xref: /openbmc/qemu/target/ppc/fpu_helper.c (revision c63ca4ff)
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25 
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28     float128 r;
29 
30     r.high = x.high | 0x0000800000000000;
31     r.low = x.low;
32     return r;
33 }
34 
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38 
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
40 {
41 #ifdef CONFIG_USER_ONLY
42     return true;
43 #else
44     return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
46 }
47 
48 /*****************************************************************************/
49 /* Floating point operations helpers */
50 
51 /*
52  * This is the non-arithmatic conversion that happens e.g. on loads.
53  * In the Power ISA pseudocode, this is called DOUBLE.
54  */
55 uint64_t helper_todouble(uint32_t arg)
56 {
57     uint32_t abs_arg = arg & 0x7fffffff;
58     uint64_t ret;
59 
60     if (likely(abs_arg >= 0x00800000)) {
61         if (unlikely(extract32(arg, 23, 8) == 0xff)) {
62             /* Inf or NAN.  */
63             ret  = (uint64_t)extract32(arg, 31, 1) << 63;
64             ret |= (uint64_t)0x7ff << 52;
65             ret |= (uint64_t)extract32(arg, 0, 23) << 29;
66         } else {
67             /* Normalized operand.  */
68             ret  = (uint64_t)extract32(arg, 30, 2) << 62;
69             ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
70             ret |= (uint64_t)extract32(arg, 0, 30) << 29;
71         }
72     } else {
73         /* Zero or Denormalized operand.  */
74         ret = (uint64_t)extract32(arg, 31, 1) << 63;
75         if (unlikely(abs_arg != 0)) {
76             /*
77              * Denormalized operand.
78              * Shift fraction so that the msb is in the implicit bit position.
79              * Thus, shift is in the range [1:23].
80              */
81             int shift = clz32(abs_arg) - 8;
82             /*
83              * The first 3 terms compute the float64 exponent.  We then bias
84              * this result by -1 so that we can swallow the implicit bit below.
85              */
86             int exp = -126 - shift + 1023 - 1;
87 
88             ret |= (uint64_t)exp << 52;
89             ret += (uint64_t)abs_arg << (52 - 23 + shift);
90         }
91     }
92     return ret;
93 }
94 
95 /*
96  * This is the non-arithmatic conversion that happens e.g. on stores.
97  * In the Power ISA pseudocode, this is called SINGLE.
98  */
99 uint32_t helper_tosingle(uint64_t arg)
100 {
101     int exp = extract64(arg, 52, 11);
102     uint32_t ret;
103 
104     if (likely(exp > 896)) {
105         /* No denormalization required (includes Inf, NaN).  */
106         ret  = extract64(arg, 62, 2) << 30;
107         ret |= extract64(arg, 29, 30);
108     } else {
109         /*
110          * Zero or Denormal result.  If the exponent is in bounds for
111          * a single-precision denormal result, extract the proper
112          * bits.  If the input is not zero, and the exponent is out of
113          * bounds, then the result is undefined; this underflows to
114          * zero.
115          */
116         ret = extract64(arg, 63, 1) << 31;
117         if (unlikely(exp >= 874)) {
118             /* Denormal result.  */
119             ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
120         }
121     }
122     return ret;
123 }
124 
125 static inline int ppc_float32_get_unbiased_exp(float32 f)
126 {
127     return ((f >> 23) & 0xFF) - 127;
128 }
129 
130 static inline int ppc_float64_get_unbiased_exp(float64 f)
131 {
132     return ((f >> 52) & 0x7FF) - 1023;
133 }
134 
135 /* Classify a floating-point number.  */
136 enum {
137     is_normal   = 1,
138     is_zero     = 2,
139     is_denormal = 4,
140     is_inf      = 8,
141     is_qnan     = 16,
142     is_snan     = 32,
143     is_neg      = 64,
144 };
145 
146 #define COMPUTE_CLASS(tp)                                      \
147 static int tp##_classify(tp arg)                               \
148 {                                                              \
149     int ret = tp##_is_neg(arg) * is_neg;                       \
150     if (unlikely(tp##_is_any_nan(arg))) {                      \
151         float_status dummy = { };  /* snan_bit_is_one = 0 */   \
152         ret |= (tp##_is_signaling_nan(arg, &dummy)             \
153                 ? is_snan : is_qnan);                          \
154     } else if (unlikely(tp##_is_infinity(arg))) {              \
155         ret |= is_inf;                                         \
156     } else if (tp##_is_zero(arg)) {                            \
157         ret |= is_zero;                                        \
158     } else if (tp##_is_zero_or_denormal(arg)) {                \
159         ret |= is_denormal;                                    \
160     } else {                                                   \
161         ret |= is_normal;                                      \
162     }                                                          \
163     return ret;                                                \
164 }
165 
166 COMPUTE_CLASS(float16)
167 COMPUTE_CLASS(float32)
168 COMPUTE_CLASS(float64)
169 COMPUTE_CLASS(float128)
170 
171 static void set_fprf_from_class(CPUPPCState *env, int class)
172 {
173     static const uint8_t fprf[6][2] = {
174         { 0x04, 0x08 },  /* normalized */
175         { 0x02, 0x12 },  /* zero */
176         { 0x14, 0x18 },  /* denormalized */
177         { 0x05, 0x09 },  /* infinity */
178         { 0x11, 0x11 },  /* qnan */
179         { 0x00, 0x00 },  /* snan -- flags are undefined */
180     };
181     bool isneg = class & is_neg;
182 
183     env->fpscr &= ~FP_FPRF;
184     env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
185 }
186 
187 #define COMPUTE_FPRF(tp)                                \
188 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
189 {                                                       \
190     set_fprf_from_class(env, tp##_classify(arg));       \
191 }
192 
193 COMPUTE_FPRF(float16)
194 COMPUTE_FPRF(float32)
195 COMPUTE_FPRF(float64)
196 COMPUTE_FPRF(float128)
197 
198 /* Floating-point invalid operations exception */
199 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
200 {
201     /* Update the floating-point invalid operation summary */
202     env->fpscr |= FP_VX;
203     /* Update the floating-point exception summary */
204     env->fpscr |= FP_FX;
205     if (fpscr_ve != 0) {
206         /* Update the floating-point enabled exception summary */
207         env->fpscr |= FP_FEX;
208         if (fp_exceptions_enabled(env)) {
209             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
210                                    POWERPC_EXCP_FP | op, retaddr);
211         }
212     }
213 }
214 
215 static void finish_invalid_op_arith(CPUPPCState *env, int op,
216                                     bool set_fpcc, uintptr_t retaddr)
217 {
218     env->fpscr &= ~(FP_FR | FP_FI);
219     if (fpscr_ve == 0) {
220         if (set_fpcc) {
221             env->fpscr &= ~FP_FPCC;
222             env->fpscr |= (FP_C | FP_FU);
223         }
224     }
225     finish_invalid_op_excp(env, op, retaddr);
226 }
227 
228 /* Signalling NaN */
229 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
230 {
231     env->fpscr |= FP_VXSNAN;
232     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
233 }
234 
235 /* Magnitude subtraction of infinities */
236 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
237                                    uintptr_t retaddr)
238 {
239     env->fpscr |= FP_VXISI;
240     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
241 }
242 
243 /* Division of infinity by infinity */
244 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
245                                    uintptr_t retaddr)
246 {
247     env->fpscr |= FP_VXIDI;
248     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
249 }
250 
251 /* Division of zero by zero */
252 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
253                                    uintptr_t retaddr)
254 {
255     env->fpscr |= FP_VXZDZ;
256     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
257 }
258 
259 /* Multiplication of zero by infinity */
260 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
261                                    uintptr_t retaddr)
262 {
263     env->fpscr |= FP_VXIMZ;
264     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
265 }
266 
267 /* Square root of a negative number */
268 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
269                                     uintptr_t retaddr)
270 {
271     env->fpscr |= FP_VXSQRT;
272     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
273 }
274 
275 /* Ordered comparison of NaN */
276 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
277                                   uintptr_t retaddr)
278 {
279     env->fpscr |= FP_VXVC;
280     if (set_fpcc) {
281         env->fpscr &= ~FP_FPCC;
282         env->fpscr |= (FP_C | FP_FU);
283     }
284     /* Update the floating-point invalid operation summary */
285     env->fpscr |= FP_VX;
286     /* Update the floating-point exception summary */
287     env->fpscr |= FP_FX;
288     /* We must update the target FPR before raising the exception */
289     if (fpscr_ve != 0) {
290         CPUState *cs = env_cpu(env);
291 
292         cs->exception_index = POWERPC_EXCP_PROGRAM;
293         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
294         /* Update the floating-point enabled exception summary */
295         env->fpscr |= FP_FEX;
296         /* Exception is deferred */
297     }
298 }
299 
300 /* Invalid conversion */
301 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
302                                    uintptr_t retaddr)
303 {
304     env->fpscr |= FP_VXCVI;
305     env->fpscr &= ~(FP_FR | FP_FI);
306     if (fpscr_ve == 0) {
307         if (set_fpcc) {
308             env->fpscr &= ~FP_FPCC;
309             env->fpscr |= (FP_C | FP_FU);
310         }
311     }
312     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
313 }
314 
315 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
316 {
317     env->fpscr |= FP_ZX;
318     env->fpscr &= ~(FP_FR | FP_FI);
319     /* Update the floating-point exception summary */
320     env->fpscr |= FP_FX;
321     if (fpscr_ze != 0) {
322         /* Update the floating-point enabled exception summary */
323         env->fpscr |= FP_FEX;
324         if (fp_exceptions_enabled(env)) {
325             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
326                                    POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
327                                    raddr);
328         }
329     }
330 }
331 
332 static inline void float_overflow_excp(CPUPPCState *env)
333 {
334     CPUState *cs = env_cpu(env);
335 
336     env->fpscr |= FP_OX;
337     /* Update the floating-point exception summary */
338     env->fpscr |= FP_FX;
339     if (fpscr_oe != 0) {
340         /* XXX: should adjust the result */
341         /* Update the floating-point enabled exception summary */
342         env->fpscr |= FP_FEX;
343         /* We must update the target FPR before raising the exception */
344         cs->exception_index = POWERPC_EXCP_PROGRAM;
345         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
346     } else {
347         env->fpscr |= FP_XX;
348         env->fpscr |= FP_FI;
349     }
350 }
351 
352 static inline void float_underflow_excp(CPUPPCState *env)
353 {
354     CPUState *cs = env_cpu(env);
355 
356     env->fpscr |= FP_UX;
357     /* Update the floating-point exception summary */
358     env->fpscr |= FP_FX;
359     if (fpscr_ue != 0) {
360         /* XXX: should adjust the result */
361         /* Update the floating-point enabled exception summary */
362         env->fpscr |= FP_FEX;
363         /* We must update the target FPR before raising the exception */
364         cs->exception_index = POWERPC_EXCP_PROGRAM;
365         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
366     }
367 }
368 
369 static inline void float_inexact_excp(CPUPPCState *env)
370 {
371     CPUState *cs = env_cpu(env);
372 
373     env->fpscr |= FP_FI;
374     env->fpscr |= FP_XX;
375     /* Update the floating-point exception summary */
376     env->fpscr |= FP_FX;
377     if (fpscr_xe != 0) {
378         /* Update the floating-point enabled exception summary */
379         env->fpscr |= FP_FEX;
380         /* We must update the target FPR before raising the exception */
381         cs->exception_index = POWERPC_EXCP_PROGRAM;
382         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
383     }
384 }
385 
386 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
387 {
388     int rnd_type;
389 
390     /* Set rounding mode */
391     switch (fpscr_rn) {
392     case 0:
393         /* Best approximation (round to nearest) */
394         rnd_type = float_round_nearest_even;
395         break;
396     case 1:
397         /* Smaller magnitude (round toward zero) */
398         rnd_type = float_round_to_zero;
399         break;
400     case 2:
401         /* Round toward +infinite */
402         rnd_type = float_round_up;
403         break;
404     default:
405     case 3:
406         /* Round toward -infinite */
407         rnd_type = float_round_down;
408         break;
409     }
410     set_float_rounding_mode(rnd_type, &env->fp_status);
411 }
412 
413 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
414 {
415     int prev;
416 
417     prev = (env->fpscr >> bit) & 1;
418     env->fpscr &= ~(1 << bit);
419     if (prev == 1) {
420         switch (bit) {
421         case FPSCR_RN1:
422         case FPSCR_RN0:
423             fpscr_set_rounding_mode(env);
424             break;
425         case FPSCR_VXSNAN:
426         case FPSCR_VXISI:
427         case FPSCR_VXIDI:
428         case FPSCR_VXZDZ:
429         case FPSCR_VXIMZ:
430         case FPSCR_VXVC:
431         case FPSCR_VXSOFT:
432         case FPSCR_VXSQRT:
433         case FPSCR_VXCVI:
434             if (!fpscr_ix) {
435                 /* Set VX bit to zero */
436                 env->fpscr &= ~FP_VX;
437             }
438             break;
439         case FPSCR_OX:
440         case FPSCR_UX:
441         case FPSCR_ZX:
442         case FPSCR_XX:
443         case FPSCR_VE:
444         case FPSCR_OE:
445         case FPSCR_UE:
446         case FPSCR_ZE:
447         case FPSCR_XE:
448             if (!fpscr_eex) {
449                 /* Set the FEX bit */
450                 env->fpscr &= ~FP_FEX;
451             }
452             break;
453         default:
454             break;
455         }
456     }
457 }
458 
459 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
460 {
461     CPUState *cs = env_cpu(env);
462     int prev;
463 
464     prev = (env->fpscr >> bit) & 1;
465     env->fpscr |= 1 << bit;
466     if (prev == 0) {
467         switch (bit) {
468         case FPSCR_VX:
469             env->fpscr |= FP_FX;
470             if (fpscr_ve) {
471                 goto raise_ve;
472             }
473             break;
474         case FPSCR_OX:
475             env->fpscr |= FP_FX;
476             if (fpscr_oe) {
477                 goto raise_oe;
478             }
479             break;
480         case FPSCR_UX:
481             env->fpscr |= FP_FX;
482             if (fpscr_ue) {
483                 goto raise_ue;
484             }
485             break;
486         case FPSCR_ZX:
487             env->fpscr |= FP_FX;
488             if (fpscr_ze) {
489                 goto raise_ze;
490             }
491             break;
492         case FPSCR_XX:
493             env->fpscr |= FP_FX;
494             if (fpscr_xe) {
495                 goto raise_xe;
496             }
497             break;
498         case FPSCR_VXSNAN:
499         case FPSCR_VXISI:
500         case FPSCR_VXIDI:
501         case FPSCR_VXZDZ:
502         case FPSCR_VXIMZ:
503         case FPSCR_VXVC:
504         case FPSCR_VXSOFT:
505         case FPSCR_VXSQRT:
506         case FPSCR_VXCVI:
507             env->fpscr |= FP_VX;
508             env->fpscr |= FP_FX;
509             if (fpscr_ve != 0) {
510                 goto raise_ve;
511             }
512             break;
513         case FPSCR_VE:
514             if (fpscr_vx != 0) {
515             raise_ve:
516                 env->error_code = POWERPC_EXCP_FP;
517                 if (fpscr_vxsnan) {
518                     env->error_code |= POWERPC_EXCP_FP_VXSNAN;
519                 }
520                 if (fpscr_vxisi) {
521                     env->error_code |= POWERPC_EXCP_FP_VXISI;
522                 }
523                 if (fpscr_vxidi) {
524                     env->error_code |= POWERPC_EXCP_FP_VXIDI;
525                 }
526                 if (fpscr_vxzdz) {
527                     env->error_code |= POWERPC_EXCP_FP_VXZDZ;
528                 }
529                 if (fpscr_vximz) {
530                     env->error_code |= POWERPC_EXCP_FP_VXIMZ;
531                 }
532                 if (fpscr_vxvc) {
533                     env->error_code |= POWERPC_EXCP_FP_VXVC;
534                 }
535                 if (fpscr_vxsoft) {
536                     env->error_code |= POWERPC_EXCP_FP_VXSOFT;
537                 }
538                 if (fpscr_vxsqrt) {
539                     env->error_code |= POWERPC_EXCP_FP_VXSQRT;
540                 }
541                 if (fpscr_vxcvi) {
542                     env->error_code |= POWERPC_EXCP_FP_VXCVI;
543                 }
544                 goto raise_excp;
545             }
546             break;
547         case FPSCR_OE:
548             if (fpscr_ox != 0) {
549             raise_oe:
550                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
551                 goto raise_excp;
552             }
553             break;
554         case FPSCR_UE:
555             if (fpscr_ux != 0) {
556             raise_ue:
557                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
558                 goto raise_excp;
559             }
560             break;
561         case FPSCR_ZE:
562             if (fpscr_zx != 0) {
563             raise_ze:
564                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
565                 goto raise_excp;
566             }
567             break;
568         case FPSCR_XE:
569             if (fpscr_xx != 0) {
570             raise_xe:
571                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
572                 goto raise_excp;
573             }
574             break;
575         case FPSCR_RN1:
576         case FPSCR_RN0:
577             fpscr_set_rounding_mode(env);
578             break;
579         default:
580             break;
581         raise_excp:
582             /* Update the floating-point enabled exception summary */
583             env->fpscr |= FP_FEX;
584             /* We have to update Rc1 before raising the exception */
