         case 70 + 32:
319             /* fpscr */
320             store_fpscr(env, ldq_p(mem_buf), 0xffffffff);
321             break;
322         }
323     }
324     return r;
325 }
326 
327 #ifndef CONFIG_USER_ONLY
328 void ppc_gdb_gen_spr_xml(PowerPCCPU *cpu)
329 {
330     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
331     CPUPPCState *env = &cpu->env;
332     GString *xml;
333     char *spr_name;
334     unsigned int num_regs = 0;
335     int i;
336 
337     if (pcc->gdb_spr_xml) {
338         return;
339     }
340 
341     xml = g_string_new("<?xml version=\"1.0\"?>");
342     g_string_append(xml, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
343     g_string_append(xml, "<feature name=\"org.qemu.power.spr\">");
344 
345     for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
346         ppc_spr_t *spr = &env->spr_cb[i];
347 
348         if (!spr->name) {
349             continue;
350         }
351 
352         spr_name = g_ascii_strdown(spr->name, -1);
353         g_string_append_printf(xml, "<reg name=\"%s\"", spr_name);
354         g_free(spr_name);
355 
356         g_string_append_printf(xml, " bitsize=\"%d\"", TARGET_LONG_BITS);
357         g_string_append(xml, " group=\"spr\"/>");
358 
359         /*
360          * GDB identifies registers based on the order they are
361          * presented in the XML. These ids will not match QEMU's
362          * representation (which follows the PowerISA).
363          *
364          * Store the position of the current register description so
365          * we can make the correspondence later.
366          */
367         spr->gdb_id = num_regs;
368         num_regs++;
369     }
370 
371     g_string_append(xml, "</feature>");
372 
373     pcc->gdb_num_sprs = num_regs;
374     pcc->gdb_spr_xml = g_string_free(xml, false);
375 }
376 
377 const char *ppc_gdb_get_dynamic_xml(CPUState *cs, const char *xml_name)
378 {
379     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
380 
381     if (strcmp(xml_name, "power-spr.xml") == 0) {
382         return pcc->gdb_spr_xml;
383     }
384     return NULL;
385 }
386 #endif
387