1 /* 2 * PowerPC floating point and SPE emulation helpers for QEMU. 3 * 4 * Copyright (c) 2003-2007 Jocelyn Mayer 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "exec/helper-proto.h" 22 #include "exec/exec-all.h" 23 #include "internal.h" 24 #include "fpu/softfloat.h" 25 26 static inline float128 float128_snan_to_qnan(float128 x) 27 { 28 float128 r; 29 30 r.high = x.high | 0x0000800000000000; 31 r.low = x.low; 32 return r; 33 } 34 35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL) 36 #define float32_snan_to_qnan(x) ((x) | 0x00400000) 37 #define float16_snan_to_qnan(x) ((x) | 0x0200) 38 39 static inline float32 bfp32_neg(float32 a) 40 { 41 if (unlikely(float32_is_any_nan(a))) { 42 return a; 43 } else { 44 return float32_chs(a); 45 } 46 } 47 48 static inline bool fp_exceptions_enabled(CPUPPCState *env) 49 { 50 #ifdef CONFIG_USER_ONLY 51 return true; 52 #else 53 return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0; 54 #endif 55 } 56 57 /*****************************************************************************/ 58 /* Floating point operations helpers */ 59 60 /* 61 * This is the non-arithmatic conversion that happens e.g. on loads. 62 * In the Power ISA pseudocode, this is called DOUBLE. 63 */ 64 uint64_t helper_todouble(uint32_t arg) 65 { 66 uint32_t abs_arg = arg & 0x7fffffff; 67 uint64_t ret; 68 69 if (likely(abs_arg >= 0x00800000)) { 70 if (unlikely(extract32(arg, 23, 8) == 0xff)) { 71 /* Inf or NAN. */ 72 ret = (uint64_t)extract32(arg, 31, 1) << 63; 73 ret |= (uint64_t)0x7ff << 52; 74 ret |= (uint64_t)extract32(arg, 0, 23) << 29; 75 } else { 76 /* Normalized operand. */ 77 ret = (uint64_t)extract32(arg, 30, 2) << 62; 78 ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59; 79 ret |= (uint64_t)extract32(arg, 0, 30) << 29; 80 } 81 } else { 82 /* Zero or Denormalized operand. */ 83 ret = (uint64_t)extract32(arg, 31, 1) << 63; 84 if (unlikely(abs_arg != 0)) { 85 /* 86 * Denormalized operand. 87 * Shift fraction so that the msb is in the implicit bit position. 88 * Thus, shift is in the range [1:23]. 89 */ 90 int shift = clz32(abs_arg) - 8; 91 /* 92 * The first 3 terms compute the float64 exponent. We then bias 93 * this result by -1 so that we can swallow the implicit bit below. 94 */ 95 int exp = -126 - shift + 1023 - 1; 96 97 ret |= (uint64_t)exp << 52; 98 ret += (uint64_t)abs_arg << (52 - 23 + shift); 99 } 100 } 101 return ret; 102 } 103 104 /* 105 * This is the non-arithmatic conversion that happens e.g. on stores. 106 * In the Power ISA pseudocode, this is called SINGLE. 107 */ 108 uint32_t helper_tosingle(uint64_t arg) 109 { 110 int exp = extract64(arg, 52, 11); 111 uint32_t ret; 112 113 if (likely(exp > 896)) { 114 /* No denormalization required (includes Inf, NaN). */ 115 ret = extract64(arg, 62, 2) << 30; 116 ret |= extract64(arg, 29, 30); 117 } else { 118 /* 119 * Zero or Denormal result. If the exponent is in bounds for 120 * a single-precision denormal result, extract the proper 121 * bits. If the input is not zero, and the exponent is out of 122 * bounds, then the result is undefined; this underflows to 123 * zero. 124 */ 125 ret = extract64(arg, 63, 1) << 31; 126 if (unlikely(exp >= 874)) { 127 /* Denormal result. */ 128 ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp); 129 } 130 } 131 return ret; 132 } 133 134 static inline int ppc_float32_get_unbiased_exp(float32 f) 135 { 136 return ((f >> 23) & 0xFF) - 127; 137 } 138 139 static inline int ppc_float64_get_unbiased_exp(float64 f) 140 { 141 return ((f >> 52) & 0x7FF) - 1023; 142 } 143 144 #define COMPUTE_FPRF(tp) \ 145 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \ 146 { \ 147 bool neg = tp##_is_neg(arg); \ 148 target_ulong fprf; \ 149 if (likely(tp##_is_normal(arg))) { \ 150 fprf = neg ? 0x08 << FPSCR_FPRF : 0x04 << FPSCR_FPRF; \ 151 } else if (tp##_is_zero(arg)) { \ 152 fprf = neg ? 0x12 << FPSCR_FPRF : 0x02 << FPSCR_FPRF; \ 153 } else if (tp##_is_zero_or_denormal(arg)) { \ 154 fprf = neg ? 0x18 << FPSCR_FPRF : 0x14 << FPSCR_FPRF; \ 155 } else if (tp##_is_infinity(arg)) { \ 156 fprf = neg ? 0x09 << FPSCR_FPRF : 0x05 << FPSCR_FPRF; \ 157 } else { \ 158 float_status dummy = { }; /* snan_bit_is_one = 0 */ \ 159 if (tp##_is_signaling_nan(arg, &dummy)) { \ 160 fprf = 0x00 << FPSCR_FPRF; \ 161 } else { \ 162 fprf = 0x11 << FPSCR_FPRF; \ 163 } \ 164 } \ 165 env->fpscr = (env->fpscr & ~FP_FPRF) | fprf; \ 166 } 167 168 COMPUTE_FPRF(float16) 169 COMPUTE_FPRF(float32) 170 COMPUTE_FPRF(float64) 171 COMPUTE_FPRF(float128) 172 173 /* Floating-point invalid operations exception */ 174 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr) 175 { 176 /* Update the floating-point invalid operation summary */ 177 env->fpscr |= FP_VX; 178 /* Update the floating-point exception summary */ 179 env->fpscr |= FP_FX; 180 if (env->fpscr & FP_VE) { 181 /* Update the floating-point enabled exception summary */ 182 env->fpscr |= FP_FEX; 183 if (fp_exceptions_enabled(env)) { 184 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, 185 POWERPC_EXCP_FP | op, retaddr); 186 } 187 } 188 } 189 190 static void finish_invalid_op_arith(CPUPPCState *env, int op, 191 bool set_fpcc, uintptr_t retaddr) 192 { 193 env->fpscr &= ~(FP_FR | FP_FI); 194 if (!(env->fpscr & FP_VE)) { 195 if (set_fpcc) { 196 env->fpscr &= ~FP_FPCC; 197 env->fpscr |= (FP_C | FP_FU); 198 } 199 } 200 finish_invalid_op_excp(env, op, retaddr); 201 } 202 203 /* Signalling NaN */ 204 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr) 205 { 206 env->fpscr |= FP_VXSNAN; 207 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr); 208 } 209 210 /* Magnitude subtraction of infinities */ 211 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc, 212 uintptr_t retaddr) 213 { 214 env->fpscr |= FP_VXISI; 215 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr); 216 } 217 218 /* Division of infinity by infinity */ 219 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc, 220 uintptr_t retaddr) 221 { 222 env->fpscr |= FP_VXIDI; 223 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr); 224 } 225 226 /* Division of zero by zero */ 227 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc, 228 uintptr_t retaddr) 229 { 230 env->fpscr |= FP_VXZDZ; 231 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr); 232 } 233 234 /* Multiplication of zero by infinity */ 235 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc, 236 uintptr_t retaddr) 237 { 238 env->fpscr |= FP_VXIMZ; 239 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr); 240 } 241 242 /* Square root of a negative number */ 243 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc, 244 uintptr_t retaddr) 245 { 246 env->fpscr |= FP_VXSQRT; 247 finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr); 248 } 249 250 /* Ordered comparison of NaN */ 251 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc, 252 uintptr_t retaddr) 253 { 254 env->fpscr |= FP_VXVC; 255 if (set_fpcc) { 256 env->fpscr &= ~FP_FPCC; 257 env->fpscr |= (FP_C | FP_FU); 258 } 259 /* Update the floating-point invalid operation summary */ 260 env->fpscr |= FP_VX; 261 /* Update the floating-point exception summary */ 262 env->fpscr |= FP_FX; 263 /* We must update the target FPR before raising the exception */ 264 if (env->fpscr & FP_VE) { 265 CPUState *cs = env_cpu(env); 266 267 cs->exception_index = POWERPC_EXCP_PROGRAM; 268 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; 269 /* Update the floating-point enabled exception summary */ 270 env->fpscr |= FP_FEX; 271 /* Exception is deferred */ 272 } 273 } 274 275 /* Invalid conversion */ 276 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc, 277 uintptr_t retaddr) 278 { 279 env->fpscr |= FP_VXCVI; 280 env->fpscr &= ~(FP_FR | FP_FI); 281 if (!(env->fpscr & FP_VE)) { 282 if (set_fpcc) { 283 env->fpscr &= ~FP_FPCC; 284 env->fpscr |= (FP_C | FP_FU); 285 } 286 } 287 finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr); 288 } 289 290 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr) 291 { 292 env->fpscr |= FP_ZX; 293 env->fpscr &= ~(FP_FR | FP_FI); 294 /* Update the floating-point exception summary */ 295 env->fpscr |= FP_FX; 296 if (env->fpscr & FP_ZE) { 297 /* Update the floating-point enabled exception summary */ 298 env->fpscr |= FP_FEX; 299 if (fp_exceptions_enabled(env)) { 300 raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, 301 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX, 302 raddr); 303 } 304 } 305 } 306 307 static inline int float_overflow_excp(CPUPPCState *env) 308 { 309 CPUState *cs = env_cpu(env); 310 311 env->fpscr |= FP_OX; 312 /* Update the floating-point exception summary */ 313 env->fpscr |= FP_FX; 314 315 bool overflow_enabled = !!(env->fpscr & FP_OE); 316 if (overflow_enabled) { 317 /* Update the floating-point enabled exception summary */ 318 env->fpscr |= FP_FEX; 319 /* We must update the target FPR before raising the exception */ 320 cs->exception_index = POWERPC_EXCP_PROGRAM; 321 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; 322 } 323 324 return overflow_enabled ? 0 : float_flag_inexact; 325 } 326 327 static inline void float_underflow_excp(CPUPPCState *env) 328 { 329 CPUState *cs = env_cpu(env); 330 331 env->fpscr |= FP_UX; 332 /* Update the floating-point exception summary */ 333 env->fpscr |= FP_FX; 334 if (env->fpscr & FP_UE) { 335 /* Update the floating-point enabled exception summary */ 336 env->fpscr |= FP_FEX; 337 /* We must update the target FPR before raising the exception */ 338 cs->exception_index = POWERPC_EXCP_PROGRAM; 339 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; 340 } 341 } 342 343 static inline void float_inexact_excp(CPUPPCState *env) 344 { 345 CPUState *cs = env_cpu(env); 346 347 env->fpscr |= FP_XX; 348 /* Update the floating-point exception summary */ 349 env->fpscr |= FP_FX; 350 if (env->fpscr & FP_XE) { 351 /* Update the floating-point enabled exception summary */ 352 env->fpscr |= FP_FEX; 353 /* We must update the target FPR before raising the exception */ 354 cs->exception_index = POWERPC_EXCP_PROGRAM; 355 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; 356 } 357 } 358 359 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit) 360 { 361 uint32_t mask = 1u << bit; 362 if (env->fpscr & mask) { 363 ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask); 364 } 365 } 366 367 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit) 368 { 369 uint32_t mask = 1u << bit; 370 if (!(env->fpscr & mask)) { 371 ppc_store_fpscr(env, env->fpscr | mask); 372 } 373 } 374 375 void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles) 376 { 377 target_ulong mask = 0; 378 int i; 379 380 /* TODO: push this extension back to translation time */ 381 for (i = 0; i < sizeof(target_ulong) * 2; i++) { 382 if (nibbles & (1 << i)) { 383 mask |= (target_ulong) 0xf << (4 * i); 384 } 385 } 386 val = (val & mask) | (env->fpscr & ~mask); 387 ppc_store_fpscr(env, val); 388 } 389 390 static void do_fpscr_check_status(CPUPPCState *env, uintptr_t raddr) 391 { 392 CPUState *cs = env_cpu(env); 393 target_ulong fpscr = env->fpscr; 394 int error = 0; 395 396 if ((fpscr & FP_OX) && (fpscr & FP_OE)) { 397 error = POWERPC_EXCP_FP_OX; 398 } else if ((fpscr & FP_UX) && (fpscr & FP_UE)) { 399 error = POWERPC_EXCP_FP_UX; 400 } else if ((fpscr & FP_XX) && (fpscr & FP_XE)) { 401 error = POWERPC_EXCP_FP_XX; 402 } else if ((fpscr & FP_ZX) && (fpscr & FP_ZE)) { 403 error = POWERPC_EXCP_FP_ZX; 404 } else if (fpscr & FP_VE) { 405 if (fpscr & FP_VXSOFT) { 406 error = POWERPC_EXCP_FP_VXSOFT; 407 } else if (fpscr & FP_VXSNAN) { 408 error = POWERPC_EXCP_FP_VXSNAN; 409 } else if (fpscr & FP_VXISI) { 410 error = POWERPC_EXCP_FP_VXISI; 411 } else if (fpscr & FP_VXIDI) { 412 error = POWERPC_EXCP_FP_VXIDI; 413 } else if (fpscr & FP_VXZDZ) { 414 error = POWERPC_EXCP_FP_VXZDZ; 415 } else if (fpscr & FP_VXIMZ) { 416 error = POWERPC_EXCP_FP_VXIMZ; 417 } else if (fpscr & FP_VXVC) { 418 error = POWERPC_EXCP_FP_VXVC; 419 } else if (fpscr & FP_VXSQRT) { 420 error = POWERPC_EXCP_FP_VXSQRT; 421 } else if (fpscr & FP_VXCVI) { 422 error = POWERPC_EXCP_FP_VXCVI; 423 } else { 424 return; 425 } 426 } else { 427 return; 428 } 429 cs->exception_index = POWERPC_EXCP_PROGRAM; 430 env->error_code = error | POWERPC_EXCP_FP; 431 env->fpscr |= FP_FEX; 432 /* Deferred floating-point exception after target FPSCR update */ 433 if (fp_exceptions_enabled(env)) { 434 raise_exception_err_ra(env, cs->exception_index, 435 env->error_code, raddr); 436 } 437 } 438 439 void helper_fpscr_check_status(CPUPPCState *env) 440 { 441 do_fpscr_check_status(env, GETPC()); 442 } 443 444 static void do_float_check_status(CPUPPCState *env, bool change_fi, 445 uintptr_t raddr) 446 { 447 CPUState *cs = env_cpu(env); 448 int status = get_float_exception_flags(&env->fp_status); 449 450 if (status & float_flag_overflow) { 451 status |= float_overflow_excp(env); 452 } else if (status & float_flag_underflow) { 453 float_underflow_excp(env); 454 } 455 if (status & float_flag_inexact) { 456 float_inexact_excp(env); 457 } 458 if (change_fi) { 459 env->fpscr = FIELD_DP64(env->fpscr, FPSCR, FI, 460 !!