585             cs->exception_index = POWERPC_EXCP_PROGRAM;
586             break;
587         }
588     }
589 }
590 
591 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
592 {
593     CPUState *cs = env_cpu(env);
594     target_ulong prev, new;
595     int i;
596 
597     prev = env->fpscr;
598     new = (target_ulong)arg;
599     new &= ~(FP_FEX | FP_VX);
600     new |= prev & (FP_FEX | FP_VX);
601     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
602         if (mask & (1 << i)) {
603             env->fpscr &= ~(0xFLL << (4 * i));
604             env->fpscr |= new & (0xFLL << (4 * i));
605         }
606     }
607     /* Update VX and FEX */
608     if (fpscr_ix != 0) {
609         env->fpscr |= FP_VX;
610     } else {
611         env->fpscr &= ~FP_VX;
612     }
613     if ((fpscr_ex & fpscr_eex) != 0) {
614         env->fpscr |= FP_FEX;
615         cs->exception_index = POWERPC_EXCP_PROGRAM;
616         /* XXX: we should compute it properly */
617         env->error_code = POWERPC_EXCP_FP;
618     } else {
619         env->fpscr &= ~FP_FEX;
620     }
621     fpscr_set_rounding_mode(env);
622 }
623 
624 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
625 {
626     helper_store_fpscr(env, arg, mask);
627 }
628 
629 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
630 {
631     CPUState *cs = env_cpu(env);
632     int status = get_float_exception_flags(&env->fp_status);
633 
634     if (status & float_flag_overflow) {
635         float_overflow_excp(env);
636     } else if (status & float_flag_underflow) {
637         float_underflow_excp(env);
638     }
639     if (status & float_flag_inexact) {
640         float_inexact_excp(env);
641     } else {
642         env->fpscr &= ~FP_FI; /* clear the FPSCR[FI] bit */
643     }
644 
645     if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
646         (env->error_code & POWERPC_EXCP_FP)) {
647         /* Deferred floating-point exception after target FPR update */
648         if (fp_exceptions_enabled(env)) {
649             raise_exception_err_ra(env, cs->exception_index,
650                                    env->error_code, raddr);
651         }
652     }
653 }
654 
655 void helper_float_check_status(CPUPPCState *env)
656 {
657     do_float_check_status(env, GETPC());
658 }
659 
660 void helper_reset_fpstatus(CPUPPCState *env)
661 {
662     set_float_exception_flags(0, &env->fp_status);
663 }
664 
665 static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
666                                     uintptr_t retaddr, int classes)
667 {
668     if ((classes & ~is_neg) == is_inf) {
669         /* Magnitude subtraction of infinities */
670         float_invalid_op_vxisi(env, set_fpcc, retaddr);
671     } else if (classes & is_snan) {
672         float_invalid_op_vxsnan(env, retaddr);
673     }
674 }
675 
676 /* fadd - fadd. */
677 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
678 {
679     float64 ret = float64_add(arg1, arg2, &env->fp_status);
680     int status = get_float_exception_flags(&env->fp_status);
681 
682     if (unlikely(status & float_flag_invalid)) {
683         float_invalid_op_addsub(env, 1, GETPC(),
684                                 float64_classify(arg1) |
685                                 float64_classify(arg2));
686     }
687 
688     return ret;
689 }
690 
691 /* fsub - fsub. */
692 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
693 {
694     float64 ret = float64_sub(arg1, arg2, &env->fp_status);
695     int status = get_float_exception_flags(&env->fp_status);
696 
697     if (unlikely(status & float_flag_invalid)) {
698         float_invalid_op_addsub(env, 1, GETPC(),
699                                 float64_classify(arg1) |
700                                 float64_classify(arg2));
701     }
702 
703     return ret;
704 }
705 
706 static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
707                                  uintptr_t retaddr, int classes)
708 {
709     if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
710         /* Multiplication of zero by infinity */
711         float_invalid_op_vximz(env, set_fprc, retaddr);
712     } else if (classes & is_snan) {
713         float_invalid_op_vxsnan(env, retaddr);
714     }
715 }
716 
717 /* fmul - fmul. */
718 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
719 {
720     float64 ret = float64_mul(arg1, arg2, &env->fp_status);
721     int status = get_float_exception_flags(&env->fp_status);
722 
723     if (unlikely(status & float_flag_invalid)) {
724         float_invalid_op_mul(env, 1, GETPC(),
725                              float64_classify(arg1) |
726                              float64_classify(arg2));
727     }
728 
729     return ret;
730 }
731 
732 static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
733                                  uintptr_t retaddr, int classes)
734 {
735     classes &= ~is_neg;
736     if (classes == is_inf) {
737         /* Division of infinity by infinity */
738         float_invalid_op_vxidi(env, set_fprc, retaddr);
739     } else if (classes == is_zero) {
740         /* Division of zero by zero */
741         float_invalid_op_vxzdz(env, set_fprc, retaddr);
742     } else if (classes & is_snan) {
743         float_invalid_op_vxsnan(env, retaddr);
744     }
745 }
746 
747 /* fdiv - fdiv. */
748 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
749 {
750     float64 ret = float64_div(arg1, arg2, &env->fp_status);
751     int status = get_float_exception_flags(&env->fp_status);
752 
753     if (unlikely(status)) {
754         if (status & float_flag_invalid) {
755             float_invalid_op_div(env, 1, GETPC(),
756                                  float64_classify(arg1) |
757                                  float64_classify(arg2));
758         }
759         if (status & float_flag_divbyzero) {
760             float_zero_divide_excp(env, GETPC());
761         }
762     }
763 
764     return ret;
765 }
766 
767 static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
768                               uintptr_t retaddr, int class1)
769 {
770     float_invalid_op_vxcvi(env, set_fprc, retaddr);
771     if (class1 & is_snan) {
772         float_invalid_op_vxsnan(env, retaddr);
773     }
774 }
775 
776 #define FPU_FCTI(op, cvt, nanval)                                      \
777 uint64_t helper_##op(CPUPPCState *env, float64 arg)                    \
778 {                                                                      \
779     uint64_t ret = float64_to_##cvt(arg, &env->fp_status);             \
780     int status = get_float_exception_flags(&env->fp_status);           \
781                                                                        \
782     if (unlikely(status)) {                                            \
783         if (status & float_flag_invalid) {                             \
784             float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
785             ret = nanval;                                              \
786         }                                                              \
787         do_float_check_status(env, GETPC());                           \
788     }                                                                  \
789     return ret;                                                        \
790 }
791 
792 FPU_FCTI(fctiw, int32, 0x80000000U)
793 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
794 FPU_FCTI(fctiwu, uint32, 0x00000000U)
795 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
796 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
797 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
798 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
799 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
800 
801 #define FPU_FCFI(op, cvtr, is_single)                      \
802 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
803 {                                                          \
804     CPU_DoubleU farg;                                      \
805                                                            \
806     if (is_single) {                                       \
807         float32 tmp = cvtr(arg, &env->fp_status);          \
808         farg.d = float32_to_float64(tmp, &env->fp_status); \
809     } else {                                               \
810         farg.d = cvtr(arg, &env->fp_status);               \
811     }                                                      \
812     do_float_check_status(env, GETPC());                   \
813     return farg.ll;                                        \
814 }
815 
816 FPU_FCFI(fcfid, int64_to_float64, 0)
817 FPU_FCFI(fcfids, int64_to_float32, 1)
818 FPU_FCFI(fcfidu, uint64_to_float64, 0)
819 FPU_FCFI(fcfidus, uint64_to_float32, 1)
820 
821 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
822                               int rounding_mode)
823 {
824     CPU_DoubleU farg;
825 
826     farg.ll = arg;
827 
828     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
829         /* sNaN round */
830         float_invalid_op_vxsnan(env, GETPC());
831         farg.ll = arg | 0x0008000000000000ULL;
832     } else {
833         int inexact = get_float_exception_flags(&env->fp_status) &
834                       float_flag_inexact;
835         set_float_rounding_mode(rounding_mode, &env->fp_status);
836         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
837         /* Restore rounding mode from FPSCR */
838         fpscr_set_rounding_mode(env);
839 
840         /* fri* does not set FPSCR[XX] */
841         if (!inexact) {
842             env->fp_status.float_exception_flags &= ~float_flag_inexact;
843         }
844     }
845     do_float_check_status(env, GETPC());
846     return farg.ll;
847 }
848 
849 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
850 {
851     return do_fri(env, arg, float_round_ties_away);
852 }
853 
854 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
855 {
856     return do_fri(env, arg, float_round_to_zero);
857 }
858 
859 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
860 {
861     return do_fri(env, arg, float_round_up);
862 }
863 
864 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
865 {
866     return do_fri(env, arg, float_round_down);
867 }
868 
869 #define FPU_MADDSUB_UPDATE(NAME, TP)                                    \
870 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3,           \
871                  unsigned int madd_flags, uintptr_t retaddr)            \
872 {                                                                       \
873     if (TP##_is_signaling_nan(arg1, &env->fp_status) ||                 \
874         TP##_is_signaling_nan(arg2, &env->fp_status) ||                 \
875         TP##_is_signaling_nan(arg3, &env->fp_status)) {                 \
876         /* sNaN operation */                                            \
877         float_invalid_op_vxsnan(env, retaddr);                          \
878     }                                                                   \
879     if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) ||               \
880         (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) {               \
881         /* Multiplication of zero by infinity */                        \
882         float_invalid_op_vximz(env, 1, retaddr);                        \
883     }                                                                   \
884     if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) &&           \
885         TP##_is_infinity(arg3)) {                                       \
886         uint8_t aSign, bSign, cSign;                                    \
887                                                                         \
888         aSign = TP##_is_neg(arg1);                                      \
889         bSign = TP##_is_neg(arg2);                                      \
890         cSign = TP##_is_neg(arg3);                                      \
891         if (madd_flags & float_muladd_negate_c) {                       \
892             cSign ^= 1;                                                 \
893         }                                                               \
894         if (aSign ^ bSign ^ cSign) {                                    \
895             float_invalid_op_vxisi(env, 1, retaddr);                    \
896         }                                                               \
897     }                                                                   \
898 }
899 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
900 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
901 
902 #define FPU_FMADD(op, madd_flags)                                       \
903 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,                   \
904                      uint64_t arg2, uint64_t arg3)                      \
905 {                                                                       \
906     uint32_t flags;                                                     \
907     float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags,          \
908                                  &env->fp_status);                      \
909     flags = get_float_exception_flags(&env->fp_status);                 \
910     if (flags) {                                                        \
911         if (flags & float_flag_invalid) {                               \
912             float64_maddsub_update_excp(env, arg1, arg2, arg3,          \
913                                         madd_flags, GETPC());           \
914         }                                                               \
915         do_float_check_status(env, GETPC());                            \
916     }                                                                   \
917     return ret;                                                         \
918 }
919 
920 #define MADD_FLGS 0
921 #define MSUB_FLGS float_muladd_negate_c
922 #define NMADD_FLGS float_muladd_negate_result
923 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
924 
925 FPU_FMADD(fmadd, MADD_FLGS)
926 FPU_FMADD(fnmadd, NMADD_FLGS)
927 FPU_FMADD(fmsub, MSUB_FLGS)
928 FPU_FMADD(fnmsub, NMSUB_FLGS)
929 
930 /* frsp - frsp. */
931 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
932 {
933     CPU_DoubleU farg;
934     float32 f32;
935 
936     farg.ll = arg;
937 
938     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
939         float_invalid_op_vxsnan(env, GETPC());
940     }
941     f32 = float64_to_float32(farg.d, &env->fp_status);
942     farg.d = float32_to_float64(f32, &env->fp_status);
943 
944     return farg.ll;
945 }
946 
947 /* fsqrt - fsqrt. */
948 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
949 {
950     float64 ret = float64_sqrt(arg, &env->fp_status);
951     int status = get_float_exception_flags(&env->fp_status);
952 
953     if (unlikely(status & float_flag_invalid)) {
954         if (unlikely(float64_is_any_nan(arg))) {
955             if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
956                 /* sNaN square root */
957                 float_invalid_op_vxsnan(env, GETPC());
958             }
959         } else {
960             /* Square root of a negative nonzero number */
961             float_invalid_op_vxsqrt(env, 1, GETPC());
962         }
963     }
964 
965     return ret;
966 }
967 
968 /* fre - fre. */
969 float64 helper_fre(CPUPPCState *env, float64 arg)
970 {
971     /* "Estimate" the reciprocal with actual division.  */
972     float64 ret = float64_div(float64_one, arg, &env->fp_status);
973     int status = get_float_exception_flags(&env->fp_status);
974 
975     if (unlikely(status)) {
976         if (status & float_flag_invalid) {
977             if (float64_is_signaling_nan(arg, &env->fp_status)) {
978                 /* sNaN reciprocal */
979                 float_invalid_op_vxsnan(env, GETPC());
980             }
981         }
982         if (status & float_flag_divbyzero) {
983             float_zero_divide_excp(env, GETPC());
984             /* For FPSCR.ZE == 0, the result is 1/2.  */
985             ret = float64_set_sign(float64_half, float64_is_neg(arg));
986         }
987     }
988 
989     return ret;
990 }
991 
992 /* fres - fres. */
993 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
994 {
995     CPU_DoubleU farg;
996     float32 f32;
997 
998     farg.ll = arg;
999 
1000     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
1001         /* sNaN reciprocal */
1002         float_invalid_op_vxsnan(env, GETPC());
1003     }
1004     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1005     f32 = float64_to_float32(farg.d, &env->fp_status);
1006     farg.d = float32_to_float64(f32, &env->fp_status);
1007 
1008     return farg.ll;
1009 }
1010 
1011 /* frsqrte  - frsqrte. */
1012 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
1013 {
1014     /* "Estimate" the reciprocal with actual division.  */
1015     float64 rets = float64_sqrt(arg, &env->fp_status);
1016     float64 retd = float64_div(float64_one, rets, &env->fp_status);
1017     int status = get_float_exception_flags(&env->fp_status);
1018 
1019     if (unlikely(status)) {
1020         if (status & float_flag_invalid) {
1021             if (float64_is_signaling_nan(arg, &env->fp_status)) {
1022                 /* sNaN reciprocal */
1023                 float_invalid_op_vxsnan(env, GETPC());
1024             } else {
1025                 /* Square root of a negative nonzero number */
1026                 float_invalid_op_vxsqrt(env, 1, GETPC());
1027             }
1028         }
1029         if (status & float_flag_divbyzero) {
1030             /* Reciprocal of (square root of) zero.  */
1031             float_zero_divide_excp(env, GETPC());
1032         }
1033     }
1034 
1035     return retd;
1036 }
1037 
1038 /* fsel - fsel. */
1039 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1040                      uint64_t arg3)
1041 {
1042     CPU_DoubleU farg1;
1043 
1044     farg1.ll = arg1;
1045 
1046     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1047         !float64_is_any_nan(farg1.d)) {
1048         return arg2;
1049     } else {
1050         return arg3;
1051     }
1052 }
1053 
1054 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1055 {
1056     int fe_flag = 0;
1057     int fg_flag = 0;
1058 
1059     if (unlikely(float64_is_infinity(fra) ||
1060                  float64_is_infinity(frb) ||
1061                  float64_is_zero(frb))) {
1062         fe_flag = 1;
1063         fg_flag = 1;
1064     } else {
1065         int e_a = ppc_float64_get_unbiased_exp(fra);
1066         int e_b = ppc_float64_get_unbiased_exp(frb);
1067 
1068         if (unlikely(float64_is_any_nan(fra) ||
1069                      float64_is_any_nan(frb))) {
1070             fe_flag = 1;
1071         } else if ((e_b <= -1022) || (e_b >= 1021)) {
1072             fe_flag = 1;
1073         } else if (!float64_is_zero(fra) &&
