xref: /openbmc/qemu/target/ppc/fpu_helper.c (revision b15c0f7d)
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25 
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28     float128 r;
29 
30     r.high = x.high | 0x0000800000000000;
31     r.low = x.low;
32     return r;
33 }
34 
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38 
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
40 {
41 #ifdef CONFIG_USER_ONLY
42     return true;
43 #else
44     return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
46 }
47 
48 /*****************************************************************************/
49 /* Floating point operations helpers */
50 
51 /*
52  * This is the non-arithmatic conversion that happens e.g. on loads.
53  * In the Power ISA pseudocode, this is called DOUBLE.
54  */
55 uint64_t helper_todouble(uint32_t arg)
56 {
57     uint32_t abs_arg = arg & 0x7fffffff;
58     uint64_t ret;
59 
60     if (likely(abs_arg >= 0x00800000)) {
61         /* Normalized operand, or Inf, or NaN.  */
62         ret  = (uint64_t)extract32(arg, 30, 2) << 62;
63         ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
64         ret |= (uint64_t)extract32(arg, 0, 30) << 29;
65     } else {
66         /* Zero or Denormalized operand.  */
67         ret = (uint64_t)extract32(arg, 31, 1) << 63;
68         if (unlikely(abs_arg != 0)) {
69             /* Denormalized operand.  */
70             int shift = clz32(abs_arg) - 9;
71             int exp = -126 - shift + 1023;
72             ret |= (uint64_t)exp << 52;
73             ret |= abs_arg << (shift + 29);
74         }
75     }
76     return ret;
77 }
78 
79 /*
80  * This is the non-arithmatic conversion that happens e.g. on stores.
81  * In the Power ISA pseudocode, this is called SINGLE.
82  */
83 uint32_t helper_tosingle(uint64_t arg)
84 {
85     int exp = extract64(arg, 52, 11);
86     uint32_t ret;
87 
88     if (likely(exp > 896)) {
89         /* No denormalization required (includes Inf, NaN).  */
90         ret  = extract64(arg, 62, 2) << 30;
91         ret |= extract64(arg, 29, 30);
92     } else {
93         /*
94          * Zero or Denormal result.  If the exponent is in bounds for
95          * a single-precision denormal result, extract the proper
96          * bits.  If the input is not zero, and the exponent is out of
97          * bounds, then the result is undefined; this underflows to
98          * zero.
99          */
100         ret = extract64(arg, 63, 1) << 31;
101         if (unlikely(exp >= 874)) {
102             /* Denormal result.  */
103             ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
104         }
105     }
106     return ret;
107 }
108 
109 static inline int ppc_float32_get_unbiased_exp(float32 f)
110 {
111     return ((f >> 23) & 0xFF) - 127;
112 }
113 
114 static inline int ppc_float64_get_unbiased_exp(float64 f)
115 {
116     return ((f >> 52) & 0x7FF) - 1023;
117 }
118 
119 /* Classify a floating-point number.  */
120 enum {
121     is_normal   = 1,
122     is_zero     = 2,
123     is_denormal = 4,
124     is_inf      = 8,
125     is_qnan     = 16,
126     is_snan     = 32,
127     is_neg      = 64,
128 };
129 
130 #define COMPUTE_CLASS(tp)                                      \
131 static int tp##_classify(tp arg)                               \
132 {                                                              \
133     int ret = tp##_is_neg(arg) * is_neg;                       \
134     if (unlikely(tp##_is_any_nan(arg))) {                      \
135         float_status dummy = { };  /* snan_bit_is_one = 0 */   \
136         ret |= (tp##_is_signaling_nan(arg, &dummy)             \
137                 ? is_snan : is_qnan);                          \
138     } else if (unlikely(tp##_is_infinity(arg))) {              \
139         ret |= is_inf;                                         \
140     } else if (tp##_is_zero(arg)) {                            \
141         ret |= is_zero;                                        \
142     } else if (tp##_is_zero_or_denormal(arg)) {                \
143         ret |= is_denormal;                                    \
144     } else {                                                   \
145         ret |= is_normal;                                      \
146     }                                                          \
147     return ret;                                                \
148 }
149 
150 COMPUTE_CLASS(float16)
151 COMPUTE_CLASS(float32)
152 COMPUTE_CLASS(float64)
153 COMPUTE_CLASS(float128)
154 
155 static void set_fprf_from_class(CPUPPCState *env, int class)
156 {
157     static const uint8_t fprf[6][2] = {
158         { 0x04, 0x08 },  /* normalized */
159         { 0x02, 0x12 },  /* zero */
160         { 0x14, 0x18 },  /* denormalized */
161         { 0x05, 0x09 },  /* infinity */
162         { 0x11, 0x11 },  /* qnan */
163         { 0x00, 0x00 },  /* snan -- flags are undefined */
164     };
165     bool isneg = class & is_neg;
166 
167     env->fpscr &= ~(0x1F << FPSCR_FPRF);
168     env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
169 }
170 
171 #define COMPUTE_FPRF(tp)                                \
172 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
173 {                                                       \
174     set_fprf_from_class(env, tp##_classify(arg));       \
175 }
176 
177 COMPUTE_FPRF(float16)
178 COMPUTE_FPRF(float32)
179 COMPUTE_FPRF(float64)
180 COMPUTE_FPRF(float128)
181 
182 /* Floating-point invalid operations exception */
183 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
184 {
185     /* Update the floating-point invalid operation summary */
186     env->fpscr |= 1 << FPSCR_VX;
187     /* Update the floating-point exception summary */
188     env->fpscr |= FP_FX;
189     if (fpscr_ve != 0) {
190         /* Update the floating-point enabled exception summary */
191         env->fpscr |= 1 << FPSCR_FEX;
192         if (fp_exceptions_enabled(env)) {
193             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
194                                    POWERPC_EXCP_FP | op, retaddr);
195         }
196     }
197 }
198 
199 static void finish_invalid_op_arith(CPUPPCState *env, int op,
200                                     bool set_fpcc, uintptr_t retaddr)
201 {
202     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
203     if (fpscr_ve == 0) {
204         if (set_fpcc) {
205             env->fpscr &= ~(0xF << FPSCR_FPCC);
206             env->fpscr |= 0x11 << FPSCR_FPCC;
207         }
208     }
209     finish_invalid_op_excp(env, op, retaddr);
210 }
211 
212 /* Signalling NaN */
213 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
214 {
215     env->fpscr |= 1 << FPSCR_VXSNAN;
216     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
217 }
218 
219 /* Magnitude subtraction of infinities */
220 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
221                                    uintptr_t retaddr)
222 {
223     env->fpscr |= 1 << FPSCR_VXISI;
224     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
225 }
226 
227 /* Division of infinity by infinity */
228 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
229                                    uintptr_t retaddr)
230 {
231     env->fpscr |= 1 << FPSCR_VXIDI;
232     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
233 }
234 
235 /* Division of zero by zero */
236 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
237                                    uintptr_t retaddr)
238 {
239     env->fpscr |= 1 << FPSCR_VXZDZ;
240     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
241 }
242 
243 /* Multiplication of zero by infinity */
244 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
245                                    uintptr_t retaddr)
246 {
247     env->fpscr |= 1 << FPSCR_VXIMZ;
248     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
249 }
250 
251 /* Square root of a negative number */
252 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
253                                     uintptr_t retaddr)
254 {
255     env->fpscr |= 1 << FPSCR_VXSQRT;
256     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
257 }
258 
259 /* Ordered comparison of NaN */
260 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
261                                   uintptr_t retaddr)
262 {
263     env->fpscr |= 1 << FPSCR_VXVC;
264     if (set_fpcc) {
265         env->fpscr &= ~(0xF << FPSCR_FPCC);
266         env->fpscr |= 0x11 << FPSCR_FPCC;
267     }
268     /* Update the floating-point invalid operation summary */
269     env->fpscr |= 1 << FPSCR_VX;
270     /* Update the floating-point exception summary */
271     env->fpscr |= FP_FX;
272     /* We must update the target FPR before raising the exception */
273     if (fpscr_ve != 0) {
274         CPUState *cs = CPU(ppc_env_get_cpu(env));
275 
276         cs->exception_index = POWERPC_EXCP_PROGRAM;
277         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
278         /* Update the floating-point enabled exception summary */
279         env->fpscr |= 1 << FPSCR_FEX;
280         /* Exception is differed */
281     }
282 }
283 
284 /* Invalid conversion */
285 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
286                                    uintptr_t retaddr)
287 {
288     env->fpscr |= 1 << FPSCR_VXCVI;
289     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
290     if (fpscr_ve == 0) {
291         if (set_fpcc) {
292             env->fpscr &= ~(0xF << FPSCR_FPCC);
293             env->fpscr |= 0x11 << FPSCR_FPCC;
294         }
295     }
296     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
297 }
298 
299 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
300 {
301     env->fpscr |= 1 << FPSCR_ZX;
302     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
303     /* Update the floating-point exception summary */
304     env->fpscr |= FP_FX;
305     if (fpscr_ze != 0) {
306         /* Update the floating-point enabled exception summary */
307         env->fpscr |= 1 << FPSCR_FEX;
308         if (fp_exceptions_enabled(env)) {
309             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
310                                    POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
311                                    raddr);
312         }
313     }
314 }
315 
316 static inline void float_overflow_excp(CPUPPCState *env)
317 {
318     CPUState *cs = CPU(ppc_env_get_cpu(env));
319 
320     env->fpscr |= 1 << FPSCR_OX;
321     /* Update the floating-point exception summary */
322     env->fpscr |= FP_FX;
323     if (fpscr_oe != 0) {
324         /* XXX: should adjust the result */
325         /* Update the floating-point enabled exception summary */
326         env->fpscr |= 1 << FPSCR_FEX;
327         /* We must update the target FPR before raising the exception */
328         cs->exception_index = POWERPC_EXCP_PROGRAM;
329         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
330     } else {
331         env->fpscr |= 1 << FPSCR_XX;
332         env->fpscr |= 1 << FPSCR_FI;
333     }
334 }
335 
336 static inline void float_underflow_excp(CPUPPCState *env)
337 {
338     CPUState *cs = CPU(ppc_env_get_cpu(env));
339 
340     env->fpscr |= 1 << FPSCR_UX;
341     /* Update the floating-point exception summary */
342     env->fpscr |= FP_FX;
343     if (fpscr_ue != 0) {
344         /* XXX: should adjust the result */
345         /* Update the floating-point enabled exception summary */
346         env->fpscr |= 1 << FPSCR_FEX;
347         /* We must update the target FPR before raising the exception */
348         cs->exception_index = POWERPC_EXCP_PROGRAM;
349         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
350     }
351 }
352 
353 static inline void float_inexact_excp(CPUPPCState *env)
354 {
355     CPUState *cs = CPU(ppc_env_get_cpu(env));
356 
357     env->fpscr |= 1 << FPSCR_FI;
358     env->fpscr |= 1 << FPSCR_XX;
359     /* Update the floating-point exception summary */
360     env->fpscr |= FP_FX;
361     if (fpscr_xe != 0) {
362         /* Update the floating-point enabled exception summary */
363         env->fpscr |= 1 << FPSCR_FEX;
364         /* We must update the target FPR before raising the exception */
365         cs->exception_index = POWERPC_EXCP_PROGRAM;
366         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
367     }
368 }
369 
370 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
371 {
372     int rnd_type;
373 
374     /* Set rounding mode */
375     switch (fpscr_rn) {
376     case 0:
377         /* Best approximation (round to nearest) */
378         rnd_type = float_round_nearest_even;
379         break;
380     case 1:
381         /* Smaller magnitude (round toward zero) */
382         rnd_type = float_round_to_zero;
383         break;
384     case 2:
385         /* Round toward +infinite */
386         rnd_type = float_round_up;
387         break;
388     default:
389     case 3:
390         /* Round toward -infinite */
391         rnd_type = float_round_down;
392         break;
393     }
394     set_float_rounding_mode(rnd_type, &env->fp_status);
395 }
396 
397 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
398 {
399     int prev;
400 
401     prev = (env->fpscr >> bit) & 1;
402     env->fpscr &= ~(1 << bit);
403     if (prev == 1) {
404         switch (bit) {
405         case FPSCR_RN1:
406         case FPSCR_RN:
407             fpscr_set_rounding_mode(env);
408             break;
409         case FPSCR_VXSNAN:
410         case FPSCR_VXISI:
411         case FPSCR_VXIDI:
412         case FPSCR_VXZDZ:
413         case FPSCR_VXIMZ:
414         case FPSCR_VXVC:
415         case FPSCR_VXSOFT:
416         case FPSCR_VXSQRT:
417         case FPSCR_VXCVI:
418             if (!fpscr_ix) {
419                 /* Set VX bit to zero */
420                 env->fpscr &= ~(1 << FPSCR_VX);
421             }
422             break;
423         case FPSCR_OX:
424         case FPSCR_UX:
425         case FPSCR_ZX:
426         case FPSCR_XX:
427         case FPSCR_VE:
428         case FPSCR_OE:
429         case FPSCR_UE:
430         case FPSCR_ZE:
431         case FPSCR_XE:
432             if (!fpscr_eex) {
433                 /* Set the FEX bit */
434                 env->fpscr &= ~(1 << FPSCR_FEX);
435             }
436             break;
437         default:
438             break;
439         }
440     }
441 }
442 
443 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
444 {
445     CPUState *cs = CPU(ppc_env_get_cpu(env));
446     int prev;
447 
448     prev = (env->fpscr >> bit) & 1;
449     env->fpscr |= 1 << bit;
450     if (prev == 0) {
451         switch (bit) {
452         case FPSCR_VX:
453             env->fpscr |= FP_FX;
454             if (fpscr_ve) {
455                 goto raise_ve;
456             }
457             break;
458         case FPSCR_OX:
459             env->fpscr |= FP_FX;
460             if (fpscr_oe) {
461                 goto raise_oe;
462             }
463             break;
464         case FPSCR_UX:
465             env->fpscr |= FP_FX;
466             if (fpscr_ue) {
467                 goto raise_ue;
468             }
469             break;
470         case FPSCR_ZX:
471             env->fpscr |= FP_FX;
472             if (fpscr_ze) {
473                 goto raise_ze;
474             }
475             break;
476         case FPSCR_XX:
477             env->fpscr |= FP_FX;
478             if (fpscr_xe) {
479                 goto raise_xe;
480             }
481             break;
482         case FPSCR_VXSNAN:
483         case FPSCR_VXISI:
484         case FPSCR_VXIDI:
485         case FPSCR_VXZDZ:
486         case FPSCR_VXIMZ:
487         case FPSCR_VXVC:
488         case FPSCR_VXSOFT:
489         case FPSCR_VXSQRT:
490         case FPSCR_VXCVI:
491             env->fpscr |= 1 << FPSCR_VX;
492             env->fpscr |= FP_FX;
493             if (fpscr_ve != 0) {
494                 goto raise_ve;
495             }
496             break;
497         case FPSCR_VE:
498             if (fpscr_vx != 0) {
499             raise_ve:
500                 env->error_code = POWERPC_EXCP_FP;
501                 if (fpscr_vxsnan) {
502                     env->error_code |= POWERPC_EXCP_FP_VXSNAN;
503                 }
504                 if (fpscr_vxisi) {
505                     env->error_code |= POWERPC_EXCP_FP_VXISI;
506                 }
507                 if (fpscr_vxidi) {
508                     env->error_code |= POWERPC_EXCP_FP_VXIDI;
509                 }
510                 if (fpscr_vxzdz) {
511                     env->error_code |= POWERPC_EXCP_FP_VXZDZ;
512                 }
513                 if (fpscr_vximz) {
514                     env->error_code |= POWERPC_EXCP_FP_VXIMZ;
515                 }
516                 if (fpscr_vxvc) {
517                     env->error_code |= POWERPC_EXCP_FP_VXVC;
518                 }
519                 if (fpscr_vxsoft) {
520                     env->error_code |= POWERPC_EXCP_FP_VXSOFT;
521                 }
522                 if (fpscr_vxsqrt) {
523                     env->error_code |= POWERPC_EXCP_FP_VXSQRT;
524                 }
525                 if (fpscr_vxcvi) {
526                     env->error_code |= POWERPC_EXCP_FP_VXCVI;
527                 }
528                 goto raise_excp;
529             }
530             break;
531         case FPSCR_OE:
532             if (fpscr_ox != 0) {
533             raise_oe:
534                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
535                 goto raise_excp;
536             }
537             break;
538         case FPSCR_UE:
539             if (fpscr_ux != 0) {
540             raise_ue:
541                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
542                 goto raise_excp;
543             }
544             break;
545         case FPSCR_ZE:
546             if (fpscr_zx != 0) {
547             raise_ze:
548                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
549                 goto raise_excp;
550             }
551             break;
552         case FPSCR_XE:
553             if (fpscr_xx != 0) {
554             raise_xe:
555                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
556                 goto raise_excp;
557             }
558             break;
559         case FPSCR_RN1:
560         case FPSCR_RN:
561             fpscr_set_rounding_mode(env);
562             break;
563         default:
564             break;
565         raise_excp:
566             /* Update the floating-point enabled exception summary */
567             env->fpscr |= 1 << FPSCR_FEX;
568             /* We have to update Rc1 before raising the exception */
569             cs->exception_index = POWERPC_EXCP_PROGRAM;
570             break;
571         }
572     }
573 }
574 
575 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
576 {
577     CPUState *cs = CPU(ppc_env_get_cpu(env));
578     target_ulong prev, new;
579     int i;
580 
581     prev = env->fpscr;
582     new = (target_ulong)arg;
583     new &= ~0x60000000LL;
584     new |= prev & 0x60000000LL;
585     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
586         if (mask & (1 << i)) {
587             env->fpscr &= ~(0xFLL << (4 * i));
588             env->fpscr |= new & (0xFLL << (4 * i));
589         }
590     }
591     /* Update VX and FEX */
592     if (fpscr_ix != 0) {
593         env->fpscr |= 1 << FPSCR_VX;
594     } else {
595         env->fpscr &= ~(1 << FPSCR_VX);
596     }
597     if ((fpscr_ex & fpscr_eex) != 0) {
598         env->fpscr |= 1 << FPSCR_FEX;
599         cs->exception_index = POWERPC_EXCP_PROGRAM;
600         /* XXX: we should compute it properly */
601         env->error_code = POWERPC_EXCP_FP;
602     } else {
603         env->fpscr &= ~(1 << FPSCR_FEX);
604     }
605     fpscr_set_rounding_mode(env);
606 }
607 
608 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
609 {
610     helper_store_fpscr(env, arg, mask);
611 }
612 
613 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
614 {
615     CPUState *cs = CPU(ppc_env_get_cpu(env));
616     int status = get_float_exception_flags(&env->fp_status);
