xref: /openbmc/qemu/target/ppc/fpu_helper.c (revision 90f9e35b)
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25 
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28     float128 r;
29 
30     r.high = x.high | 0x0000800000000000;
31     r.low = x.low;
32     return r;
33 }
34 
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38 
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
40 {
41 #ifdef CONFIG_USER_ONLY
42     return true;
43 #else
44     return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
46 }
47 
48 /*****************************************************************************/
49 /* Floating point operations helpers */
50 
51 /*
52  * This is the non-arithmatic conversion that happens e.g. on loads.
53  * In the Power ISA pseudocode, this is called DOUBLE.
54  */
55 uint64_t helper_todouble(uint32_t arg)
56 {
57     uint32_t abs_arg = arg & 0x7fffffff;
58     uint64_t ret;
59 
60     if (likely(abs_arg >= 0x00800000)) {
61         if (unlikely(extract32(arg, 23, 8) == 0xff)) {
62             /* Inf or NAN.  */
63             ret  = (uint64_t)extract32(arg, 31, 1) << 63;
64             ret |= (uint64_t)0x7ff << 52;
65             ret |= (uint64_t)extract32(arg, 0, 23) << 29;
66         } else {
67             /* Normalized operand.  */
68             ret  = (uint64_t)extract32(arg, 30, 2) << 62;
69             ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
70             ret |= (uint64_t)extract32(arg, 0, 30) << 29;
71         }
72     } else {
73         /* Zero or Denormalized operand.  */
74         ret = (uint64_t)extract32(arg, 31, 1) << 63;
75         if (unlikely(abs_arg != 0)) {
76             /*
77              * Denormalized operand.
78              * Shift fraction so that the msb is in the implicit bit position.
79              * Thus, shift is in the range [1:23].
80              */
81             int shift = clz32(abs_arg) - 8;
82             /*
83              * The first 3 terms compute the float64 exponent.  We then bias
84              * this result by -1 so that we can swallow the implicit bit below.
85              */
86             int exp = -126 - shift + 1023 - 1;
87 
88             ret |= (uint64_t)exp << 52;
89             ret += (uint64_t)abs_arg << (52 - 23 + shift);
90         }
91     }
92     return ret;
93 }
94 
95 /*
96  * This is the non-arithmatic conversion that happens e.g. on stores.
97  * In the Power ISA pseudocode, this is called SINGLE.
98  */
99 uint32_t helper_tosingle(uint64_t arg)
100 {
101     int exp = extract64(arg, 52, 11);
102     uint32_t ret;
103 
104     if (likely(exp > 896)) {
105         /* No denormalization required (includes Inf, NaN).  */
106         ret  = extract64(arg, 62, 2) << 30;
107         ret |= extract64(arg, 29, 30);
108     } else {
109         /*
110          * Zero or Denormal result.  If the exponent is in bounds for
111          * a single-precision denormal result, extract the proper
112          * bits.  If the input is not zero, and the exponent is out of
113          * bounds, then the result is undefined; this underflows to
114          * zero.