1074                    (((e_a - e_b) >= 1023) ||
1075                     ((e_a - e_b) <= -1021) ||
1076                     (e_a <= -970))) {
1077             fe_flag = 1;
1078         }
1079 
1080         if (unlikely(float64_is_zero_or_denormal(frb))) {
1081             /* XB is not zero because of the above check and */
1082             /* so must be denormalized.                      */
1083             fg_flag = 1;
1084         }
1085     }
1086 
1087     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1088 }
1089 
1090 uint32_t helper_ftsqrt(uint64_t frb)
1091 {
1092     int fe_flag = 0;
1093     int fg_flag = 0;
1094 
1095     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1096         fe_flag = 1;
1097         fg_flag = 1;
1098     } else {
1099         int e_b = ppc_float64_get_unbiased_exp(frb);
1100 
1101         if (unlikely(float64_is_any_nan(frb))) {
1102             fe_flag = 1;
1103         } else if (unlikely(float64_is_zero(frb))) {
1104             fe_flag = 1;
1105         } else if (unlikely(float64_is_neg(frb))) {
1106             fe_flag = 1;
1107         } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
1108             fe_flag = 1;
1109         }
1110 
1111         if (unlikely(float64_is_zero_or_denormal(frb))) {
1112             /* XB is not zero because of the above check and */
1113             /* therefore must be denormalized.               */
1114             fg_flag = 1;
1115         }
1116     }
1117 
1118     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1119 }
1120 
1121 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1122                   uint32_t crfD)
1123 {
1124     CPU_DoubleU farg1, farg2;
1125     uint32_t ret = 0;
1126 
1127     farg1.ll = arg1;
1128     farg2.ll = arg2;
1129 
1130     if (unlikely(float64_is_any_nan(farg1.d) ||
1131                  float64_is_any_nan(farg2.d))) {
1132         ret = 0x01UL;
1133     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1134         ret = 0x08UL;
1135     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1136         ret = 0x04UL;
1137     } else {
1138         ret = 0x02UL;
1139     }
1140 
1141     env->fpscr &= ~FP_FPCC;
1142     env->fpscr |= ret << FPSCR_FPCC;
1143     env->crf[crfD] = ret;
1144     if (unlikely(ret == 0x01UL
1145                  && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1146                      float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1147         /* sNaN comparison */
1148         float_invalid_op_vxsnan(env, GETPC());
1149     }
1150 }
1151 
1152 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1153                   uint32_t crfD)
1154 {
1155     CPU_DoubleU farg1, farg2;
1156     uint32_t ret = 0;
1157 
1158     farg1.ll = arg1;
1159     farg2.ll = arg2;
1160 
1161     if (unlikely(float64_is_any_nan(farg1.d) ||
1162                  float64_is_any_nan(farg2.d))) {
1163         ret = 0x01UL;
1164     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1165         ret = 0x08UL;
1166     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1167         ret = 0x04UL;
1168     } else {
1169         ret = 0x02UL;
1170     }
1171 
1172     env->fpscr &= ~FP_FPCC;
1173     env->fpscr |= ret << FPSCR_FPCC;
1174     env->crf[crfD] = (uint32_t) ret;
1175     if (unlikely(ret == 0x01UL)) {
1176         float_invalid_op_vxvc(env, 1, GETPC());
1177         if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1178             float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1179             /* sNaN comparison */
1180             float_invalid_op_vxsnan(env, GETPC());
1181         }
1182     }
1183 }
1184 
1185 /* Single-precision floating-point conversions */
1186 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1187 {
1188     CPU_FloatU u;
1189 
1190     u.f = int32_to_float32(val, &env->vec_status);
1191 
1192     return u.l;
1193 }
1194 
1195 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1196 {
1197     CPU_FloatU u;
1198 
1199     u.f = uint32_to_float32(val, &env->vec_status);
1200 
1201     return u.l;
1202 }
1203 
1204 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1205 {
1206     CPU_FloatU u;
1207 
1208     u.l = val;
1209     /* NaN are not treated the same way IEEE 754 does */
1210     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1211         return 0;
1212     }
1213 
1214     return float32_to_int32(u.f, &env->vec_status);
1215 }
1216 
1217 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1218 {
1219     CPU_FloatU u;
1220 
1221     u.l = val;
1222     /* NaN are not treated the same way IEEE 754 does */
1223     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1224         return 0;
1225     }
1226 
1227     return float32_to_uint32(u.f, &env->vec_status);
1228 }
1229 
1230 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1231 {
1232     CPU_FloatU u;
1233 
1234     u.l = val;
1235     /* NaN are not treated the same way IEEE 754 does */
1236     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1237         return 0;
1238     }
1239 
1240     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1241 }
1242 
1243 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1244 {
1245     CPU_FloatU u;
1246 
1247     u.l = val;
1248     /* NaN are not treated the same way IEEE 754 does */
1249     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1250         return 0;
1251     }
1252 
1253     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1254 }
1255 
1256 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1257 {
1258     CPU_FloatU u;
1259     float32 tmp;
1260 
1261     u.f = int32_to_float32(val, &env->vec_status);
1262     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1263     u.f = float32_div(u.f, tmp, &env->vec_status);
1264 
1265     return u.l;
1266 }
1267 
1268 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1269 {
1270     CPU_FloatU u;
1271     float32 tmp;
1272 
1273     u.f = uint32_to_float32(val, &env->vec_status);
1274     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1275     u.f = float32_div(u.f, tmp, &env->vec_status);
1276 
1277     return u.l;
1278 }
1279 
1280 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1281 {
1282     CPU_FloatU u;
1283     float32 tmp;
1284 
1285     u.l = val;
1286     /* NaN are not treated the same way IEEE 754 does */
1287     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1288         return 0;
1289     }
1290     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1291     u.f = float32_mul(u.f, tmp, &env->vec_status);
1292 
1293     return float32_to_int32(u.f, &env->vec_status);
1294 }
1295 
1296 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1297 {
1298     CPU_FloatU u;
1299     float32 tmp;
1300 
1301     u.l = val;
1302     /* NaN are not treated the same way IEEE 754 does */
1303     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1304         return 0;
1305     }
1306     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1307     u.f = float32_mul(u.f, tmp, &env->vec_status);
1308 
1309     return float32_to_uint32(u.f, &env->vec_status);
1310 }
1311 
1312 #define HELPER_SPE_SINGLE_CONV(name)                              \
1313     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1314     {                                                             \
1315         return e##name(env, val);                                 \
1316     }
1317 /* efscfsi */
1318 HELPER_SPE_SINGLE_CONV(fscfsi);
1319 /* efscfui */
1320 HELPER_SPE_SINGLE_CONV(fscfui);
1321 /* efscfuf */
1322 HELPER_SPE_SINGLE_CONV(fscfuf);
1323 /* efscfsf */
1324 HELPER_SPE_SINGLE_CONV(fscfsf);
1325 /* efsctsi */
1326 HELPER_SPE_SINGLE_CONV(fsctsi);
1327 /* efsctui */
1328 HELPER_SPE_SINGLE_CONV(fsctui);
1329 /* efsctsiz */
1330 HELPER_SPE_SINGLE_CONV(fsctsiz);
1331 /* efsctuiz */
1332 HELPER_SPE_SINGLE_CONV(fsctuiz);
1333 /* efsctsf */
1334 HELPER_SPE_SINGLE_CONV(fsctsf);
1335 /* efsctuf */
1336 HELPER_SPE_SINGLE_CONV(fsctuf);
1337 
1338 #define HELPER_SPE_VECTOR_CONV(name)                            \
1339     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1340     {                                                           \
1341         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1342             (uint64_t)e##name(env, val);                        \
1343     }
1344 /* evfscfsi */
1345 HELPER_SPE_VECTOR_CONV(fscfsi);
1346 /* evfscfui */
1347 HELPER_SPE_VECTOR_CONV(fscfui);
1348 /* evfscfuf */
1349 HELPER_SPE_VECTOR_CONV(fscfuf);
1350 /* evfscfsf */
1351 HELPER_SPE_VECTOR_CONV(fscfsf);
1352 /* evfsctsi */
1353 HELPER_SPE_VECTOR_CONV(fsctsi);
1354 /* evfsctui */
1355 HELPER_SPE_VECTOR_CONV(fsctui);
1356 /* evfsctsiz */
1357 HELPER_SPE_VECTOR_CONV(fsctsiz);
1358 /* evfsctuiz */
1359 HELPER_SPE_VECTOR_CONV(fsctuiz);
1360 /* evfsctsf */
1361 HELPER_SPE_VECTOR_CONV(fsctsf);
1362 /* evfsctuf */
1363 HELPER_SPE_VECTOR_CONV(fsctuf);
1364 
1365 /* Single-precision floating-point arithmetic */
1366 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1367 {
1368     CPU_FloatU u1, u2;
1369 
1370     u1.l = op1;
1371     u2.l = op2;
1372     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1373     return u1.l;
1374 }
1375 
1376 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1377 {
1378     CPU_FloatU u1, u2;
1379 
1380     u1.l = op1;
1381     u2.l = op2;
1382     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1383     return u1.l;
1384 }
1385 
1386 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1387 {
1388     CPU_FloatU u1, u2;
1389 
1390     u1.l = op1;
1391     u2.l = op2;
1392     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1393     return u1.l;
1394 }
1395 
1396 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1397 {
1398     CPU_FloatU u1, u2;
1399 
1400     u1.l = op1;
1401     u2.l = op2;
1402     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1403     return u1.l;
1404 }
1405 
1406 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1407     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1408     {                                                                   \
1409         return e##name(env, op1, op2);                                  \
1410     }
1411 /* efsadd */
1412 HELPER_SPE_SINGLE_ARITH(fsadd);
1413 /* efssub */
1414 HELPER_SPE_SINGLE_ARITH(fssub);
1415 /* efsmul */
1416 HELPER_SPE_SINGLE_ARITH(fsmul);
1417 /* efsdiv */
1418 HELPER_SPE_SINGLE_ARITH(fsdiv);
1419 
1420 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1421     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1422     {                                                                   \
1423         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1424             (uint64_t)e##name(env, op1, op2);                           \
1425     }
1426 /* evfsadd */
1427 HELPER_SPE_VECTOR_ARITH(fsadd);
1428 /* evfssub */
1429 HELPER_SPE_VECTOR_ARITH(fssub);
1430 /* evfsmul */
1431 HELPER_SPE_VECTOR_ARITH(fsmul);
1432 /* evfsdiv */
1433 HELPER_SPE_VECTOR_ARITH(fsdiv);
1434 
1435 /* Single-precision floating-point comparisons */
1436 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1437 {
1438     CPU_FloatU u1, u2;
1439 
1440     u1.l = op1;
1441     u2.l = op2;
1442     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1443 }
1444 
1445 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1446 {
1447     CPU_FloatU u1, u2;
1448 
1449     u1.l = op1;
1450     u2.l = op2;
1451     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1452 }
1453 
1454 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1455 {
1456     CPU_FloatU u1, u2;
1457 
1458     u1.l = op1;
1459     u2.l = op2;
1460     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1461 }
1462 
1463 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1464 {
1465     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1466     return efscmplt(env, op1, op2);
1467 }
1468 
1469 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1470 {
1471     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1472     return efscmpgt(env, op1, op2);
1473 }
1474 
1475 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1476 {
1477     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1478     return efscmpeq(env, op1, op2);
1479 }
1480 
1481 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1482     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1483     {                                                                   \
1484         return e##name(env, op1, op2);                                  \
1485     }
1486 /* efststlt */
1487 HELPER_SINGLE_SPE_CMP(fststlt);
1488 /* efststgt */
1489 HELPER_SINGLE_SPE_CMP(fststgt);
1490 /* efststeq */
1491 HELPER_SINGLE_SPE_CMP(fststeq);
1492 /* efscmplt */
1493 HELPER_SINGLE_SPE_CMP(fscmplt);
1494 /* efscmpgt */
1495 HELPER_SINGLE_SPE_CMP(fscmpgt);
1496 /* efscmpeq */
1497 HELPER_SINGLE_SPE_CMP(fscmpeq);
1498 
1499 static inline uint32_t evcmp_merge(int t0, int t1)
1500 {
1501     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1502 }
1503 
1504 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1505     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1506     {                                                                   \
1507         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1508                            e##name(env, op1, op2));                     \
1509     }
1510 /* evfststlt */
1511 HELPER_VECTOR_SPE_CMP(fststlt);
1512 /* evfststgt */
1513 HELPER_VECTOR_SPE_CMP(fststgt);
1514 /* evfststeq */
1515 HELPER_VECTOR_SPE_CMP(fststeq);
1516 /* evfscmplt */
1517 HELPER_VECTOR_SPE_CMP(fscmplt);
1518 /* evfscmpgt */
1519 HELPER_VECTOR_SPE_CMP(fscmpgt);
1520 /* evfscmpeq */
1521 HELPER_VECTOR_SPE_CMP(fscmpeq);
1522 
1523 /* Double-precision floating-point conversion */
1524 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1525 {
1526     CPU_DoubleU u;
1527 
1528     u.d = int32_to_float64(val, &env->vec_status);
1529 
1530     return u.ll;
1531 }
1532 
1533 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1534 {
1535     CPU_DoubleU u;
1536 
1537     u.d = int64_to_float64(val, &env->vec_status);
1538 
1539     return u.ll;
1540 }
1541 
1542 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1543 {
1544     CPU_DoubleU u;
1545 
1546     u.d = uint32_to_float64(val, &env->vec_status);
1547 
1548     return u.ll;
1549 }
1550 
1551 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1552 {
1553     CPU_DoubleU u;
1554 
1555     u.d = uint64_to_float64(val, &env->vec_status);
1556 
1557     return u.ll;
1558 }
1559 
1560 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1561 {
1562     CPU_DoubleU u;
1563 
1564     u.ll = val;
1565     /* NaN are not treated the same way IEEE 754 does */
1566     if (unlikely(float64_is_any_nan(u.d))) {
1567         return 0;
1568     }
1569 
1570     return float64_to_int32(u.d, &env->vec_status);
1571 }
1572 
1573 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1574 {
1575     CPU_DoubleU u;
1576 
1577     u.ll = val;
1578     /* NaN are not treated the same way IEEE 754 does */
1579     if (unlikely(float64_is_any_nan(u.d))) {
1580         return 0;
1581     }
1582 
1583     return float64_to_uint32(u.d, &env->vec_status);
1584 }
1585 
1586 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1587 {
1588     CPU_DoubleU u;
1589 
1590     u.ll = val;
1591     /* NaN are not treated the same way IEEE 754 does */
1592     if (unlikely(float64_is_any_nan(u.d))) {
1593         return 0;
1594     }
1595 
1596     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1597 }
1598 
1599 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1600 {
1601     CPU_DoubleU u;
1602 
1603     u.ll = val;
1604     /* NaN are not treated the same way IEEE 754 does */
1605     if (unlikely(float64_is_any_nan(u.d))) {
1606         return 0;
1607     }
1608 
1609     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1610 }
1611 
1612 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1613 {
1614     CPU_DoubleU u;
1615 
1616     u.ll = val;
1617     /* NaN are not treated the same way IEEE 754 does */
1618     if (unlikely(float64_is_any_nan(u.d))) {
1619         return 0;
1620     }
1621 
1622     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1623 }
1624 
1625 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1626 {
1627     CPU_DoubleU u;
1628 
1629     u.ll = val;
1630     /* NaN are not treated the same way IEEE 754 does */
1631     if (unlikely(float64_is_any_nan(u.d))) {
1632         return 0;
1633     }
1634 
1635     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1636 }
1637 
1638 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1639 {
1640     CPU_DoubleU u;
1641     float64 tmp;
1642 
1643     u.d = int32_to_float64(val, &env->vec_status);
1644     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1645     u.d = float64_div(u.d, tmp, &env->vec_status);
1646 
1647     return u.ll;
1648 }
1649 
1650 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1651 {
1652     CPU_DoubleU u;
1653     float64 tmp;
1654 
1655     u.d = uint32_to_float64(val, &env->vec_status);
1656     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1657     u.d = float64_div(u.d, tmp, &env->vec_status);
1658 
1659     return u.ll;
1660 }
1661 
1662 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1663 {
1664     CPU_DoubleU u;
1665     float64 tmp;
1666 
1667     u.ll = val;
1668     /* NaN are not treated the same way IEEE 754 does */
1669     if (unlikely(float64_is_any_nan(u.d))) {
1670         return 0;
1671     }
1672     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1673     u.d = float64_mul(u.d, tmp, &env->vec_status);
1674 
1675     return float64_to_int32(u.d, &env->vec_status);
1676 }
1677 
1678 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1679 {
1680     CPU_DoubleU u;
1681     float64 tmp;
1682 
1683     u.ll = val;
1684     /* NaN are not treated the same way IEEE 754 does */
1685     if (unlikely(float64_is_any_nan(u.d))) {
1686         return 0;
1687     }
1688     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1689     u.d = float64_mul(u.d, tmp, &env->vec_status);
1690 
1691     return float64_to_uint32(u.d, &env->vec_status);
1692 }
1693 
1694 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1695 {
1696     CPU_DoubleU u1;
1697     CPU_FloatU u2;
1698 
1699     u1.ll = val;
1700     u2.f = float64_to_float32(u1.d, &env->vec_status);
1701 
1702     return u2.l;
1703 }
1704 
1705 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1706 {
1707     CPU_DoubleU u2;
1708     CPU_FloatU u1;
1709 
1710     u1.l = val;
1711     u2.d = float32_to_float64(u1.f, &env->vec_status);
1712 
1713     return u2.ll;
1714 }
1715 
1716 /* Double precision fixed-point arithmetic */
1717 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1718 {
1719     CPU_DoubleU u1, u2;
1720 
1721     u1.ll = op1;
1722     u2.ll = op2;
1723     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1724     return u1.ll;