(status & float_flag_inexact)); 461 } 462 463 if (cs->exception_index == POWERPC_EXCP_PROGRAM && 464 (env->error_code & POWERPC_EXCP_FP)) { 465 /* Deferred floating-point exception after target FPR update */ 466 if (fp_exceptions_enabled(env)) { 467 raise_exception_err_ra(env, cs->exception_index, 468 env->error_code, raddr); 469 } 470 } 471 } 472 473 void helper_float_check_status(CPUPPCState *env) 474 { 475 do_float_check_status(env, true, GETPC()); 476 } 477 478 void helper_reset_fpstatus(CPUPPCState *env) 479 { 480 set_float_exception_flags(0, &env->fp_status); 481 } 482 483 static void float_invalid_op_addsub(CPUPPCState *env, int flags, 484 bool set_fpcc, uintptr_t retaddr) 485 { 486 if (flags & float_flag_invalid_isi) { 487 float_invalid_op_vxisi(env, set_fpcc, retaddr); 488 } else if (flags & float_flag_invalid_snan) { 489 float_invalid_op_vxsnan(env, retaddr); 490 } 491 } 492 493 static inline void addsub_flags_handler(CPUPPCState *env, int flags, 494 uintptr_t ra) 495 { 496 if (unlikely(flags & float_flag_invalid)) { 497 float_invalid_op_addsub(env, flags, 1, ra); 498 } 499 } 500 501 static void float_invalid_op_mul(CPUPPCState *env, int flags, 502 bool set_fprc, uintptr_t retaddr) 503 { 504 if (flags & float_flag_invalid_imz) { 505 float_invalid_op_vximz(env, set_fprc, retaddr); 506 } else if (flags & float_flag_invalid_snan) { 507 float_invalid_op_vxsnan(env, retaddr); 508 } 509 } 510 511 static inline void mul_flags_handler(CPUPPCState *env, int flags, uintptr_t ra) 512 { 513 if (unlikely(flags & float_flag_invalid)) { 514 float_invalid_op_mul(env, flags, 1, ra); 515 } 516 } 517 518 static void float_invalid_op_div(CPUPPCState *env, int flags, 519 bool set_fprc, uintptr_t retaddr) 520 { 521 if (flags & float_flag_invalid_idi) { 522 float_invalid_op_vxidi(env, set_fprc, retaddr); 523 } else if (flags & float_flag_invalid_zdz) { 524 float_invalid_op_vxzdz(env, set_fprc, retaddr); 525 } else if (flags & float_flag_invalid_snan) { 526 float_invalid_op_vxsnan(env, retaddr); 527 } 528 } 529 530 static inline void div_flags_handler(CPUPPCState *env, int flags, uintptr_t ra) 531 { 532 if (unlikely(flags & float_flag_invalid)) { 533 float_invalid_op_div(env, flags, 1, ra); 534 } 535 if (unlikely(flags & float_flag_divbyzero)) { 536 float_zero_divide_excp(env, ra); 537 } 538 } 539 540 static uint64_t float_invalid_cvt(CPUPPCState *env, int flags, 541 uint64_t ret, uint64_t ret_nan, 542 bool set_fprc, uintptr_t retaddr) 543 { 544 /* 545 * VXCVI is different from most in that it sets two exception bits, 546 * VXCVI and VXSNAN for an SNaN input. 547 */ 548 if (flags & float_flag_invalid_snan) { 549 env->fpscr |= FP_VXSNAN; 550 } 551 float_invalid_op_vxcvi(env, set_fprc, retaddr); 552 553 return flags & float_flag_invalid_cvti ? ret : ret_nan; 554 } 555 556 #define FPU_FCTI(op, cvt, nanval) \ 557 uint64_t helper_##op(CPUPPCState *env, float64 arg) \ 558 { \ 559 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \ 560 int flags = get_float_exception_flags(&env->fp_status); \ 561 if (unlikely(flags & float_flag_invalid)) { \ 562 ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC()); \ 563 } \ 564 return ret; \ 565 } 566 567 FPU_FCTI(fctiw, int32, 0x80000000U) 568 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U) 569 FPU_FCTI(fctiwu, uint32, 0x00000000U) 570 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U) 571 FPU_FCTI(fctid, int64, 0x8000000000000000ULL) 572 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL) 573 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL) 574 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL) 575 576 #define FPU_FCFI(op, cvtr, is_single) \ 577 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \ 578 { \ 579 CPU_DoubleU farg; \ 580 \ 581 if (is_single) { \ 582 float32 tmp = cvtr(arg, &env->fp_status); \ 583 farg.d = float32_to_float64(tmp, &env->fp_status); \ 584 } else { \ 585 farg.d = cvtr(arg, &env->fp_status); \ 586 } \ 587 do_float_check_status(env, true, GETPC()); \ 588 return farg.ll; \ 589 } 590 591 FPU_FCFI(fcfid, int64_to_float64, 0) 592 FPU_FCFI(fcfids, int64_to_float32, 1) 593 FPU_FCFI(fcfidu, uint64_to_float64, 0) 594 FPU_FCFI(fcfidus, uint64_to_float32, 1) 595 596 static uint64_t do_fri(CPUPPCState *env, uint64_t arg, 597 FloatRoundMode rounding_mode) 598 { 599 FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status); 600 int flags; 601 602 set_float_rounding_mode(rounding_mode, &env->fp_status); 603 arg = float64_round_to_int(arg, &env->fp_status); 604 set_float_rounding_mode(old_rounding_mode, &env->fp_status); 605 606 flags = get_float_exception_flags(&env->fp_status); 607 if (flags & float_flag_invalid_snan) { 608 float_invalid_op_vxsnan(env, GETPC()); 609 } 610 611 /* fri* does not set FPSCR[XX] */ 612 set_float_exception_flags(flags & ~float_flag_inexact, &env->fp_status); 613 do_float_check_status(env, true, GETPC()); 614 615 return arg; 616 } 617 618 uint64_t helper_frin(CPUPPCState *env, uint64_t arg) 619 { 620 return do_fri(env, arg, float_round_ties_away); 621 } 622 623 uint64_t helper_friz(CPUPPCState *env, uint64_t arg) 624 { 625 return do_fri(env, arg, float_round_to_zero); 626 } 627 628 uint64_t helper_frip(CPUPPCState *env, uint64_t arg) 629 { 630 return do_fri(env, arg, float_round_up); 631 } 632 633 uint64_t helper_frim(CPUPPCState *env, uint64_t arg) 634 { 635 return do_fri(env, arg, float_round_down); 636 } 637 638 static void float_invalid_op_madd(CPUPPCState *env, int flags, 639 bool set_fpcc, uintptr_t retaddr) 640 { 641 if (flags & float_flag_invalid_imz) { 642 float_invalid_op_vximz(env, set_fpcc, retaddr); 643 } else { 644 float_invalid_op_addsub(env, flags, set_fpcc, retaddr); 645 } 646 } 647 648 static float64 do_fmadd(CPUPPCState *env, float64 a, float64 b, 649 float64 c, int madd_flags, uintptr_t retaddr) 650 { 651 float64 ret = float64_muladd(a, b, c, madd_flags, &env->fp_status); 652 int flags = get_float_exception_flags(&env->fp_status); 653 654 if (unlikely(flags & float_flag_invalid)) { 655 float_invalid_op_madd(env, flags, 1, retaddr); 656 } 657 return ret; 658 } 659 660 static uint64_t do_fmadds(CPUPPCState *env, float64 a, float64 b, 661 float64 c, int madd_flags, uintptr_t retaddr) 662 { 663 float64 ret = float64r32_muladd(a, b, c, madd_flags, &env->fp_status); 664 int flags = get_float_exception_flags(&env->fp_status); 665 666 if (unlikely(flags & float_flag_invalid)) { 667 float_invalid_op_madd(env, flags, 1, retaddr); 668 } 669 return ret; 670 } 671 672 #define FPU_FMADD(op, madd_flags) \ 673 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \ 674 uint64_t arg2, uint64_t arg3) \ 675 { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \ 676 uint64_t helper_##op##S(CPUPPCState *env, uint64_t arg1, \ 677 uint64_t arg2, uint64_t arg3) \ 678 { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); } 679 680 #define MADD_FLGS 0 681 #define MSUB_FLGS float_muladd_negate_c 682 #define NMADD_FLGS float_muladd_negate_result 683 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result) 684 685 FPU_FMADD(FMADD, MADD_FLGS) 686 FPU_FMADD(FNMADD, NMADD_FLGS) 687 FPU_FMADD(FMSUB, MSUB_FLGS) 688 FPU_FMADD(FNMSUB, NMSUB_FLGS) 689 690 /* frsp - frsp. */ 691 static uint64_t do_frsp(CPUPPCState *env, uint64_t arg, uintptr_t retaddr) 692 { 693 float32 f32 = float64_to_float32(arg, &env->fp_status); 694 int flags = get_float_exception_flags(&env->fp_status); 695 696 if (unlikely(flags & float_flag_invalid_snan)) { 697 float_invalid_op_vxsnan(env, retaddr); 698 } 699 return helper_todouble(f32); 700 } 701 702 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg) 703 { 704 return do_frsp(env, arg, GETPC()); 705 } 706 707 static void float_invalid_op_sqrt(CPUPPCState *env, int flags, 708 bool set_fpcc, uintptr_t retaddr) 709 { 710 if (unlikely(flags & float_flag_invalid_sqrt)) { 711 float_invalid_op_vxsqrt(env, set_fpcc, retaddr); 712 } else if (unlikely(flags & float_flag_invalid_snan)) { 713 float_invalid_op_vxsnan(env, retaddr); 714 } 715 } 716 717 #define FPU_FSQRT(name, op) \ 718 float64 helper_##name(CPUPPCState *env, float64 arg) \ 719 { \ 720 float64 ret = op(arg, &env->fp_status); \ 721 int flags = get_float_exception_flags(&env->fp_status); \ 722 \ 723 if (unlikely(flags & float_flag_invalid)) { \ 724 float_invalid_op_sqrt(env, flags, 1, GETPC()); \ 725 } \ 726 \ 727 return ret; \ 728 } 729 730 FPU_FSQRT(FSQRT, float64_sqrt) 731 FPU_FSQRT(FSQRTS, float64r32_sqrt) 732 733 #define FPU_FRE(name, op) \ 734 float64 helper_##name(CPUPPCState *env, float64 arg) \ 735 { \ 736 /* "Estimate" the reciprocal with actual division. */ \ 737 float64 ret = op(float64_one, arg, &env->fp_status); \ 738 int flags = get_float_exception_flags(&env->fp_status); \ 739 \ 740 if (unlikely(flags & float_flag_invalid_snan)) { \ 741 float_invalid_op_vxsnan(env, GETPC()); \ 742 } \ 743 if (unlikely(flags & float_flag_divbyzero)) { \ 744 float_zero_divide_excp(env, GETPC()); \ 745 /* For FPSCR.ZE == 0, the result is 1/2. */ \ 746 ret = float64_set_sign(float64_half, float64_is_neg(arg)); \ 747 } \ 748 \ 749 return ret; \ 750 } 751 752 #define FPU_FRSQRTE(name, op) \ 753 float64 helper_##name(CPUPPCState *env, float64 arg) \ 754 { \ 755 /* "Estimate" the reciprocal with actual division. */ \ 756 float64 rets = float64_sqrt(arg, &env->fp_status); \ 757 float64 retd = op(float64_one, rets, &env->fp_status); \ 758 int flags = get_float_exception_flags(&env->fp_status); \ 759 \ 760 if (unlikely(flags & float_flag_invalid)) { \ 761 float_invalid_op_sqrt(env, flags, 1, GETPC()); \ 762 } \ 763 if (unlikely(flags & float_flag_divbyzero)) { \ 764 /* Reciprocal of (square root of) zero. */ \ 765 float_zero_divide_excp(env, GETPC()); \ 766 } \ 767 \ 768 return retd; \ 769 } 770 771 #define FPU_HELPER(name, op, flags_handler) \ 772 float64 helper_##name(CPUPPCState *env, float64 arg1, float64 arg2) \ 773 { \ 774 float64 ret = op(arg1, arg2, &env->fp_status); \ 775 int flags = get_float_exception_flags(&env->fp_status); \ 776 uintptr_t ra = GETPC(); \ 777 flags_handler(env, flags, ra); \ 778 return ret; \ 779 } 780 781 FPU_FRE(FRE, float64_div) 782 FPU_FRE(FRES, float64r32_div) 783 FPU_FRSQRTE(FRSQRTE, float64_div) 784 FPU_FRSQRTE(FRSQRTES, float64r32_div) 785 FPU_HELPER(FADD, float64_add, addsub_flags_handler) 786 FPU_HELPER(FADDS, float64r32_add, addsub_flags_handler) 787 FPU_HELPER(FSUB, float64_sub, addsub_flags_handler) 788 FPU_HELPER(FSUBS, float64r32_sub, addsub_flags_handler) 789 FPU_HELPER(FMUL, float64_mul, mul_flags_handler) 790 FPU_HELPER(FMULS, float64r32_mul, mul_flags_handler) 791 FPU_HELPER(FDIV, float64_div, div_flags_handler) 792 FPU_HELPER(FDIVS, float64r32_div, div_flags_handler) 793 794 /* fsel - fsel. */ 795 uint64_t helper_FSEL(uint64_t a, uint64_t b, uint64_t c) 796 { 797 CPU_DoubleU fa; 798 799 fa.ll = a; 800 801 if ((!float64_is_neg(fa.d) || float64_is_zero(fa.d)) && 802 !float64_is_any_nan(fa.d)) { 803 return c; 804 } else { 805 return b; 806 } 807 } 808 809 uint32_t helper_FTDIV(uint64_t fra, uint64_t frb) 810 { 811 int fe_flag = 0; 812 int fg_flag = 0; 813 814 if (unlikely(float64_is_infinity(fra) || 815 float64_is_infinity(frb) || 816 float64_is_zero(frb))) { 817 fe_flag = 1; 818 fg_flag = 1; 819 } else { 820 int e_a = ppc_float64_get_unbiased_exp(fra); 821 int e_b = ppc_float64_get_unbiased_exp(frb); 822 823 if (unlikely(float64_is_any_nan(fra) || 824 float64_is_any_nan(frb))) { 825 fe_flag = 1; 826 } else if ((e_b <= -1022) || (e_b >= 1021)) { 827 fe_flag = 1; 828 } else if (!float64_is_zero(fra) && 829 (((e_a - e_b) >= 1023) || 830 ((e_a - e_b) <= -1021) || 831 (e_a <= -970))) { 832 fe_flag = 1; 833 } 834 835 if (unlikely(float64_is_zero_or_denormal(frb))) { 836 /* XB is not zero because of the above check and */ 837 /* so must be denormalized. */ 838 fg_flag = 1; 839 } 840 } 841 842 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); 843 } 844 845 uint32_t helper_FTSQRT(uint64_t frb) 846 { 847 int fe_flag = 0; 848 int fg_flag = 0; 849 850 if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) { 851 fe_flag = 1; 852 fg_flag = 1; 853 } else { 854 int e_b = ppc_float64_get_unbiased_exp(frb); 855 856 if (unlikely(float64_is_any_nan(frb))) { 857 fe_flag = 1; 858 } else if (unlikely(float64_is_zero(frb))) { 859 fe_flag = 1; 860 } else if (unlikely(float64_is_neg(frb))) { 861 fe_flag = 1; 862 } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) { 863 fe_flag = 1; 864 } 865 866 if (unlikely(float64_is_zero_or_denormal(frb))) { 867 /* XB is not zero because of the above check and */ 868 /* therefore must be denormalized. */ 869 fg_flag = 1; 870 } 871 } 872 873 return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); 874 } 875 876 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2, 877 uint32_t crfD) 878 { 879 CPU_DoubleU farg1, farg2; 880 uint32_t ret = 0; 881 882 farg1.ll = arg1; 883 farg2.ll = arg2; 884 885 if (unlikely(float64_is_any_nan(farg1.d) || 886 float64_is_any_nan(farg2.d))) { 887 ret = 0x01UL; 888 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { 889 ret = 0x08UL; 890 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { 891 ret = 0x04UL; 892 } else { 893 ret = 0x02UL; 894 } 895 896 env->fpscr &= ~FP_FPCC; 897 env->fpscr |= ret << FPSCR_FPCC; 898 env->crf[crfD] = ret; 899 if (unlikely(ret == 0x01UL 900 && (float64_is_signaling_nan(farg1.d, &env->fp_status) || 901 float64_is_signaling_nan(farg2.d, &env->fp_status)))) { 902 /* sNaN comparison */ 903 float_invalid_op_vxsnan(env, GETPC()); 904 } 905 } 906 907 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2, 908 uint32_t crfD) 909 { 910 CPU_DoubleU farg1, farg2; 911 uint32_t ret = 0; 912 913 farg1.ll = arg1; 914 farg2.ll = arg2; 915 916 if (unlikely(float64_is_any_nan(farg1.d) || 917 float64_is_any_nan(farg2.d))) { 918 ret = 0x01UL; 919 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) { 920 ret = 0x08UL; 921 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) { 922 ret = 0x04UL; 923 } else { 924 ret = 0x02UL; 925 } 926 927 env->fpscr &= ~FP_FPCC; 928 env->fpscr |= ret << FPSCR_FPCC; 929 env->crf[crfD] = (uint32_t) ret; 930 if (unlikely(ret == 0x01UL)) { 931 float_invalid_op_vxvc(env, 1, GETPC()); 932 if (float64_is_signaling_nan(farg1.d, &env->fp_status) || 933 float64_is_signaling_nan(farg2.d, &env->fp_status)) { 934 /* sNaN comparison */ 935 float_invalid_op_vxsnan(env, GETPC()); 936 } 937 } 938 } 939 940 /* Single-precision floating-point conversions */ 941 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val) 942 { 943 CPU_FloatU u; 944 945 u.f = int32_to_float32(val, &env->vec_status); 946 947 return u.l; 948 } 949 950 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val) 951 { 952 CPU_FloatU u; 953 954 u.f = uint32_to_float32(val, &env->vec_status); 955 956 return u.l; 957 } 958 959 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val) 960 { 961 CPU_FloatU u; 962 963 u.l = val; 964 /* NaN are not treated the same way IEEE 754 does */ 965 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { 966 return 0; 967 } 968 969 return float32_to_int32(u.f, &env->vec_status); 970 } 971 972 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val) 973 { 974 CPU_FloatU u; 975 976 u.l = val; 977 /* NaN are not treated the same way IEEE 754 does */ 978 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { 979 return 0; 980 } 981 982 return float32_to_uint32(u.f, &env->vec_status); 983 } 984 985 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val) 986 { 987 CPU_FloatU u; 988 989 u.l = val; 990 /* NaN are not treated the same way IEEE 754 does */ 991 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { 992 return 0; 993 } 994 995 return float32_to_int32_round_to_zero(u.f, &env->vec_status); 996 } 997 998 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val) 999 { 1000 CPU_FloatU u; 1001 1002 u.l = val; 1003 /* NaN are not treated the same way IEEE 754 does */ 1004 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { 1005 return 0; 1006 } 1007 1008 return float32_to_uint32_round_to_zero(u.f, &env->vec_status); 1009 } 1010 1011 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val) 1012 { 1013 CPU_FloatU u; 1014 float32 tmp; 1015 1016 u.f = int32_to_float32(val, &env->vec_status); 1017 tmp = int64_to_float32(1ULL << 32, &env->vec_status); 1018 u.f = float32_div(u.f, tmp, &env->vec_status); 1019 1020 return u.l; 1021 } 1022 1023 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val) 1024 { 1025 CPU_FloatU u; 1026 float32 tmp; 1027 1028 u.f = uint32_to_float32(val, &env->vec_status); 1029 tmp = uint64_to_float32(1ULL << 32, &env->vec_status); 1030 u.f = float32_div(u.f, tmp, &env->vec_status); 1031 1032 return u.l; 1033 } 1034 1035 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val) 1036 { 1037 CPU_FloatU u; 1038 float32 tmp; 1039 1040 u.l = val; 1041 /* NaN are not treated the same way IEEE 754 does */ 1042 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { 1043 return 0; 1044 } 1045 tmp = uint64_to_float32(1ULL << 32, &env->vec_status); 1046 u.f = float32_mul(u.f, tmp, &env->vec_status); 1047 1048 return float32_to_int32(u.f, &env->vec_status); 1049 } 1050 1051 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val) 1052 { 1053 CPU_FloatU u; 1054 float32 tmp; 1055 1056 u.l = val; 1057 /* NaN are not treated the same way IEEE 754 does */ 1058 if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) { 1059 return 0; 1060 } 1061 tmp = uint64_to_float32(1ULL << 32, &env->vec_status); 1062 u.f = float32_mul(u.f, tmp, &env->vec_status); 1063 1064 return float32_to_uint32(u.f, &env->vec_status); 1065 } 1066 1067 #define HELPER_SPE_SINGLE_CONV(name) \ 1068 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \ 1069 { \ 1070 return e##name(env, val); \ 1071 } 1072 /* efscfsi */ 1073 HELPER_SPE_SINGLE_CONV(fscfsi); 1074 /* efscfui */ 1075 HELPER_SPE_SINGLE_CONV(fscfui); 1076 /* efscfuf */ 1077 HELPER_SPE_SINGLE_CONV(fscfuf); 1078 /* efscfsf */ 1079 HELPER_SPE_SINGLE_CONV(fscfsf); 1080 /* efsctsi */ 1081 HELPER_SPE_SINGLE_CONV(fsctsi); 1082 /* efsctui */ 1083 HELPER_SPE_SINGLE_CONV(fsctui); 1084 /* efsctsiz */ 1085 HELPER_SPE_SINGLE_CONV(fsctsiz); 1086 /* efsctuiz */ 1087 HELPER_SPE_SINGLE_CONV(fsctuiz); 1088 /* efsctsf */ 1089 HELPER_SPE_SINGLE_CONV(fsctsf); 1090 /* efsctuf */ 1091 HELPER_SPE_SINGLE_CONV(fsctuf); 1092 1093 #define HELPER_SPE_VECTOR_CONV(name) \ 1094 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \ 1095 { \ 1096 return ((uint64_t)e##name(env, val >> 32) << 32) | \ 1097 (uint64_t)e##name(env, val); \ 1098 } 1099 /* evfscfsi */ 1100 HELPER_SPE_VECTOR_CONV(fscfsi); 1101 /* evfscfui */ 1102 HELPER_SPE_VECTOR_CONV(fscfui); 1103 /* evfscfuf */ 1104 HELPER_SPE_VECTOR_CONV(fscfuf); 1105 /* evfscfsf */ 1106 HELPER_SPE_VECTOR_CONV(fscfsf); 1107 /* evfsctsi */ 1108 HELPER_SPE_VECTOR_CONV(fsctsi); 1109 /* evfsctui */ 1110 HELPER_SPE_VECTOR_CONV(fsctui); 1111 /* evfsctsiz */ 1112 HELPER_SPE_VECTOR_CONV(fsctsiz); 1113 /* evfsctuiz */ 1114 HELPER_SPE_VECTOR_CONV(fsctuiz); 1115 /* evfsctsf */ 1116 HELPER_SPE_VECTOR_CONV(fsctsf); 1117 /* evfsctuf */ 1118 HELPER_SPE_VECTOR_CONV(fsctuf); 1119 1120 /* Single-precision floating-point arithmetic */ 1121 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2) 1122 { 1123 CPU_FloatU u1, u2; 1124 1125 u1.l = op1; 1126 u2.l = op2; 1127 u1.f = float32_add(u1.f, u2.f, &env->vec_status); 1128 return u1.l; 1129 } 1130 1131 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2) 1132 { 1133 CPU_FloatU u1, u2; 1134 1135 u1.l = op1; 1136 u2.l = op2; 1137 u1.f = float32_sub(u1.f, u2.f, &env->vec_status); 1138 return u1.l; 1139 } 1140 1141 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2) 1142 { 1143 CPU_FloatU u1, u2; 1144 1145 u1.l = op1; 1146 u2.l = op2; 1147 u1.f = float32_mul(u1.f, u2.f, &env->vec_status); 1148 return u1.l; 1149 } 1150 1151 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2) 1152 { 1153 CPU_FloatU u1, u2; 1154 1155 u1.l = op1; 1156 u2.l = op2; 1157 u1.f = float32_div(u1.f, u2.f, &env->vec_status); 1158 return u1.l; 1159 } 1160 1161 #define HELPER_SPE_SINGLE_ARITH(name) \ 1162 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ 1163 { \ 1164 return e##name(env, op1, op2); \ 1165 } 1166 /* efsadd */ 1167 HELPER_SPE_SINGLE_ARITH(fsadd); 1168 /* efssub */ 1169 HELPER_SPE_SINGLE_ARITH(fssub); 1170 /* efsmul */ 1171 HELPER_SPE_SINGLE_ARITH(fsmul); 1172 /* efsdiv */ 1173 HELPER_SPE_SINGLE_ARITH(fsdiv); 1174 1175 #define HELPER_SPE_VECTOR_ARITH(name) \ 1176 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ 1177 { \ 1178 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \ 1179 (uint64_t)e##name(env, op1, op2); \ 1180 } 1181 /* evfsadd */ 1182 HELPER_SPE_VECTOR_ARITH(fsadd); 1183 /* evfssub */ 1184 HELPER_SPE_VECTOR_ARITH(fssub); 1185 /* evfsmul */ 1186 HELPER_SPE_VECTOR_ARITH(fsmul); 1187 /* evfsdiv */ 1188 HELPER_SPE_VECTOR_ARITH(fsdiv); 1189 1190 /* Single-precision floating-point comparisons */ 1191 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2) 1192 { 1193 CPU_FloatU u1, u2; 1194 1195 u1.l = op1; 1196 u2.l = op2; 1197 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0; 1198 } 1199 1200 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2) 1201 { 1202 CPU_FloatU u1, u2; 1203 1204 u1.l = op1; 1205 u2.l = op2; 1206 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4; 1207 } 1208 1209 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2) 1210 { 1211 CPU_FloatU u1, u2; 1212 1213 u1.l = op1; 1214 u2.l = op2; 1215 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0; 1216 } 1217 1218 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2) 1219 { 1220 /* XXX: TODO: ignore special values (NaN, infinites, ...) */ 1221 return efscmplt(env, op1, op2); 1222 } 1223 1224 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2) 1225 { 1226 /* XXX: TODO: ignore special values (NaN, infinites, ...) */ 1227 return efscmpgt(env, op1, op2); 1228 } 1229 1230 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2) 1231 { 1232 /* XXX: TODO: ignore special values (NaN, infinites, ...) */ 1233 return efscmpeq(env, op1, op2); 1234 } 1235 1236 #define HELPER_SINGLE_SPE_CMP(name) \ 1237 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \ 1238 { \ 1239 return e##name(env, op1, op2); \ 1240 } 1241 /* efststlt */ 1242 HELPER_SINGLE_SPE_CMP(fststlt); 1243 /* efststgt */ 1244 HELPER_SINGLE_SPE_CMP(fststgt); 1245 /* efststeq */ 1246 HELPER_SINGLE_SPE_CMP(fststeq); 1247 /* efscmplt */ 1248 HELPER_SINGLE_SPE_CMP(fscmplt); 1249 /* efscmpgt */ 1250 HELPER_SINGLE_SPE_CMP(fscmpgt); 1251 /* efscmpeq */ 1252 HELPER_SINGLE_SPE_CMP(fscmpeq); 1253 1254 static inline uint32_t evcmp_merge(int t0, int t1) 1255 { 1256 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); 1257 } 1258 1259 #define HELPER_VECTOR_SPE_CMP(name) \ 1260 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \ 1261 { \ 1262 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \ 1263 e##name(env, op1, op2)); \ 1264 } 1265 /* evfststlt */ 1266 HELPER_VECTOR_SPE_CMP(fststlt); 1267 /* evfststgt */ 1268 HELPER_VECTOR_SPE_CMP(fststgt); 1269 /* evfststeq */ 1270 HELPER_VECTOR_SPE_CMP(fststeq); 1271 /* evfscmplt */ 1272 HELPER_VECTOR_SPE_CMP(fscmplt); 1273 /* evfscmpgt */ 1274 HELPER_VECTOR_SPE_CMP(fscmpgt); 1275 /* evfscmpeq */ 1276 HELPER_VECTOR_SPE_CMP(fscmpeq); 1277 1278 /* Double-precision floating-point conversion */ 1279 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val) 1280 { 1281 CPU_DoubleU u; 1282 1283 u.d = int32_to_float64(val, &env->vec_status); 1284 1285 return u.ll; 1286 } 1287 1288 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val) 1289 { 1290 CPU_DoubleU u; 1291 1292 u.d = int64_to_float64(val, &env->vec_status); 1293 1294 return u.ll; 1295 } 1296 1297 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val) 1298 { 1299 CPU_DoubleU u; 1300 1301 u.d = uint32_to_float64(val, &env->vec_status); 1302 1303 return u.ll; 1304 } 1305 1306 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val) 1307 { 1308 CPU_DoubleU u; 1309 1310 u.d = uint64_to_float64(val, &env->vec_status); 1311 1312 return u.ll; 1313 } 1314 1315 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val) 1316 { 1317 CPU_DoubleU u; 1318 1319 u.ll = val; 1320 /* NaN are not treated the same way IEEE 754 does */ 1321 if (unlikely(float64_is_any_nan(u.d))) { 1322 return 0; 1323 } 1324 1325 return float64_to_int32(u.d, &env->vec_status); 1326 } 1327 1328 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val) 1329 { 1330 CPU_DoubleU u; 1331 1332 u.ll = val; 1333 /* NaN are not treated the same way IEEE 754 does */ 1334 if (unlikely(float64_is_any_nan(u.d))) { 1335 return 0; 1336 } 1337 1338 return float64_to_uint32(u.d, &env->vec_status); 1339 } 1340 1341 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val) 1342 { 1343 CPU_DoubleU u; 1344 1345 u.ll = val; 1346 /* NaN are not treated the same way IEEE 754 does */ 1347 if (unlikely(float64_is_any_nan(u.d))) { 1348 return 0; 1349 } 1350 1351 return float64_to_int32_round_to_zero(u.d, &env->vec_status); 1352 } 1353 1354 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val) 1355 { 1356 CPU_DoubleU u; 1357 1358 u.ll = val; 1359 /* NaN are not treated the same way IEEE 754 does */ 1360 if (unlikely(float64_is_any_nan(u.d))) { 1361 return 0; 1362 } 1363 1364 return float64_to_int64_round_to_zero(u.d, &env->vec_status); 1365 } 1366 1367 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val) 1368 { 1369 CPU_DoubleU u; 1370 1371 u.ll = val; 1372 /* NaN are not treated the same way IEEE 754 does */ 1373 if (unlikely(float64_is_any_nan(u.d))) { 1374 return 0; 1375 } 1376 1377 return float64_to_uint32_round_to_zero(u.d, &env->vec_status); 1378 } 1379 1380 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val) 1381 { 1382 CPU_DoubleU u; 1383 1384 u.ll = val; 1385 /* NaN are not treated the same way IEEE 754 does */ 1386 if (unlikely(float64_is_any_nan(u.d))) { 1387 return 0; 1388 } 1389 1390 return float64_to_uint64_round_to_zero(u.d, &env->vec_status); 1391 } 1392 1393 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val) 1394 { 1395 CPU_DoubleU u; 1396 float64 tmp; 1397 1398 u.d = int32_to_float64(val, &env->vec_status); 1399 tmp = int64_to_float64(1ULL << 32, &env->vec_status); 1400 u.d = float64_div(u.d, tmp, &env->vec_status); 1401 1402 return u.ll; 1403 } 1404 1405 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val) 1406 { 1407 CPU_DoubleU u; 1408 float64 tmp; 1409 1410 u.d = uint32_to_float64(val, &env->vec_status); 1411 tmp = int64_to_float64(1ULL << 32, &env->vec_status); 1412 u.d = float64_div(u.d, tmp, &env->vec_status); 1413 1414 return u.ll; 1415 } 1416 1417 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val) 1418 { 1419 CPU_DoubleU u; 1420 float64 tmp; 1421 1422 u.ll = val; 1423 /* NaN are not treated the same way IEEE 754 does */ 1424 if (unlikely(float64_is_any_nan(u.d))) { 1425 return 0; 1426 } 1427 tmp = uint64_to_float64(1ULL << 32, &env->vec_status); 1428 u.d = float64_mul(u.d, tmp, &env->vec_status); 1429 1430 return float64_to_int32(u.d, &env->vec_status); 1431 } 1432 1433 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val) 1434 { 1435 CPU_DoubleU u; 1436 float64 tmp; 1437 1438 u.ll = val; 1439 /* NaN are not treated the same way IEEE 754 does */ 1440 if (unlikely(float64_is_any_nan(u.d))) { 1441 return 0; 1442 } 1443 tmp = uint64_to_float64(1ULL << 32, &env->vec_status); 1444 u.d = float64_mul(u.d, tmp, &env->vec_status); 1445 1446 return float64_to_uint32(u.d, &env->vec_status); 1447 } 1448 1449 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val) 1450 { 1451 CPU_DoubleU u1; 1452 CPU_FloatU u2; 1453 1454 u1.ll = val; 1455 u2.f = float64_to_float32(u1.d, &env->vec_status); 1456 1457 return u2.l; 1458 } 1459 1460 