617     bool inexact_happened = false;
618 
619     if (status & float_flag_overflow) {
620         float_overflow_excp(env);
621     } else if (status & float_flag_underflow) {
622         float_underflow_excp(env);
623     } else if (status & float_flag_inexact) {
624         float_inexact_excp(env);
625         inexact_happened = true;
626     }
627 
628     /* if the inexact flag was not set */
629     if (inexact_happened == false) {
630         env->fpscr &= ~(1 << FPSCR_FI); /* clear the FPSCR[FI] bit */
631     }
632 
633     if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
634         (env->error_code & POWERPC_EXCP_FP)) {
635         /* Differred floating-point exception after target FPR update */
636         if (fp_exceptions_enabled(env)) {
637             raise_exception_err_ra(env, cs->exception_index,
638                                    env->error_code, raddr);
639         }
640     }
641 }
642 
643 void helper_float_check_status(CPUPPCState *env)
644 {
645     do_float_check_status(env, GETPC());
646 }
647 
648 void helper_reset_fpstatus(CPUPPCState *env)
649 {
650     set_float_exception_flags(0, &env->fp_status);
651 }
652 
653 static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
654                                     uintptr_t retaddr, int classes)
655 {
656     if ((classes & ~is_neg) == is_inf) {
657         /* Magnitude subtraction of infinities */
658         float_invalid_op_vxisi(env, set_fpcc, retaddr);
659     } else if (classes & is_snan) {
660         float_invalid_op_vxsnan(env, retaddr);
661     }
662 }
663 
664 /* fadd - fadd. */
665 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
666 {
667     float64 ret = float64_add(arg1, arg2, &env->fp_status);
668     int status = get_float_exception_flags(&env->fp_status);
669 
670     if (unlikely(status & float_flag_invalid)) {
671         float_invalid_op_addsub(env, 1, GETPC(),
672                                 float64_classify(arg1) |
673                                 float64_classify(arg2));
674     }
675 
676     return ret;
677 }
678 
679 /* fsub - fsub. */
680 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
681 {
682     float64 ret = float64_sub(arg1, arg2, &env->fp_status);
683     int status = get_float_exception_flags(&env->fp_status);
684 
685     if (unlikely(status & float_flag_invalid)) {
686         float_invalid_op_addsub(env, 1, GETPC(),
687                                 float64_classify(arg1) |
688                                 float64_classify(arg2));
689     }
690 
691     return ret;
692 }
693 
694 static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
695                                  uintptr_t retaddr, int classes)
696 {
697     if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
698         /* Multiplication of zero by infinity */
699         float_invalid_op_vximz(env, set_fprc, retaddr);
700     } else if (classes & is_snan) {
701         float_invalid_op_vxsnan(env, retaddr);
702     }
703 }
704 
705 /* fmul - fmul. */
706 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
707 {
708     float64 ret = float64_mul(arg1, arg2, &env->fp_status);
709     int status = get_float_exception_flags(&env->fp_status);
710 
711     if (unlikely(status & float_flag_invalid)) {
712         float_invalid_op_mul(env, 1, GETPC(),
713                              float64_classify(arg1) |
714                              float64_classify(arg2));
715     }
716 
717     return ret;
718 }
719 
720 static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
721                                  uintptr_t retaddr, int classes)
722 {
723     classes &= ~is_neg;
724     if (classes == is_inf) {
725         /* Division of infinity by infinity */
726         float_invalid_op_vxidi(env, set_fprc, retaddr);
727     } else if (classes == is_zero) {
728         /* Division of zero by zero */
729         float_invalid_op_vxzdz(env, set_fprc, retaddr);
730     } else if (classes & is_snan) {
731         float_invalid_op_vxsnan(env, retaddr);
732     }
733 }
734 
735 /* fdiv - fdiv. */
736 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
737 {
738     float64 ret = float64_div(arg1, arg2, &env->fp_status);
739     int status = get_float_exception_flags(&env->fp_status);
740 
741     if (unlikely(status)) {
742         if (status & float_flag_invalid) {
743             float_invalid_op_div(env, 1, GETPC(),
744                                  float64_classify(arg1) |
745                                  float64_classify(arg2));
746         }
747         if (status & float_flag_divbyzero) {
748             float_zero_divide_excp(env, GETPC());
749         }
750     }
751 
752     return ret;
753 }
754 
755 static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
756                               uintptr_t retaddr, int class1)
757 {
758     float_invalid_op_vxcvi(env, set_fprc, retaddr);
759     if (class1 & is_snan) {
760         float_invalid_op_vxsnan(env, retaddr);
761     }
762 }
763 
764 #define FPU_FCTI(op, cvt, nanval)                                      \
765 uint64_t helper_##op(CPUPPCState *env, float64 arg)                    \
766 {                                                                      \
767     uint64_t ret = float64_to_##cvt(arg, &env->fp_status);             \
768     int status = get_float_exception_flags(&env->fp_status);           \
769                                                                        \
770     if (unlikely(status)) {                                            \
771         if (status & float_flag_invalid) {                             \
772             float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
773             ret = nanval;                                              \
774         }                                                              \
775         do_float_check_status(env, GETPC());                           \
776     }                                                                  \
777     return ret;                                                        \
778 }
779 
780 FPU_FCTI(fctiw, int32, 0x80000000U)
781 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
782 FPU_FCTI(fctiwu, uint32, 0x00000000U)
783 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
784 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
785 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
786 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
787 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
788 
789 #define FPU_FCFI(op, cvtr, is_single)                      \
790 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
791 {                                                          \
792     CPU_DoubleU farg;                                      \
793                                                            \
794     if (is_single) {                                       \
795         float32 tmp = cvtr(arg, &env->fp_status);          \
796         farg.d = float32_to_float64(tmp, &env->fp_status); \
797     } else {                                               \
798         farg.d = cvtr(arg, &env->fp_status);               \
799     }                                                      \
800     do_float_check_status(env, GETPC());                   \
801     return farg.ll;                                        \
802 }
803 
804 FPU_FCFI(fcfid, int64_to_float64, 0)
805 FPU_FCFI(fcfids, int64_to_float32, 1)
806 FPU_FCFI(fcfidu, uint64_to_float64, 0)
807 FPU_FCFI(fcfidus, uint64_to_float32, 1)
808 
809 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
810                               int rounding_mode)
811 {
812     CPU_DoubleU farg;
813 
814     farg.ll = arg;
815 
816     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
817         /* sNaN round */
818         float_invalid_op_vxsnan(env, GETPC());
819         farg.ll = arg | 0x0008000000000000ULL;
820     } else {
821         int inexact = get_float_exception_flags(&env->fp_status) &
822                       float_flag_inexact;
823         set_float_rounding_mode(rounding_mode, &env->fp_status);
824         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
825         /* Restore rounding mode from FPSCR */
826         fpscr_set_rounding_mode(env);
827 
828         /* fri* does not set FPSCR[XX] */
829         if (!inexact) {
830             env->fp_status.float_exception_flags &= ~float_flag_inexact;
831         }
832     }
833     do_float_check_status(env, GETPC());
834     return farg.ll;
835 }
836 
837 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
838 {
839     return do_fri(env, arg, float_round_ties_away);
840 }
841 
842 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
843 {
844     return do_fri(env, arg, float_round_to_zero);
845 }
846 
847 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
848 {
849     return do_fri(env, arg, float_round_up);
850 }
851 
852 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
853 {
854     return do_fri(env, arg, float_round_down);
855 }
856 
857 #define FPU_MADDSUB_UPDATE(NAME, TP)                                    \
858 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3,           \
859                  unsigned int madd_flags, uintptr_t retaddr)            \
860 {                                                                       \
861     if (TP##_is_signaling_nan(arg1, &env->fp_status) ||                 \
862         TP##_is_signaling_nan(arg2, &env->fp_status) ||                 \
863         TP##_is_signaling_nan(arg3, &env->fp_status)) {                 \
864         /* sNaN operation */                                            \
865         float_invalid_op_vxsnan(env, retaddr);                          \
866     }                                                                   \
867     if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) ||               \
868         (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) {               \
869         /* Multiplication of zero by infinity */                        \
870         float_invalid_op_vximz(env, 1, retaddr);                        \
871     }                                                                   \
872     if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) &&           \
873         TP##_is_infinity(arg3)) {                                       \
874         uint8_t aSign, bSign, cSign;                                    \
875                                                                         \
876         aSign = TP##_is_neg(arg1);                                      \
877         bSign = TP##_is_neg(arg2);                                      \
878         cSign = TP##_is_neg(arg3);                                      \
879         if (madd_flags & float_muladd_negate_c) {                       \
880             cSign ^= 1;                                                 \
881         }                                                               \
882         if (aSign ^ bSign ^ cSign) {                                    \
883             float_invalid_op_vxisi(env, 1, retaddr);                    \
884         }                                                               \
885     }                                                                   \
886 }
887 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
888 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
889 
890 #define FPU_FMADD(op, madd_flags)                                       \
891 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,                   \
892                      uint64_t arg2, uint64_t arg3)                      \
893 {                                                                       \
894     uint32_t flags;                                                     \
895     float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags,          \
896                                  &env->fp_status);                      \
897     flags = get_float_exception_flags(&env->fp_status);                 \
898     if (flags) {                                                        \
899         if (flags & float_flag_invalid) {                               \
900             float64_maddsub_update_excp(env, arg1, arg2, arg3,          \
901                                         madd_flags, GETPC());           \
902         }                                                               \
903         do_float_check_status(env, GETPC());                            \
904     }                                                                   \
905     return ret;                                                         \
906 }
907 
908 #define MADD_FLGS 0
909 #define MSUB_FLGS float_muladd_negate_c
910 #define NMADD_FLGS float_muladd_negate_result
911 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
912 
913 FPU_FMADD(fmadd, MADD_FLGS)
914 FPU_FMADD(fnmadd, NMADD_FLGS)
915 FPU_FMADD(fmsub, MSUB_FLGS)
916 FPU_FMADD(fnmsub, NMSUB_FLGS)
917 
918 /* frsp - frsp. */
919 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
920 {
921     CPU_DoubleU farg;
922     float32 f32;
923 
924     farg.ll = arg;
925 
926     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
927         float_invalid_op_vxsnan(env, GETPC());
928     }
929     f32 = float64_to_float32(farg.d, &env->fp_status);
930     farg.d = float32_to_float64(f32, &env->fp_status);
931 
932     return farg.ll;
933 }
934 
935 /* fsqrt - fsqrt. */
936 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
937 {
938     float64 ret = float64_sqrt(arg, &env->fp_status);
939     int status = get_float_exception_flags(&env->fp_status);
940 
941     if (unlikely(status & float_flag_invalid)) {
942         if (unlikely(float64_is_any_nan(arg))) {
943             if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
944                 /* sNaN square root */
945                 float_invalid_op_vxsnan(env, GETPC());
946             }
947         } else {
948             /* Square root of a negative nonzero number */
949             float_invalid_op_vxsqrt(env, 1, GETPC());
950         }
951     }
952 
953     return ret;
954 }
955 
956 /* fre - fre. */
957 float64 helper_fre(CPUPPCState *env, float64 arg)
958 {
959     /* "Estimate" the reciprocal with actual division.  */
960     float64 ret = float64_div(float64_one, arg, &env->fp_status);
961     int status = get_float_exception_flags(&env->fp_status);
962 
963     if (unlikely(status)) {
964         if (status & float_flag_invalid) {
965             if (float64_is_signaling_nan(arg, &env->fp_status)) {
966                 /* sNaN reciprocal */
967                 float_invalid_op_vxsnan(env, GETPC());
968             }
969         }
970         if (status & float_flag_divbyzero) {
971             float_zero_divide_excp(env, GETPC());
972             /* For FPSCR.ZE == 0, the result is 1/2.  */
973             ret = float64_set_sign(float64_half, float64_is_neg(arg));
974         }
975     }
976 
977     return ret;
978 }
979 
980 /* fres - fres. */
981 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
982 {
983     CPU_DoubleU farg;
984     float32 f32;
985 
986     farg.ll = arg;
987 
988     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
989         /* sNaN reciprocal */
990         float_invalid_op_vxsnan(env, GETPC());
991     }
992     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
993     f32 = float64_to_float32(farg.d, &env->fp_status);
994     farg.d = float32_to_float64(f32, &env->fp_status);
995 
996     return farg.ll;
997 }
998 
999 /* frsqrte  - frsqrte. */
1000 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
1001 {
1002     /* "Estimate" the reciprocal with actual division.  */
1003     float64 rets = float64_sqrt(arg, &env->fp_status);
1004     float64 retd = float64_div(float64_one, rets, &env->fp_status);
1005     int status = get_float_exception_flags(&env->fp_status);
1006 
1007     if (unlikely(status)) {
1008         if (status & float_flag_invalid) {
1009             if (float64_is_signaling_nan(arg, &env->fp_status)) {
1010                 /* sNaN reciprocal */
1011                 float_invalid_op_vxsnan(env, GETPC());
1012             } else {
1013                 /* Square root of a negative nonzero number */
1014                 float_invalid_op_vxsqrt(env, 1, GETPC());
1015             }
1016         }
1017         if (status & float_flag_divbyzero) {
1018             /* Reciprocal of (square root of) zero.  */
1019             float_zero_divide_excp(env, GETPC());
1020         }
1021     }
1022 
1023     return retd;
1024 }
1025 
1026 /* fsel - fsel. */
1027 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1028                      uint64_t arg3)
1029 {
1030     CPU_DoubleU farg1;
1031 
1032     farg1.ll = arg1;
1033 
1034     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1035         !float64_is_any_nan(farg1.d)) {
1036         return arg2;
1037     } else {
1038         return arg3;
1039     }
1040 }
1041 
1042 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1043 {
1044     int fe_flag = 0;
1045     int fg_flag = 0;
1046 
1047     if (unlikely(float64_is_infinity(fra) ||
1048                  float64_is_infinity(frb) ||
1049                  float64_is_zero(frb))) {
1050         fe_flag = 1;
1051         fg_flag = 1;
1052     } else {
1053         int e_a = ppc_float64_get_unbiased_exp(fra);
1054         int e_b = ppc_float64_get_unbiased_exp(frb);
1055 
1056         if (unlikely(float64_is_any_nan(fra) ||
1057                      float64_is_any_nan(frb))) {
1058             fe_flag = 1;
1059         } else if ((e_b <= -1022) || (e_b >= 1021)) {
1060             fe_flag = 1;
1061         } else if (!float64_is_zero(fra) &&
1062                    (((e_a - e_b) >= 1023) ||
1063                     ((e_a - e_b) <= -1021) ||
1064                     (e_a <= -970))) {
1065             fe_flag = 1;
1066         }
1067 
1068         if (unlikely(float64_is_zero_or_denormal(frb))) {
1069             /* XB is not zero because of the above check and */
1070             /* so must be denormalized.                      */
1071             fg_flag = 1;
1072         }
1073     }
1074 
1075     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1076 }
1077 
1078 uint32_t helper_ftsqrt(uint64_t frb)
1079 {
1080     int fe_flag = 0;
1081     int fg_flag = 0;
1082 
1083     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1084         fe_flag = 1;
1085         fg_flag = 1;
1086     } else {
1087         int e_b = ppc_float64_get_unbiased_exp(frb);
1088 
1089         if (unlikely(float64_is_any_nan(frb))) {
1090             fe_flag = 1;
1091         } else if (unlikely(float64_is_zero(frb))) {
1092             fe_flag = 1;
1093         } else if (unlikely(float64_is_neg(frb))) {
1094             fe_flag = 1;
1095         } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
1096             fe_flag = 1;
1097         }
1098 
1099         if (unlikely(float64_is_zero_or_denormal(frb))) {
1100             /* XB is not zero because of the above check and */
1101             /* therefore must be denormalized.               */
1102             fg_flag = 1;
1103         }
1104     }
1105 
1106     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1107 }
1108 
1109 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1110                   uint32_t crfD)
1111 {
1112     CPU_DoubleU farg1, farg2;
1113     uint32_t ret = 0;
1114 
1115     farg1.ll = arg1;
1116     farg2.ll = arg2;
1117 
1118     if (unlikely(float64_is_any_nan(farg1.d) ||
1119                  float64_is_any_nan(farg2.d))) {
1120         ret = 0x01UL;
1121     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1122         ret = 0x08UL;
1123     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1124         ret = 0x04UL;
1125     } else {
1126         ret = 0x02UL;
1127     }
1128 
1129     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1130     env->fpscr |= ret << FPSCR_FPRF;
1131     env->crf[crfD] = ret;
1132     if (unlikely(ret == 0x01UL
1133                  && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1134                      float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1135         /* sNaN comparison */