1725 }
1726 
1727 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1728 {
1729     CPU_DoubleU u1, u2;
1730 
1731     u1.ll = op1;
1732     u2.ll = op2;
1733     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1734     return u1.ll;
1735 }
1736 
1737 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1738 {
1739     CPU_DoubleU u1, u2;
1740 
1741     u1.ll = op1;
1742     u2.ll = op2;
1743     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1744     return u1.ll;
1745 }
1746 
1747 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1748 {
1749     CPU_DoubleU u1, u2;
1750 
1751     u1.ll = op1;
1752     u2.ll = op2;
1753     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1754     return u1.ll;
1755 }
1756 
1757 /* Double precision floating point helpers */
1758 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1759 {
1760     CPU_DoubleU u1, u2;
1761 
1762     u1.ll = op1;
1763     u2.ll = op2;
1764     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1765 }
1766 
1767 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1768 {
1769     CPU_DoubleU u1, u2;
1770 
1771     u1.ll = op1;
1772     u2.ll = op2;
1773     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1774 }
1775 
1776 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1777 {
1778     CPU_DoubleU u1, u2;
1779 
1780     u1.ll = op1;
1781     u2.ll = op2;
1782     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1783 }
1784 
1785 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1786 {
1787     /* XXX: TODO: test special values (NaN, infinites, ...) */
1788     return helper_efdtstlt(env, op1, op2);
1789 }
1790 
1791 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1792 {
1793     /* XXX: TODO: test special values (NaN, infinites, ...) */
1794     return helper_efdtstgt(env, op1, op2);
1795 }
1796 
1797 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1798 {
1799     /* XXX: TODO: test special values (NaN, infinites, ...) */
1800     return helper_efdtsteq(env, op1, op2);
1801 }
1802 
1803 #define float64_to_float64(x, env) x
1804 
1805 
1806 /*
1807  * VSX_ADD_SUB - VSX floating point add/subtract
1808  *   name  - instruction mnemonic
1809  *   op    - operation (add or sub)
1810  *   nels  - number of elements (1, 2 or 4)
1811  *   tp    - type (float32 or float64)
1812  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1813  *   sfprf - set FPRF
1814  */
1815 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1816 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                          \
1817                    ppc_vsr_t *xa, ppc_vsr_t *xb)                             \
1818 {                                                                            \
1819     ppc_vsr_t t = *xt;                                                       \
1820     int i;                                                                   \
1821                                                                              \
1822     helper_reset_fpstatus(env);                                              \
1823                                                                              \
1824     for (i = 0; i < nels; i++) {                                             \
1825         float_status tstat = env->fp_status;                                 \
1826         set_float_exception_flags(0, &tstat);                                \
1827         t.fld = tp##_##op(xa->fld, xb->fld, &tstat);                         \
1828         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1829                                                                              \
1830         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1831             float_invalid_op_addsub(env, sfprf, GETPC(),                     \
1832                                     tp##_classify(xa->fld) |                 \
1833                                     tp##_classify(xb->fld));                 \
1834         }                                                                    \
1835                                                                              \
1836         if (r2sp) {                                                          \
1837             t.fld = helper_frsp(env, t.fld);                                 \
1838         }                                                                    \
1839                                                                              \
1840         if (sfprf) {                                                         \
1841             helper_compute_fprf_float64(env, t.fld);                         \
1842         }                                                                    \
1843     }                                                                        \
1844     *xt = t;                                                                 \
1845     do_float_check_status(env, GETPC());                                     \
1846 }
1847 
1848 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1849 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1850 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1851 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1852 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1853 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1854 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1855 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1856 
1857 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1858                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1859 {
1860     ppc_vsr_t t = *xt;
1861     float_status tstat;
1862 
1863     helper_reset_fpstatus(env);
1864 
1865     tstat = env->fp_status;
1866     if (unlikely(Rc(opcode) != 0)) {
1867         tstat.float_rounding_mode = float_round_to_odd;
1868     }
1869 
1870     set_float_exception_flags(0, &tstat);
1871     t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1872     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1873 
1874     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1875         float_invalid_op_addsub(env, 1, GETPC(),
1876                                 float128_classify(xa->f128) |
1877                                 float128_classify(xb->f128));
1878     }
1879 
1880     helper_compute_fprf_float128(env, t.f128);
1881 
1882     *xt = t;
1883     do_float_check_status(env, GETPC());
1884 }
1885 
1886 /*
1887  * VSX_MUL - VSX floating point multiply
1888  *   op    - instruction mnemonic
1889  *   nels  - number of elements (1, 2 or 4)
1890  *   tp    - type (float32 or float64)
1891  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1892  *   sfprf - set FPRF
1893  */
1894 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1895 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                            \
1896                  ppc_vsr_t *xa, ppc_vsr_t *xb)                               \
1897 {                                                                            \
1898     ppc_vsr_t t = *xt;                                                       \
1899     int i;                                                                   \
1900                                                                              \
1901     helper_reset_fpstatus(env);                                              \
1902                                                                              \
1903     for (i = 0; i < nels; i++) {                                             \
1904         float_status tstat = env->fp_status;                                 \
1905         set_float_exception_flags(0, &tstat);                                \
1906         t.fld = tp##_mul(xa->fld, xb->fld, &tstat);                          \
1907         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1908                                                                              \
1909         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1910             float_invalid_op_mul(env, sfprf, GETPC(),                        \
1911                                  tp##_classify(xa->fld) |                    \
1912                                  tp##_classify(xb->fld));                    \
1913         }                                                                    \
1914                                                                              \
1915         if (r2sp) {                                                          \
1916             t.fld = helper_frsp(env, t.fld);                                 \
1917         }                                                                    \
1918                                                                              \
1919         if (sfprf) {                                                         \
1920             helper_compute_fprf_float64(env, t.fld);                         \
1921         }                                                                    \
1922     }                                                                        \
1923                                                                              \
1924     *xt = t;                                                                 \
1925     do_float_check_status(env, GETPC());                                     \
1926 }
1927 
1928 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1929 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1930 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1931 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1932 
1933 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1934                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1935 {
1936     ppc_vsr_t t = *xt;
1937     float_status tstat;
1938 
1939     helper_reset_fpstatus(env);
1940     tstat = env->fp_status;
1941     if (unlikely(Rc(opcode) != 0)) {
1942         tstat.float_rounding_mode = float_round_to_odd;
1943     }
1944 
1945     set_float_exception_flags(0, &tstat);
1946     t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1947     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1948 
1949     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1950         float_invalid_op_mul(env, 1, GETPC(),
1951                              float128_classify(xa->f128) |
1952                              float128_classify(xb->f128));
1953     }
1954     helper_compute_fprf_float128(env, t.f128);
1955 
1956     *xt = t;
1957     do_float_check_status(env, GETPC());
1958 }
1959 
1960 /*
1961  * VSX_DIV - VSX floating point divide
1962  *   op    - instruction mnemonic
1963  *   nels  - number of elements (1, 2 or 4)
1964  *   tp    - type (float32 or float64)
1965  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1966  *   sfprf - set FPRF
1967  */
1968 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1969 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
1970                  ppc_vsr_t *xa, ppc_vsr_t *xb)                                \
1971 {                                                                             \
1972     ppc_vsr_t t = *xt;                                                        \
1973     int i;                                                                    \
1974                                                                               \
1975     helper_reset_fpstatus(env);                                               \
1976                                                                               \
1977     for (i = 0; i < nels; i++) {                                              \
1978         float_status tstat = env->fp_status;                                  \
1979         set_float_exception_flags(0, &tstat);                                 \
1980         t.fld = tp##_div(xa->fld, xb->fld, &tstat);                           \
1981         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1982                                                                               \
1983         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1984             float_invalid_op_div(env, sfprf, GETPC(),                         \
1985                                  tp##_classify(xa->fld) |                     \
1986                                  tp##_classify(xb->fld));                     \
1987         }                                                                     \
1988         if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {   \
1989             float_zero_divide_excp(env, GETPC());                             \
1990         }                                                                     \
1991                                                                               \
1992         if (r2sp) {                                                           \
1993             t.fld = helper_frsp(env, t.fld);                                  \
1994         }                                                                     \
1995                                                                               \
1996         if (sfprf) {                                                          \
1997             helper_compute_fprf_float64(env, t.fld);                          \
1998         }                                                                     \
1999     }                                                                         \
2000                                                                               \
2001     *xt = t;                                                                  \
2002     do_float_check_status(env, GETPC());                                      \
2003 }
2004 
2005 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
2006 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
2007 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
2008 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
2009 
2010 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
2011                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
2012 {
2013     ppc_vsr_t t = *xt;
2014     float_status tstat;
2015 
2016     helper_reset_fpstatus(env);
2017     tstat = env->fp_status;
2018     if (unlikely(Rc(opcode) != 0)) {
2019         tstat.float_rounding_mode = float_round_to_odd;
2020     }
2021 
2022     set_float_exception_flags(0, &tstat);
2023     t.f128 = float128_div(xa->f128, xb->f128, &tstat);
2024     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2025 
2026     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
2027         float_invalid_op_div(env, 1, GETPC(),
2028                              float128_classify(xa->f128) |
2029                              float128_classify(xb->f128));
2030     }
2031     if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
2032         float_zero_divide_excp(env, GETPC());
2033     }
2034 
2035     helper_compute_fprf_float128(env, t.f128);
2036     *xt = t;
2037     do_float_check_status(env, GETPC());
2038 }
2039 
2040 /*
2041  * VSX_RE  - VSX floating point reciprocal estimate
2042  *   op    - instruction mnemonic
2043  *   nels  - number of elements (1, 2 or 4)
2044  *   tp    - type (float32 or float64)
2045  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2046  *   sfprf - set FPRF
2047  */
2048 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
2049 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)              \
2050 {                                                                             \
2051     ppc_vsr_t t = *xt;                                                        \
2052     int i;                                                                    \
2053                                                                               \
2054     helper_reset_fpstatus(env);                                               \
2055                                                                               \
2056     for (i = 0; i < nels; i++) {                                              \
2057         if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
2058             float_invalid_op_vxsnan(env, GETPC());                            \
2059         }                                                                     \
2060         t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status);                 \
2061                                                                               \
2062         if (r2sp) {                                                           \
2063             t.fld = helper_frsp(env, t.fld);                                  \
2064         }                                                                     \
2065                                                                               \
2066         if (sfprf) {                                                          \
2067             helper_compute_fprf_float64(env, t.fld);                          \
2068         }                                                                     \
2069     }                                                                         \
2070                                                                               \
2071     *xt = t;                                                                  \
2072     do_float_check_status(env, GETPC());                                      \
2073 }
2074 
2075 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2076 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2077 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2078 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2079 
2080 /*
2081  * VSX_SQRT - VSX floating point square root
2082  *   op    - instruction mnemonic
2083  *   nels  - number of elements (1, 2 or 4)
2084  *   tp    - type (float32 or float64)
2085  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2086  *   sfprf - set FPRF
2087  */
2088 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
2089 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2090 {                                                                            \
2091     ppc_vsr_t t = *xt;                                                       \
2092     int i;                                                                   \
2093                                                                              \
2094     helper_reset_fpstatus(env);                                              \
2095                                                                              \
2096     for (i = 0; i < nels; i++) {                                             \
2097         float_status tstat = env->fp_status;                                 \
2098         set_float_exception_flags(0, &tstat);                                \
2099         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
2100         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2101                                                                              \