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val) 1461 { 1462 CPU_DoubleU u2; 1463 CPU_FloatU u1; 1464 1465 u1.l = val; 1466 u2.d = float32_to_float64(u1.f, &env->vec_status); 1467 1468 return u2.ll; 1469 } 1470 1471 /* Double precision fixed-point arithmetic */ 1472 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2) 1473 { 1474 CPU_DoubleU u1, u2; 1475 1476 u1.ll = op1; 1477 u2.ll = op2; 1478 u1.d = float64_add(u1.d, u2.d, &env->vec_status); 1479 return u1.ll; 1480 } 1481 1482 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2) 1483 { 1484 CPU_DoubleU u1, u2; 1485 1486 u1.ll = op1; 1487 u2.ll = op2; 1488 u1.d = float64_sub(u1.d, u2.d, &env->vec_status); 1489 return u1.ll; 1490 } 1491 1492 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2) 1493 { 1494 CPU_DoubleU u1, u2; 1495 1496 u1.ll = op1; 1497 u2.ll = op2; 1498 u1.d = float64_mul(u1.d, u2.d, &env->vec_status); 1499 return u1.ll; 1500 } 1501 1502 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2) 1503 { 1504 CPU_DoubleU u1, u2; 1505 1506 u1.ll = op1; 1507 u2.ll = op2; 1508 u1.d = float64_div(u1.d, u2.d, &env->vec_status); 1509 return u1.ll; 1510 } 1511 1512 /* Double precision floating point helpers */ 1513 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2) 1514 { 1515 CPU_DoubleU u1, u2; 1516 1517 u1.ll = op1; 1518 u2.ll = op2; 1519 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0; 1520 } 1521 1522 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2) 1523 { 1524 CPU_DoubleU u1, u2; 1525 1526 u1.ll = op1; 1527 u2.ll = op2; 1528 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4; 1529 } 1530 1531 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2) 1532 { 1533 CPU_DoubleU u1, u2; 1534 1535 u1.ll = op1; 1536 u2.ll = op2; 1537 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0; 1538 } 1539 1540 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2) 1541 { 1542 /* XXX: TODO: test special values (NaN, infinites, ...) */ 1543 return helper_efdtstlt(env, op1, op2); 1544 } 1545 1546 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2) 1547 { 1548 /* XXX: TODO: test special values (NaN, infinites, ...) */ 1549 return helper_efdtstgt(env, op1, op2); 1550 } 1551 1552 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2) 1553 { 1554 /* XXX: TODO: test special values (NaN, infinites, ...) */ 1555 return helper_efdtsteq(env, op1, op2); 1556 } 1557 1558 #define float64_to_float64(x, env) x 1559 1560 1561 /* 1562 * VSX_ADD_SUB - VSX floating point add/subtract 1563 * name - instruction mnemonic 1564 * op - operation (add or sub) 1565 * nels - number of elements (1, 2 or 4) 1566 * tp - type (float32 or float64) 1567 * fld - vsr_t field (VsrD(*) or VsrW(*)) 1568 * sfifprf - set FI and FPRF 1569 */ 1570 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfifprf, r2sp) \ 1571 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ 1572 ppc_vsr_t *xa, ppc_vsr_t *xb) \ 1573 { \ 1574 ppc_vsr_t t = { }; \ 1575 int i; \ 1576 \ 1577 helper_reset_fpstatus(env); \ 1578 \ 1579 for (i = 0; i < nels; i++) { \ 1580 float_status tstat = env->fp_status; \ 1581 set_float_exception_flags(0, &tstat); \ 1582 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \ 1583 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ 1584 \ 1585 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ 1586 float_invalid_op_addsub(env, tstat.float_exception_flags, \ 1587 sfifprf, GETPC()); \ 1588 } \ 1589 \ 1590 if (r2sp) { \ 1591 t.fld = do_frsp(env, t.fld, GETPC()); \ 1592 } \ 1593 \ 1594 if (sfifprf) { \ 1595 helper_compute_fprf_float64(env, t.fld); \ 1596 } \ 1597 } \ 1598 *xt = t; \ 1599 do_float_check_status(env, sfifprf, GETPC()); \ 1600 } 1601 1602 VSX_ADD_SUB(XSADDDP, add, 1, float64, VsrD(0), 1, 0) 1603 VSX_ADD_SUB(XSADDSP, add, 1, float64, VsrD(0), 1, 1) 1604 VSX_ADD_SUB(XVADDDP, add, 2, float64, VsrD(i), 0, 0) 1605 VSX_ADD_SUB(XVADDSP, add, 4, float32, VsrW(i), 0, 0) 1606 VSX_ADD_SUB(XSSUBDP, sub, 1, float64, VsrD(0), 1, 0) 1607 VSX_ADD_SUB(XSSUBSP, sub, 1, float64, VsrD(0), 1, 1) 1608 VSX_ADD_SUB(XVSUBDP, sub, 2, float64, VsrD(i), 0, 0) 1609 VSX_ADD_SUB(XVSUBSP, sub, 4, float32, VsrW(i), 0, 0) 1610 1611 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode, 1612 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) 1613 { 1614 ppc_vsr_t t = *xt; 1615 float_status tstat; 1616 1617 helper_reset_fpstatus(env); 1618 1619 tstat = env->fp_status; 1620 if (unlikely(Rc(opcode) != 0)) { 1621 tstat.float_rounding_mode = float_round_to_odd; 1622 } 1623 1624 set_float_exception_flags(0, &tstat); 1625 t.f128 = float128_add(xa->f128, xb->f128, &tstat); 1626 env->fp_status.float_exception_flags |= tstat.float_exception_flags; 1627 1628 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { 1629 float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC()); 1630 } 1631 1632 helper_compute_fprf_float128(env, t.f128); 1633 1634 *xt = t; 1635 do_float_check_status(env, true, GETPC()); 1636 } 1637 1638 /* 1639 * VSX_MUL - VSX floating point multiply 1640 * op - instruction mnemonic 1641 * nels - number of elements (1, 2 or 4) 1642 * tp - type (float32 or float64) 1643 * fld - vsr_t field (VsrD(*) or VsrW(*)) 1644 * sfifprf - set FI and FPRF 1645 */ 1646 #define VSX_MUL(op, nels, tp, fld, sfifprf, r2sp) \ 1647 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ 1648 ppc_vsr_t *xa, ppc_vsr_t *xb) \ 1649 { \ 1650 ppc_vsr_t t = { }; \ 1651 int i; \ 1652 \ 1653 helper_reset_fpstatus(env); \ 1654 \ 1655 for (i = 0; i < nels; i++) { \ 1656 float_status tstat = env->fp_status; \ 1657 set_float_exception_flags(0, &tstat); \ 1658 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \ 1659 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ 1660 \ 1661 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ 1662 float_invalid_op_mul(env, tstat.float_exception_flags, \ 1663 sfifprf, GETPC()); \ 1664 } \ 1665 \ 1666 if (r2sp) { \ 1667 t.fld = do_frsp(env, t.fld, GETPC()); \ 1668 } \ 1669 \ 1670 if (sfifprf) { \ 1671 helper_compute_fprf_float64(env, t.fld); \ 1672 } \ 1673 } \ 1674 \ 1675 *xt = t; \ 1676 do_float_check_status(env, sfifprf, GETPC()); \ 1677 } 1678 1679 VSX_MUL(XSMULDP, 1, float64, VsrD(0), 1, 0) 1680 VSX_MUL(XSMULSP, 1, float64, VsrD(0), 1, 1) 1681 VSX_MUL(XVMULDP, 2, float64, VsrD(i), 0, 0) 1682 VSX_MUL(XVMULSP, 4, float32, VsrW(i), 0, 0) 1683 1684 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode, 1685 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) 1686 { 1687 ppc_vsr_t t = *xt; 1688 float_status tstat; 1689 1690 helper_reset_fpstatus(env); 1691 tstat = env->fp_status; 1692 if (unlikely(Rc(opcode) != 0)) { 1693 tstat.float_rounding_mode = float_round_to_odd; 1694 } 1695 1696 set_float_exception_flags(0, &tstat); 1697 t.f128 = float128_mul(xa->f128, xb->f128, &tstat); 1698 env->fp_status.float_exception_flags |= tstat.float_exception_flags; 1699 1700 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { 1701 float_invalid_op_mul(env, tstat.float_exception_flags, 1, GETPC()); 1702 } 1703 helper_compute_fprf_float128(env, t.f128); 1704 1705 *xt = t; 1706 do_float_check_status(env, true, GETPC()); 1707 } 1708 1709 /* 1710 * VSX_DIV - VSX floating point divide 1711 * op - instruction mnemonic 1712 * nels - number of elements (1, 2 or 4) 1713 * tp - type (float32 or float64) 1714 * fld - vsr_t field (VsrD(*) or VsrW(*)) 1715 * sfifprf - set FI and FPRF 1716 */ 1717 #define VSX_DIV(op, nels, tp, fld, sfifprf, r2sp) \ 1718 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ 1719 ppc_vsr_t *xa, ppc_vsr_t *xb) \ 1720 { \ 1721 ppc_vsr_t t = { }; \ 1722 int i; \ 1723 \ 1724 helper_reset_fpstatus(env); \ 1725 \ 1726 for (i = 0; i < nels; i++) { \ 1727 float_status tstat = env->fp_status; \ 1728 set_float_exception_flags(0, &tstat); \ 1729 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \ 1730 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ 1731 \ 1732 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ 1733 float_invalid_op_div(env, tstat.float_exception_flags, \ 1734 sfifprf, GETPC()); \ 1735 } \ 1736 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \ 1737 float_zero_divide_excp(env, GETPC()); \ 1738 } \ 1739 \ 1740 if (r2sp) { \ 1741 t.fld = do_frsp(env, t.fld, GETPC()); \ 1742 } \ 1743 \ 1744 if (sfifprf) { \ 1745 helper_compute_fprf_float64(env, t.fld); \ 1746 } \ 1747 } \ 1748 \ 1749 *xt = t; \ 1750 do_float_check_status(env, sfifprf, GETPC()); \ 1751 } 1752 1753 VSX_DIV(XSDIVDP, 1, float64, VsrD(0), 1, 0) 1754 VSX_DIV(XSDIVSP, 1, float64, VsrD(0), 1, 1) 1755 VSX_DIV(XVDIVDP, 2, float64, VsrD(i), 0, 0) 1756 VSX_DIV(XVDIVSP, 4, float32, VsrW(i), 0, 0) 1757 1758 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode, 1759 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) 1760 { 1761 ppc_vsr_t t = *xt; 1762 float_status tstat; 1763 1764 helper_reset_fpstatus(env); 1765 tstat = env->fp_status; 1766 if (unlikely(Rc(opcode) != 0)) { 1767 tstat.float_rounding_mode = float_round_to_odd; 1768 } 1769 1770 set_float_exception_flags(0, &tstat); 1771 t.f128 = float128_div(xa->f128, xb->f128, &tstat); 1772 env->fp_status.float_exception_flags |= tstat.float_exception_flags; 1773 1774 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { 1775 float_invalid_op_div(env, tstat.float_exception_flags, 1, GETPC()); 1776 } 1777 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { 1778 float_zero_divide_excp(env, GETPC()); 1779 } 1780 1781 helper_compute_fprf_float128(env, t.f128); 1782 *xt = t; 1783 do_float_check_status(env, true, GETPC()); 1784 } 1785 1786 /* 1787 * VSX_RE - VSX floating point reciprocal estimate 1788 * op - instruction mnemonic 1789 * nels - number of elements (1, 2 or 4) 1790 * tp - type (float32 or float64) 1791 * fld - vsr_t field (VsrD(*) or VsrW(*)) 1792 * sfifprf - set FI and FPRF 1793 */ 1794 #define VSX_RE(op, nels, tp, fld, sfifprf, r2sp) \ 1795 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 1796 { \ 1797 ppc_vsr_t t = { }; \ 1798 int i; \ 1799 \ 1800 helper_reset_fpstatus(env); \ 1801 \ 1802 for (i = 0; i < nels; i++) { \ 1803 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ 1804 float_invalid_op_vxsnan(env, GETPC()); \ 1805 } \ 1806 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \ 1807 \ 1808 if (r2sp) { \ 1809 t.fld = do_frsp(env, t.fld, GETPC()); \ 1810 } \ 1811 \ 1812 if (sfifprf) { \ 1813 helper_compute_fprf_float64(env, t.fld); \ 1814 } \ 1815 } \ 1816 \ 1817 *xt = t; \ 1818 do_float_check_status(env, sfifprf, GETPC()); \ 1819 } 1820 1821 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0) 1822 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1) 1823 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0) 1824 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0) 1825 1826 /* 1827 * VSX_SQRT - VSX floating point square root 1828 * op - instruction mnemonic 1829 * nels - number of elements (1, 2 or 4) 1830 * tp - type (float32 or float64) 1831 * fld - vsr_t field (VsrD(*) or VsrW(*)) 1832 * sfifprf - set FI and FPRF 1833 */ 1834 #define VSX_SQRT(op, nels, tp, fld, sfifprf, r2sp) \ 1835 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 1836 { \ 1837 ppc_vsr_t t = { }; \ 1838 int i; \ 1839 \ 1840 helper_reset_fpstatus(env); \ 1841 \ 1842 for (i = 0; i < nels; i++) { \ 1843 float_status tstat = env->fp_status; \ 1844 set_float_exception_flags(0, &tstat); \ 1845 t.fld = tp##_sqrt(xb->fld, &tstat); \ 1846 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ 1847 \ 1848 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ 1849 float_invalid_op_sqrt(env, tstat.float_exception_flags, \ 1850 sfifprf, GETPC()); \ 1851 } \ 1852 \ 1853 if (r2sp) { \ 1854 t.fld = do_frsp(env, t.fld, GETPC()); \ 1855 } \ 1856 \ 1857 if (sfifprf) { \ 1858 helper_compute_fprf_float64(env, t.fld); \ 1859 } \ 1860 } \ 1861 \ 1862 *xt = t; \ 1863 do_float_check_status(env, sfifprf, GETPC()); \ 1864 } 1865 1866 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0) 1867 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1) 1868 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0) 1869 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0) 1870 1871 /* 1872 *VSX_RSQRTE - VSX floating point reciprocal square root estimate 1873 * op - instruction mnemonic 1874 * nels - number of elements (1, 2 or 4) 1875 * tp - type (float32 or float64) 1876 * fld - vsr_t field (VsrD(*) or VsrW(*)) 1877 * sfifprf - set FI and FPRF 1878 */ 1879 #define VSX_RSQRTE(op, nels, tp, fld, sfifprf, r2sp) \ 1880 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 1881 { \ 1882 ppc_vsr_t t = { }; \ 1883 int i; \ 1884 \ 1885 helper_reset_fpstatus(env); \ 1886 \ 1887 for (i = 0; i < nels; i++) { \ 1888 float_status tstat = env->fp_status; \ 1889 set_float_exception_flags(0, &tstat); \ 1890 t.fld = tp##_sqrt(xb->fld, &tstat); \ 1891 t.fld = tp##_div(tp##_one, t.fld, &tstat); \ 1892 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ 1893 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ 1894 float_invalid_op_sqrt(env, tstat.float_exception_flags, \ 1895 sfifprf, GETPC()); \ 1896 } \ 1897 if (r2sp) { \ 1898 t.fld = do_frsp(env, t.fld, GETPC()); \ 1899 } \ 1900 \ 1901 if (sfifprf) { \ 1902 helper_compute_fprf_float64(env, t.fld); \ 1903 } \ 1904 } \ 1905 \ 1906 *xt = t; \ 1907 do_float_check_status(env, sfifprf, GETPC()); \ 1908 } 1909 1910 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0) 1911 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1) 1912 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0) 1913 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0) 1914 1915 /* 1916 * VSX_TDIV - VSX floating point test for divide 