1136         float_invalid_op_vxsnan(env, GETPC());
1137     }
1138 }
1139 
1140 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1141                   uint32_t crfD)
1142 {
1143     CPU_DoubleU farg1, farg2;
1144     uint32_t ret = 0;
1145 
1146     farg1.ll = arg1;
1147     farg2.ll = arg2;
1148 
1149     if (unlikely(float64_is_any_nan(farg1.d) ||
1150                  float64_is_any_nan(farg2.d))) {
1151         ret = 0x01UL;
1152     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1153         ret = 0x08UL;
1154     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1155         ret = 0x04UL;
1156     } else {
1157         ret = 0x02UL;
1158     }
1159 
1160     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1161     env->fpscr |= ret << FPSCR_FPRF;
1162     env->crf[crfD] = ret;
1163     if (unlikely(ret == 0x01UL)) {
1164         float_invalid_op_vxvc(env, 1, GETPC());
1165         if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1166             float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1167             /* sNaN comparison */
1168             float_invalid_op_vxsnan(env, GETPC());
1169         }
1170     }
1171 }
1172 
1173 /* Single-precision floating-point conversions */
1174 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1175 {
1176     CPU_FloatU u;
1177 
1178     u.f = int32_to_float32(val, &env->vec_status);
1179 
1180     return u.l;
1181 }
1182 
1183 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1184 {
1185     CPU_FloatU u;
1186 
1187     u.f = uint32_to_float32(val, &env->vec_status);
1188 
1189     return u.l;
1190 }
1191 
1192 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1193 {
1194     CPU_FloatU u;
1195 
1196     u.l = val;
1197     /* NaN are not treated the same way IEEE 754 does */
1198     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1199         return 0;
1200     }
1201 
1202     return float32_to_int32(u.f, &env->vec_status);
1203 }
1204 
1205 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1206 {
1207     CPU_FloatU u;
1208 
1209     u.l = val;
1210     /* NaN are not treated the same way IEEE 754 does */
1211     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1212         return 0;
1213     }
1214 
1215     return float32_to_uint32(u.f, &env->vec_status);
1216 }
1217 
1218 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1219 {
1220     CPU_FloatU u;
1221 
1222     u.l = val;
1223     /* NaN are not treated the same way IEEE 754 does */
1224     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1225         return 0;
1226     }
1227 
1228     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1229 }
1230 
1231 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1232 {
1233     CPU_FloatU u;
1234 
1235     u.l = val;
1236     /* NaN are not treated the same way IEEE 754 does */
1237     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1238         return 0;
1239     }
1240 
1241     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1242 }
1243 
1244 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1245 {
1246     CPU_FloatU u;
1247     float32 tmp;
1248 
1249     u.f = int32_to_float32(val, &env->vec_status);
1250     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1251     u.f = float32_div(u.f, tmp, &env->vec_status);
1252 
1253     return u.l;
1254 }
1255 
1256 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1257 {
1258     CPU_FloatU u;
1259     float32 tmp;
1260 
1261     u.f = uint32_to_float32(val, &env->vec_status);
1262     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1263     u.f = float32_div(u.f, tmp, &env->vec_status);
1264 
1265     return u.l;
1266 }
1267 
1268 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1269 {
1270     CPU_FloatU u;
1271     float32 tmp;
1272 
1273     u.l = val;
1274     /* NaN are not treated the same way IEEE 754 does */
1275     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1276         return 0;
1277     }
1278     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1279     u.f = float32_mul(u.f, tmp, &env->vec_status);
1280 
1281     return float32_to_int32(u.f, &env->vec_status);
1282 }
1283 
1284 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1285 {
1286     CPU_FloatU u;
1287     float32 tmp;
1288 
1289     u.l = val;
1290     /* NaN are not treated the same way IEEE 754 does */
1291     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1292         return 0;
1293     }
1294     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1295     u.f = float32_mul(u.f, tmp, &env->vec_status);
1296 
1297     return float32_to_uint32(u.f, &env->vec_status);
1298 }
1299 
1300 #define HELPER_SPE_SINGLE_CONV(name)                              \
1301     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1302     {                                                             \
1303         return e##name(env, val);                                 \
1304     }
1305 /* efscfsi */
1306 HELPER_SPE_SINGLE_CONV(fscfsi);
1307 /* efscfui */
1308 HELPER_SPE_SINGLE_CONV(fscfui);
1309 /* efscfuf */
1310 HELPER_SPE_SINGLE_CONV(fscfuf);
1311 /* efscfsf */
1312 HELPER_SPE_SINGLE_CONV(fscfsf);
1313 /* efsctsi */
1314 HELPER_SPE_SINGLE_CONV(fsctsi);
1315 /* efsctui */
1316 HELPER_SPE_SINGLE_CONV(fsctui);
1317 /* efsctsiz */
1318 HELPER_SPE_SINGLE_CONV(fsctsiz);
1319 /* efsctuiz */
1320 HELPER_SPE_SINGLE_CONV(fsctuiz);
1321 /* efsctsf */
1322 HELPER_SPE_SINGLE_CONV(fsctsf);
1323 /* efsctuf */
1324 HELPER_SPE_SINGLE_CONV(fsctuf);
1325 
1326 #define HELPER_SPE_VECTOR_CONV(name)                            \
1327     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1328     {                                                           \
1329         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1330             (uint64_t)e##name(env, val);                        \
1331     }
1332 /* evfscfsi */
1333 HELPER_SPE_VECTOR_CONV(fscfsi);
1334 /* evfscfui */
1335 HELPER_SPE_VECTOR_CONV(fscfui);
1336 /* evfscfuf */
1337 HELPER_SPE_VECTOR_CONV(fscfuf);
1338 /* evfscfsf */
1339 HELPER_SPE_VECTOR_CONV(fscfsf);
1340 /* evfsctsi */
1341 HELPER_SPE_VECTOR_CONV(fsctsi);
1342 /* evfsctui */
1343 HELPER_SPE_VECTOR_CONV(fsctui);
1344 /* evfsctsiz */
1345 HELPER_SPE_VECTOR_CONV(fsctsiz);
1346 /* evfsctuiz */
1347 HELPER_SPE_VECTOR_CONV(fsctuiz);
1348 /* evfsctsf */
1349 HELPER_SPE_VECTOR_CONV(fsctsf);
1350 /* evfsctuf */
1351 HELPER_SPE_VECTOR_CONV(fsctuf);
1352 
1353 /* Single-precision floating-point arithmetic */
1354 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1355 {
1356     CPU_FloatU u1, u2;
1357 
1358     u1.l = op1;
1359     u2.l = op2;
1360     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1361     return u1.l;
1362 }
1363 
1364 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1365 {
1366     CPU_FloatU u1, u2;
1367 
1368     u1.l = op1;
1369     u2.l = op2;
1370     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1371     return u1.l;
1372 }
1373 
1374 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1375 {
1376     CPU_FloatU u1, u2;
1377 
1378     u1.l = op1;
1379     u2.l = op2;
1380     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1381     return u1.l;
1382 }
1383 
1384 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1385 {
1386     CPU_FloatU u1, u2;
1387 
1388     u1.l = op1;
1389     u2.l = op2;
1390     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1391     return u1.l;
1392 }
1393 
1394 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1395     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1396     {                                                                   \
1397         return e##name(env, op1, op2);                                  \
1398     }
1399 /* efsadd */
1400 HELPER_SPE_SINGLE_ARITH(fsadd);
1401 /* efssub */
1402 HELPER_SPE_SINGLE_ARITH(fssub);
1403 /* efsmul */
1404 HELPER_SPE_SINGLE_ARITH(fsmul);
1405 /* efsdiv */
1406 HELPER_SPE_SINGLE_ARITH(fsdiv);
1407 
1408 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1409     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1410     {                                                                   \
1411         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1412             (uint64_t)e##name(env, op1, op2);                           \
1413     }
1414 /* evfsadd */
1415 HELPER_SPE_VECTOR_ARITH(fsadd);
1416 /* evfssub */
1417 HELPER_SPE_VECTOR_ARITH(fssub);
1418 /* evfsmul */
1419 HELPER_SPE_VECTOR_ARITH(fsmul);
1420 /* evfsdiv */
1421 HELPER_SPE_VECTOR_ARITH(fsdiv);
1422 
1423 /* Single-precision floating-point comparisons */
1424 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1425 {
1426     CPU_FloatU u1, u2;
1427 
1428     u1.l = op1;
1429     u2.l = op2;
1430     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1431 }
1432 
1433 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1434 {
1435     CPU_FloatU u1, u2;
1436 
1437     u1.l = op1;
1438     u2.l = op2;
1439     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1440 }
1441 
1442 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1443 {
1444     CPU_FloatU u1, u2;
1445 
1446     u1.l = op1;
1447     u2.l = op2;
1448     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1449 }
1450 
1451 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1452 {
1453     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1454     return efscmplt(env, op1, op2);
1455 }
1456 
1457 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1458 {
1459     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1460     return efscmpgt(env, op1, op2);
1461 }
1462 
1463 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1464 {
1465     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1466     return efscmpeq(env, op1, op2);
1467 }
1468 
1469 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1470     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1471     {                                                                   \
1472         return e##name(env, op1, op2);                                  \
1473     }
1474 /* efststlt */
1475 HELPER_SINGLE_SPE_CMP(fststlt);
1476 /* efststgt */
1477 HELPER_SINGLE_SPE_CMP(fststgt);
1478 /* efststeq */
1479 HELPER_SINGLE_SPE_CMP(fststeq);
1480 /* efscmplt */
1481 HELPER_SINGLE_SPE_CMP(fscmplt);
1482 /* efscmpgt */
1483 HELPER_SINGLE_SPE_CMP(fscmpgt);
1484 /* efscmpeq */
1485 HELPER_SINGLE_SPE_CMP(fscmpeq);
1486 
1487 static inline uint32_t evcmp_merge(int t0, int t1)
1488 {
1489     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1490 }
1491 
1492 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1493     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1494     {                                                                   \
1495         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1496                            e##name(env, op1, op2));                     \
1497     }
1498 /* evfststlt */
1499 HELPER_VECTOR_SPE_CMP(fststlt);
1500 /* evfststgt */
1501 HELPER_VECTOR_SPE_CMP(fststgt);
1502 /* evfststeq */
1503 HELPER_VECTOR_SPE_CMP(fststeq);
1504 /* evfscmplt */
1505 HELPER_VECTOR_SPE_CMP(fscmplt);
1506 /* evfscmpgt */
1507 HELPER_VECTOR_SPE_CMP(fscmpgt);
1508 /* evfscmpeq */
1509 HELPER_VECTOR_SPE_CMP(fscmpeq);
1510 
1511 /* Double-precision floating-point conversion */
1512 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1513 {
1514     CPU_DoubleU u;
1515 
1516     u.d = int32_to_float64(val, &env->vec_status);
1517 
1518     return u.ll;
1519 }
1520 
1521 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1522 {
1523     CPU_DoubleU u;
1524 
1525     u.d = int64_to_float64(val, &env->vec_status);
1526 
1527     return u.ll;
1528 }
1529 
1530 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1531 {
1532     CPU_DoubleU u;
1533 
1534     u.d = uint32_to_float64(val, &env->vec_status);
1535 
1536     return u.ll;
1537 }
1538 
1539 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1540 {
1541     CPU_DoubleU u;
1542 
1543     u.d = uint64_to_float64(val, &env->vec_status);
1544 
1545     return u.ll;
1546 }
1547 
1548 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1549 {
1550     CPU_DoubleU u;
1551 
1552     u.ll = val;
1553     /* NaN are not treated the same way IEEE 754 does */
1554     if (unlikely(float64_is_any_nan(u.d))) {
1555         return 0;
1556     }
1557 
1558     return float64_to_int32(u.d, &env->vec_status);
1559 }
1560 
1561 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1562 {
1563     CPU_DoubleU u;
1564 
1565     u.ll = val;
1566     /* NaN are not treated the same way IEEE 754 does */
1567     if (unlikely(float64_is_any_nan(u.d))) {
1568         return 0;
1569     }
1570 
1571     return float64_to_uint32(u.d, &env->vec_status);
1572 }
1573 
1574 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1575 {
1576     CPU_DoubleU u;
1577 
1578     u.ll = val;
1579     /* NaN are not treated the same way IEEE 754 does */
1580     if (unlikely(float64_is_any_nan(u.d))) {
1581         return 0;
1582     }
1583 
1584     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1585 }
1586 
1587 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1588 {
1589     CPU_DoubleU u;
1590 
1591     u.ll = val;
1592     /* NaN are not treated the same way IEEE 754 does */
1593     if (unlikely(float64_is_any_nan(u.d))) {
1594         return 0;
1595     }
1596 
1597     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1598 }
1599 
1600 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1601 {
1602     CPU_DoubleU u;
1603 
1604     u.ll = val;
1605     /* NaN are not treated the same way IEEE 754 does */
1606     if (unlikely(float64_is_any_nan(u.d))) {
1607         return 0;
1608     }
1609 
1610     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1611 }
1612 
1613 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1614 {
1615     CPU_DoubleU u;
1616 
1617     u.ll = val;
1618     /* NaN are not treated the same way IEEE 754 does */
1619     if (unlikely(float64_is_any_nan(u.d))) {
1620         return 0;
1621     }
1622 
1623     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1624 }
1625 
1626 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1627 {
1628     CPU_DoubleU u;
1629     float64 tmp;
1630 
1631     u.d = int32_to_float64(val, &env->vec_status);
1632     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1633     u.d = float64_div(u.d, tmp, &env->vec_status);
1634 
1635     return u.ll;
1636 }
1637 
1638 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1639 {
1640     CPU_DoubleU u;
1641     float64 tmp;
1642 
1643     u.d = uint32_to_float64(val, &env->vec_status);
1644     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1645     u.d = float64_div(u.d, tmp, &env->vec_status);
1646 
1647     return u.ll;
1648 }
1649 
1650 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1651 {
1652     CPU_DoubleU u;
1653     float64 tmp;
1654 
1655     u.ll = val;
1656     /* NaN are not treated the same way IEEE 754 does */
1657     if (unlikely(float64_is_any_nan(u.d))) {
1658         return 0;
1659     }
1660     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1661     u.d = float64_mul(u.d, tmp, &env->vec_status);
1662 
1663     return float64_to_int32(u.d, &env->vec_status);
1664 }
1665 
1666 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1667 {
1668     CPU_DoubleU u;
1669     float64 tmp;
1670 
1671     u.ll = val;
1672     /* NaN are not treated the same way IEEE 754 does */
1673     if (unlikely(float64_is_any_nan(u.d))) {
1674         return 0;
1675     }
1676     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1677     u.d = float64_mul(u.d, tmp, &env->vec_status);
1678 
1679     return float64_to_uint32(u.d, &env->vec_status);
1680 }
1681 
1682 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1683 {
1684     CPU_DoubleU u1;
1685     CPU_FloatU u2;
1686 
1687     u1.ll = val;
1688     u2.f = float64_to_float32(u1.d, &env->vec_status);
1689 
1690     return u2.l;
1691 }
1692 
1693 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1694 {
1695     CPU_DoubleU u2;
1696     CPU_FloatU u1;
1697 
1698     u1.l = val;
1699     u2.d = float32_to_float64(u1.f, &env->vec_status);
1700 
1701     return u2.ll;
1702 }
1703 
1704 /* Double precision fixed-point arithmetic */
1705 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1706 {
1707     CPU_DoubleU u1, u2;
1708 
1709     u1.ll = op1;
1710     u2.ll = op2;
1711     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1712     return u1.ll;
1713 }
1714 
1715 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1716 {
1717     CPU_DoubleU u1, u2;
1718 
1719     u1.ll = op1;
1720     u2.ll = op2;
1721     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1722     return u1.ll;
1723 }
1724 
1725 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1726 {
1727     CPU_DoubleU u1, u2;
1728 
1729     u1.ll = op1;
1730     u2.ll = op2;
1731     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1732     return u1.ll;
1733 }
1734 
1735 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1736 {
1737     CPU_DoubleU u1, u2;
1738 
1739     u1.ll = op1;
1740     u2.ll = op2;
1741     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1742     return u1.ll;
1743 }
1744 
1745 /* Double precision floating point helpers */
1746 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1747 {
1748     CPU_DoubleU u1, u2;
1749 
1750     u1.ll = op1;
1751     u2.ll = op2;
1752     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1753 }
1754 
1755 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1756 {
1757     CPU_DoubleU u1, u2;
1758 
1759     u1.ll = op1;
1760     u2.ll = op2;
1761     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1762 }
1763 
1764 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1765 {
1766     CPU_DoubleU u1, u2;
1767 
1768     u1.ll = op1;
1769     u2.ll = op2;
1770     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1771 }
1772 
1773 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1774 {
1775     /* XXX: TODO: test special values (NaN, infinites, ...) */
1776     return helper_efdtstlt(env, op1, op2);
1777 }
1778 
1779 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1780 {
1781     /* XXX: TODO: test special values (NaN, infinites, ...) */
1782     return helper_efdtstgt(env, op1, op2);
1783 }
1784 
1785 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1786 {
1787     /* XXX: TODO: test special values (NaN, infinites, ...) */
1788     return helper_efdtsteq(env, op1, op2);
1789 }
1790 
1791 #define float64_to_float64(x, env) x
1792 
1793 
1794 /*
1795  * VSX_ADD_SUB - VSX floating point add/subract
1796  *   name  - instruction mnemonic
1797  *   op    - operation (add or sub)
1798  *   nels  - number of elements (1, 2 or 4)
1799  *   tp    - type (float32 or float64)
1800  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1801  *   sfprf - set FPRF
1802  */
1803 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1804 void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
1805 {                                                                            \
1806     ppc_vsr_t xt, xa, xb;                                                    \
1807     int i;                                                                   \
1808                                                                              \
1809     getVSR(xA(opcode), &xa, env);                                            \
1810     getVSR(xB(opcode), &xb, env);                                            \
1811     getVSR(xT(opcode), &xt, env);                                            \
1812     helper_reset_fpstatus(env);                                              \
1813                                                                              \
1814     for (i = 0; i < nels; i++) {                                             \
1815         float_status tstat = env->fp_status;                                 \
1816         set_float_exception_flags(0, &tstat);                                \
1817         xt.fld = tp##_##op(xa.fld, xb.fld, &tstat);                          \