2102         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2103             if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) {            \
2104                 float_invalid_op_vxsqrt(env, sfprf, GETPC());                \
2105             } else if (tp##_is_signaling_nan(xb->fld, &tstat)) {             \
2106                 float_invalid_op_vxsnan(env, GETPC());                       \
2107             }                                                                \
2108         }                                                                    \
2109                                                                              \
2110         if (r2sp) {                                                          \
2111             t.fld = helper_frsp(env, t.fld);                                 \
2112         }                                                                    \
2113                                                                              \
2114         if (sfprf) {                                                         \
2115             helper_compute_fprf_float64(env, t.fld);                         \
2116         }                                                                    \
2117     }                                                                        \
2118                                                                              \
2119     *xt = t;                                                                 \
2120     do_float_check_status(env, GETPC());                                     \
2121 }
2122 
2123 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2124 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2125 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2126 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2127 
2128 /*
2129  *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2130  *   op    - instruction mnemonic
2131  *   nels  - number of elements (1, 2 or 4)
2132  *   tp    - type (float32 or float64)
2133  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2134  *   sfprf - set FPRF
2135  */
2136 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2137 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2138 {                                                                            \
2139     ppc_vsr_t t = *xt;                                                       \
2140     int i;                                                                   \
2141                                                                              \
2142     helper_reset_fpstatus(env);                                              \
2143                                                                              \
2144     for (i = 0; i < nels; i++) {                                             \
2145         float_status tstat = env->fp_status;                                 \
2146         set_float_exception_flags(0, &tstat);                                \
2147         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
2148         t.fld = tp##_div(tp##_one, t.fld, &tstat);                           \
2149         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2150                                                                              \
2151         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2152             if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) {            \
2153                 float_invalid_op_vxsqrt(env, sfprf, GETPC());                \
2154             } else if (tp##_is_signaling_nan(xb->fld, &tstat)) {             \
2155                 float_invalid_op_vxsnan(env, GETPC());                       \
2156             }                                                                \
2157         }                                                                    \
2158                                                                              \
2159         if (r2sp) {                                                          \
2160             t.fld = helper_frsp(env, t.fld);                                 \
2161         }                                                                    \
2162                                                                              \
2163         if (sfprf) {                                                         \
2164             helper_compute_fprf_float64(env, t.fld);                         \
2165         }                                                                    \
2166     }                                                                        \
2167                                                                              \
2168     *xt = t;                                                                 \
2169     do_float_check_status(env, GETPC());                                     \
2170 }
2171 
2172 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2173 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2174 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2175 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2176 
2177 /*
2178  * VSX_TDIV - VSX floating point test for divide
2179  *   op    - instruction mnemonic
2180  *   nels  - number of elements (1, 2 or 4)
2181  *   tp    - type (float32 or float64)
2182  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2183  *   emin  - minimum unbiased exponent
2184  *   emax  - maximum unbiased exponent
2185  *   nbits - number of fraction bits
2186  */
2187 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2188 void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
2189                  ppc_vsr_t *xa, ppc_vsr_t *xb)                          \
2190 {                                                                       \
2191     int i;                                                              \
2192     int fe_flag = 0;                                                    \
2193     int fg_flag = 0;                                                    \
2194                                                                         \
2195     for (i = 0; i < nels; i++) {                                        \
2196         if (unlikely(tp##_is_infinity(xa->fld) ||                       \
2197                      tp##_is_infinity(xb->fld) ||                       \
2198                      tp##_is_zero(xb->fld))) {                          \
2199             fe_flag = 1;                                                \
2200             fg_flag = 1;                                                \
2201         } else {                                                        \
2202             int e_a = ppc_##tp##_get_unbiased_exp(xa->fld);             \
2203             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
2204                                                                         \
2205             if (unlikely(tp##_is_any_nan(xa->fld) ||                    \
2206                          tp##_is_any_nan(xb->fld))) {                   \
2207                 fe_flag = 1;                                            \
2208             } else if ((e_b <= emin) || (e_b >= (emax - 2))) {          \
2209                 fe_flag = 1;                                            \
2210             } else if (!tp##_is_zero(xa->fld) &&                        \
2211                        (((e_a - e_b) >= emax) ||                        \
2212                         ((e_a - e_b) <= (emin + 1)) ||                  \
2213                         (e_a <= (emin + nbits)))) {                     \
2214                 fe_flag = 1;                                            \
2215             }                                                           \
2216                                                                         \
2217             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2218                 /*                                                      \
2219                  * XB is not zero because of the above check and so     \
2220                  * must be denormalized.                                \
2221                  */                                                     \
2222                 fg_flag = 1;                                            \
2223             }                                                           \
2224         }                                                               \
2225     }                                                                   \
2226                                                                         \
2227     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2228 }
2229 
2230 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2231 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2232 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2233 
2234 /*
2235  * VSX_TSQRT - VSX floating point test for square root
2236  *   op    - instruction mnemonic
2237  *   nels  - number of elements (1, 2 or 4)
2238  *   tp    - type (float32 or float64)
2239  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2240  *   emin  - minimum unbiased exponent
2241  *   emax  - maximum unbiased exponent
2242  *   nbits - number of fraction bits
2243  */
2244 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2245 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)      \
2246 {                                                                       \
2247     int i;                                                              \
2248     int fe_flag = 0;                                                    \
2249     int fg_flag = 0;                                                    \
2250                                                                         \
2251     for (i = 0; i < nels; i++) {                                        \
2252         if (unlikely(tp##_is_infinity(xb->fld) ||                       \
2253                      tp##_is_zero(xb->fld))) {                          \
2254             fe_flag = 1;                                                \
2255             fg_flag = 1;                                                \
2256         } else {                                                        \
2257             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
2258                                                                         \
2259             if (unlikely(tp##_is_any_nan(xb->fld))) {                   \
2260                 fe_flag = 1;                                            \
2261             } else if (unlikely(tp##_is_zero(xb->fld))) {               \
2262                 fe_flag = 1;                                            \
2263             } else if (unlikely(tp##_is_neg(xb->fld))) {                \
2264                 fe_flag = 1;                                            \
2265             } else if (!tp##_is_zero(xb->fld) &&                        \
2266                        (e_b <= (emin + nbits))) {                       \
2267                 fe_flag = 1;                                            \
2268             }                                                           \
2269                                                                         \
2270             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2271                 /*                                                      \
2272                  * XB is not zero because of the above check and        \
2273                  * therefore must be denormalized.                      \
2274                  */                                                     \
2275                 fg_flag = 1;                                            \
2276             }                                                           \
2277         }                                                               \
2278     }                                                                   \
2279                                                                         \
2280     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2281 }
2282 
2283 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2284 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2285 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2286 
2287 /*
2288  * VSX_MADD - VSX floating point muliply/add variations
2289  *   op    - instruction mnemonic
2290  *   nels  - number of elements (1, 2 or 4)
2291  *   tp    - type (float32 or float64)
2292  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2293  *   maddflgs - flags for the float*muladd routine that control the
2294  *           various forms (madd, msub, nmadd, nmsub)
2295  *   sfprf - set FPRF
2296  */
2297 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp)                    \
2298 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
2299                  ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c)                   \
2300 {                                                                             \
2301     ppc_vsr_t t = *xt;                                                        \
2302     int i;                                                                    \
2303                                                                               \
2304     helper_reset_fpstatus(env);                                               \
2305                                                                               \
2306     for (i = 0; i < nels; i++) {                                              \
2307         float_status tstat = env->fp_status;                                  \
2308         set_float_exception_flags(0, &tstat);                                 \
2309         if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2310             /*                                                                \
2311              * Avoid double rounding errors by rounding the intermediate      \
2312              * result to odd.                                                 \
2313              */                                                               \
2314             set_float_rounding_mode(float_round_to_zero, &tstat);             \
2315             t.fld = tp##_muladd(xa->fld, b->fld, c->fld,                      \
2316                                 maddflgs, &tstat);                            \
2317             t.fld |= (get_float_exception_flags(&tstat) &                     \
2318                       float_flag_inexact) != 0;                               \
2319         } else {                                                              \
2320             t.fld = tp##_muladd(xa->fld, b->fld, c->fld,                      \
2321                                 maddflgs, &tstat);                            \
2322         }                                                                     \
2323         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2324                                                                               \
2325         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2326             tp##_maddsub_update_excp(env, xa->fld, b->fld,                    \
2327                                      c->fld, maddflgs, GETPC());              \
2328         }                                                                     \
2329                                                                               \
2330         if (r2sp) {                                                           \
2331             t.fld = helper_frsp(env, t.fld);                                  \
2332         }                                                                     \
2333                                                                               \
2334         if (sfprf) {                                                          \
2335             helper_compute_fprf_float64(env, t.fld);                          \
2336         }                                                                     \
2337     }                                                                         \
2338     *xt = t;                                                                  \
2339     do_float_check_status(env, GETPC());                                      \
2340 }
2341 
2342 VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0)
2343 VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0)
2344 VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0)
2345 VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0)
2346 VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1)
2347 VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1)
2348 VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1)
2349 VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1)
2350 
2351 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0)
2352 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0)
2353 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0)
2354 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0)
2355 
2356 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0)
2357 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0)
2358 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0)
2359 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0)
2360 
2361 /*
2362  * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2363  *   op    - instruction mnemonic
2364  *   cmp   - comparison operation
2365  *   exp   - expected result of comparison
2366  *   svxvc - set VXVC bit
2367  */
2368 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc)                                \
2369 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
2370                  ppc_vsr_t *xa, ppc_vsr_t *xb)                                \
2371 {                                                                             \
2372     ppc_vsr_t t = *xt;                                                        \
2373     bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false;            \
2374                                                                               \
2375     if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||             \
2376         float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {             \
2377         vxsnan_flag = true;                                                   \
2378         if (fpscr_ve == 0 && svxvc) {                                         \
2379             vxvc_flag = true;                                                 \
2380         }                                                                     \
2381     } else if (svxvc) {                                                       \
2382         vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||     \
2383             float64_is_quiet_nan(xb->VsrD(0), &env->fp_status);               \
2384     }                                                                         \