115          */
116         ret = extract64(arg, 63, 1) << 31;
117         if (unlikely(exp >= 874)) {
118             /* Denormal result.  */
119             ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
120         }
121     }
122     return ret;
123 }
124 
125 static inline int ppc_float32_get_unbiased_exp(float32 f)
126 {
127     return ((f >> 23) & 0xFF) - 127;
128 }
129 
130 static inline int ppc_float64_get_unbiased_exp(float64 f)
131 {
132     return ((f >> 52) & 0x7FF) - 1023;
133 }
134 
135 /* Classify a floating-point number.  */
136 enum {
137     is_normal   = 1,
138     is_zero     = 2,
139     is_denormal = 4,
140     is_inf      = 8,
141     is_qnan     = 16,
142     is_snan     = 32,
143     is_neg      = 64,
144 };
145 
146 #define COMPUTE_CLASS(tp)                                      \
147 static int tp##_classify(tp arg)                               \
148 {                                                              \
149     int ret = tp##_is_neg(arg) * is_neg;                       \
150     if (unlikely(tp##_is_any_nan(arg))) {                      \
151         float_status dummy = { };  /* snan_bit_is_one = 0 */   \
152         ret |= (tp##_is_signaling_nan(arg, &dummy)             \
153                 ? is_snan : is_qnan);                          \
154     } else if (unlikely(tp##_is_infinity(arg))) {              \
155         ret |= is_inf;                                         \
156     } else if (tp##_is_zero(arg)) {                            \
157         ret |= is_zero;                                        \
158     } else if (tp##_is_zero_or_denormal(arg)) {                \
159         ret |= is_denormal;                                    \
160     } else {                                                   \
161         ret |= is_normal;                                      \
162     }                                                          \
163     return ret;                                                \
164 }
165 
166 COMPUTE_CLASS(float16)
167 COMPUTE_CLASS(float32)
168 COMPUTE_CLASS(float64)
169 COMPUTE_CLASS(float128)
170 
171 static void set_fprf_from_class(CPUPPCState *env, int class)
172 {
173     static const uint8_t fprf[6][2] = {
174         { 0x04, 0x08 },  /* normalized */
175         { 0x02, 0x12 },  /* zero */
176         { 0x14, 0x18 },  /* denormalized */
177         { 0x05, 0x09 },  /* infinity */
178         { 0x11, 0x11 },  /* qnan */
179         { 0x00, 0x00 },  /* snan -- flags are undefined */
180     };
181     bool isneg = class & is_neg;
182 
183     env->fpscr &= ~FP_FPRF;
184     env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
185 }
186 
187 #define COMPUTE_FPRF(tp)                                \
188 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
189 {                                                       \
190     set_fprf_from_class(env, tp##_classify(arg));       \
191 }
192 
193 COMPUTE_FPRF(float16)
194 COMPUTE_FPRF(float32)
195 COMPUTE_FPRF(float64)
196 COMPUTE_FPRF(float128)
197 
198 /* Floating-point invalid operations exception */
199 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
200 {
201     /* Update the floating-point invalid operation summary */
202     env->fpscr |= FP_VX;
203     /* Update the floating-point exception summary */
204     env->fpscr |= FP_FX;
205     if (fpscr_ve != 0) {
206         /* Update the floating-point enabled exception summary */
207         env->fpscr |= FP_FEX;
208         if (fp_exceptions_enabled(env)) {
209             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
210                                    POWERPC_EXCP_FP | op, retaddr);
211         }
212     }
213 }
214 
215 static void finish_invalid_op_arith(CPUPPCState *env, int op,
216                                     bool set_fpcc, uintptr_t retaddr)
217 {
218     env->fpscr &= ~(FP_FR | FP_FI);
219     if (fpscr_ve == 0) {
220         if (set_fpcc) {
221             env->fpscr &= ~FP_FPCC;
222             env->fpscr |= (FP_C | FP_FU);
223         }
224     }
225     finish_invalid_op_excp(env, op, retaddr);
226 }
227 
228 /* Signalling NaN */
229 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
230 {
231     env->fpscr |= FP_VXSNAN;
232     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
233 }
234 
235 /* Magnitude subtraction of infinities */
236 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
237                                    uintptr_t retaddr)
238 {
239     env->fpscr |= FP_VXISI;
240     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
241 }
242 
243 /* Division of infinity by infinity */
244 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