1818         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1819                                                                              \
1820         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1821             float_invalid_op_addsub(env, sfprf, GETPC(),                     \
1822                                     tp##_classify(xa.fld) |                  \
1823                                     tp##_classify(xb.fld));                  \
1824         }                                                                    \
1825                                                                              \
1826         if (r2sp) {                                                          \
1827             xt.fld = helper_frsp(env, xt.fld);                               \
1828         }                                                                    \
1829                                                                              \
1830         if (sfprf) {                                                         \
1831             helper_compute_fprf_float64(env, xt.fld);                        \
1832         }                                                                    \
1833     }                                                                        \
1834     putVSR(xT(opcode), &xt, env);                                            \
1835     do_float_check_status(env, GETPC());                                     \
1836 }
1837 
1838 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1839 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1840 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1841 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1842 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1843 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1844 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1845 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1846 
1847 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode)
1848 {
1849     ppc_vsr_t xt, xa, xb;
1850     float_status tstat;
1851 
1852     getVSR(rA(opcode) + 32, &xa, env);
1853     getVSR(rB(opcode) + 32, &xb, env);
1854     getVSR(rD(opcode) + 32, &xt, env);
1855     helper_reset_fpstatus(env);
1856 
1857     tstat = env->fp_status;
1858     if (unlikely(Rc(opcode) != 0)) {
1859         tstat.float_rounding_mode = float_round_to_odd;
1860     }
1861 
1862     set_float_exception_flags(0, &tstat);
1863     xt.f128 = float128_add(xa.f128, xb.f128, &tstat);
1864     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1865 
1866     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1867         float_invalid_op_addsub(env, 1, GETPC(),
1868                                 float128_classify(xa.f128) |
1869                                 float128_classify(xb.f128));
1870     }
1871 
1872     helper_compute_fprf_float128(env, xt.f128);
1873 
1874     putVSR(rD(opcode) + 32, &xt, env);
1875     do_float_check_status(env, GETPC());
1876 }
1877 
1878 /*
1879  * VSX_MUL - VSX floating point multiply
1880  *   op    - instruction mnemonic
1881  *   nels  - number of elements (1, 2 or 4)
1882  *   tp    - type (float32 or float64)
1883  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1884  *   sfprf - set FPRF
1885  */
1886 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1887 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1888 {                                                                            \
1889     ppc_vsr_t xt, xa, xb;                                                    \
1890     int i;                                                                   \
1891                                                                              \
1892     getVSR(xA(opcode), &xa, env);                                            \
1893     getVSR(xB(opcode), &xb, env);                                            \
1894     getVSR(xT(opcode), &xt, env);                                            \
1895     helper_reset_fpstatus(env);                                              \
1896                                                                              \
1897     for (i = 0; i < nels; i++) {                                             \
1898         float_status tstat = env->fp_status;                                 \
1899         set_float_exception_flags(0, &tstat);                                \
1900         xt.fld = tp##_mul(xa.fld, xb.fld, &tstat);                           \
1901         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1902                                                                              \
1903         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1904             float_invalid_op_mul(env, sfprf, GETPC(),                        \
1905                                  tp##_classify(xa.fld) |                     \
1906                                  tp##_classify(xb.fld));                     \
1907         }                                                                    \
1908                                                                              \
1909         if (r2sp) {                                                          \
1910             xt.fld = helper_frsp(env, xt.fld);                               \
1911         }                                                                    \
1912                                                                              \
1913         if (sfprf) {                                                         \
1914             helper_compute_fprf_float64(env, xt.fld);                        \
1915         }                                                                    \
1916     }                                                                        \
1917                                                                              \
1918     putVSR(xT(opcode), &xt, env);                                            \
1919     do_float_check_status(env, GETPC());                                     \
1920 }
1921 
1922 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1923 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1924 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1925 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1926 
1927 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode)
1928 {
1929     ppc_vsr_t xt, xa, xb;
1930     float_status tstat;
1931 
1932     getVSR(rA(opcode) + 32, &xa, env);
1933     getVSR(rB(opcode) + 32, &xb, env);
1934     getVSR(rD(opcode) + 32, &xt, env);
1935 
1936     helper_reset_fpstatus(env);
1937     tstat = env->fp_status;
1938     if (unlikely(Rc(opcode) != 0)) {
1939         tstat.float_rounding_mode = float_round_to_odd;
1940     }
1941 
1942     set_float_exception_flags(0, &tstat);
1943     xt.f128 = float128_mul(xa.f128, xb.f128, &tstat);
1944     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1945 
1946     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1947         float_invalid_op_mul(env, 1, GETPC(),
1948                              float128_classify(xa.f128) |
1949                              float128_classify(xb.f128));
1950     }
1951     helper_compute_fprf_float128(env, xt.f128);
1952 
1953     putVSR(rD(opcode) + 32, &xt, env);
1954     do_float_check_status(env, GETPC());
1955 }
1956 
1957 /*
1958  * VSX_DIV - VSX floating point divide
1959  *   op    - instruction mnemonic
1960  *   nels  - number of elements (1, 2 or 4)
1961  *   tp    - type (float32 or float64)
1962  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1963  *   sfprf - set FPRF
1964  */
1965 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1966 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1967 {                                                                             \
1968     ppc_vsr_t xt, xa, xb;                                                     \
1969     int i;                                                                    \
1970                                                                               \
1971     getVSR(xA(opcode), &xa, env);                                             \
1972     getVSR(xB(opcode), &xb, env);                                             \
1973     getVSR(xT(opcode), &xt, env);                                             \
1974     helper_reset_fpstatus(env);                                               \
1975                                                                               \
1976     for (i = 0; i < nels; i++) {                                              \
1977         float_status tstat = env->fp_status;                                  \
1978         set_float_exception_flags(0, &tstat);                                 \
1979         xt.fld = tp##_div(xa.fld, xb.fld, &tstat);                            \
1980         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1981                                                                               \
1982         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1983             float_invalid_op_div(env, sfprf, GETPC(),                         \
1984                                  tp##_classify(xa.fld) |                      \
1985                                  tp##_classify(xb.fld));                      \
1986         }                                                                     \
1987         if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {   \
1988             float_zero_divide_excp(env, GETPC());                             \
1989         }                                                                     \
1990                                                                               \
1991         if (r2sp) {                                                           \
1992             xt.fld = helper_frsp(env, xt.fld);                                \
1993         }                                                                     \
1994                                                                               \
1995         if (sfprf) {                                                          \
1996             helper_compute_fprf_float64(env, xt.fld);                         \
1997         }                                                                     \
1998     }                                                                         \
1999                                                                               \
2000     putVSR(xT(opcode), &xt, env);                                             \
2001     do_float_check_status(env, GETPC());                                      \
2002 }
2003 
2004 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
2005 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
2006 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
2007 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
2008 
2009 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode)
2010 {
2011     ppc_vsr_t xt, xa, xb;
2012     float_status tstat;
2013 
2014     getVSR(rA(opcode) + 32, &xa, env);
2015     getVSR(rB(opcode) + 32, &xb, env);
2016     getVSR(rD(opcode) + 32, &xt, env);
2017 
2018     helper_reset_fpstatus(env);
2019     tstat = env->fp_status;
2020     if (unlikely(Rc(opcode) != 0)) {
2021         tstat.float_rounding_mode = float_round_to_odd;
2022     }
2023 
2024     set_float_exception_flags(0, &tstat);
2025     xt.f128 = float128_div(xa.f128, xb.f128, &tstat);
2026     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2027 
2028     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
2029         float_invalid_op_div(env, 1, GETPC(),
2030                              float128_classify(xa.f128) |
2031                              float128_classify(xb.f128));
2032     }
2033     if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
2034         float_zero_divide_excp(env, GETPC());
2035     }
2036 
2037     helper_compute_fprf_float128(env, xt.f128);
2038     putVSR(rD(opcode) + 32, &xt, env);
2039     do_float_check_status(env, GETPC());
2040 }
2041 
2042 /*
2043  * VSX_RE  - VSX floating point reciprocal estimate
2044  *   op    - instruction mnemonic
2045  *   nels  - number of elements (1, 2 or 4)
2046  *   tp    - type (float32 or float64)
2047  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2048  *   sfprf - set FPRF
2049  */
2050 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
2051 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2052 {                                                                             \
2053     ppc_vsr_t xt, xb;                                                         \
2054     int i;                                                                    \
2055                                                                               \
2056     getVSR(xB(opcode), &xb, env);                                             \
2057     getVSR(xT(opcode), &xt, env);                                             \
2058     helper_reset_fpstatus(env);                                               \
2059                                                                               \
2060     for (i = 0; i < nels; i++) {                                              \
2061         if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
2062             float_invalid_op_vxsnan(env, GETPC());                            \
2063         }                                                                     \
2064         xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \
2065                                                                               \
2066         if (r2sp) {                                                           \
2067             xt.fld = helper_frsp(env, xt.fld);                                \
2068         }                                                                     \
2069                                                                               \
2070         if (sfprf) {                                                          \
2071             helper_compute_fprf_float64(env, xt.fld);                         \
2072         }                                                                     \
2073     }                                                                         \
2074                                                                               \
2075     putVSR(xT(opcode), &xt, env);                                             \
2076     do_float_check_status(env, GETPC());                                      \
2077 }
2078 
2079 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2080 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2081 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2082 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2083 
2084 /*
2085  * VSX_SQRT - VSX floating point square root
2086  *   op    - instruction mnemonic
2087  *   nels  - number of elements (1, 2 or 4)
2088  *   tp    - type (float32 or float64)
2089  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2090  *   sfprf - set FPRF
2091  */
2092 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
2093 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2094 {                                                                            \
2095     ppc_vsr_t xt, xb;                                                        \
2096     int i;                                                                   \
2097                                                                              \
2098     getVSR(xB(opcode), &xb, env);                                            \
2099     getVSR(xT(opcode), &xt, env);                                            \
2100     helper_reset_fpstatus(env);                                              \
2101                                                                              \
2102     for (i = 0; i < nels; i++) {                                             \
2103         float_status tstat = env->fp_status;                                 \
2104         set_float_exception_flags(0, &tstat);                                \
2105         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2106         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2107                                                                              \
2108         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2109             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2110                 float_invalid_op_vxsqrt(env, sfprf, GETPC());                \
2111             } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
2112                 float_invalid_op_vxsnan(env, GETPC());                       \
2113             }                                                                \
2114         }                                                                    \
2115                                                                              \
2116         if (r2sp) {                                                          \
2117             xt.fld = helper_frsp(env, xt.fld);                               \
2118         }                                                                    \
2119                                                                              \
2120         if (sfprf) {                                                         \
2121             helper_compute_fprf_float64(env, xt.fld);                        \
2122         }                                                                    \
2123     }                                                                        \
2124                                                                              \
2125     putVSR(xT(opcode), &xt, env);                                            \
2126     do_float_check_status(env, GETPC());                                     \
2127 }
2128 
2129 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2130 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2131 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2132 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2133 
2134 /*
2135  *VSX_RSQRTE - VSX floating point reciprocal square root estimate
2136  *   op    - instruction mnemonic
2137  *   nels  - number of elements (1, 2 or 4)
2138  *   tp    - type (float32 or float64)
2139  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2140  *   sfprf - set FPRF
2141  */
2142 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2143 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2144 {                                                                            \
2145     ppc_vsr_t xt, xb;                                                        \
2146     int i;                                                                   \
2147                                                                              \
2148     getVSR(xB(opcode), &xb, env);                                            \
2149     getVSR(xT(opcode), &xt, env);                                            \
2150     helper_reset_fpstatus(env);                                              \
2151                                                                              \
2152     for (i = 0; i < nels; i++) {                                             \
2153         float_status tstat = env->fp_status;                                 \
2154         set_float_exception_flags(0, &tstat);                                \
2155         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2156         xt.fld = tp##_div(tp##_one, xt.fld, &tstat);                         \
2157         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2158                                                                              \
2159         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2160             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2161                 float_invalid_op_vxsqrt(env, sfprf, GETPC());                \
2162             } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
2163                 float_invalid_op_vxsnan(env, GETPC());                       \