2385     if (vxsnan_flag) {                                                        \
2386         float_invalid_op_vxsnan(env, GETPC());                                \
2387     }                                                                         \
2388     if (vxvc_flag) {                                                          \
2389         float_invalid_op_vxvc(env, 0, GETPC());                               \
2390     }                                                                         \
2391     vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag);                        \
2392                                                                               \
2393     if (!vex_flag) {                                                          \
2394         if (float64_##cmp(xb->VsrD(0), xa->VsrD(0),                           \
2395                           &env->fp_status) == exp) {                          \
2396             t.VsrD(0) = -1;                                                   \
2397             t.VsrD(1) = 0;                                                    \
2398         } else {                                                              \
2399             t.VsrD(0) = 0;                                                    \
2400             t.VsrD(1) = 0;                                                    \
2401         }                                                                     \
2402     }                                                                         \
2403     *xt = t;                                                                  \
2404     do_float_check_status(env, GETPC());                                      \
2405 }
2406 
2407 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2408 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2409 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2410 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2411 
2412 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2413                        ppc_vsr_t *xa, ppc_vsr_t *xb)
2414 {
2415     int64_t exp_a, exp_b;
2416     uint32_t cc;
2417 
2418     exp_a = extract64(xa->VsrD(0), 52, 11);
2419     exp_b = extract64(xb->VsrD(0), 52, 11);
2420 
2421     if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2422                  float64_is_any_nan(xb->VsrD(0)))) {
2423         cc = CRF_SO;
2424     } else {
2425         if (exp_a < exp_b) {
2426             cc = CRF_LT;
2427         } else if (exp_a > exp_b) {
2428             cc = CRF_GT;
2429         } else {
2430             cc = CRF_EQ;
2431         }
2432     }
2433 
2434     env->fpscr &= ~FP_FPCC;
2435     env->fpscr |= cc << FPSCR_FPCC;
2436     env->crf[BF(opcode)] = cc;
2437 
2438     do_float_check_status(env, GETPC());
2439 }
2440 
2441 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2442                        ppc_vsr_t *xa, ppc_vsr_t *xb)
2443 {
2444     int64_t exp_a, exp_b;
2445     uint32_t cc;
2446 
2447     exp_a = extract64(xa->VsrD(0), 48, 15);
2448     exp_b = extract64(xb->VsrD(0), 48, 15);
2449 
2450     if (unlikely(float128_is_any_nan(xa->f128) ||
2451                  float128_is_any_nan(xb->f128))) {
2452         cc = CRF_SO;
2453     } else {
2454         if (exp_a < exp_b) {
2455             cc = CRF_LT;
2456         } else if (exp_a > exp_b) {
2457             cc = CRF_GT;
2458         } else {
2459             cc = CRF_EQ;
2460         }
2461     }
2462 
2463     env->fpscr &= ~FP_FPCC;
2464     env->fpscr |= cc << FPSCR_FPCC;
2465     env->crf[BF(opcode)] = cc;
2466 
2467     do_float_check_status(env, GETPC());
2468 }
2469 
2470 static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb,
2471                                  int crf_idx, bool ordered)
2472 {
2473     uint32_t cc;
2474     bool vxsnan_flag = false, vxvc_flag = false;
2475 
2476     helper_reset_fpstatus(env);
2477 
2478     switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) {
2479     case float_relation_less:
2480         cc = CRF_LT;
2481         break;
2482     case float_relation_equal:
2483         cc = CRF_EQ;
2484         break;
2485     case float_relation_greater:
2486         cc = CRF_GT;
2487         break;
2488     case float_relation_unordered:
2489         cc = CRF_SO;
2490 
2491         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||
2492             float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {
2493             vxsnan_flag = true;
2494             if (fpscr_ve == 0 && ordered) {
2495                 vxvc_flag = true;
2496             }
2497         } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||
2498                    float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) {
2499             if (ordered) {
2500                 vxvc_flag = true;
2501             }
2502         }
2503 
2504         break;
2505     default:
2506         g_assert_not_reached();
2507     }
2508 
2509     env->fpscr &= ~FP_FPCC;
2510     env->fpscr |= cc << FPSCR_FPCC;
2511     env->crf[crf_idx] = cc;
2512 
2513     if (vxsnan_flag) {
2514         float_invalid_op_vxsnan(env, GETPC());
2515     }
2516     if (vxvc_flag) {
2517         float_invalid_op_vxvc(env, 0, GETPC());
2518     }
2519 
2520     do_float_check_status(env, GETPC());
2521 }
2522 
2523 void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2524                      ppc_vsr_t *xb)
2525 {
2526     do_scalar_cmp(env, xa, xb, BF(opcode), true);
2527 }
2528 
2529 void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2530                      ppc_vsr_t *xb)
2531 {
2532     do_scalar_cmp(env, xa, xb, BF(opcode), false);
2533 }
2534 
2535 static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa,
2536                                   ppc_vsr_t *xb, int crf_idx, bool ordered)
2537 {
2538     uint32_t cc;
2539     bool vxsnan_flag = false, vxvc_flag = false;
2540 
2541     helper_reset_fpstatus(env);
2542 
2543     switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) {
2544     case float_relation_less:
2545         cc = CRF_LT;
2546         break;
2547     case float_relation_equal:
2548         cc = CRF_EQ;
2549         break;
2550     case float_relation_greater:
2551         cc = CRF_GT;
2552         break;
2553     case float_relation_unordered:
2554         cc = CRF_SO;
2555 
2556         if (float128_is_signaling_nan(xa->f128, &env->fp_status) ||
2557             float128_is_signaling_nan(xb->f128, &env->fp_status)) {
2558             vxsnan_flag = true;
2559             if (fpscr_ve == 0 && ordered) {
2560                 vxvc_flag = true;
2561             }
2562         } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) ||
2563                    float128_is_quiet_nan(xb->f128, &env->fp_status)) {
2564             if (ordered) {
2565                 vxvc_flag = true;
2566             }
2567         }
2568 
2569         break;
2570     default:
2571         g_assert_not_reached();
2572     }
2573 
2574     env->fpscr &= ~FP_FPCC;
2575     env->fpscr |= cc << FPSCR_FPCC;
2576     env->crf[crf_idx] = cc;
2577 
2578     if (vxsnan_flag) {
2579         float_invalid_op_vxsnan(env, GETPC());
2580     }
2581     if (vxvc_flag) {
2582         float_invalid_op_vxvc(env, 0, GETPC());
2583     }
2584 
2585     do_float_check_status(env, GETPC());
2586 }
2587 
2588 void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2589                      ppc_vsr_t *xb)
2590 {
2591     do_scalar_cmpq(env, xa, xb, BF(opcode), true);
2592 }
2593 
2594 void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2595                      ppc_vsr_t *xb)
2596 {
2597     do_scalar_cmpq(env, xa, xb, BF(opcode), false);
2598 }
2599 
2600 /*
2601  * VSX_MAX_MIN - VSX floating point maximum/minimum
2602  *   name  - instruction mnemonic
2603  *   op    - operation (max or min)
2604  *   nels  - number of elements (1, 2 or 4)
2605  *   tp    - type (float32 or float64)
2606  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2607  */
2608 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2609 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                           \
2610                    ppc_vsr_t *xa, ppc_vsr_t *xb)                              \
2611 {                                                                             \
2612     ppc_vsr_t t = *xt;                                                        \
2613     int i;                                                                    \
2614                                                                               \
2615     for (i = 0; i < nels; i++) {                                              \
2616         t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status);                 \
2617         if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) ||       \
2618                      tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
2619             float_invalid_op_vxsnan(env, GETPC());                            \
2620         }                                                                     \
2621     }                                                                         \
2622                                                                               \
2623     *xt = t;                                                                  \
2624     do_float_check_status(env, GETPC());                                      \
2625 }
2626 
2627 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2628 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2629 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2630 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2631 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2632 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2633 
2634 #define VSX_MAX_MINC(name, max)                                               \
2635 void helper_##name(CPUPPCState *env, uint32_t opcode,                         \
2636                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2637 {                                                                             \
2638     ppc_vsr_t t = *xt;                                                        \
2639     bool vxsnan_flag = false, vex_flag = false;                               \
2640                                                                               \
2641     if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||                           \
2642                  float64_is_any_nan(xb->VsrD(0)))) {                          \
2643         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||         \
2644             float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {         \
2645             vxsnan_flag = true;                                               \
2646         }                                                                     \
2647         t.VsrD(0) = xb->VsrD(0);                                              \
2648     } else if ((max &&                                                        \
2649                !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) ||     \
2650                (!max &&                                                       \
2651                float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) {      \
2652         t.VsrD(0) = xa->VsrD(0);                                              \
2653     } else {                                                                  \
2654         t.VsrD(0) = xb->VsrD(0);                                              \
2655     }                                                                         \
2656                                                                               \
2657     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2658     if (vxsnan_flag) {                                                        \
2659         float_invalid_op_vxsnan(env, GETPC());                                \
2660     }                                                                         \
2661     if (!vex_flag) {                                                          \
2662         *xt = t;                                                              \
2663     }                                                                         \
2664 }                                                                             \
2665 
2666 VSX_MAX_MINC(xsmaxcdp, 1);
2667 VSX_MAX_MINC(xsmincdp, 0);
2668 
2669 #define VSX_MAX_MINJ(name, max)                                               \
2670 void helper_##name(CPUPPCState *env, uint32_t opcode,                         \
2671                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2672 {                                                                             \
2673     ppc_vsr_t t = *xt;                                                        \
2674     bool vxsnan_flag = false, vex_flag = false;                               \
2675                                                                               \
2676     if (unlikely(float64_is_any_nan(xa->VsrD(0)))) {                          \
2677         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) {         \
2678             vxsnan_flag = true;                                               \
2679         }                                                                     \
2680         t.VsrD(0) = xa->VsrD(0);                                              \
2681     } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) {                   \
2682         if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {         \
2683             vxsnan_flag = true;                                               \
2684         }                                                                     \
2685         t.VsrD(0) = xb->VsrD(0);                                              \
2686     } else if (float64_is_zero(xa->VsrD(0)) &&                                \
2687                float64_is_zero(xb->VsrD(0))) {                                \
2688         if (max) {                                                            \
2689             if (!float64_is_neg(xa->VsrD(0)) ||                               \
2690                 !float64_is_neg(xb->VsrD(0))) {                               \
2691                 t.VsrD(0) = 0ULL;                                             \
2692             } else {                                                          \
2693                 t.VsrD(0) = 0x8000000000000000ULL;                            \
2694             }                                                                 \
2695         } else {                                                              \
2696             if (float64_is_neg(xa->VsrD(0)) ||                                \
2697                 float64_is_neg(xb->VsrD(0))) {                                \
2698                 t.VsrD(0) = 0x8000000000000000ULL;                            \
2699             } else {                                                          \
2700                 t.VsrD(0) = 0ULL;                                             \
2701             }                                                                 \
2702         }                                                                     \
2703     } else if ((max &&                                                        \
2704                !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) ||     \
2705                (!max &&                                                       \
2706                float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) {      \
2707         t.VsrD(0) = xa->VsrD(0);                                              \
2708     } else {                                                                  \
2709         t.VsrD(0) = xb->VsrD(0);                                              \
2710     }                                                                         \
2711                                                                               \
2712     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2713     if (vxsnan_flag) {                                                        \
2714         float_invalid_op_vxsnan(env, GETPC());                                \
2715     }                                                                         \
2716     if (!vex_flag) {                                                          \
2717         *xt = t;                                                              \
2718     }                                                                         \
2719 }                                                                             \
2720 
2721 VSX_MAX_MINJ(xsmaxjdp, 1);
2722 VSX_MAX_MINJ(xsminjdp, 0);
2723 
2724 /*
2725  * VSX_CMP - VSX floating point compare
2726  *   op    - instruction mnemonic
2727  *   nels  - number of elements (1, 2 or 4)
2728  *   tp    - type (float32 or float64)
2729  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2730  *   cmp   - comparison operation
2731  *   svxvc - set VXVC bit
2732  *   exp   - expected result of comparison
2733  */
2734 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2735 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2736                      ppc_vsr_t *xa, ppc_vsr_t *xb)                        \
2737 {                                                                         \
2738     ppc_vsr_t t = *xt;                                                    \
2739     uint32_t crf6 = 0;                                                    \
2740     int i;                                                                \
2741     int all_true = 1;                                                     \
2742     int all_false = 1;                                                    \
2743                                                                           \
2744     for (i = 0; i < nels; i++) {                                          \
2745         if (unlikely(tp##_is_any_nan(xa->fld) ||                          \
2746                      tp##_is_any_nan(xb->fld))) {                         \
2747             if (tp##_is_signaling_nan(xa->fld, &env->fp_status) ||        \
2748                 tp##_is_signaling_nan(xb->fld, &env->fp_status)) {        \
2749                 float_invalid_op_vxsnan(env, GETPC());                    \
2750             }                                                             \
2751             if (svxvc) {                                                  \
2752                 float_invalid_op_vxvc(env, 0, GETPC());                   \
2753             }                                                             \
2754             t.fld = 0;                                                    \
2755             all_true = 0;                                                 \
2756         } else {                                                          \