1917 * op - instruction mnemonic 1918 * nels - number of elements (1, 2 or 4) 1919 * tp - type (float32 or float64) 1920 * fld - vsr_t field (VsrD(*) or VsrW(*)) 1921 * emin - minimum unbiased exponent 1922 * emax - maximum unbiased exponent 1923 * nbits - number of fraction bits 1924 */ 1925 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \ 1926 void helper_##op(CPUPPCState *env, uint32_t opcode, \ 1927 ppc_vsr_t *xa, ppc_vsr_t *xb) \ 1928 { \ 1929 int i; \ 1930 int fe_flag = 0; \ 1931 int fg_flag = 0; \ 1932 \ 1933 for (i = 0; i < nels; i++) { \ 1934 if (unlikely(tp##_is_infinity(xa->fld) || \ 1935 tp##_is_infinity(xb->fld) || \ 1936 tp##_is_zero(xb->fld))) { \ 1937 fe_flag = 1; \ 1938 fg_flag = 1; \ 1939 } else { \ 1940 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \ 1941 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ 1942 \ 1943 if (unlikely(tp##_is_any_nan(xa->fld) || \ 1944 tp##_is_any_nan(xb->fld))) { \ 1945 fe_flag = 1; \ 1946 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \ 1947 fe_flag = 1; \ 1948 } else if (!tp##_is_zero(xa->fld) && \ 1949 (((e_a - e_b) >= emax) || \ 1950 ((e_a - e_b) <= (emin + 1)) || \ 1951 (e_a <= (emin + nbits)))) { \ 1952 fe_flag = 1; \ 1953 } \ 1954 \ 1955 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ 1956 /* \ 1957 * XB is not zero because of the above check and so \ 1958 * must be denormalized. \ 1959 */ \ 1960 fg_flag = 1; \ 1961 } \ 1962 } \ 1963 } \ 1964 \ 1965 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ 1966 } 1967 1968 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52) 1969 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52) 1970 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23) 1971 1972 /* 1973 * VSX_TSQRT - VSX floating point test for square root 1974 * op - instruction mnemonic 1975 * nels - number of elements (1, 2 or 4) 1976 * tp - type (float32 or float64) 1977 * fld - vsr_t field (VsrD(*) or VsrW(*)) 1978 * emin - minimum unbiased exponent 1979 * emax - maximum unbiased exponent 1980 * nbits - number of fraction bits 1981 */ 1982 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \ 1983 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \ 1984 { \ 1985 int i; \ 1986 int fe_flag = 0; \ 1987 int fg_flag = 0; \ 1988 \ 1989 for (i = 0; i < nels; i++) { \ 1990 if (unlikely(tp##_is_infinity(xb->fld) || \ 1991 tp##_is_zero(xb->fld))) { \ 1992 fe_flag = 1; \ 1993 fg_flag = 1; \ 1994 } else { \ 1995 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \ 1996 \ 1997 if (unlikely(tp##_is_any_nan(xb->fld))) { \ 1998 fe_flag = 1; \ 1999 } else if (unlikely(tp##_is_zero(xb->fld))) { \ 2000 fe_flag = 1; \ 2001 } else if (unlikely(tp##_is_neg(xb->fld))) { \ 2002 fe_flag = 1; \ 2003 } else if (!tp##_is_zero(xb->fld) && \ 2004 (e_b <= (emin + nbits))) { \ 2005 fe_flag = 1; \ 2006 } \ 2007 \ 2008 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \ 2009 /* \ 2010 * XB is not zero because of the above check and \ 2011 * therefore must be denormalized. \ 2012 */ \ 2013 fg_flag = 1; \ 2014 } \ 2015 } \ 2016 } \ 2017 \ 2018 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \ 2019 } 2020 2021 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52) 2022 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52) 2023 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23) 2024 2025 /* 2026 * VSX_MADD - VSX floating point muliply/add variations 2027 * op - instruction mnemonic 2028 * nels - number of elements (1, 2 or 4) 2029 * tp - type (float32 or float64) 2030 * fld - vsr_t field (VsrD(*) or VsrW(*)) 2031 * maddflgs - flags for the float*muladd routine that control the 2032 * various forms (madd, msub, nmadd, nmsub) 2033 * sfifprf - set FI and FPRF 2034 */ 2035 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfifprf) \ 2036 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ 2037 ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3) \ 2038 { \ 2039 ppc_vsr_t t = { }; \ 2040 int i; \ 2041 \ 2042 helper_reset_fpstatus(env); \ 2043 \ 2044 for (i = 0; i < nels; i++) { \ 2045 float_status tstat = env->fp_status; \ 2046 set_float_exception_flags(0, &tstat); \ 2047 t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld, maddflgs, &tstat); \ 2048 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ 2049 \ 2050 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ 2051 float_invalid_op_madd(env, tstat.float_exception_flags, \ 2052 sfifprf, GETPC()); \ 2053 } \ 2054 \ 2055 if (sfifprf) { \ 2056 helper_compute_fprf_float64(env, t.fld); \ 2057 } \ 2058 } \ 2059 *xt = t; \ 2060 do_float_check_status(env, sfifprf, GETPC()); \ 2061 } 2062 2063 VSX_MADD(XSMADDDP, 1, float64, VsrD(0), MADD_FLGS, 1) 2064 VSX_MADD(XSMSUBDP, 1, float64, VsrD(0), MSUB_FLGS, 1) 2065 VSX_MADD(XSNMADDDP, 1, float64, VsrD(0), NMADD_FLGS, 1) 2066 VSX_MADD(XSNMSUBDP, 1, float64, VsrD(0), NMSUB_FLGS, 1) 2067 VSX_MADD(XSMADDSP, 1, float64r32, VsrD(0), MADD_FLGS, 1) 2068 VSX_MADD(XSMSUBSP, 1, float64r32, VsrD(0), MSUB_FLGS, 1) 2069 VSX_MADD(XSNMADDSP, 1, float64r32, VsrD(0), NMADD_FLGS, 1) 2070 VSX_MADD(XSNMSUBSP, 1, float64r32, VsrD(0), NMSUB_FLGS, 1) 2071 2072 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0) 2073 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0) 2074 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0) 2075 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0) 2076 2077 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0) 2078 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0) 2079 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0) 2080 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0) 2081 2082 /* 2083 * VSX_MADDQ - VSX floating point quad-precision muliply/add 2084 * op - instruction mnemonic 2085 * maddflgs - flags for the float*muladd routine that control the 2086 * various forms (madd, msub, nmadd, nmsub) 2087 * ro - round to odd 2088 */ 2089 #define VSX_MADDQ(op, maddflgs, ro) \ 2090 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\ 2091 ppc_vsr_t *s3) \ 2092 { \ 2093 ppc_vsr_t t = *xt; \ 2094 \ 2095 helper_reset_fpstatus(env); \ 2096 \ 2097 float_status tstat = env->fp_status; \ 2098 set_float_exception_flags(0, &tstat); \ 2099 if (ro) { \ 2100 tstat.float_rounding_mode = float_round_to_odd; \ 2101 } \ 2102 t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat); \ 2103 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \ 2104 \ 2105 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \ 2106 float_invalid_op_madd(env, tstat.float_exception_flags, \ 2107 false, GETPC()); \ 2108 } \ 2109 \ 2110 helper_compute_fprf_float128(env, t.f128); \ 2111 *xt = t; \ 2112 do_float_check_status(env, true, GETPC()); \ 2113 } 2114 2115 VSX_MADDQ(XSMADDQP, MADD_FLGS, 0) 2116 VSX_MADDQ(XSMADDQPO, MADD_FLGS, 1) 2117 VSX_MADDQ(XSMSUBQP, MSUB_FLGS, 0) 2118 VSX_MADDQ(XSMSUBQPO, MSUB_FLGS, 1) 2119 VSX_MADDQ(XSNMADDQP, NMADD_FLGS, 0) 2120 VSX_MADDQ(XSNMADDQPO, NMADD_FLGS, 1) 2121 VSX_MADDQ(XSNMSUBQP, NMSUB_FLGS, 0) 2122 VSX_MADDQ(XSNMSUBQPO, NMSUB_FLGS, 0) 2123 2124 /* 2125 * VSX_SCALAR_CMP - VSX scalar floating point compare 2126 * op - instruction mnemonic 2127 * tp - type 2128 * cmp - comparison operation 2129 * fld - vsr_t field 2130 * svxvc - set VXVC bit 2131 */ 2132 #define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc) \ 2133 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ 2134 ppc_vsr_t *xa, ppc_vsr_t *xb) \ 2135 { \ 2136 int flags; \ 2137 bool r, vxvc; \ 2138 \ 2139 helper_reset_fpstatus(env); \ 2140 \ 2141 if (svxvc) { \ 2142 r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status); \ 2143 } else { \ 2144 r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status); \ 2145 } \ 2146 \ 2147 flags = get_float_exception_flags(&env->fp_status); \ 2148 if (unlikely(flags & float_flag_invalid)) { \ 2149 vxvc = svxvc; \ 2150 if (flags & float_flag_invalid_snan) { \ 2151 float_invalid_op_vxsnan(env, GETPC()); \ 2152 vxvc &= !(env->fpscr & FP_VE); \ 2153 } \ 2154 if (vxvc) { \ 2155 float_invalid_op_vxvc(env, 0, GETPC()); \ 2156 } \ 2157 } \ 2158 \ 2159 memset(xt, 0, sizeof(*xt)); \ 2160 memset(&xt->fld, -r, sizeof(xt->fld)); \ 2161 do_float_check_status(env, false, GETPC()); \ 2162 } 2163 2164 VSX_SCALAR_CMP(XSCMPEQDP, float64, eq, VsrD(0), 0) 2165 VSX_SCALAR_CMP(XSCMPGEDP, float64, le, VsrD(0), 1) 2166 VSX_SCALAR_CMP(XSCMPGTDP, float64, lt, VsrD(0), 1) 2167 VSX_SCALAR_CMP(XSCMPEQQP, float128, eq, f128, 0) 2168 VSX_SCALAR_CMP(XSCMPGEQP, float128, le, f128, 1) 2169 VSX_SCALAR_CMP(XSCMPGTQP, float128, lt, f128, 1) 2170 2171 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode, 2172 ppc_vsr_t *xa, ppc_vsr_t *xb) 2173 { 2174 int64_t exp_a, exp_b; 2175 uint32_t cc; 2176 2177 exp_a = extract64(xa->VsrD(0), 52, 11); 2178 exp_b = extract64(xb->VsrD(0), 52, 11); 2179 2180 if (unlikely(float64_is_any_nan(xa->VsrD(0)) || 2181 float64_is_any_nan(xb->VsrD(0)))) { 2182 cc = CRF_SO; 2183 } else { 2184 if (exp_a < exp_b) { 2185 cc = CRF_LT; 2186 } else if (exp_a > exp_b) { 2187 cc = CRF_GT; 2188 } else { 2189 cc = CRF_EQ; 2190 } 2191 } 2192 2193 env->fpscr &= ~FP_FPCC; 2194 env->fpscr |= cc << FPSCR_FPCC; 2195 env->crf[BF(opcode)] = cc; 2196 2197 do_float_check_status(env, false, GETPC()); 2198 } 2199 2200 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode, 2201 ppc_vsr_t *xa, ppc_vsr_t *xb) 2202 { 2203 int64_t exp_a, exp_b; 2204 uint32_t cc; 2205 2206 exp_a = extract64(xa->VsrD(0), 48, 15); 2207 exp_b = extract64(xb->VsrD(0), 48, 15); 2208 2209 if (unlikely(float128_is_any_nan(xa->f128) || 2210 float128_is_any_nan(xb->f128))) { 2211 cc = CRF_SO; 2212 } else { 2213 if (exp_a < exp_b) { 2214 cc = CRF_LT; 2215 } else if (exp_a > exp_b) { 2216 cc = CRF_GT; 2217 } else { 2218 cc = CRF_EQ; 2219 } 2220 } 2221 2222 env->fpscr &= ~FP_FPCC; 2223 env->fpscr |= cc << FPSCR_FPCC; 2224 env->crf[BF(opcode)] = cc; 2225 2226 do_float_check_status(env, false, GETPC()); 2227 } 2228 2229 static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb, 2230 int crf_idx, bool ordered) 2231 { 2232 uint32_t cc; 2233 bool vxsnan_flag = false, vxvc_flag = false; 2234 2235 helper_reset_fpstatus(env); 2236 2237 switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) { 2238 case float_relation_less: 2239 cc = CRF_LT; 2240 break; 2241 case float_relation_equal: 2242 cc = CRF_EQ; 2243 break; 2244 case float_relation_greater: 2245 cc = CRF_GT; 2246 break; 2247 case float_relation_unordered: 2248 cc = CRF_SO; 2249 2250 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) || 2251 float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { 2252 vxsnan_flag = true; 2253 if (!(env->fpscr & FP_VE) && ordered) { 2254 vxvc_flag = true; 2255 } 2256 } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) || 2257 float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) { 2258 if (ordered) { 2259 vxvc_flag = true; 2260 } 2261 } 2262 2263 break; 2264 default: 2265 g_assert_not_reached(); 2266 } 2267 2268 env->fpscr &= ~FP_FPCC; 2269 env->fpscr |= cc << FPSCR_FPCC; 2270 env->crf[crf_idx] = cc; 2271 2272 if (vxsnan_flag) { 2273 float_invalid_op_vxsnan(env, GETPC()); 2274 } 2275 if (vxvc_flag) { 2276 float_invalid_op_vxvc(env, 0, GETPC()); 2277 } 2278 2279 do_float_check_status(env, false, GETPC()); 2280 } 2281 2282 void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, 2283 ppc_vsr_t *xb) 2284 { 2285 do_scalar_cmp(env, xa, xb, BF(opcode), true); 2286 } 2287 2288 void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, 2289 ppc_vsr_t *xb) 2290 { 2291 do_scalar_cmp(env, xa, xb, BF(opcode), false); 2292 } 2293 2294 static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa, 2295 ppc_vsr_t *xb, int crf_idx, bool ordered) 2296 { 2297 uint32_t cc; 2298 bool vxsnan_flag = false, vxvc_flag = false; 2299 2300 helper_reset_fpstatus(env); 2301 2302 switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) { 2303 case float_relation_less: 2304 cc = CRF_LT; 2305 break; 2306 case float_relation_equal: 2307 cc = CRF_EQ; 2308 break; 2309 case float_relation_greater: 2310 cc = CRF_GT; 2311 break; 2312 case float_relation_unordered: 2313 cc = CRF_SO; 2314 2315 if (float128_is_signaling_nan(xa->f128, &env->fp_status) || 2316 float128_is_signaling_nan(xb->f128, &env->fp_status)) { 2317 vxsnan_flag = true; 2318 if (!