2164             }                                                                \
2165         }                                                                    \
2166                                                                              \
2167         if (r2sp) {                                                          \
2168             xt.fld = helper_frsp(env, xt.fld);                               \
2169         }                                                                    \
2170                                                                              \
2171         if (sfprf) {                                                         \
2172             helper_compute_fprf_float64(env, xt.fld);                        \
2173         }                                                                    \
2174     }                                                                        \
2175                                                                              \
2176     putVSR(xT(opcode), &xt, env);                                            \
2177     do_float_check_status(env, GETPC());                                     \
2178 }
2179 
2180 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2181 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2182 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2183 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2184 
2185 /*
2186  * VSX_TDIV - VSX floating point test for divide
2187  *   op    - instruction mnemonic
2188  *   nels  - number of elements (1, 2 or 4)
2189  *   tp    - type (float32 or float64)
2190  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2191  *   emin  - minimum unbiased exponent
2192  *   emax  - maximum unbiased exponent
2193  *   nbits - number of fraction bits
2194  */
2195 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2196 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2197 {                                                                       \
2198     ppc_vsr_t xa, xb;                                                   \
2199     int i;                                                              \
2200     int fe_flag = 0;                                                    \
2201     int fg_flag = 0;                                                    \
2202                                                                         \
2203     getVSR(xA(opcode), &xa, env);                                       \
2204     getVSR(xB(opcode), &xb, env);                                       \
2205                                                                         \
2206     for (i = 0; i < nels; i++) {                                        \
2207         if (unlikely(tp##_is_infinity(xa.fld) ||                        \
2208                      tp##_is_infinity(xb.fld) ||                        \
2209                      tp##_is_zero(xb.fld))) {                           \
2210             fe_flag = 1;                                                \
2211             fg_flag = 1;                                                \
2212         } else {                                                        \
2213             int e_a = ppc_##tp##_get_unbiased_exp(xa.fld);              \
2214             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2215                                                                         \
2216             if (unlikely(tp##_is_any_nan(xa.fld) ||                     \
2217                          tp##_is_any_nan(xb.fld))) {                    \
2218                 fe_flag = 1;                                            \
2219             } else if ((e_b <= emin) || (e_b >= (emax - 2))) {          \
2220                 fe_flag = 1;                                            \
2221             } else if (!tp##_is_zero(xa.fld) &&                         \
2222                        (((e_a - e_b) >= emax) ||                        \
2223                         ((e_a - e_b) <= (emin + 1)) ||                  \
2224                         (e_a <= (emin + nbits)))) {                     \
2225                 fe_flag = 1;                                            \
2226             }                                                           \
2227                                                                         \
2228             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2229                 /*                                                      \
2230                  * XB is not zero because of the above check and so     \
2231                  * must be denormalized.                                \
2232                  */                                                     \
2233                 fg_flag = 1;                                            \
2234             }                                                           \
2235         }                                                               \
2236     }                                                                   \
2237                                                                         \
2238     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2239 }
2240 
2241 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2242 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2243 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2244 
2245 /*
2246  * VSX_TSQRT - VSX floating point test for square root
2247  *   op    - instruction mnemonic
2248  *   nels  - number of elements (1, 2 or 4)
2249  *   tp    - type (float32 or float64)
2250  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2251  *   emin  - minimum unbiased exponent
2252  *   emax  - maximum unbiased exponent
2253  *   nbits - number of fraction bits
2254  */
2255 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2256 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2257 {                                                                       \
2258     ppc_vsr_t xa, xb;                                                   \
2259     int i;                                                              \
2260     int fe_flag = 0;                                                    \
2261     int fg_flag = 0;                                                    \
2262                                                                         \
2263     getVSR(xA(opcode), &xa, env);                                       \
2264     getVSR(xB(opcode), &xb, env);                                       \
2265                                                                         \
2266     for (i = 0; i < nels; i++) {                                        \
2267         if (unlikely(tp##_is_infinity(xb.fld) ||                        \
2268                      tp##_is_zero(xb.fld))) {                           \
2269             fe_flag = 1;                                                \
2270             fg_flag = 1;                                                \
2271         } else {                                                        \
2272             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2273                                                                         \
2274             if (unlikely(tp##_is_any_nan(xb.fld))) {                    \
2275                 fe_flag = 1;                                            \
2276             } else if (unlikely(tp##_is_zero(xb.fld))) {                \
2277                 fe_flag = 1;                                            \
2278             } else if (unlikely(tp##_is_neg(xb.fld))) {                 \
2279                 fe_flag = 1;                                            \
2280             } else if (!tp##_is_zero(xb.fld) &&                         \
2281                        (e_b <= (emin + nbits))) {                       \
2282                 fe_flag = 1;                                            \
2283             }                                                           \
2284                                                                         \
2285             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2286                 /*                                                      \
2287                  * XB is not zero because of the above check and        \
2288                  * therefore must be denormalized.                      \
2289                  */                                                     \
2290                 fg_flag = 1;                                            \
2291             }                                                           \
2292         }                                                               \
2293     }                                                                   \
2294                                                                         \
2295     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2296 }
2297 
2298 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2299 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2300 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2301 
2302 /*
2303  * VSX_MADD - VSX floating point muliply/add variations
2304  *   op    - instruction mnemonic
2305  *   nels  - number of elements (1, 2 or 4)
2306  *   tp    - type (float32 or float64)
2307  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2308  *   maddflgs - flags for the float*muladd routine that control the
2309  *           various forms (madd, msub, nmadd, nmsub)
2310  *   afrm  - A form (1=A, 0=M)
2311  *   sfprf - set FPRF
2312  */
2313 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \
2314 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2315 {                                                                             \
2316     ppc_vsr_t xt_in, xa, xb, xt_out;                                          \
2317     ppc_vsr_t *b, *c;                                                         \
2318     int i;                                                                    \
2319                                                                               \
2320     if (afrm) { /* AxB + T */                                                 \
2321         b = &xb;                                                              \
2322         c = &xt_in;                                                           \
2323     } else { /* AxT + B */                                                    \
2324         b = &xt_in;                                                           \
2325         c = &xb;                                                              \
2326     }                                                                         \
2327                                                                               \
2328     getVSR(xA(opcode), &xa, env);                                             \
2329     getVSR(xB(opcode), &xb, env);                                             \
2330     getVSR(xT(opcode), &xt_in, env);                                          \
2331                                                                               \
2332     xt_out = xt_in;                                                           \
2333                                                                               \
2334     helper_reset_fpstatus(env);                                               \
2335                                                                               \
2336     for (i = 0; i < nels; i++) {                                              \
2337         float_status tstat = env->fp_status;                                  \
2338         set_float_exception_flags(0, &tstat);                                 \
2339         if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2340             /*                                                                \
2341              * Avoid double rounding errors by rounding the intermediate      \
2342              * result to odd.                                                 \
2343              */                                                               \
2344             set_float_rounding_mode(float_round_to_zero, &tstat);             \
2345             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2346                                        maddflgs, &tstat);                     \
2347             xt_out.fld |= (get_float_exception_flags(&tstat) &                \
2348                               float_flag_inexact) != 0;                       \
2349         } else {                                                              \
2350             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2351                                         maddflgs, &tstat);                    \
2352         }                                                                     \
2353         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2354                                                                               \
2355         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2356             tp##_maddsub_update_excp(env, xa.fld, b->fld,                     \
2357                                      c->fld, maddflgs, GETPC());              \
2358         }                                                                     \
2359                                                                               \
2360         if (r2sp) {                                                           \
2361             xt_out.fld = helper_frsp(env, xt_out.fld);                        \
2362         }                                                                     \
2363                                                                               \
2364         if (sfprf) {                                                          \
2365             helper_compute_fprf_float64(env, xt_out.fld);                     \
2366         }                                                                     \
2367     }                                                                         \
2368     putVSR(xT(opcode), &xt_out, env);                                         \
2369     do_float_check_status(env, GETPC());                                      \
2370 }
2371 
2372 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2373 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2374 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2375 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2376 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2377 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2378 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2379 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2380 
2381 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2382 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2383 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2384 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2385 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2386 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2387 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2388 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2389 
2390 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2391 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2392 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2393 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2394 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2395 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2396 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2397 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2398 
2399 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2400 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2401 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2402 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2403 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2404 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2405 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2406 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2407 
2408 /*
2409  * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2410  *   op    - instruction mnemonic
2411  *   cmp   - comparison operation
2412  *   exp   - expected result of comparison
2413  *   svxvc - set VXVC bit
2414  */
2415 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc)                                \
2416 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2417 {                                                                             \
2418     ppc_vsr_t xt, xa, xb;                                                     \
2419     bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false;            \
2420                                                                               \
2421     getVSR(xA(opcode), &xa, env);                                             \
2422     getVSR(xB(opcode), &xb, env);                                             \
2423     getVSR(xT(opcode), &xt, env);                                             \
2424                                                                               \
2425     if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||              \
2426         float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {              \
2427         vxsnan_flag = true;                                                   \
2428         if (fpscr_ve == 0 && svxvc) {                                         \
2429             vxvc_flag = true;                                                 \
2430         }                                                                     \
2431     } else if (svxvc) {                                                       \
2432         vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) ||      \
2433             float64_is_quiet_nan(xb.VsrD(0), &env->fp_status);                \
2434     }                                                                         \
2435     if (vxsnan_flag) {                                                        \
2436         float_invalid_op_vxsnan(env, GETPC());                                \
2437     }                                                                         \
2438     if (vxvc_flag) {                                                          \
2439         float_invalid_op_vxvc(env, 0, GETPC());                               \
2440     }                                                                         \
2441     vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag);                        \
2442                                                                               \
2443     if (!vex_flag) {                                                          \
2444         if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) {  \
2445             xt.VsrD(0) = -1;                                                  \
2446             xt.VsrD(1) = 0;                                                   \
2447         } else {                                                              \
2448             xt.VsrD(0) = 0;                                                   \
2449             xt.VsrD(1) = 0;                                                   \
2450         }                                                                     \
2451     }                                                                         \
2452     putVSR(xT(opcode), &xt, env);                                             \
2453     do_float_check_status(env, GETPC());                                      \
2454 }
2455 
2456 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2457 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2458 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2459 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2460 
2461 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode)
2462 {
2463     ppc_vsr_t xa, xb;
2464     int64_t exp_a, exp_b;
2465     uint32_t cc;
2466 
2467     getVSR(xA(opcode), &xa, env);
2468     getVSR(xB(opcode), &xb, env);