2757             if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) {   \
2758                 t.fld = -1;                                               \
2759                 all_false = 0;                                            \
2760             } else {                                                      \
2761                 t.fld = 0;                                                \
2762                 all_true = 0;                                             \
2763             }                                                             \
2764         }                                                                 \
2765     }                                                                     \
2766                                                                           \
2767     *xt = t;                                                              \
2768     crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);                  \
2769     return crf6;                                                          \
2770 }
2771 
2772 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2773 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2774 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2775 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2776 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2777 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2778 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2779 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2780 
2781 /*
2782  * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2783  *   op    - instruction mnemonic
2784  *   nels  - number of elements (1, 2 or 4)
2785  *   stp   - source type (float32 or float64)
2786  *   ttp   - target type (float32 or float64)
2787  *   sfld  - source vsr_t field
2788  *   tfld  - target vsr_t field (f32 or f64)
2789  *   sfprf - set FPRF
2790  */
2791 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2792 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2793 {                                                                  \
2794     ppc_vsr_t t = *xt;                                             \
2795     int i;                                                         \
2796                                                                    \
2797     for (i = 0; i < nels; i++) {                                   \
2798         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);        \
2799         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2800                                             &env->fp_status))) {   \
2801             float_invalid_op_vxsnan(env, GETPC());                 \
2802             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2803         }                                                          \
2804         if (sfprf) {                                               \
2805             helper_compute_fprf_##ttp(env, t.tfld);                \
2806         }                                                          \
2807     }                                                              \
2808                                                                    \
2809     *xt = t;                                                       \
2810     do_float_check_status(env, GETPC());                           \
2811 }
2812 
2813 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2814 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2815 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
2816 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2817 
2818 /*
2819  * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2820  *   op    - instruction mnemonic
2821  *   nels  - number of elements (1, 2 or 4)
2822  *   stp   - source type (float32 or float64)
2823  *   ttp   - target type (float32 or float64)
2824  *   sfld  - source vsr_t field
2825  *   tfld  - target vsr_t field (f32 or f64)
2826  *   sfprf - set FPRF
2827  */
2828 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2829 void helper_##op(CPUPPCState *env, uint32_t opcode,                       \
2830                  ppc_vsr_t *xt, ppc_vsr_t *xb)                            \
2831 {                                                                       \
2832     ppc_vsr_t t = *xt;                                                  \
2833     int i;                                                              \
2834                                                                         \
2835     for (i = 0; i < nels; i++) {                                        \
2836         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
2837         if (unlikely(stp##_is_signaling_nan(xb->sfld,                   \
2838                                             &env->fp_status))) {        \
2839             float_invalid_op_vxsnan(env, GETPC());                      \
2840             t.tfld = ttp##_snan_to_qnan(t.tfld);                        \
2841         }                                                               \
2842         if (sfprf) {                                                    \
2843             helper_compute_fprf_##ttp(env, t.tfld);                     \
2844         }                                                               \
2845     }                                                                   \
2846                                                                         \
2847     *xt = t;                                                            \
2848     do_float_check_status(env, GETPC());                                \
2849 }
2850 
2851 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2852 
2853 /*
2854  * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2855  *                       involving one half precision value
2856  *   op    - instruction mnemonic
2857  *   nels  - number of elements (1, 2 or 4)
2858  *   stp   - source type
2859  *   ttp   - target type
2860  *   sfld  - source vsr_t field
2861  *   tfld  - target vsr_t field
2862  *   sfprf - set FPRF
2863  */
2864 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2865 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2866 {                                                                  \
2867     ppc_vsr_t t = { };                                             \
2868     int i;                                                         \
2869                                                                    \
2870     for (i = 0; i < nels; i++) {                                   \
2871         t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status);     \
2872         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2873                                             &env->fp_status))) {   \
2874             float_invalid_op_vxsnan(env, GETPC());                 \
2875             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2876         }                                                          \
2877         if (sfprf) {                                               \
2878             helper_compute_fprf_##ttp(env, t.tfld);                \
2879         }                                                          \
2880     }                                                              \
2881                                                                    \
2882     *xt = t;                                                       \
2883     do_float_check_status(env, GETPC());                           \
2884 }
2885 
2886 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2887 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2888 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0)
2889 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2890 
2891 /*
2892  * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2893  * added to this later.
2894  */
2895 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode,
2896                      ppc_vsr_t *xt, ppc_vsr_t *xb)
2897 {
2898     ppc_vsr_t t = { };
2899     float_status tstat;
2900 
2901     tstat = env->fp_status;
2902     if (unlikely(Rc(opcode) != 0)) {
2903         tstat.float_rounding_mode = float_round_to_odd;
2904     }
2905 
2906     t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2907     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2908     if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2909         float_invalid_op_vxsnan(env, GETPC());
2910         t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2911     }
2912     helper_compute_fprf_float64(env, t.VsrD(0));
2913 
2914     *xt = t;
2915     do_float_check_status(env, GETPC());
2916 }
2917 
2918 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2919 {
2920     uint64_t result, sign, exp, frac;
2921 
2922     float_status tstat = env->fp_status;
2923     set_float_exception_flags(0, &tstat);
2924 
2925     sign = extract64(xb, 63,  1);
2926     exp  = extract64(xb, 52, 11);
2927     frac = extract64(xb,  0, 52) | 0x10000000000000ULL;
2928 
2929     if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
2930         /* DP denormal operand.  */
2931         /* Exponent override to DP min exp.  */
2932         exp = 1;
2933         /* Implicit bit override to 0.  */
2934         frac = deposit64(frac, 53, 1, 0);
2935     }
2936 
2937     if (unlikely(exp < 897 && frac != 0)) {
2938         /* SP tiny operand.  */
2939         if (897 - exp > 63) {
2940             frac = 0;
2941         } else {
2942             /* Denormalize until exp = SP min exp.  */
2943             frac >>= (897 - exp);
2944         }
2945         /* Exponent override to SP min exp - 1.  */
2946         exp = 896;
2947     }
2948 
2949     result = sign << 31;
2950     result |= extract64(exp, 10, 1) << 30;
2951     result |= extract64(exp, 0, 7) << 23;
2952     result |= extract64(frac, 29, 23);
2953 
2954     /* hardware replicates result to both words of the doubleword result.  */
2955     return (result << 32) | result;
2956 }
2957 
2958 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2959 {
2960     float_status tstat = env->fp_status;
2961     set_float_exception_flags(0, &tstat);
2962 
2963     return float32_to_float64(xb >> 32, &tstat);
2964 }
2965 
2966 /*
2967  * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2968  *   op    - instruction mnemonic
2969  *   nels  - number of elements (1, 2 or 4)
2970  *   stp   - source type (float32 or float64)
2971  *   ttp   - target type (int32, uint32, int64 or uint64)
2972  *   sfld  - source vsr_t field
2973  *   tfld  - target vsr_t field
2974  *   rnan  - resulting NaN
2975  */
2976 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2977 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2978 {                                                                            \
2979     int all_flags = env->fp_status.float_exception_flags, flags;             \
2980     ppc_vsr_t t = *xt;                                                       \
2981     int i;                                                                   \
2982                                                                              \
2983     for (i = 0; i < nels; i++) {                                             \
2984         env->fp_status.float_exception_flags = 0;                            \
2985         t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);  \
2986         flags = env->fp_status.float_exception_flags;                        \
2987         if (unlikely(flags & float_flag_invalid)) {                          \
2988             float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld));    \
2989             t.tfld = rnan;                                                   \
2990         }                                                                    \
2991         all_flags |= flags;                                                  \
2992     }                                                                        \
2993                                                                              \
2994     *xt = t;                                                                 \
2995     env->fp_status.float_exception_flags = all_flags;                        \
2996     do_float_check_status(env, GETPC());                                     \
2997 }
2998 
2999 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
3000                   0x8000000000000000ULL)
3001 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
3002                   0x80000000U)
3003 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
3004 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
3005 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
3006                   0x8000000000000000ULL)
3007 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
3008                   0x80000000U)
3009 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
3010 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
3011 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
3012                   0x8000000000000000ULL)
3013 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
3014 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
3015 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
3016 
3017 /*
3018  * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
3019  *   op    - instruction mnemonic
3020  *   stp   - source type (float32 or float64)
3021  *   ttp   - target type (int32, uint32, int64 or uint64)
3022  *   sfld  - source vsr_t field
3023  *   tfld  - target vsr_t field
3024  *   rnan  - resulting NaN
3025  */
3026 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \
3027 void helper_##op(CPUPPCState *env, uint32_t opcode,                          \
3028                  ppc_vsr_t *xt, ppc_vsr_t *xb)                               \
3029 {                                                                            \
3030     ppc_vsr_t t = { };                                                       \
3031                                                                              \
3032     t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);      \
3033     if (env->fp_status.float_exception_flags & float_flag_invalid) {         \
3034         float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld));        \
3035         t.tfld = rnan;                                                       \
3036     }                                                                        \
3037                                                                              \
3038     *xt = t;                                                                 \
3039     do_float_check_status(env, GETPC());                                     \
3040 }
3041 
3042 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \
3043                   0x8000000000000000ULL)
3044 
3045 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \
3046                   0xffffffff80000000ULL)
3047 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3048 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3049 
3050 /*
3051  * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3052  *   op    - instruction mnemonic
3053  *   nels  - number of elements (1, 2 or 4)
3054  *   stp   - source type (int32, uint32, int64 or uint64)
3055  *   ttp   - target type (float32 or float64)
3056  *   sfld  - source vsr_t field
3057  *   tfld  - target vsr_t field
3058  *   jdef  - definition of the j index (i or 2*i)
3059  *   sfprf - set FPRF
3060  */
3061 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
3062 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \
3063 {                                                                       \
3064     ppc_vsr_t t = *xt;                                                  \
3065     int i;                                                              \
3066                                                                         \
3067     for (i = 0; i < nels; i++) {                                        \
3068         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
3069         if (r2sp) {                                                     \
3070             t.tfld = helper_frsp(env, t.tfld);                          \
3071         }                                                               \
3072         if (sfprf) {                                                    \
3073             helper_compute_fprf_float64(env, t.tfld);                   \
3074         }                                                               \
3075     }                                                                   \
3076                                                                         \
3077     *xt = t;                                                            \
3078     do_float_check_status(env, GETPC());                                \
3079 }
3080 
3081 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3082 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3083 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3084 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3085 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3086 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3087 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3088 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3089 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3090 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3091 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3092 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3093 
3094 /*
3095  * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3096  *   op    - instruction mnemonic
3097  *   stp   - source type (int32, uint32, int64 or uint64)
3098  *   ttp   - target type (float32 or float64)
3099  *   sfld  - source vsr_t field
3100  *   tfld  - target vsr_t field
3101  */
3102 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \
3103 void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
3104                  ppc_vsr_t *xt, ppc_vsr_t *xb)                          \
3105 {                                                                       \
3106     ppc_vsr_t t = *xt;                                                  \
3107                                                                         \
3108     t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);                 \
3109     helper_compute_fprf_##ttp(env, t.tfld);                             \
3110                                                                         \
3111     *xt = t;                                                            \
3112     do_float_check_status(env, GETPC());                                \
3113 }
3114 
3115 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3116 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3117 
3118 /*
3119  * For "use current rounding mode", define a value that will not be
3120  * one of the existing rounding model enums.