(env->fpscr & FP_VE) && ordered) { 2319 vxvc_flag = true; 2320 } 2321 } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) || 2322 float128_is_quiet_nan(xb->f128, &env->fp_status)) { 2323 if (ordered) { 2324 vxvc_flag = true; 2325 } 2326 } 2327 2328 break; 2329 default: 2330 g_assert_not_reached(); 2331 } 2332 2333 env->fpscr &= ~FP_FPCC; 2334 env->fpscr |= cc << FPSCR_FPCC; 2335 env->crf[crf_idx] = cc; 2336 2337 if (vxsnan_flag) { 2338 float_invalid_op_vxsnan(env, GETPC()); 2339 } 2340 if (vxvc_flag) { 2341 float_invalid_op_vxvc(env, 0, GETPC()); 2342 } 2343 2344 do_float_check_status(env, false, GETPC()); 2345 } 2346 2347 void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, 2348 ppc_vsr_t *xb) 2349 { 2350 do_scalar_cmpq(env, xa, xb, BF(opcode), true); 2351 } 2352 2353 void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa, 2354 ppc_vsr_t *xb) 2355 { 2356 do_scalar_cmpq(env, xa, xb, BF(opcode), false); 2357 } 2358 2359 /* 2360 * VSX_MAX_MIN - VSX floating point maximum/minimum 2361 * name - instruction mnemonic 2362 * op - operation (max or min) 2363 * nels - number of elements (1, 2 or 4) 2364 * tp - type (float32 or float64) 2365 * fld - vsr_t field (VsrD(*) or VsrW(*)) 2366 */ 2367 #define VSX_MAX_MIN(name, op, nels, tp, fld) \ 2368 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \ 2369 ppc_vsr_t *xa, ppc_vsr_t *xb) \ 2370 { \ 2371 ppc_vsr_t t = { }; \ 2372 int i; \ 2373 \ 2374 for (i = 0; i < nels; i++) { \ 2375 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \ 2376 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ 2377 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \ 2378 float_invalid_op_vxsnan(env, GETPC()); \ 2379 } \ 2380 } \ 2381 \ 2382 *xt = t; \ 2383 do_float_check_status(env, false, GETPC()); \ 2384 } 2385 2386 VSX_MAX_MIN(XSMAXDP, maxnum, 1, float64, VsrD(0)) 2387 VSX_MAX_MIN(XVMAXDP, maxnum, 2, float64, VsrD(i)) 2388 VSX_MAX_MIN(XVMAXSP, maxnum, 4, float32, VsrW(i)) 2389 VSX_MAX_MIN(XSMINDP, minnum, 1, float64, VsrD(0)) 2390 VSX_MAX_MIN(XVMINDP, minnum, 2, float64, VsrD(i)) 2391 VSX_MAX_MIN(XVMINSP, minnum, 4, float32, VsrW(i)) 2392 2393 #define VSX_MAX_MINC(name, max, tp, fld) \ 2394 void helper_##name(CPUPPCState *env, \ 2395 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ 2396 { \ 2397 ppc_vsr_t t = { }; \ 2398 bool first; \ 2399 \ 2400 helper_reset_fpstatus(env); \ 2401 \ 2402 if (max) { \ 2403 first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status); \ 2404 } else { \ 2405 first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status); \ 2406 } \ 2407 \ 2408 if (first) { \ 2409 t.fld = xa->fld; \ 2410 } else { \ 2411 t.fld = xb->fld; \ 2412 if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \ 2413 float_invalid_op_vxsnan(env, GETPC()); \ 2414 } \ 2415 } \ 2416 \ 2417 *xt = t; \ 2418 } 2419 2420 VSX_MAX_MINC(XSMAXCDP, true, float64, VsrD(0)); 2421 VSX_MAX_MINC(XSMINCDP, false, float64, VsrD(0)); 2422 VSX_MAX_MINC(XSMAXCQP, true, float128, f128); 2423 VSX_MAX_MINC(XSMINCQP, false, float128, f128); 2424 2425 #define VSX_MAX_MINJ(name, max) \ 2426 void helper_##name(CPUPPCState *env, \ 2427 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \ 2428 { \ 2429 ppc_vsr_t t = { }; \ 2430 bool vxsnan_flag = false, vex_flag = false; \ 2431 \ 2432 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \ 2433 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \ 2434 vxsnan_flag = true; \ 2435 } \ 2436 t.VsrD(0) = xa->VsrD(0); \ 2437 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \ 2438 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \ 2439 vxsnan_flag = true; \ 2440 } \ 2441 t.VsrD(0) = xb->VsrD(0); \ 2442 } else if (float64_is_zero(xa->VsrD(0)) && \ 2443 float64_is_zero(xb->VsrD(0))) { \ 2444 if (max) { \ 2445 if (!float64_is_neg(xa->VsrD(0)) || \ 2446 !float64_is_neg(xb->VsrD(0))) { \ 2447 t.VsrD(0) = 0ULL; \ 2448 } else { \ 2449 t.VsrD(0) = 0x8000000000000000ULL; \ 2450 } \ 2451 } else { \ 2452 if (float64_is_neg(xa->VsrD(0)) || \ 2453 float64_is_neg(xb->VsrD(0))) { \ 2454 t.VsrD(0) = 0x8000000000000000ULL; \ 2455 } else { \ 2456 t.VsrD(0) = 0ULL; \ 2457 } \ 2458 } \ 2459 } else if ((max && \ 2460 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \ 2461 (!max && \ 2462 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \ 2463 t.VsrD(0) = xa->VsrD(0); \ 2464 } else { \ 2465 t.VsrD(0) = xb->VsrD(0); \ 2466 } \ 2467 \ 2468 vex_flag = (env->fpscr & FP_VE) && vxsnan_flag; \ 2469 if (vxsnan_flag) { \ 2470 float_invalid_op_vxsnan(env, GETPC()); \ 2471 } \ 2472 if (!vex_flag) { \ 2473 *xt = t; \ 2474 } \ 2475 } \ 2476 2477 VSX_MAX_MINJ(XSMAXJDP, 1); 2478 VSX_MAX_MINJ(XSMINJDP, 0); 2479 2480 /* 2481 * VSX_CMP - VSX floating point compare 2482 * op - instruction mnemonic 2483 * nels - number of elements (1, 2 or 4) 2484 * tp - type (float32 or float64) 2485 * fld - vsr_t field (VsrD(*) or VsrW(*)) 2486 * cmp - comparison operation 2487 * svxvc - set VXVC bit 2488 * exp - expected result of comparison 2489 */ 2490 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \ 2491 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \ 2492 ppc_vsr_t *xa, ppc_vsr_t *xb) \ 2493 { \ 2494 ppc_vsr_t t = *xt; \ 2495 uint32_t crf6 = 0; \ 2496 int i; \ 2497 int all_true = 1; \ 2498 int all_false = 1; \ 2499 \ 2500 helper_reset_fpstatus(env); \ 2501 \ 2502 for (i = 0; i < nels; i++) { \ 2503 if (unlikely(tp##_is_any_nan(xa->fld) || \ 2504 tp##_is_any_nan(xb->fld))) { \ 2505 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \ 2506 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \ 2507 float_invalid_op_vxsnan(env, GETPC()); \ 2508 } \ 2509 if (svxvc) { \ 2510 float_invalid_op_vxvc(env, 0, GETPC()); \ 2511 } \ 2512 t.fld = 0; \ 2513 all_true = 0; \ 2514 } else { \ 2515 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \ 2516 t.fld = -1; \ 2517 all_false = 0; \ 2518 } else { \ 2519 t.fld = 0; \ 2520 all_true = 0; \ 2521 } \ 2522 } \ 2523 } \ 2524 \ 2525 *xt = t; \ 2526 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \ 2527 return crf6; \ 2528 } 2529 2530 VSX_CMP(XVCMPEQDP, 2, float64, VsrD(i), eq, 0, 1) 2531 VSX_CMP(XVCMPGEDP, 2, float64, VsrD(i), le, 1, 1) 2532 VSX_CMP(XVCMPGTDP, 2, float64, VsrD(i), lt, 1, 1) 2533 VSX_CMP(XVCMPNEDP, 2, float64, VsrD(i), eq, 0, 0) 2534 VSX_CMP(XVCMPEQSP, 4, float32, VsrW(i), eq, 0, 1) 2535 VSX_CMP(XVCMPGESP, 4, float32, VsrW(i), le, 1, 1) 2536 VSX_CMP(XVCMPGTSP, 4, float32, VsrW(i), lt, 1, 1) 2537 VSX_CMP(XVCMPNESP, 4, float32, VsrW(i), eq, 0, 0) 2538 2539 /* 2540 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion 2541 * op - instruction mnemonic 2542 * nels - number of elements (1, 2 or 4) 2543 * stp - source type (float32 or float64) 2544 * ttp - target type (float32 or float64) 2545 * sfld - source vsr_t field 2546 * tfld - target vsr_t field (f32 or f64) 2547 * sfifprf - set FI and FPRF 2548 */ 2549 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf) \ 2550 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2551 { \ 2552 ppc_vsr_t t = { }; \ 2553 int i; \ 2554 \ 2555 helper_reset_fpstatus(env); \ 2556 \ 2557 for (i = 0; i < nels; i++) { \ 2558 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ 2559 if (unlikely(stp##_is_signaling_nan(xb->sfld, \ 2560 &env->fp_status))) { \ 2561 float_invalid_op_vxsnan(env, GETPC()); \ 2562 t.tfld = ttp##_snan_to_qnan(t.tfld); \ 2563 } \ 2564 if (sfifprf) { \ 2565 helper_compute_fprf_##ttp(env, t.tfld); \ 2566 } \ 2567 } \ 2568 \ 2569 *xt = t; \ 2570 do_float_check_status(env, sfifprf, GETPC()); \ 2571 } 2572 2573 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1) 2574 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0) 2575 2576 #define VSX_CVT_FP_TO_FP2(op, nels, stp, ttp, sfifprf) \ 2577 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2578 { \ 2579 ppc_vsr_t t = { }; \ 2580 int i; \ 2581 \ 2582 helper_reset_fpstatus(env); \ 2583 \ 2584 for (i = 0; i < nels; i++) { \ 2585 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \ 2586 if (unlikely(stp##_is_signaling_nan(xb->VsrD(i), \ 2587 &env->fp_status))) { \ 2588 float_invalid_op_vxsnan(env, GETPC()); \ 2589 t.VsrW(2 * i) = ttp##_snan_to_qnan(t.VsrW(2 * i)); \ 2590 } \ 2591 if (sfifprf) { \ 2592 helper_compute_fprf_##ttp(env, t.VsrW(2 * i)); \ 2593 } \ 2594 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \ 2595 } \ 2596 \ 2597 *xt = t; \ 2598 do_float_check_status(env, sfifprf, GETPC()); \ 2599 } 2600 2601 VSX_CVT_FP_TO_FP2(xvcvdpsp, 2, float64, float32, 0) 2602 VSX_CVT_FP_TO_FP2(xscvdpsp, 1, float64, float32, 1) 2603 2604 /* 2605 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion 2606 * op - instruction mnemonic 2607 * nels - number of elements (1, 2 or 4) 2608 * stp - source type (float32 or float64) 2609 * ttp - target type (float32 or float64) 2610 * sfld - source vsr_t field 2611 * tfld - target vsr_t field (f32 or f64) 2612 * sfprf - set FPRF 2613 */ 2614 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \ 2615 void helper_##op(CPUPPCState *env, uint32_t opcode, \ 2616 ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2617 { \ 2618 ppc_vsr_t t = *xt; \ 2619 int i; \ 2620 \ 2621 helper_reset_fpstatus(env); \ 2622 \ 2623 for (i = 0; i < nels; i++) { \ 2624 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ 2625 if (unlikely(stp##_is_signaling_nan(xb->sfld, \ 2626 &env->fp_status))) { \ 2627 float_invalid_op_vxsnan(env, GETPC()); \ 2628 t.tfld = ttp##_snan_to_qnan(t.tfld); \ 2629 } \ 2630 if (sfprf) { \ 2631 helper_compute_fprf_##ttp(env, t.tfld); \ 2632 } \ 2633 } \ 2634 \ 2635 *xt = t; \ 2636 do_float_check_status(env, true, GETPC()); \ 2637 } 2638 2639 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1) 2640 2641 /* 2642 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion 2643 * involving one half precision value 2644 * op - instruction mnemonic 2645 * nels - number of elements (1, 2 or 4) 2646 * stp - source type 2647 * ttp - target type 2648 * sfld - source vsr_t field 2649 * tfld - target vsr_t field 2650 * sfifprf - set FI and FPRF 2651 */ 2652 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfifprf) \ 2653 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2654 { \ 2655 ppc_vsr_t t = { }; \ 2656 int i; \ 2657 \ 2658 helper_reset_fpstatus(env); \ 2659 \ 2660 for (i = 0; i < nels; i++) { \ 2661 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \ 2662 if (unlikely(stp##_is_signaling_nan(xb->sfld, \ 2663 &env->fp_status))) { \ 2664 float_invalid_op_vxsnan(env, GETPC()); \ 2665 t.tfld = ttp##_snan_to_qnan(t.tfld); \ 2666 } \ 2667 if (sfifprf) { \ 2668 helper_compute_fprf_##ttp(env, t.tfld); \ 2669 } \ 2670 } \ 2671 \ 2672 *xt = t; \ 2673 do_float_check_status(env, sfifprf, GETPC()); \ 2674 } 2675 2676 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1) 2677 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1) 2678 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i + 1), 0) 2679 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0) 2680 2681 void helper_XVCVSPBF16(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) 2682 { 2683 ppc_vsr_t t = { }; 2684 int i, status; 2685 2686 helper_reset_fpstatus(env); 2687 2688 for (i = 0; i < 4; i++) { 2689 t.VsrH(2 * i + 1) = float32_to_bfloat16(xb->VsrW(i), &env->fp_status); 2690 } 2691 2692 status = get_float_exception_flags(&env->fp_status); 2693 if (unlikely(status & float_flag_invalid_snan)) { 2694 float_invalid_op_vxsnan(env, GETPC()); 2695 } 2696 2697 *xt = t; 2698 do_float_check_status(env, false, GETPC()); 2699 } 2700 2701 void helper_XSCVQPDP(CPUPPCState *env, uint32_t ro, ppc_vsr_t *xt, 2702 ppc_vsr_t *xb) 2703 { 2704 ppc_vsr_t t = { }; 2705 float_status tstat; 2706 2707 helper_reset_fpstatus(env); 2708 2709 tstat = env->fp_status; 2710 if (ro != 0) { 2711 tstat.float_rounding_mode = float_round_to_odd; 2712 } 2713 2714 t.VsrD(0) = float128_to_float64(xb->f128, &tstat); 2715 env->fp_status.float_exception_flags |= tstat.float_exception_flags; 2716 if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) { 2717 float_invalid_op_vxsnan(env, GETPC()); 2718 t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0)); 2719 } 2720 helper_compute_fprf_float64(env, t.VsrD(0)); 2721 2722 *xt = t; 2723 do_float_check_status(env, true, GETPC()); 2724 } 2725 2726 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb) 2727 { 2728 uint64_t result, sign, exp, frac; 2729 2730 helper_reset_fpstatus(env); 2731 float_status tstat = env->fp_status; 2732 set_float_exception_flags(0, &tstat); 2733 2734 sign = extract64(xb, 63, 1); 2735 exp = extract64(xb, 52, 11); 2736 frac = extract64(xb, 0, 52) | 0x10000000000000ULL; 2737 2738 if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) { 2739 /* DP denormal operand. */ 2740 /* Exponent override to DP min exp. */ 2741 exp = 1; 2742 /* Implicit bit override to 0. */ 2743 frac = deposit64(frac, 53, 1, 0); 2744 } 2745 2746 if (unlikely(exp < 897 && frac != 0)) { 2747 /* SP tiny operand. */ 2748 if (897 - exp > 63) { 2749 frac = 0; 2750 } else { 2751 /* Denormalize until exp = SP min exp. */ 2752 frac >>= (897 - exp); 2753 } 2754 /* Exponent override to SP min exp - 1. */ 2755 exp = 896; 2756 } 2757 2758 result = sign << 31; 2759 result |= extract64(exp, 10, 1) << 30; 2760 result |= extract64(exp, 0, 7) << 23; 2761 result |= extract64(frac, 29, 23); 2762 2763 /* hardware replicates result to both words of the doubleword result. */ 2764 return (result << 32) | result; 2765 } 2766 2767 uint64_t helper_XSCVSPDPN(uint64_t xb) 2768 { 2769 return helper_todouble(xb >> 32); 2770 } 2771 2772 /* 2773 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion 2774 * op - instruction mnemonic 2775 * nels - number of elements (1, 2 or 4) 2776 * stp - source type (float32 or float64) 2777 * ttp - target type (int32, uint32, int64 or uint64) 2778 * sfld - source vsr_t field 2779 * tfld - target vsr_t field 2780 * sfi - set FI 2781 * rnan - resulting NaN 2782 */ 2783 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, sfi, rnan) \ 2784 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2785 { \ 2786 int all_flags = 0; \ 2787 ppc_vsr_t t = { }; \ 2788 int i, flags; \ 2789 \ 2790 for (i = 0; i < nels; i++) { \ 2791 helper_reset_fpstatus(env); \ 2792 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ 2793 flags = env->fp_status.float_exception_flags; \ 2794 all_flags |= flags; \ 2795 if (unlikely(flags & float_flag_invalid)) { \ 2796 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\ 2797 } \ 2798 } \ 2799 \ 2800 *xt = t; \ 2801 env->fp_status.float_exception_flags = all_flags; \ 2802 do_float_check_status(env, sfi, GETPC()); \ 2803 } 2804 2805 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), true, \ 2806 0x8000000000000000ULL) 2807 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), true, 0ULL) 2808 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), false, \ 2809 0x8000000000000000ULL) 2810 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), false, \ 2811 0ULL) 2812 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), false, \ 2813 0x8000000000000000ULL) 2814 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), false, \ 2815 0x80000000ULL) 2816 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), \ 2817 false, 0ULL) 2818 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), false, 0U) 2819 2820 #define VSX_CVT_FP_TO_INT128(op, tp, rnan) \ 2821 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2822 { \ 2823 ppc_vsr_t t; \ 2824 int flags; \ 2825 \ 2826 helper_reset_fpstatus(env); \ 2827 t.s128 = float128_to_##tp##_round_to_zero(xb->f128, &env->fp_status); \ 2828 flags = get_float_exception_flags(&env->fp_status); \ 2829 if (unlikely(flags & float_flag_invalid)) { \ 2830 t.VsrD(0) = float_invalid_cvt(env, flags, t.VsrD(0), rnan, 0, GETPC());\ 2831 t.VsrD(1) = -(t.VsrD(0) & 1); \ 2832 } \ 2833 \ 2834 *xt = t; \ 2835 do_float_check_status(env, true, GETPC()); \ 2836 } 2837 2838 VSX_CVT_FP_TO_INT128(XSCVQPUQZ, uint128, 0) 2839 VSX_CVT_FP_TO_INT128(XSCVQPSQZ, int128, 0x8000000000000000ULL); 2840 2841 /* 2842 * Likewise, except that the result is duplicated into both subwords. 