2469 
2470     exp_a = extract64(xa.VsrD(0), 52, 11);
2471     exp_b = extract64(xb.VsrD(0), 52, 11);
2472 
2473     if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||
2474                  float64_is_any_nan(xb.VsrD(0)))) {
2475         cc = CRF_SO;
2476     } else {
2477         if (exp_a < exp_b) {
2478             cc = CRF_LT;
2479         } else if (exp_a > exp_b) {
2480             cc = CRF_GT;
2481         } else {
2482             cc = CRF_EQ;
2483         }
2484     }
2485 
2486     env->fpscr &= ~(0x0F << FPSCR_FPRF);
2487     env->fpscr |= cc << FPSCR_FPRF;
2488     env->crf[BF(opcode)] = cc;
2489 
2490     do_float_check_status(env, GETPC());
2491 }
2492 
2493 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode)
2494 {
2495     ppc_vsr_t xa, xb;
2496     int64_t exp_a, exp_b;
2497     uint32_t cc;
2498 
2499     getVSR(rA(opcode) + 32, &xa, env);
2500     getVSR(rB(opcode) + 32, &xb, env);
2501 
2502     exp_a = extract64(xa.VsrD(0), 48, 15);
2503     exp_b = extract64(xb.VsrD(0), 48, 15);
2504 
2505     if (unlikely(float128_is_any_nan(xa.f128) ||
2506                  float128_is_any_nan(xb.f128))) {
2507         cc = CRF_SO;
2508     } else {
2509         if (exp_a < exp_b) {
2510             cc = CRF_LT;
2511         } else if (exp_a > exp_b) {
2512             cc = CRF_GT;
2513         } else {
2514             cc = CRF_EQ;
2515         }
2516     }
2517 
2518     env->fpscr &= ~(0x0F << FPSCR_FPRF);
2519     env->fpscr |= cc << FPSCR_FPRF;
2520     env->crf[BF(opcode)] = cc;
2521 
2522     do_float_check_status(env, GETPC());
2523 }
2524 
2525 #define VSX_SCALAR_CMP(op, ordered)                                      \
2526 void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
2527 {                                                                        \
2528     ppc_vsr_t xa, xb;                                                    \
2529     uint32_t cc = 0;                                                     \
2530     bool vxsnan_flag = false, vxvc_flag = false;                         \
2531                                                                          \
2532     helper_reset_fpstatus(env);                                          \
2533     getVSR(xA(opcode), &xa, env);                                        \
2534     getVSR(xB(opcode), &xb, env);                                        \
2535                                                                          \
2536     if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||         \
2537         float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {         \
2538         vxsnan_flag = true;                                              \
2539         cc = CRF_SO;                                                     \
2540         if (fpscr_ve == 0 && ordered) {                                  \
2541             vxvc_flag = true;                                            \
2542         }                                                                \
2543     } else if (float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) ||      \
2544                float64_is_quiet_nan(xb.VsrD(0), &env->fp_status)) {      \
2545         cc = CRF_SO;                                                     \
2546         if (ordered) {                                                   \
2547             vxvc_flag = true;                                            \
2548         }                                                                \
2549     }                                                                    \
2550     if (vxsnan_flag) {                                                   \
2551         float_invalid_op_vxsnan(env, GETPC());                           \
2552     }                                                                    \
2553     if (vxvc_flag) {                                                     \
2554         float_invalid_op_vxvc(env, 0, GETPC());                          \
2555     }                                                                    \
2556                                                                          \
2557     if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {           \
2558         cc |= CRF_LT;                                                    \
2559     } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {   \
2560         cc |= CRF_GT;                                                    \
2561     } else {                                                             \
2562         cc |= CRF_EQ;                                                    \
2563     }                                                                    \
2564                                                                          \
2565     env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \
2566     env->fpscr |= cc << FPSCR_FPRF;                                      \
2567     env->crf[BF(opcode)] = cc;                                           \
2568                                                                          \
2569     do_float_check_status(env, GETPC());                                 \
2570 }
2571 
2572 VSX_SCALAR_CMP(xscmpodp, 1)
2573 VSX_SCALAR_CMP(xscmpudp, 0)
2574 
2575 #define VSX_SCALAR_CMPQ(op, ordered)                                    \
2576 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2577 {                                                                       \
2578     ppc_vsr_t xa, xb;                                                   \
2579     uint32_t cc = 0;                                                    \
2580     bool vxsnan_flag = false, vxvc_flag = false;                        \
2581                                                                         \
2582     helper_reset_fpstatus(env);                                         \
2583     getVSR(rA(opcode) + 32, &xa, env);                                  \
2584     getVSR(rB(opcode) + 32, &xb, env);                                  \
2585                                                                         \
2586     if (float128_is_signaling_nan(xa.f128, &env->fp_status) ||          \
2587         float128_is_signaling_nan(xb.f128, &env->fp_status)) {          \
2588         vxsnan_flag = true;                                             \
2589         cc = CRF_SO;                                                    \
2590         if (fpscr_ve == 0 && ordered) {                                 \
2591             vxvc_flag = true;                                           \
2592         }                                                               \
2593     } else if (float128_is_quiet_nan(xa.f128, &env->fp_status) ||       \
2594                float128_is_quiet_nan(xb.f128, &env->fp_status)) {       \
2595         cc = CRF_SO;                                                    \
2596         if (ordered) {                                                  \
2597             vxvc_flag = true;                                           \
2598         }                                                               \
2599     }                                                                   \
2600     if (vxsnan_flag) {                                                  \
2601         float_invalid_op_vxsnan(env, GETPC());                          \
2602     }                                                                   \
2603     if (vxvc_flag) {                                                    \
2604         float_invalid_op_vxvc(env, 0, GETPC());                         \
2605     }                                                                   \
2606                                                                         \
2607     if (float128_lt(xa.f128, xb.f128, &env->fp_status)) {               \
2608         cc |= CRF_LT;                                                   \
2609     } else if (!float128_le(xa.f128, xb.f128, &env->fp_status)) {       \
2610         cc |= CRF_GT;                                                   \
2611     } else {                                                            \
2612         cc |= CRF_EQ;                                                   \
2613     }                                                                   \
2614                                                                         \
2615     env->fpscr &= ~(0x0F << FPSCR_FPRF);                                \
2616     env->fpscr |= cc << FPSCR_FPRF;                                     \
2617     env->crf[BF(opcode)] = cc;                                          \
2618                                                                         \
2619     do_float_check_status(env, GETPC());                                \
2620 }
2621 
2622 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2623 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2624 
2625 /*
2626  * VSX_MAX_MIN - VSX floating point maximum/minimum
2627  *   name  - instruction mnemonic
2628  *   op    - operation (max or min)
2629  *   nels  - number of elements (1, 2 or 4)
2630  *   tp    - type (float32 or float64)
2631  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2632  */
2633 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2634 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2635 {                                                                             \
2636     ppc_vsr_t xt, xa, xb;                                                     \
2637     int i;                                                                    \
2638                                                                               \
2639     getVSR(xA(opcode), &xa, env);                                             \
2640     getVSR(xB(opcode), &xb, env);                                             \
2641     getVSR(xT(opcode), &xt, env);                                             \
2642                                                                               \
2643     for (i = 0; i < nels; i++) {                                              \
2644         xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \
2645         if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) ||        \
2646                      tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
2647             float_invalid_op_vxsnan(env, GETPC());                            \
2648         }                                                                     \
2649     }                                                                         \
2650                                                                               \
2651     putVSR(xT(opcode), &xt, env);                                             \
2652     do_float_check_status(env, GETPC());                                      \
2653 }
2654 
2655 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2656 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2657 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2658 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2659 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2660 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2661 
2662 #define VSX_MAX_MINC(name, max)                                               \
2663 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2664 {                                                                             \
2665     ppc_vsr_t xt, xa, xb;                                                     \
2666     bool vxsnan_flag = false, vex_flag = false;                               \
2667                                                                               \
2668     getVSR(rA(opcode) + 32, &xa, env);                                        \
2669     getVSR(rB(opcode) + 32, &xb, env);                                        \
2670     getVSR(rD(opcode) + 32, &xt, env);                                        \
2671                                                                               \
2672     if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                            \
2673                  float64_is_any_nan(xb.VsrD(0)))) {                           \
2674         if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||          \
2675             float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {          \
2676             vxsnan_flag = true;                                               \
2677         }                                                                     \
2678         xt.VsrD(0) = xb.VsrD(0);                                              \
2679     } else if ((max &&                                                        \
2680                !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) ||       \
2681                (!max &&                                                       \
2682                float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) {        \
2683         xt.VsrD(0) = xa.VsrD(0);                                              \
2684     } else {                                                                  \
2685         xt.VsrD(0) = xb.VsrD(0);                                              \
2686     }                                                                         \
2687                                                                               \
2688     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2689     if (vxsnan_flag) {                                                        \
2690         float_invalid_op_vxsnan(env, GETPC());                                \
2691     }                                                                         \
2692     if (!vex_flag) {                                                          \
2693         putVSR(rD(opcode) + 32, &xt, env);                                    \
2694     }                                                                         \
2695 }                                                                             \
2696 
2697 VSX_MAX_MINC(xsmaxcdp, 1);
2698 VSX_MAX_MINC(xsmincdp, 0);
2699 
2700 #define VSX_MAX_MINJ(name, max)                                               \
2701 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2702 {                                                                             \
2703     ppc_vsr_t xt, xa, xb;                                                     \
2704     bool vxsnan_flag = false, vex_flag = false;                               \
2705                                                                               \
2706     getVSR(rA(opcode) + 32, &xa, env);                                        \
2707     getVSR(rB(opcode) + 32, &xb, env);                                        \
2708     getVSR(rD(opcode) + 32, &xt, env);                                        \
2709                                                                               \
2710     if (unlikely(float64_is_any_nan(xa.VsrD(0)))) {                           \
2711         if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status)) {          \
2712             vxsnan_flag = true;                                               \
2713         }                                                                     \
2714         xt.VsrD(0) = xa.VsrD(0);                                              \
2715     } else if (unlikely(float64_is_any_nan(xb.VsrD(0)))) {                    \
2716         if (float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {          \
2717             vxsnan_flag = true;                                               \
2718         }                                                                     \
2719         xt.VsrD(0) = xb.VsrD(0);                                              \
2720     } else if (float64_is_zero(xa.VsrD(0)) && float64_is_zero(xb.VsrD(0))) {  \
2721         if (max) {                                                            \
2722             if (!float64_is_neg(xa.VsrD(0)) || !float64_is_neg(xb.VsrD(0))) { \
2723                 xt.VsrD(0) = 0ULL;                                            \
2724             } else {                                                          \
2725                 xt.VsrD(0) = 0x8000000000000000ULL;                           \
2726             }                                                                 \
2727         } else {                                                              \
2728             if (float64_is_neg(xa.VsrD(0)) || float64_is_neg(xb.VsrD(0))) {   \
2729                 xt.VsrD(0) = 0x8000000000000000ULL;                           \
2730             } else {                                                          \
2731                 xt.VsrD(0) = 0ULL;                                            \
2732             }                                                                 \
2733         }                                                                     \
2734     } else if ((max &&                                                        \
2735                !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) ||       \
2736                (!max &&                                                       \
2737                float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) {        \
2738         xt.VsrD(0) = xa.VsrD(0);                                              \
2739     } else {                                                                  \
2740         xt.VsrD(0) = xb.VsrD(0);                                              \
2741     }                                                                         \
2742                                                                               \
2743     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2744     if (vxsnan_flag) {                                                        \
2745         float_invalid_op_vxsnan(env, GETPC());                                \
2746     }                                                                         \
2747     if (!vex_flag) {                                                          \
2748         putVSR(rD(opcode) + 32, &xt, env);                                    \
2749     }                                                                         \
2750 }                                                                             \
2751 
2752 VSX_MAX_MINJ(xsmaxjdp, 1);
2753 VSX_MAX_MINJ(xsminjdp, 0);
2754 
2755 /*
2756  * VSX_CMP - VSX floating point compare
2757  *   op    - instruction mnemonic
2758  *   nels  - number of elements (1, 2 or 4)
2759  *   tp    - type (float32 or float64)
2760  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2761  *   cmp   - comparison operation
2762  *   svxvc - set VXVC bit
2763  *   exp   - expected result of comparison
2764  */
2765 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2766 void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2767 {                                                                         \
2768     ppc_vsr_t xt, xa, xb;                                                 \
2769     int i;                                                                \
2770     int all_true = 1;                                                     \
2771     int all_false = 1;                                                    \
2772                                                                           \
2773     getVSR(xA(opcode), &xa, env);                                         \
2774     getVSR(xB(opcode), &xb, env);                                         \
2775     getVSR(xT(opcode), &xt, env);                                         \
2776                                                                           \
2777     for (i = 0; i < nels; i++) {                                          \
2778         if (unlikely(tp##_is_any_nan(xa.fld) ||                           \
2779                      tp##_is_any_nan(xb.fld))) {                          \
2780             if (tp##_is_signaling_nan(xa.fld, &env->fp_status) ||         \
2781                 tp##_is_signaling_nan(xb.fld, &env->fp_status)) {         \