3121  */
3122 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3123   float_round_up + float_round_to_zero)
3124 
3125 /*
3126  * VSX_ROUND - VSX floating point round
3127  *   op    - instruction mnemonic
3128  *   nels  - number of elements (1, 2 or 4)
3129  *   tp    - type (float32 or float64)
3130  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3131  *   rmode - rounding mode
3132  *   sfprf - set FPRF
3133  */
3134 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
3135 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)       \
3136 {                                                                      \
3137     ppc_vsr_t t = *xt;                                                 \
3138     int i;                                                             \
3139                                                                        \
3140     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3141         set_float_rounding_mode(rmode, &env->fp_status);               \
3142     }                                                                  \
3143                                                                        \
3144     for (i = 0; i < nels; i++) {                                       \
3145         if (unlikely(tp##_is_signaling_nan(xb->fld,                    \
3146                                            &env->fp_status))) {        \
3147             float_invalid_op_vxsnan(env, GETPC());                     \
3148             t.fld = tp##_snan_to_qnan(xb->fld);                        \
3149         } else {                                                       \
3150             t.fld = tp##_round_to_int(xb->fld, &env->fp_status);       \
3151         }                                                              \
3152         if (sfprf) {                                                   \
3153             helper_compute_fprf_float64(env, t.fld);                   \
3154         }                                                              \
3155     }                                                                  \
3156                                                                        \
3157     /*                                                                 \
3158      * If this is not a "use current rounding mode" instruction,       \
3159      * then inhibit setting of the XX bit and restore rounding         \
3160      * mode from FPSCR                                                 \
3161      */                                                                \
3162     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3163         fpscr_set_rounding_mode(env);                                  \
3164         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
3165     }                                                                  \
3166                                                                        \
3167     *xt = t;                                                           \
3168     do_float_check_status(env, GETPC());                               \
3169 }
3170 
3171 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3172 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3173 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3174 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3175 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3176 
3177 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3178 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3179 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3180 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3181 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3182 
3183 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3184 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3185 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3186 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3187 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3188 
3189 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3190 {
3191     helper_reset_fpstatus(env);
3192 
3193     uint64_t xt = helper_frsp(env, xb);
3194 
3195     helper_compute_fprf_float64(env, xt);
3196     do_float_check_status(env, GETPC());
3197     return xt;
3198 }
3199 
3200 #define VSX_XXPERM(op, indexed)                                       \
3201 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
3202                  ppc_vsr_t *xa, ppc_vsr_t *pcv)                       \
3203 {                                                                     \
3204     ppc_vsr_t t = *xt;                                                \
3205     int i, idx;                                                       \
3206                                                                       \
3207     for (i = 0; i < 16; i++) {                                        \
3208         idx = pcv->VsrB(i) & 0x1F;                                    \
3209         if (indexed) {                                                \
3210             idx = 31 - idx;                                           \
3211         }                                                             \
3212         t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx)                       \
3213                                 : xt->VsrB(idx - 16);                 \
3214     }                                                                 \
3215     *xt = t;                                                          \
3216 }
3217 
3218 VSX_XXPERM(xxperm, 0)
3219 VSX_XXPERM(xxpermr, 1)
3220 
3221 void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
3222 {
3223     ppc_vsr_t t = { };
3224     uint32_t exp, i, fraction;
3225 
3226     for (i = 0; i < 4; i++) {
3227         exp = (xb->VsrW(i) >> 23) & 0xFF;
3228         fraction = xb->VsrW(i) & 0x7FFFFF;
3229         if (exp != 0 && exp != 255) {
3230             t.VsrW(i) = fraction | 0x00800000;
3231         } else {
3232             t.VsrW(i) = fraction;
3233         }
3234     }
3235     *xt = t;
3236 }
3237 
3238 /*
3239  * VSX_TEST_DC - VSX floating point test data class
3240  *   op    - instruction mnemonic
3241  *   nels  - number of elements (1, 2 or 4)
3242  *   xbn   - VSR register number
3243  *   tp    - type (float32 or float64)
3244  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3245  *   tfld   - target vsr_t field (VsrD(*) or VsrW(*))
3246  *   fld_max - target field max
3247  *   scrf - set result in CR and FPCC
3248  */
3249 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf)  \
3250 void helper_##op(CPUPPCState *env, uint32_t opcode)         \
3251 {                                                           \
3252     ppc_vsr_t *xt = &env->vsr[xT(opcode)];                  \
3253     ppc_vsr_t *xb = &env->vsr[xbn];                         \
3254     ppc_vsr_t t = { };                                      \
3255     uint32_t i, sign, dcmx;                                 \
3256     uint32_t cc, match = 0;                                 \
3257                                                             \
3258     if (!scrf) {                                            \
3259         dcmx = DCMX_XV(opcode);                             \
3260     } else {                                                \
3261         t = *xt;                                            \
3262         dcmx = DCMX(opcode);                                \
3263     }                                                       \
3264                                                             \
3265     for (i = 0; i < nels; i++) {                            \
3266         sign = tp##_is_neg(xb->fld);                        \
3267         if (tp##_is_any_nan(xb->fld)) {                     \
3268             match = extract32(dcmx, 6, 1);                  \
3269         } else if (tp##_is_infinity(xb->fld)) {             \
3270             match = extract32(dcmx, 4 + !sign, 1);          \
3271         } else if (tp##_is_zero(xb->fld)) {                 \
3272             match = extract32(dcmx, 2 + !sign, 1);          \
3273         } else if (tp##_is_zero_or_denormal(xb->fld)) {     \
3274             match = extract32(dcmx, 0 + !sign, 1);          \
3275         }                                                   \
3276                                                             \
3277         if (scrf) {                                         \
3278             cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;  \
3279             env->fpscr &= ~FP_FPCC;                         \
3280             env->fpscr |= cc << FPSCR_FPCC;                 \
3281             env->crf[BF(opcode)] = cc;                      \
3282         } else {                                            \
3283             t.tfld = match ? fld_max : 0;                   \
3284         }                                                   \
3285         match = 0;                                          \
3286     }                                                       \
3287     if (!scrf) {                                            \
3288         *xt = t;                                            \
3289     }                                                       \
3290 }
3291 
3292 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3293 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3294 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3295 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3296 
3297 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)
3298 {
3299     uint32_t dcmx, sign, exp;
3300     uint32_t cc, match = 0, not_sp = 0;
3301 
3302     dcmx = DCMX(opcode);
3303     exp = (xb->VsrD(0) >> 52) & 0x7FF;
3304 
3305     sign = float64_is_neg(xb->VsrD(0));
3306     if (float64_is_any_nan(xb->VsrD(0))) {
3307         match = extract32(dcmx, 6, 1);
3308     } else if (float64_is_infinity(xb->VsrD(0))) {
3309         match = extract32(dcmx, 4 + !sign, 1);
3310     } else if (float64_is_zero(xb->VsrD(0))) {
3311         match = extract32(dcmx, 2 + !sign, 1);
3312     } else if (float64_is_zero_or_denormal(xb->VsrD(0)) ||
3313                (exp > 0 && exp < 0x381)) {
3314         match = extract32(dcmx, 0 + !sign, 1);
3315     }
3316 
3317     not_sp = !float64_eq(xb->VsrD(0),
3318                          float32_to_float64(
3319                              float64_to_float32(xb->VsrD(0), &env->fp_status),
3320                              &env->fp_status), &env->fp_status);
3321 
3322     cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3323     env->fpscr &= ~FP_FPCC;
3324     env->fpscr |= cc << FPSCR_FPCC;
3325     env->crf[BF(opcode)] = cc;
3326 }
3327 
3328 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3329                    ppc_vsr_t *xt, ppc_vsr_t *xb)
3330 {
3331     ppc_vsr_t t = { };
3332     uint8_t r = Rrm(opcode);
3333     uint8_t ex = Rc(opcode);
3334     uint8_t rmc = RMC(opcode);
3335     uint8_t rmode = 0;
3336     float_status tstat;
3337 
3338     helper_reset_fpstatus(env);
3339 
3340     if (r == 0 && rmc == 0) {
3341         rmode = float_round_ties_away;
3342     } else if (r == 0 && rmc == 0x3) {
3343         rmode = fpscr_rn;
3344     } else if (r == 1) {
3345         switch (rmc) {
3346         case 0:
3347             rmode = float_round_nearest_even;
3348             break;
3349         case 1:
3350             rmode = float_round_to_zero;
3351             break;
3352         case 2:
3353             rmode = float_round_up;
3354             break;
3355         case 3:
3356             rmode = float_round_down;
3357             break;
3358         default:
3359             abort();
3360         }
3361     }
3362 
3363     tstat = env->fp_status;
3364     set_float_exception_flags(0, &tstat);
3365     set_float_rounding_mode(rmode, &tstat);
3366     t.f128 = float128_round_to_int(xb->f128, &tstat);
3367     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3368 
3369     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3370         if (float128_is_signaling_nan(xb->f128, &tstat)) {
3371             float_invalid_op_vxsnan(env, GETPC());
3372             t.f128 = float128_snan_to_qnan(t.f128);
3373         }
3374     }
3375 
3376     if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3377         env->fp_status.float_exception_flags &= ~float_flag_inexact;
3378     }
3379 
3380     helper_compute_fprf_float128(env, t.f128);
3381     do_float_check_status(env, GETPC());
3382     *xt = t;
3383 }
3384 
3385 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3386                     ppc_vsr_t *xt, ppc_vsr_t *xb)
3387 {
3388     ppc_vsr_t t = { };
3389     uint8_t r = Rrm(opcode);
3390     uint8_t rmc = RMC(opcode);
3391     uint8_t rmode = 0;
3392     floatx80 round_res;
3393     float_status tstat;
3394 
3395     helper_reset_fpstatus(env);
3396 
3397     if (r == 0 && rmc == 0) {
3398         rmode = float_round_ties_away;
3399     } else if (r == 0 && rmc == 0x3) {
3400         rmode = fpscr_rn;
3401     } else if (r == 1) {
3402         switch (rmc) {
3403         case 0:
3404             rmode = float_round_nearest_even;
3405             break;
3406         case 1:
3407             rmode = float_round_to_zero;
3408             break;
3409         case 2:
3410             rmode = float_round_up;
3411             break;
3412         case 3:
3413             rmode = float_round_down;
3414             break;
3415         default:
3416             abort();
3417         }
3418     }
3419 
3420     tstat = env->fp_status;
3421     set_float_exception_flags(0, &tstat);
3422     set_float_rounding_mode(rmode, &tstat);
3423     round_res = float128_to_floatx80(xb->f128, &tstat);
3424     t.f128 = floatx80_to_float128(round_res, &tstat);
3425     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3426 
3427     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3428         if (float128_is_signaling_nan(xb->f128, &tstat)) {
3429             float_invalid_op_vxsnan(env, GETPC());
3430             t.f128 = float128_snan_to_qnan(t.f128);
3431         }
3432     }
3433 
3434     helper_compute_fprf_float128(env, t.f128);
3435     *xt = t;
3436     do_float_check_status(env, GETPC());
3437 }
3438 
3439 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3440                      ppc_vsr_t *xt, ppc_vsr_t *xb)
3441 {
3442     ppc_vsr_t t = { };
3443     float_status tstat;
3444 
3445     helper_reset_fpstatus(env);
3446 
3447     tstat = env->fp_status;
3448     if (unlikely(Rc(opcode) != 0)) {
3449         tstat.float_rounding_mode = float_round_to_odd;
3450     }
3451 
3452     set_float_exception_flags(0, &tstat);
3453     t.f128 = float128_sqrt(xb->f128, &tstat);
3454     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3455 
3456     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3457         if (float128_is_signaling_nan(xb->f128, &tstat)) {
3458             float_invalid_op_vxsnan(env, GETPC());
3459             t.f128 = float128_snan_to_qnan(xb->f128);
3460         } else if (float128_is_quiet_nan(xb->f128, &tstat)) {
3461             t.f128 = xb->f128;
3462         } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) {
3463             float_invalid_op_vxsqrt(env, 1, GETPC());
3464             t.f128 = float128_default_nan(&env->fp_status);
3465         }
3466     }
3467 
3468     helper_compute_fprf_float128(env, t.f128);
3469     *xt = t;
3470     do_float_check_status(env, GETPC());
3471 }
3472 
3473 void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3474                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3475 {
3476     ppc_vsr_t t = *xt;
3477     float_status tstat;
3478 
3479     helper_reset_fpstatus(env);
3480 
3481     tstat = env->fp_status;
3482     if (unlikely(Rc(opcode) != 0)) {
3483         tstat.float_rounding_mode = float_round_to_odd;
3484     }
3485 
3486     set_float_exception_flags(0, &tstat);
3487     t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3488     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3489 
3490     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3491         float_invalid_op_addsub(env, 1, GETPC(),
3492                                 float128_classify(xa->f128) |
3493                                 float128_classify(xb->f128));
3494     }
3495 
3496     helper_compute_fprf_float128(env, t.f128);
3497     *xt = t;
3498     do_float_check_status(env, GETPC());
3499 }
3500