2843 * Power ISA v3.1 has Programming Notes for these insns: 2844 * Previous versions of the architecture allowed the contents of 2845 * word 0 of the result register to be undefined. However, all 2846 * processors that support this instruction write the result into 2847 * words 0 and 1 (and words 2 and 3) of the result register, as 2848 * is required by this version of the architecture. 2849 */ 2850 #define VSX_CVT_FP_TO_INT2(op, nels, stp, ttp, sfi, rnan) \ 2851 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2852 { \ 2853 int all_flags = 0; \ 2854 ppc_vsr_t t = { }; \ 2855 int i, flags; \ 2856 \ 2857 for (i = 0; i < nels; i++) { \ 2858 helper_reset_fpstatus(env); \ 2859 t.VsrW(2 * i) = stp##_to_##ttp##_round_to_zero(xb->VsrD(i), \ 2860 &env->fp_status); \ 2861 flags = env->fp_status.float_exception_flags; \ 2862 all_flags |= flags; \ 2863 if (unlikely(flags & float_flag_invalid)) { \ 2864 t.VsrW(2 * i) = float_invalid_cvt(env, flags, t.VsrW(2 * i), \ 2865 rnan, 0, GETPC()); \ 2866 } \ 2867 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \ 2868 } \ 2869 \ 2870 *xt = t; \ 2871 env->fp_status.float_exception_flags = all_flags; \ 2872 do_float_check_status(env, sfi, GETPC()); \ 2873 } 2874 2875 VSX_CVT_FP_TO_INT2(xscvdpsxws, 1, float64, int32, true, 0x80000000U) 2876 VSX_CVT_FP_TO_INT2(xscvdpuxws, 1, float64, uint32, true, 0U) 2877 VSX_CVT_FP_TO_INT2(xvcvdpsxws, 2, float64, int32, false, 0x80000000U) 2878 VSX_CVT_FP_TO_INT2(xvcvdpuxws, 2, float64, uint32, false, 0U) 2879 2880 /* 2881 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion 2882 * op - instruction mnemonic 2883 * stp - source type (float32 or float64) 2884 * ttp - target type (int32, uint32, int64 or uint64) 2885 * sfld - source vsr_t field 2886 * tfld - target vsr_t field 2887 * rnan - resulting NaN 2888 */ 2889 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \ 2890 void helper_##op(CPUPPCState *env, uint32_t opcode, \ 2891 ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2892 { \ 2893 ppc_vsr_t t = { }; \ 2894 int flags; \ 2895 \ 2896 helper_reset_fpstatus(env); \ 2897 \ 2898 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \ 2899 flags = get_float_exception_flags(&env->fp_status); \ 2900 if (flags & float_flag_invalid) { \ 2901 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC()); \ 2902 } \ 2903 \ 2904 *xt = t; \ 2905 do_float_check_status(env, true, GETPC()); \ 2906 } 2907 2908 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0), \ 2909 0x8000000000000000ULL) 2910 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0), \ 2911 0xffffffff80000000ULL) 2912 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL) 2913 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL) 2914 2915 /* 2916 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion 2917 * op - instruction mnemonic 2918 * nels - number of elements (1, 2 or 4) 2919 * stp - source type (int32, uint32, int64 or uint64) 2920 * ttp - target type (float32 or float64) 2921 * sfld - source vsr_t field 2922 * tfld - target vsr_t field 2923 * jdef - definition of the j index (i or 2*i) 2924 * sfifprf - set FI and FPRF 2925 */ 2926 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf, r2sp)\ 2927 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2928 { \ 2929 ppc_vsr_t t = { }; \ 2930 int i; \ 2931 \ 2932 helper_reset_fpstatus(env); \ 2933 \ 2934 for (i = 0; i < nels; i++) { \ 2935 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ 2936 if (r2sp) { \ 2937 t.tfld = do_frsp(env, t.tfld, GETPC()); \ 2938 } \ 2939 if (sfifprf) { \ 2940 helper_compute_fprf_float64(env, t.tfld); \ 2941 } \ 2942 } \ 2943 \ 2944 *xt = t; \ 2945 do_float_check_status(env, sfifprf, GETPC()); \ 2946 } 2947 2948 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0) 2949 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0) 2950 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1) 2951 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1) 2952 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0) 2953 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0) 2954 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0) 2955 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0) 2956 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0) 2957 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0) 2958 2959 #define VSX_CVT_INT_TO_FP2(op, stp, ttp) \ 2960 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 2961 { \ 2962 ppc_vsr_t t = { }; \ 2963 int i; \ 2964 \ 2965 for (i = 0; i < 2; i++) { \ 2966 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \ 2967 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \ 2968 } \ 2969 \ 2970 *xt = t; \ 2971 do_float_check_status(env, false, GETPC()); \ 2972 } 2973 2974 VSX_CVT_INT_TO_FP2(xvcvsxdsp, int64, float32) 2975 VSX_CVT_INT_TO_FP2(xvcvuxdsp, uint64, float32) 2976 2977 #define VSX_CVT_INT128_TO_FP(op, tp) \ 2978 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)\ 2979 { \ 2980 helper_reset_fpstatus(env); \ 2981 xt->f128 = tp##_to_float128(xb->s128, &env->fp_status); \ 2982 helper_compute_fprf_float128(env, xt->f128); \ 2983 do_float_check_status(env, true, GETPC()); \ 2984 } 2985 2986 VSX_CVT_INT128_TO_FP(XSCVUQQP, uint128); 2987 VSX_CVT_INT128_TO_FP(XSCVSQQP, int128); 2988 2989 /* 2990 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion 2991 * op - instruction mnemonic 2992 * stp - source type (int32, uint32, int64 or uint64) 2993 * ttp - target type (float32 or float64) 2994 * sfld - source vsr_t field 2995 * tfld - target vsr_t field 2996 */ 2997 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \ 2998 void helper_##op(CPUPPCState *env, uint32_t opcode, \ 2999 ppc_vsr_t *xt, ppc_vsr_t *xb) \ 3000 { \ 3001 ppc_vsr_t t = *xt; \ 3002 \ 3003 helper_reset_fpstatus(env); \ 3004 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \ 3005 helper_compute_fprf_##ttp(env, t.tfld); \ 3006 \ 3007 *xt = t; \ 3008 do_float_check_status(env, true, GETPC()); \ 3009 } 3010 3011 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128) 3012 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128) 3013 3014 /* 3015 * For "use current rounding mode", define a value that will not be 3016 * one of the existing rounding model enums. 3017 */ 3018 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \ 3019 float_round_up + float_round_to_zero) 3020 3021 /* 3022 * VSX_ROUND - VSX floating point round 3023 * op - instruction mnemonic 3024 * nels - number of elements (1, 2 or 4) 3025 * tp - type (float32 or float64) 3026 * fld - vsr_t field (VsrD(*) or VsrW(*)) 3027 * rmode - rounding mode 3028 * sfifprf - set FI and FPRF 3029 */ 3030 #define VSX_ROUND(op, nels, tp, fld, rmode, sfifprf) \ 3031 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \ 3032 { \ 3033 ppc_vsr_t t = { }; \ 3034 int i; \ 3035 FloatRoundMode curr_rounding_mode; \ 3036 \ 3037 helper_reset_fpstatus(env); \ 3038 \ 3039 if (rmode != FLOAT_ROUND_CURRENT) { \ 3040 curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \ 3041 set_float_rounding_mode(rmode, &env->fp_status); \ 3042 } \ 3043 \ 3044 for (i = 0; i < nels; i++) { \ 3045 if (unlikely(tp##_is_signaling_nan(xb->fld, \ 3046 &env->fp_status))) { \ 3047 float_invalid_op_vxsnan(env, GETPC()); \ 3048 t.fld = tp##_snan_to_qnan(xb->fld); \ 3049 } else { \ 3050 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \ 3051 } \ 3052 if (sfifprf) { \ 3053 helper_compute_fprf_float64(env, t.fld); \ 3054 } \ 3055 } \ 3056 \ 3057 /* \ 3058 * If this is not a "use current rounding mode" instruction, \ 3059 * then inhibit setting of the XX bit and restore rounding \ 3060 * mode from FPSCR \ 3061 */ \ 3062 if (rmode != FLOAT_ROUND_CURRENT) { \ 3063 set_float_rounding_mode(curr_rounding_mode, &env->fp_status); \ 3064 env->fp_status.float_exception_flags &= ~float_flag_inexact; \ 3065 } \ 3066 \ 3067 *xt = t; \ 3068 do_float_check_status(env, sfifprf, GETPC()); \ 3069 } 3070 3071 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1) 3072 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1) 3073 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1) 3074 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1) 3075 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1) 3076 3077 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0) 3078 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0) 3079 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0) 3080 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0) 3081 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0) 3082 3083 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0) 3084 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0) 3085 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0) 3086 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0) 3087 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0) 3088 3089 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb) 3090 { 3091 helper_reset_fpstatus(env); 3092 3093 uint64_t xt = do_frsp(env, xb, GETPC()); 3094 3095 helper_compute_fprf_float64(env, xt); 3096 do_float_check_status(env, true, GETPC()); 3097 return xt; 3098 } 3099 3100 void helper_XVXSIGSP(ppc_vsr_t *xt, ppc_vsr_t *xb) 3101 { 3102 ppc_vsr_t t = { }; 3103 uint32_t exp, i, fraction; 3104 3105 for (i = 0; i < 4; i++) { 3106 exp = (xb->VsrW(i) >> 23) & 0xFF; 3107 fraction = xb->VsrW(i) & 0x7FFFFF; 3108 if (exp != 0 && exp != 255) { 3109 t.VsrW(i) = fraction | 0x00800000; 3110 } else { 3111 t.VsrW(i) = fraction; 3112 } 3113 } 3114 *xt = t; 3115 } 3116 3117 #define VSX_TSTDC(tp) \ 3118 static int32_t tp##_tstdc(tp b, uint32_t dcmx) \ 3119 { \ 3120 uint32_t match = 0; \ 3121 uint32_t sign = tp##_is_neg(b); \ 3122 if (tp##_is_any_nan(b)) { \ 3123 match = extract32(dcmx, 6, 1); \ 3124 } else if (tp##_is_infinity(b)) { \ 3125 match = extract32(dcmx, 4 + !sign, 1); \ 3126 } else if (tp##_is_zero(b)) { \ 3127 match = extract32(dcmx, 2 + !sign, 1); \ 3128 } else if (tp##_is_zero_or_denormal(b)) { \ 3129 match = extract32(dcmx, 0 + !sign, 1); \ 3130 } \ 3131 return (match != 0); \ 3132 } 3133 3134 VSX_TSTDC(float32) 3135 VSX_TSTDC(float64) 3136 VSX_TSTDC(float128) 3137 #undef VSX_TSTDC 3138 3139 void helper_XVTSTDCDP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v) 3140 { 3141 int i; 3142 for (i = 0; i < 2; i++) { 3143 t->s64[i] = (int64_t)-float64_tstdc(b->f64[i], dcmx); 3144 } 3145 } 3146 3147 void helper_XVTSTDCSP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v) 3148 { 3149 int i; 3150 for (i = 0; i < 4; i++) { 3151 t->s32[i] = (int32_t)-float32_tstdc(b->f32[i], dcmx); 3152 } 3153 } 3154 3155 static bool not_SP_value(float64 val) 3156 { 3157 return val != helper_todouble(helper_tosingle(val)); 3158 } 3159 3160 /* 3161 * VSX_XS_TSTDC - VSX Scalar Test Data Class 3162 * NAME - instruction name 3163 * FLD - vsr_t field (VsrD(0) or f128) 3164 * TP - type (float64 or float128) 3165 */ 3166 #define VSX_XS_TSTDC(NAME, FLD, TP) \ 3167 void helper_##NAME(CPUPPCState *env, uint32_t bf, \ 3168 uint32_t dcmx, ppc_vsr_t *b) \ 3169 { \ 3170 uint32_t cc, match, sign = TP##_is_neg(b->FLD); \ 3171 match = TP##_tstdc(b->FLD, dcmx); \ 3172 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \ 3173 env->fpscr &= ~FP_FPCC; \ 3174 env->fpscr |= cc << FPSCR_FPCC; \ 3175 env->crf[bf] = cc; \ 3176 } 3177 3178 VSX_XS_TSTDC(XSTSTDCDP, VsrD(0), float64) 3179 VSX_XS_TSTDC(XSTSTDCQP, f128, float128) 3180 #undef VSX_XS_TSTDC 3181 3182 void helper_XSTSTDCSP(CPUPPCState *env, uint32_t bf, 3183 uint32_t dcmx, ppc_vsr_t *b) 3184 { 3185 uint32_t cc, match, sign = float64_is_neg(b->VsrD(0)); 3186 uint32_t exp = (b->VsrD(0) >> 52) & 0x7FF; 3187 int not_sp = (int)not_SP_value(b->VsrD(0)); 3188 match = float64_tstdc(b->VsrD(0), dcmx) || (exp > 0 && exp < 0x381); 3189 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT; 3190 env->fpscr &= ~FP_FPCC; 3191 env->fpscr |= cc << FPSCR_FPCC; 3192 env->crf[bf] = cc; 3193 } 3194 3195 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode, 3196 ppc_vsr_t *xt, ppc_vsr_t *xb) 3197 { 3198 ppc_vsr_t t = { }; 3199 uint8_t r = Rrm(opcode); 3200 uint8_t ex = Rc(opcode); 3201 uint8_t rmc = RMC(opcode); 3202 uint8_t rmode = 0; 3203 float_status tstat; 3204 3205 helper_reset_fpstatus(env); 3206 3207 if (r == 0 && rmc == 0) { 3208 rmode = float_round_ties_away; 3209 } else if (r == 0 && rmc == 0x3) { 3210 rmode = env->fpscr & FP_RN; 3211 } else if (r == 1) { 3212 switch (rmc) { 3213 case 0: 3214 rmode = float_round_nearest_even; 3215 break; 3216 case 1: 3217 rmode = float_round_to_zero; 3218 break; 3219 case 2: 3220 rmode = float_round_up; 3221 break; 3222 case 3: 3223 rmode = float_round_down; 3224 break; 3225 default: 3226 abort(); 3227 } 3228 } 3229 3230 tstat = env->fp_status; 3231 set_float_exception_flags(0, &tstat); 3232 set_float_rounding_mode(rmode, &tstat); 3233 t.f128 = float128_round_to_int(xb->f128, &tstat); 3234 env->fp_status.float_exception_flags |= tstat.float_exception_flags; 3235 3236 if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) { 3237 float_invalid_op_vxsnan(env, GETPC()); 3238 } 3239 3240 if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) { 3241 env->fp_status.float_exception_flags &= ~float_flag_inexact; 3242 } 3243 3244 helper_compute_fprf_float128(env, t.f128); 3245 do_float_check_status(env, true, GETPC()); 3246 *xt = t; 3247 } 3248 3249 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode, 3250 ppc_vsr_t *xt, ppc_vsr_t *xb) 3251 { 3252 ppc_vsr_t t = { }; 3253 uint8_t r = Rrm(opcode); 3254 uint8_t rmc = RMC(opcode); 3255 uint8_t rmode = 0; 3256 floatx80 round_res; 3257 float_status tstat; 3258 3259 helper_reset_fpstatus(env); 3260 3261 if (r == 0 && rmc == 0) { 3262 rmode = float_round_ties_away; 3263 } else if (r == 0 && rmc == 0x3) { 3264 rmode = env->fpscr & FP_RN; 3265 } else if (r == 1) { 3266 switch (rmc) { 3267 case 0: 3268 rmode = float_round_nearest_even; 3269 break; 3270 case 1: 3271 rmode = float_round_to_zero; 3272 break; 3273 case 2: 3274 rmode = float_round_up; 3275 break; 3276 case 3: 3277 rmode = float_round_down; 3278 break; 3279 default: 3280 abort(); 3281 } 3282 } 3283 3284 tstat = env->fp_status; 3285 set_float_exception_flags(0, &tstat); 3286 set_float_rounding_mode(rmode, &tstat); 3287 round_res = float128_to_floatx80(xb->f128, &tstat); 3288 t.f128 = floatx80_to_float128(round_res, &tstat); 3289 env->fp_status.float_exception_flags |= tstat.float_exception_flags; 3290 3291 if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) { 3292 float_invalid_op_vxsnan(env, GETPC()); 3293 t.f128 = float128_snan_to_qnan(t.f128); 3294 } 3295 3296 helper_compute_fprf_float128(env, t.f128); 3297 *xt = t; 3298 do_float_check_status(env, true, GETPC()); 3299 } 3300 3301 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode, 3302 ppc_vsr_t *xt, ppc_vsr_t *xb) 3303 { 3304 ppc_vsr_t t = { }; 3305 float_status tstat; 3306 3307 helper_reset_fpstatus(env); 3308 3309 tstat = env->fp_status; 3310 if (unlikely(Rc(opcode) != 0)) { 3311 tstat.float_rounding_mode = float_round_to_odd; 3312 } 3313 3314 set_float_exception_flags(0, &tstat); 3315 t.f128 = float128_sqrt(xb->f128, &tstat); 3316 env->fp_status.float_exception_flags |= tstat.float_exception_flags; 3317 3318 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { 3319 float_invalid_op_sqrt(env, tstat.float_exception_flags, 1, GETPC()); 3320 } 3321 3322 helper_compute_fprf_float128(env, t.f128); 3323 *xt = t; 3324 do_float_check_status(env, true, GETPC()); 3325 } 3326 3327 void helper_xssubqp(CPUPPCState *env, uint32_t opcode, 3328 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) 3329 { 3330 ppc_vsr_t t = *xt; 3331 float_status tstat; 3332 3333 helper_reset_fpstatus(env); 3334 3335 tstat = env->fp_status; 3336 if (unlikely(Rc(opcode) != 0)) { 3337 tstat.float_rounding_mode = float_round_to_odd; 3338 } 3339 3340 set_float_exception_flags(0, &tstat); 3341 t.f128 = float128_sub(xa->f128, xb->f128, &tstat); 3342 env->fp_status.float_exception_flags |= tstat.float_exception_flags; 3343 3344 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { 3345 float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC()); 3346 } 3347 3348 helper_compute_fprf_float128(env, t.f128); 3349 *xt = t; 3350 do_float_check_status(env, true, GETPC()); 3351 } 3352 3353 static inline void vsxger_excp(CPUPPCState *env, uintptr_t retaddr) 3354 { 3355 /* 3356 * XV*GER instructions execute and set the FPSCR as if exceptions 3357 * are disabled and only at the end throw an exception 3358 */ 3359 target_ulong enable; 3360 enable = env->fpscr & (FP_ENABLES | FP_FI | FP_FR); 3361 env->fpscr &= ~(FP_ENABLES | FP_FI | FP_FR); 3362 int status = get_float_exception_flags(&env->fp_status); 3363 if (unlikely(status & float_flag_invalid)) { 3364 if (status & float_flag_invalid_snan) { 3365 float_invalid_op_vxsnan(env, 0); 3366 } 3367 if (status & float_flag_invalid_imz) { 3368 float_invalid_op_vximz(env, false, 0); 3369 } 3370 if (status & float_flag_invalid_isi) { 3371 float_invalid_op_vxisi(env, false, 0); 3372 } 3373 } 3374 do_float_check_status(env, false, retaddr); 3375 env->fpscr |= enable; 3376 do_fpscr_check_status(env, retaddr); 3377 } 3378 3379 typedef float64 extract_f16(float16, float_status *); 3380 3381 static float64 extract_hf16(float16 in, float_status *fp_status) 3382 { 3383 return float16_to_float64(in, true, fp_status); 3384 } 3385 3386 static float64 extract_bf16(bfloat16 in, float_status *fp_status) 3387 { 3388 return bfloat16_to_float64(in, fp_status); 3389 } 3390 3391 static void vsxger16(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3392 ppc_acc_t *at, uint32_t mask, bool acc, 3393 bool neg_mul, bool neg_acc, extract_f16 extract) 3394 { 3395 float32 r, aux_acc; 3396 float64 psum, va, vb, vc, vd; 3397 int i, j, xmsk_bit, ymsk_bit; 3398 uint8_t pmsk = FIELD_EX32(mask, GER_MSK, PMSK), 3399 xmsk = FIELD_EX32(mask, GER_MSK, XMSK), 3400 ymsk = FIELD_EX32(mask, GER_MSK, YMSK); 3401 float_status *excp_ptr = &env->fp_status; 3402 for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) { 3403 for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) { 3404 if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) { 3405 va = !(pmsk & 2) ? float64_zero : 3406 extract(a->VsrHF(2 * i), excp_ptr); 3407 vb = !(pmsk & 2) ? float64_zero : 3408 extract(b->VsrHF(2 * j), excp_ptr); 3409 vc = !(pmsk & 1) ? float64_zero : 3410 extract(a->VsrHF(2 * i + 1), excp_ptr); 3411 vd = !(pmsk & 1) ? float64_zero : 3412 extract(b->VsrHF(2 * j + 1), excp_ptr); 3413 psum = float64_mul(va, vb, excp_ptr); 3414 psum = float64r32_muladd(vc, vd, psum, 0, excp_ptr); 3415 r = float64_to_float32(psum, excp_ptr); 3416 if (acc) { 3417 aux_acc = at[i].VsrSF(j); 3418 if (neg_mul) { 3419 r = bfp32_neg(r); 3420 } 3421 if (neg_acc) { 3422 aux_acc = bfp32_neg(aux_acc); 3423 } 3424 r = float32_add(r, aux_acc, excp_ptr); 3425 } 3426 at[i].VsrSF(j) = r; 3427 } else { 3428 at[i].VsrSF(j) = float32_zero; 3429 } 3430 } 3431 } 3432 vsxger_excp(env, GETPC()); 3433 } 3434 3435 typedef void vsxger_zero(ppc_vsr_t *at, int, int); 3436 3437 typedef void vsxger_muladd_f(ppc_vsr_t *, ppc_vsr_t *, ppc_vsr_t *, int, int, 3438 int flags, float_status *s); 3439 3440 static void vsxger_muladd32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i, 3441 int j, int flags, float_status *s) 3442 { 3443 at[i].VsrSF(j) = float32_muladd(a->VsrSF(i), b->VsrSF(j), 3444 at[i].VsrSF(j), flags, s); 3445 } 3446 3447 static void vsxger_mul32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i, 3448 int j, int flags, float_status *s) 3449 { 3450 at[i].VsrSF(j) = float32_mul(a->VsrSF(i), b->VsrSF(j), s); 3451 } 3452 3453 static void vsxger_zero32(ppc_vsr_t *at, int i, int j) 3454 { 3455 at[i].VsrSF(j) = float32_zero; 3456 } 3457 3458 static void vsxger_muladd64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i, 3459 int j, int flags, float_status *s) 3460 { 3461 if (j >= 2) { 3462 j -= 2; 3463 at[i].VsrDF(j) = float64_muladd(a[i / 2].VsrDF(i % 2), b->VsrDF(j), 3464 at[i].VsrDF(j), flags, s); 3465 } 3466 } 3467 3468 static void vsxger_mul64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i, 3469 int j, int flags, float_status *s) 3470 { 3471 if (j >= 2) { 3472 j -= 2; 3473 at[i].VsrDF(j) = float64_mul(a[i / 2].VsrDF(i % 2), b->VsrDF(j), s); 3474 } 3475 } 3476 3477 static void vsxger_zero64(ppc_vsr_t *at, int i, int j) 3478 { 3479 if (j >= 2) { 3480 j -= 2; 3481 at[i].VsrDF(j) = float64_zero; 3482 } 3483 } 3484 3485 static void vsxger(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3486 ppc_acc_t *at, uint32_t mask, bool acc, bool neg_mul, 3487 bool neg_acc, vsxger_muladd_f mul, vsxger_muladd_f muladd, 3488 vsxger_zero zero) 3489 { 3490 int i, j, xmsk_bit, ymsk_bit, op_flags; 3491 uint8_t xmsk = mask & 0x0F; 3492 uint8_t ymsk = (mask >> 4) & 0x0F; 3493 float_status *excp_ptr = &env->fp_status; 3494 op_flags = (neg_acc ^ neg_mul) ? float_muladd_negate_c : 0; 3495 op_flags |= (neg_mul) ? float_muladd_negate_result : 0; 3496 helper_reset_fpstatus(env); 3497 for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) { 3498 for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) { 3499 if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) { 3500 if (acc) { 3501 muladd(at, a, b, i, j, op_flags, excp_ptr); 3502 } else { 3503 mul(at, a, b, i, j, op_flags, excp_ptr); 3504 } 3505 } else { 3506 zero(at, i, j); 3507 } 3508 } 3509 } 3510 vsxger_excp(env, GETPC()); 3511 } 3512 3513 QEMU_FLATTEN 3514 void helper_XVBF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3515 ppc_acc_t *at, uint32_t mask) 3516 { 3517 vsxger16(env, a, b, at, mask, false, false, false, extract_bf16); 3518 } 3519 3520 QEMU_FLATTEN 3521 void helper_XVBF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3522 ppc_acc_t *at, uint32_t mask) 3523 { 3524 vsxger16(env, a, b, at, mask, true, false, false, extract_bf16); 3525 } 3526 3527 QEMU_FLATTEN 3528 void helper_XVBF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3529 ppc_acc_t *at, uint32_t mask) 3530 { 3531 vsxger16(env, a, b, at, mask, true, false, true, extract_bf16); 3532 } 3533 3534 QEMU_FLATTEN 3535 void helper_XVBF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3536 ppc_acc_t *at, uint32_t mask) 3537 { 3538 vsxger16(env, a, b, at, mask, true, true, false, extract_bf16); 3539 } 3540 3541 QEMU_FLATTEN 3542 void helper_XVBF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3543 ppc_acc_t *at, uint32_t mask) 3544 { 3545 vsxger16(env, a, b, at, mask, true, true, true, extract_bf16); 3546 } 3547 3548 QEMU_FLATTEN 3549 void helper_XVF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3550 ppc_acc_t *at, uint32_t mask) 3551 { 3552 vsxger16(env, a, b, at, mask, false, false, false, extract_hf16); 3553 } 3554 3555 QEMU_FLATTEN 3556 void helper_XVF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3557 ppc_acc_t *at, uint32_t mask) 3558 { 3559 vsxger16(env, a, b, at, mask, true, false, false, extract_hf16); 3560 } 3561 3562 QEMU_FLATTEN 3563 void helper_XVF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3564 ppc_acc_t *at, uint32_t mask) 3565 { 3566 vsxger16(env, a, b, at, mask, true, false, true, extract_hf16); 3567 } 3568 3569 QEMU_FLATTEN 3570 void helper_XVF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3571 ppc_acc_t *at, uint32_t mask) 3572 { 3573 vsxger16(env, a, b, at, mask, true, true, false, extract_hf16); 3574 } 3575 3576 QEMU_FLATTEN 3577 void helper_XVF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3578 ppc_acc_t *at, uint32_t mask) 3579 { 3580 vsxger16(env, a, b, at, mask, true, true, true, extract_hf16); 3581 } 3582 3583 QEMU_FLATTEN 3584 void helper_XVF32GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3585 ppc_acc_t *at, uint32_t mask) 3586 { 3587 vsxger(env, a, b, at, mask, false, false, false, vsxger_mul32, 3588 vsxger_muladd32, vsxger_zero32); 3589 } 3590 3591 QEMU_FLATTEN 3592 void helper_XVF32GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3593 ppc_acc_t *at, uint32_t mask) 3594 { 3595 vsxger(env, a, b, at, mask, true, false, false, vsxger_mul32, 3596 vsxger_muladd32, vsxger_zero32); 3597 } 3598 3599 QEMU_FLATTEN 3600 void helper_XVF32GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3601 ppc_acc_t *at, uint32_t mask) 3602 { 3603 vsxger(env, a, b, at, mask, true, false, true, vsxger_mul32, 3604 vsxger_muladd32, vsxger_zero32); 3605 } 3606 3607 QEMU_FLATTEN 3608 void helper_XVF32GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3609 ppc_acc_t *at, uint32_t mask) 3610 { 3611 vsxger(env, a, b, at, mask, true, true, false, vsxger_mul32, 3612 vsxger_muladd32, vsxger_zero32); 3613 } 3614 3615 QEMU_FLATTEN 3616 void helper_XVF32GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3617 ppc_acc_t *at, uint32_t mask) 3618 { 3619 vsxger(env, a, b, at, mask, true, true, true, vsxger_mul32, 3620 vsxger_muladd32, vsxger_zero32); 3621 } 3622 3623 QEMU_FLATTEN 3624 void helper_XVF64GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3625 ppc_acc_t *at, uint32_t mask) 3626 { 3627 vsxger(env, a, b, at, mask, false, false, false, vsxger_mul64, 3628 vsxger_muladd64, vsxger_zero64); 3629 } 3630 3631 QEMU_FLATTEN 3632 void helper_XVF64GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3633 ppc_acc_t *at, uint32_t mask) 3634 { 3635 vsxger(env, a, b, at, mask, true, false, false, vsxger_mul64, 3636 vsxger_muladd64, vsxger_zero64); 3637 } 3638 3639 QEMU_FLATTEN 3640 void helper_XVF64GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3641 ppc_acc_t *at, uint32_t mask) 3642 { 3643 vsxger(env, a, b, at, mask, true, false, true, vsxger_mul64, 3644 vsxger_muladd64, vsxger_zero64); 3645 } 3646 3647 QEMU_FLATTEN 3648 void helper_XVF64GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3649 ppc_acc_t *at, uint32_t mask) 3650 { 3651 vsxger(env, a, b, at, mask, true, true, false, vsxger_mul64, 3652 vsxger_muladd64, vsxger_zero64); 3653 } 3654 3655 QEMU_FLATTEN 3656 void helper_XVF64GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b, 3657 ppc_acc_t *at, uint32_t mask) 3658 { 3659 vsxger(env, a, b, at, mask, true, true, true, vsxger_mul64, 3660 vsxger_muladd64, vsxger_zero64); 3661 } 3662