2782                 float_invalid_op_vxsnan(env, GETPC());                    \
2783             }                                                             \
2784             if (svxvc) {                                                  \
2785                 float_invalid_op_vxvc(env, 0, GETPC());                   \
2786             }                                                             \
2787             xt.fld = 0;                                                   \
2788             all_true = 0;                                                 \
2789         } else {                                                          \
2790             if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) {     \
2791                 xt.fld = -1;                                              \
2792                 all_false = 0;                                            \
2793             } else {                                                      \
2794                 xt.fld = 0;                                               \
2795                 all_true = 0;                                             \
2796             }                                                             \
2797         }                                                                 \
2798     }                                                                     \
2799                                                                           \
2800     putVSR(xT(opcode), &xt, env);                                         \
2801     if ((opcode >> (31 - 21)) & 1) {                                      \
2802         env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \
2803     }                                                                     \
2804     do_float_check_status(env, GETPC());                                  \
2805  }
2806 
2807 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2808 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2809 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2810 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2811 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2812 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2813 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2814 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2815 
2816 /*
2817  * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2818  *   op    - instruction mnemonic
2819  *   nels  - number of elements (1, 2 or 4)
2820  *   stp   - source type (float32 or float64)
2821  *   ttp   - target type (float32 or float64)
2822  *   sfld  - source vsr_t field
2823  *   tfld  - target vsr_t field (f32 or f64)
2824  *   sfprf - set FPRF
2825  */
2826 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2827 void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2828 {                                                                  \
2829     ppc_vsr_t xt, xb;                                              \
2830     int i;                                                         \
2831                                                                    \
2832     getVSR(xB(opcode), &xb, env);                                  \
2833     getVSR(xT(opcode), &xt, env);                                  \
2834                                                                    \
2835     for (i = 0; i < nels; i++) {                                   \
2836         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
2837         if (unlikely(stp##_is_signaling_nan(xb.sfld,               \
2838                                             &env->fp_status))) {   \
2839             float_invalid_op_vxsnan(env, GETPC());                 \
2840             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2841         }                                                          \
2842         if (sfprf) {                                               \
2843             helper_compute_fprf_##ttp(env, xt.tfld);               \
2844         }                                                          \
2845     }                                                              \
2846                                                                    \
2847     putVSR(xT(opcode), &xt, env);                                  \
2848     do_float_check_status(env, GETPC());                           \
2849 }
2850 
2851 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2852 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2853 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
2854 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2855 
2856 /*
2857  * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2858  *   op    - instruction mnemonic
2859  *   nels  - number of elements (1, 2 or 4)
2860  *   stp   - source type (float32 or float64)
2861  *   ttp   - target type (float32 or float64)
2862  *   sfld  - source vsr_t field
2863  *   tfld  - target vsr_t field (f32 or f64)
2864  *   sfprf - set FPRF
2865  */
2866 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2867 void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2868 {                                                                       \
2869     ppc_vsr_t xt, xb;                                                   \
2870     int i;                                                              \
2871                                                                         \
2872     getVSR(rB(opcode) + 32, &xb, env);                                  \
2873     getVSR(rD(opcode) + 32, &xt, env);                                  \
2874                                                                         \
2875     for (i = 0; i < nels; i++) {                                        \
2876         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2877         if (unlikely(stp##_is_signaling_nan(xb.sfld,                    \
2878                                             &env->fp_status))) {        \
2879             float_invalid_op_vxsnan(env, GETPC());                      \
2880             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                      \
2881         }                                                               \
2882         if (sfprf) {                                                    \
2883             helper_compute_fprf_##ttp(env, xt.tfld);                    \
2884         }                                                               \
2885     }                                                                   \
2886                                                                         \
2887     putVSR(rD(opcode) + 32, &xt, env);                                  \
2888     do_float_check_status(env, GETPC());                                \
2889 }
2890 
2891 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2892 
2893 /*
2894  * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2895  *                       involving one half precision value
2896  *   op    - instruction mnemonic
2897  *   nels  - number of elements (1, 2 or 4)
2898  *   stp   - source type
2899  *   ttp   - target type
2900  *   sfld  - source vsr_t field
2901  *   tfld  - target vsr_t field
2902  *   sfprf - set FPRF
2903  */
2904 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2905 void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2906 {                                                                  \
2907     ppc_vsr_t xt, xb;                                              \
2908     int i;                                                         \
2909                                                                    \
2910     getVSR(xB(opcode), &xb, env);                                  \
2911     memset(&xt, 0, sizeof(xt));                                    \
2912                                                                    \
2913     for (i = 0; i < nels; i++) {                                   \
2914         xt.tfld = stp##_to_##ttp(xb.sfld, 1, &env->fp_status);     \
2915         if (unlikely(stp##_is_signaling_nan(xb.sfld,               \
2916                                             &env->fp_status))) {   \
2917             float_invalid_op_vxsnan(env, GETPC());                 \
2918             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2919         }                                                          \
2920         if (sfprf) {                                               \
2921             helper_compute_fprf_##ttp(env, xt.tfld);               \
2922         }                                                          \
2923     }                                                              \
2924                                                                    \
2925     putVSR(xT(opcode), &xt, env);                                  \
2926     do_float_check_status(env, GETPC());                           \
2927 }
2928 
2929 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2930 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2931 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0)
2932 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2933 
2934 /*
2935  * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2936  * added to this later.
2937  */
2938 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode)
2939 {
2940     ppc_vsr_t xt, xb;
2941     float_status tstat;
2942 
2943     getVSR(rB(opcode) + 32, &xb, env);
2944     memset(&xt, 0, sizeof(xt));
2945 
2946     tstat = env->fp_status;
2947     if (unlikely(Rc(opcode) != 0)) {
2948         tstat.float_rounding_mode = float_round_to_odd;
2949     }
2950 
2951     xt.VsrD(0) = float128_to_float64(xb.f128, &tstat);
2952     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2953     if (unlikely(float128_is_signaling_nan(xb.f128, &tstat))) {
2954         float_invalid_op_vxsnan(env, GETPC());
2955         xt.VsrD(0) = float64_snan_to_qnan(xt.VsrD(0));
2956     }
2957     helper_compute_fprf_float64(env, xt.VsrD(0));
2958 
2959     putVSR(rD(opcode) + 32, &xt, env);
2960     do_float_check_status(env, GETPC());
2961 }
2962 
2963 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2964 {
2965     float_status tstat = env->fp_status;
2966     set_float_exception_flags(0, &tstat);
2967 
2968     return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2969 }
2970 
2971 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2972 {
2973     float_status tstat = env->fp_status;
2974     set_float_exception_flags(0, &tstat);
2975 
2976     return float32_to_float64(xb >> 32, &tstat);
2977 }
2978 
2979 /*
2980  * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2981  *   op    - instruction mnemonic
2982  *   nels  - number of elements (1, 2 or 4)
2983  *   stp   - source type (float32 or float64)
2984  *   ttp   - target type (int32, uint32, int64 or uint64)
2985  *   sfld  - source vsr_t field
2986  *   tfld  - target vsr_t field
2987  *   rnan  - resulting NaN
2988  */
2989 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2990 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2991 {                                                                            \
2992     int all_flags = env->fp_status.float_exception_flags, flags;             \
2993     ppc_vsr_t xt, xb;                                                        \
2994     int i;                                                                   \
2995                                                                              \
2996     getVSR(xB(opcode), &xb, env);                                            \
2997     getVSR(xT(opcode), &xt, env);                                            \
2998                                                                              \
2999     for (i = 0; i < nels; i++) {                                             \
3000         env->fp_status.float_exception_flags = 0;                            \
3001         xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, &env->fp_status);  \
3002         flags = env->fp_status.float_exception_flags;                        \
3003         if (unlikely(flags & float_flag_invalid)) {                          \
3004             float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb.sfld));     \
3005             xt.tfld = rnan;                                                  \
3006         }                                                                    \
3007         all_flags |= flags;                                                  \
3008     }                                                                        \
3009                                                                              \
3010     putVSR(xT(opcode), &xt, env);                                            \
3011     env->fp_status.float_exception_flags = all_flags;                        \
3012     do_float_check_status(env, GETPC());                                     \
3013 }
3014 
3015 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
3016                   0x8000000000000000ULL)
3017 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
3018                   0x80000000U)
3019 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
3020 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
3021 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
3022                   0x8000000000000000ULL)
3023 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
3024                   0x80000000U)
3025 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
3026 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
3027 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
3028                   0x8000000000000000ULL)
3029 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
3030 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
3031 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
3032 
3033 /*
3034  * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
3035  *   op    - instruction mnemonic
3036  *   stp   - source type (float32 or float64)
3037  *   ttp   - target type (int32, uint32, int64 or uint64)
3038  *   sfld  - source vsr_t field
3039  *   tfld  - target vsr_t field
3040  *   rnan  - resulting NaN
3041  */
3042 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \
3043 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
3044 {                                                                            \
3045     ppc_vsr_t xt, xb;                                                        \
3046                                                                              \
3047     getVSR(rB(opcode) + 32, &xb, env);                                       \
3048     memset(&xt, 0, sizeof(xt));                                              \
3049                                                                              \
3050     xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, &env->fp_status);      \
3051     if (env->fp_status.float_exception_flags & float_flag_invalid) {         \
3052         float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb.sfld));         \
3053         xt.tfld = rnan;                                                      \
3054     }                                                                        \
3055                                                                              \
3056     putVSR(rD(opcode) + 32, &xt, env);                                       \
3057     do_float_check_status(env, GETPC());                                     \
3058 }
3059 
3060 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \
3061                   0x8000000000000000ULL)
3062 
3063 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \
3064                   0xffffffff80000000ULL)
3065 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3066 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3067 
3068 /*
3069  * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3070  *   op    - instruction mnemonic
3071  *   nels  - number of elements (1, 2 or 4)
3072  *   stp   - source type (int32, uint32, int64 or uint64)
3073  *   ttp   - target type (float32 or float64)
3074  *   sfld  - source vsr_t field
3075  *   tfld  - target vsr_t field
3076  *   jdef  - definition of the j index (i or 2*i)
3077  *   sfprf - set FPRF
3078  */
3079 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
3080 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
3081 {                                                                       \
3082     ppc_vsr_t xt, xb;                                                   \
3083     int i;                                                              \
3084                                                                         \
3085     getVSR(xB(opcode), &xb, env);                                       \
3086     getVSR(xT(opcode), &xt, env);                                       \
3087                                                                         \
3088     for (i = 0; i < nels; i++) {                                        \
3089         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
3090         if (r2sp) {                                                     \
3091             xt.tfld = helper_frsp(env, xt.tfld);                        \
3092         }                                                               \
3093         if (sfprf) {                                                    \
3094             helper_compute_fprf_float64(env, xt.tfld);                  \
3095         }                                                               \
3096     }                                                                   \
3097                                                                         \
3098     putVSR(xT(opcode), &xt, env);                                       \
3099     do_float_check_status(env, GETPC());                                \
3100 }
3101 
3102 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3103 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3104 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3105 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3106 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3107 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3108 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
3109 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
3110 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3111 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
3112 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3113 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3114 
3115 /*
3116  * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3117  *   op    - instruction mnemonic
3118  *   stp   - source type (int32, uint32, int64 or uint64)
3119  *   ttp   - target type (float32 or float64)
3120  *   sfld  - source vsr_t field
3121  *   tfld  - target vsr_t field
3122  */
3123 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \
3124 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
3125 {                                                                       \
3126     ppc_vsr_t xt, xb;                                                   \
3127                                                                         \
3128     getVSR(rB(opcode) + 32, &xb, env);                                  \
3129     getVSR(rD(opcode) + 32, &xt, env);                                  \
3130                                                                         \
3131     xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);                 \
3132     helper_compute_fprf_##ttp(env, xt.tfld);                            \
3133                                                                         \
3134     putVSR(xT(opcode) + 32, &xt, env);                                  \
3135     do_float_check_status(env, GETPC());                                \
3136 }
3137 
3138 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3139 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3140 
3141 /*
3142  * For "use current rounding mode", define a value that will not be
3143  * one of the existing rounding model enums.