245                                    uintptr_t retaddr)
246 {
247     env->fpscr |= FP_VXIDI;
248     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
249 }
250 
251 /* Division of zero by zero */
252 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
253                                    uintptr_t retaddr)
254 {
255     env->fpscr |= FP_VXZDZ;
256     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
257 }
258 
259 /* Multiplication of zero by infinity */
260 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
261                                    uintptr_t retaddr)
262 {
263     env->fpscr |= FP_VXIMZ;
264     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
265 }
266 
267 /* Square root of a negative number */
268 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
269                                     uintptr_t retaddr)
270 {
271     env->fpscr |= FP_VXSQRT;
272     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
273 }
274 
275 /* Ordered comparison of NaN */
276 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
277                                   uintptr_t retaddr)
278 {
279     env->fpscr |= FP_VXVC;
280     if (set_fpcc) {
281         env->fpscr &= ~FP_FPCC;
282         env->fpscr |= (FP_C | FP_FU);
283     }
284     /* Update the floating-point invalid operation summary */
285     env->fpscr |= FP_VX;
286     /* Update the floating-point exception summary */
287     env->fpscr |= FP_FX;
288     /* We must update the target FPR before raising the exception */
289     if (fpscr_ve != 0) {
290         CPUState *cs = env_cpu(env);
291 
292         cs->exception_index = POWERPC_EXCP_PROGRAM;
293         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
294         /* Update the floating-point enabled exception summary */
295         env->fpscr |= FP_FEX;
296         /* Exception is deferred */
297     }
298 }
299 
300 /* Invalid conversion */
301 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
302                                    uintptr_t retaddr)
303 {
304     env->fpscr |= FP_VXCVI;
305     env->fpscr &= ~(FP_FR | FP_FI);
306     if (fpscr_ve == 0) {
307         if (set_fpcc) {
308             env->fpscr &= ~FP_FPCC;
309             env->fpscr |= (FP_C | FP_FU);
310         }
311     }
312     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
313 }
314 
315 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
316 {
317     env->fpscr |= FP_ZX;
318     env->fpscr &= ~(FP_FR | FP_FI);
319     /* Update the floating-point exception summary */
320     env->fpscr |= FP_FX;
321     if (fpscr_ze != 0) {
322         /* Update the floating-point enabled exception summary */
323         env->fpscr |= FP_FEX;
324         if (fp_exceptions_enabled(env)) {
325             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
326                                    POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
327                                    raddr);
328         }
329     }
330 }
331 
332 static inline void float_overflow_excp(CPUPPCState *env)
333 {
334     CPUState *cs = env_cpu(env);
335 
336     env->fpscr |= FP_OX;
337     /* Update the floating-point exception summary */
338     env->fpscr |= FP_FX;
339     if (fpscr_oe != 0) {
340         /* XXX: should adjust the result */
341         /* Update the floating-point enabled exception summary */
342         env->fpscr |= FP_FEX;
343         /* We must update the target FPR before raising the exception */
344         cs->exception_index = POWERPC_EXCP_PROGRAM;
345         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
346     } else {
347         env->fpscr |= FP_XX;
348         env->fpscr |= FP_FI;
349     }
350 }
351 
352 static inline void float_underflow_excp(CPUPPCState *env)
353 {
354     CPUState *cs = env_cpu(env);
355 
356     env->fpscr |= FP_UX;
357     /* Update the floating-point exception summary */
358     env->fpscr |= FP_FX;
359     if (fpscr_ue != 0) {
360         /* XXX: should adjust the result */
361         /* Update the floating-point enabled exception summary */
362         env->fpscr |= FP_FEX;
363         /* We must update the target FPR before raising the exception */
364         cs->exception_index = POWERPC_EXCP_PROGRAM;
365         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
366     }
367 }
368 
369 static inline void float_inexact_excp(CPUPPCState *env)
370 {
371     CPUState *cs = env_cpu(env);
372 
373     env->fpscr |= FP_FI;
374     env->fpscr |= FP_XX;
375     /* Update the floating-point exception summary */
376     env->fpscr |= FP_FX;
377     if (fpscr_xe != 0) {
378         /* Update the floating-point enabled exception summary */
379         env->fpscr |= FP_FEX;