3144  */
3145 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3146   float_round_up + float_round_to_zero)
3147 
3148 /*
3149  * VSX_ROUND - VSX floating point round
3150  *   op    - instruction mnemonic
3151  *   nels  - number of elements (1, 2 or 4)
3152  *   tp    - type (float32 or float64)
3153  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3154  *   rmode - rounding mode
3155  *   sfprf - set FPRF
3156  */
3157 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
3158 void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
3159 {                                                                      \
3160     ppc_vsr_t xt, xb;                                                  \
3161     int i;                                                             \
3162     getVSR(xB(opcode), &xb, env);                                      \
3163     getVSR(xT(opcode), &xt, env);                                      \
3164                                                                        \
3165     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3166         set_float_rounding_mode(rmode, &env->fp_status);               \
3167     }                                                                  \
3168                                                                        \
3169     for (i = 0; i < nels; i++) {                                       \
3170         if (unlikely(tp##_is_signaling_nan(xb.fld,                     \
3171                                            &env->fp_status))) {        \
3172             float_invalid_op_vxsnan(env, GETPC());                     \
3173             xt.fld = tp##_snan_to_qnan(xb.fld);                        \
3174         } else {                                                       \
3175             xt.fld = tp##_round_to_int(xb.fld, &env->fp_status);       \
3176         }                                                              \
3177         if (sfprf) {                                                   \
3178             helper_compute_fprf_float64(env, xt.fld);                  \
3179         }                                                              \
3180     }                                                                  \
3181                                                                        \
3182     /*                                                                 \
3183      * If this is not a "use current rounding mode" instruction,       \
3184      * then inhibit setting of the XX bit and restore rounding         \
3185      * mode from FPSCR                                                 \
3186      */                                                                \
3187     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3188         fpscr_set_rounding_mode(env);                                  \
3189         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
3190     }                                                                  \
3191                                                                        \
3192     putVSR(xT(opcode), &xt, env);                                      \
3193     do_float_check_status(env, GETPC());                               \
3194 }
3195 
3196 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3197 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3198 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3199 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3200 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3201 
3202 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3203 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3204 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3205 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3206 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3207 
3208 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3209 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3210 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3211 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3212 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3213 
3214 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3215 {
3216     helper_reset_fpstatus(env);
3217 
3218     uint64_t xt = helper_frsp(env, xb);
3219 
3220     helper_compute_fprf_float64(env, xt);
3221     do_float_check_status(env, GETPC());
3222     return xt;
3223 }
3224 
3225 #define VSX_XXPERM(op, indexed)                                       \
3226 void helper_##op(CPUPPCState *env, uint32_t opcode)                   \
3227 {                                                                     \
3228     ppc_vsr_t xt, xa, pcv, xto;                                       \
3229     int i, idx;                                                       \
3230                                                                       \
3231     getVSR(xA(opcode), &xa, env);                                     \
3232     getVSR(xT(opcode), &xt, env);                                     \
3233     getVSR(xB(opcode), &pcv, env);                                    \
3234                                                                       \
3235     for (i = 0; i < 16; i++) {                                        \
3236         idx = pcv.VsrB(i) & 0x1F;                                     \
3237         if (indexed) {                                                \
3238             idx = 31 - idx;                                           \
3239         }                                                             \
3240         xto.VsrB(i) = (idx <= 15) ? xa.VsrB(idx) : xt.VsrB(idx - 16); \
3241     }                                                                 \
3242     putVSR(xT(opcode), &xto, env);                                    \
3243 }
3244 
3245 VSX_XXPERM(xxperm, 0)
3246 VSX_XXPERM(xxpermr, 1)
3247 
3248 void helper_xvxsigsp(CPUPPCState *env, uint32_t opcode)
3249 {
3250     ppc_vsr_t xt, xb;
3251     uint32_t exp, i, fraction;
3252 
3253     getVSR(xB(opcode), &xb, env);
3254     memset(&xt, 0, sizeof(xt));
3255 
3256     for (i = 0; i < 4; i++) {
3257         exp = (xb.VsrW(i) >> 23) & 0xFF;
3258         fraction = xb.VsrW(i) & 0x7FFFFF;
3259         if (exp != 0 && exp != 255) {
3260             xt.VsrW(i) = fraction | 0x00800000;
3261         } else {
3262             xt.VsrW(i) = fraction;
3263         }
3264     }
3265     putVSR(xT(opcode), &xt, env);
3266 }
3267 
3268 /*
3269  * VSX_TEST_DC - VSX floating point test data class
3270  *   op    - instruction mnemonic
3271  *   nels  - number of elements (1, 2 or 4)
3272  *   xbn   - VSR register number
3273  *   tp    - type (float32 or float64)
3274  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3275  *   tfld   - target vsr_t field (VsrD(*) or VsrW(*))
3276  *   fld_max - target field max
3277  *   scrf - set result in CR and FPCC
3278  */
3279 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf)  \
3280 void helper_##op(CPUPPCState *env, uint32_t opcode)         \
3281 {                                                           \
3282     ppc_vsr_t xt, xb;                                       \
3283     uint32_t i, sign, dcmx;                                 \
3284     uint32_t cc, match = 0;                                 \
3285                                                             \
3286     getVSR(xbn, &xb, env);                                  \
3287     if (!scrf) {                                            \
3288         memset(&xt, 0, sizeof(xt));                         \
3289         dcmx = DCMX_XV(opcode);                             \
3290     } else {                                                \
3291         dcmx = DCMX(opcode);                                \
3292     }                                                       \
3293                                                             \
3294     for (i = 0; i < nels; i++) {                            \
3295         sign = tp##_is_neg(xb.fld);                         \
3296         if (tp##_is_any_nan(xb.fld)) {                      \
3297             match = extract32(dcmx, 6, 1);                  \
3298         } else if (tp##_is_infinity(xb.fld)) {              \
3299             match = extract32(dcmx, 4 + !sign, 1);          \
3300         } else if (tp##_is_zero(xb.fld)) {                  \
3301             match = extract32(dcmx, 2 + !sign, 1);          \
3302         } else if (tp##_is_zero_or_denormal(xb.fld)) {      \
3303             match = extract32(dcmx, 0 + !sign, 1);          \
3304         }                                                   \
3305                                                             \
3306         if (scrf) {                                         \
3307             cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;  \
3308             env->fpscr &= ~(0x0F << FPSCR_FPRF);            \
3309             env->fpscr |= cc << FPSCR_FPRF;                 \
3310             env->crf[BF(opcode)] = cc;                      \
3311         } else {                                            \
3312             xt.tfld = match ? fld_max : 0;                  \
3313         }                                                   \
3314         match = 0;                                          \
3315     }                                                       \
3316     if (!scrf) {                                            \
3317         putVSR(xT(opcode), &xt, env);                       \
3318     }                                                       \
3319 }
3320 
3321 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3322 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3323 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3324 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3325 
3326 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode)
3327 {
3328     ppc_vsr_t xb;
3329     uint32_t dcmx, sign, exp;
3330     uint32_t cc, match = 0, not_sp = 0;
3331 
3332     getVSR(xB(opcode), &xb, env);
3333     dcmx = DCMX(opcode);
3334     exp = (xb.VsrD(0) >> 52) & 0x7FF;
3335 
3336     sign = float64_is_neg(xb.VsrD(0));
3337     if (float64_is_any_nan(xb.VsrD(0))) {
3338         match = extract32(dcmx, 6, 1);
3339     } else if (float64_is_infinity(xb.VsrD(0))) {
3340         match = extract32(dcmx, 4 + !sign, 1);
3341     } else if (float64_is_zero(xb.VsrD(0))) {
3342         match = extract32(dcmx, 2 + !sign, 1);
3343     } else if (float64_is_zero_or_denormal(xb.VsrD(0)) ||
3344                (exp > 0 && exp < 0x381)) {
3345         match = extract32(dcmx, 0 + !sign, 1);
3346     }
3347 
3348     not_sp = !float64_eq(xb.VsrD(0),
3349                          float32_to_float64(
3350                              float64_to_float32(xb.VsrD(0), &env->fp_status),
3351                              &env->fp_status), &env->fp_status);
3352 
3353     cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3354     env->fpscr &= ~(0x0F << FPSCR_FPRF);
3355     env->fpscr |= cc << FPSCR_FPRF;
3356     env->crf[BF(opcode)] = cc;
3357 }
3358 
3359 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode)
3360 {
3361     ppc_vsr_t xb;
3362     ppc_vsr_t xt;
3363     uint8_t r = Rrm(opcode);
3364     uint8_t ex = Rc(opcode);
3365     uint8_t rmc = RMC(opcode);
3366     uint8_t rmode = 0;
3367     float_status tstat;
3368 
3369     getVSR(rB(opcode) + 32, &xb, env);
3370     memset(&xt, 0, sizeof(xt));
3371     helper_reset_fpstatus(env);
3372 
3373     if (r == 0 && rmc == 0) {
3374         rmode = float_round_ties_away;
3375     } else if (r == 0 && rmc == 0x3) {
3376         rmode = fpscr_rn;
3377     } else if (r == 1) {
3378         switch (rmc) {
3379         case 0:
3380             rmode = float_round_nearest_even;
3381             break;
3382         case 1:
3383             rmode = float_round_to_zero;
3384             break;
3385         case 2:
3386             rmode = float_round_up;
3387             break;
3388         case 3:
3389             rmode = float_round_down;
3390             break;
3391         default:
3392             abort();
3393         }
3394     }
3395 
3396     tstat = env->fp_status;
3397     set_float_exception_flags(0, &tstat);
3398     set_float_rounding_mode(rmode, &tstat);
3399     xt.f128 = float128_round_to_int(xb.f128, &tstat);
3400     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3401 
3402     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3403         if (float128_is_signaling_nan(xb.f128, &tstat)) {
3404             float_invalid_op_vxsnan(env, GETPC());
3405             xt.f128 = float128_snan_to_qnan(xt.f128);
3406         }
3407     }
3408 
3409     if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3410         env->fp_status.float_exception_flags &= ~float_flag_inexact;
3411     }
3412 
3413     helper_compute_fprf_float128(env, xt.f128);
3414     do_float_check_status(env, GETPC());
3415     putVSR(rD(opcode) + 32, &xt, env);
3416 }
3417 
3418 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode)
3419 {
3420     ppc_vsr_t xb;
3421     ppc_vsr_t xt;
3422     uint8_t r = Rrm(opcode);
3423     uint8_t rmc = RMC(opcode);
3424     uint8_t rmode = 0;
3425     floatx80 round_res;
3426     float_status tstat;
3427 
3428     getVSR(rB(opcode) + 32, &xb, env);
3429     memset(&xt, 0, sizeof(xt));
3430     helper_reset_fpstatus(env);
3431 
3432     if (r == 0 && rmc == 0) {
3433         rmode = float_round_ties_away;
3434     } else if (r == 0 && rmc == 0x3) {
3435         rmode = fpscr_rn;
3436     } else if (r == 1) {
3437         switch (rmc) {
3438         case 0:
3439             rmode = float_round_nearest_even;
3440             break;
3441         case 1:
3442             rmode = float_round_to_zero;
3443             break;
3444         case 2:
3445             rmode = float_round_up;
3446             break;
3447         case 3:
3448             rmode = float_round_down;
3449             break;
3450         default:
3451             abort();
3452         }
3453     }
3454 
3455     tstat = env->fp_status;
3456     set_float_exception_flags(0, &tstat);
3457     set_float_rounding_mode(rmode, &tstat);
3458     round_res = float128_to_floatx80(xb.f128, &tstat);
3459     xt.f128 = floatx80_to_float128(round_res, &tstat);
3460     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3461 
3462     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3463         if (float128_is_signaling_nan(xb.f128, &tstat)) {
3464             float_invalid_op_vxsnan(env, GETPC());
3465             xt.f128 = float128_snan_to_qnan(xt.f128);
3466         }
3467     }
3468 
3469     helper_compute_fprf_float128(env, xt.f128);
3470     putVSR(rD(opcode) + 32, &xt, env);
3471     do_float_check_status(env, GETPC());
3472 }
3473 
3474 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode)
3475 {
3476     ppc_vsr_t xb;
3477     ppc_vsr_t xt;
3478     float_status tstat;
3479 
3480     getVSR(rB(opcode) + 32, &xb, env);
3481     memset(&xt, 0, sizeof(xt));
3482     helper_reset_fpstatus(env);
3483 
3484     tstat = env->fp_status;
3485     if (unlikely(Rc(opcode) != 0)) {
3486         tstat.float_rounding_mode = float_round_to_odd;
3487     }
3488 
3489     set_float_exception_flags(0, &tstat);
3490     xt.f128 = float128_sqrt(xb.f128, &tstat);
3491     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3492 
3493     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3494         if (float128_is_signaling_nan(xb.f128, &tstat)) {
3495             float_invalid_op_vxsnan(env, GETPC());
3496             xt.f128 = float128_snan_to_qnan(xb.f128);
3497         } else if  (float128_is_quiet_nan(xb.f128, &tstat)) {
3498             xt.f128 = xb.f128;
3499         } else if (float128_is_neg(xb.f128) && !float128_is_zero(xb.f128)) {
3500             float_invalid_op_vxsqrt(env, 1, GETPC());
3501             xt.f128 = float128_default_nan(&env->fp_status);
3502         }
3503     }
3504 
3505     helper_compute_fprf_float128(env, xt.f128);
3506     putVSR(rD(opcode) + 32, &xt, env);
3507     do_float_check_status(env, GETPC());
3508 }
3509 
3510 void helper_xssubqp(CPUPPCState *env, uint32_t opcode)
3511 {
3512     ppc_vsr_t xt, xa, xb;
3513     float_status tstat;
3514 
3515     getVSR(rA(opcode) + 32, &xa, env);
3516     getVSR(rB(opcode) + 32, &xb, env);
3517     getVSR(rD(opcode) + 32, &xt, env);
3518     helper_reset_fpstatus(env);
3519 
3520     tstat = env->fp_status;
3521     if (unlikely(Rc(opcode) != 0)) {
3522         tstat.float_rounding_mode = float_round_to_odd;
3523     }
3524 
3525     set_float_exception_flags(0, &tstat);
3526     xt.f128 = float128_sub(xa.f128, xb.f128, &tstat);
3527     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3528 
3529     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3530         float_invalid_op_addsub(env, 1, GETPC(),
3531                                 float128_classify(xa.f128) |
3532                                 float128_classify(xb.f128));
3533     }
3534 
3535     helper_compute_fprf_float128(env, xt.f128);
3536     putVSR(rD(opcode) + 32, &xt, env);
3537     do_float_check_status(env, GETPC());
3538 }
3539