380         /* We must update the target FPR before raising the exception */
381         cs->exception_index = POWERPC_EXCP_PROGRAM;
382         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
383     }
384 }
385 
386 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
387 {
388     uint32_t mask = 1u << bit;
389     if (env->fpscr & mask) {
390         ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask);
391     }
392 }
393 
394 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
395 {
396     uint32_t mask = 1u << bit;
397     if (!(env->fpscr & mask)) {
398         ppc_store_fpscr(env, env->fpscr | mask);
399     }
400 }
401 
402 void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles)
403 {
404     target_ulong mask = 0;
405     int i;
406 
407     /* TODO: push this extension back to translation time */
408     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
409         if (nibbles & (1 << i)) {
410             mask |= (target_ulong) 0xf << (4 * i);
411         }
412     }
413     val = (val & mask) | (env->fpscr & ~mask);
414     ppc_store_fpscr(env, val);
415 }
416 
417 void helper_fpscr_check_status(CPUPPCState *env)
418 {
419     CPUState *cs = env_cpu(env);
420     target_ulong fpscr = env->fpscr;
421     int error = 0;
422 
423     if ((fpscr & FP_OX) && (fpscr & FP_OE)) {
424         error = POWERPC_EXCP_FP_OX;
425     } else if ((fpscr & FP_UX) && (fpscr & FP_UE)) {
426         error = POWERPC_EXCP_FP_UX;
427     } else if ((fpscr & FP_XX) && (fpscr & FP_XE)) {
428         error = POWERPC_EXCP_FP_XX;
429     } else if ((fpscr & FP_ZX) && (fpscr & FP_ZE)) {
430         error = POWERPC_EXCP_FP_ZX;
431     } else if (fpscr & FP_VE) {
432         if (fpscr & FP_VXSOFT) {
433             error = POWERPC_EXCP_FP_VXSOFT;
434         } else if (fpscr & FP_VXSNAN) {
435             error = POWERPC_EXCP_FP_VXSNAN;
436         } else if (fpscr & FP_VXISI) {
437             error = POWERPC_EXCP_FP_VXISI;
438         } else if (fpscr & FP_VXIDI) {
439             error = POWERPC_EXCP_FP_VXIDI;
440         } else if (fpscr & FP_VXZDZ) {
441             error = POWERPC_EXCP_FP_VXZDZ;
442         } else if (fpscr & FP_VXIMZ) {
443             error = POWERPC_EXCP_FP_VXIMZ;
444         } else if (fpscr & FP_VXVC) {
445             error = POWERPC_EXCP_FP_VXVC;
446         } else if (fpscr & FP_VXSQRT) {
447             error = POWERPC_EXCP_FP_VXSQRT;
448         } else if (fpscr & FP_VXCVI) {
449             error = POWERPC_EXCP_FP_VXCVI;
450         } else {
451             return;
452         }
453     } else {
454         return;
455     }
456     cs->exception_index = POWERPC_EXCP_PROGRAM;
457     env->error_code = error | POWERPC_EXCP_FP;
458     /* Deferred floating-point exception after target FPSCR update */
459     if (fp_exceptions_enabled(env)) {
460         raise_exception_err_ra(env, cs->exception_index,
461                                env->error_code, GETPC());
462     }
463 }
464 
465 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
466 {
467     CPUState *cs = env_cpu(env);
468     int status = get_float_exception_flags(&env->fp_status);
469 
470     if (status & float_flag_overflow) {
471         float_overflow_excp(env);
472     } else if (status & float_flag_underflow) {
473         float_underflow_excp(env);
474     }
475     if (status & float_flag_inexact) {
476         float_inexact_excp(env);
477     } else {
478         env->fpscr &= ~FP_FI; /* clear the FPSCR[FI] bit */
479     }
480 
481     if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
482         (env->error_code & POWERPC_EXCP_FP)) {
483         /* Deferred floating-point exception after target FPR update */
484         if (fp_exceptions_enabled(env)) {
485             raise_exception_err_ra(env, cs->exception_index,
486                                    env->error_code, raddr);
487         }
488     }
489 }
490 
491 void helper_float_check_status(CPUPPCState *env)
492 {
493     do_float_check_status(env, GETPC());
494 }
495 
496 void helper_reset_fpstatus(CPUPPCState *env)
497 {
498     set_float_exception_flags(0, &env->fp_status);
499 }
500 
501 static void float_invalid_op_addsub(CPUPPCState *env, int flags,
502                                     bool set_fpcc, uintptr_t retaddr)
503 {
504     if (flags & float_flag_invalid_isi) {
505         float_invalid_op_vxisi(env, set_fpcc, retaddr);
506     } else if (flags & float_flag_invalid_snan) {
507         float_invalid_op_vxsnan(env, retaddr);
508     }
509 }
510 
511 /* fadd - fadd. */
512 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
513 {
514     float64 ret = float64_add(arg1, arg2, &env->fp_status);
515     int flags = get_float_exception_flags(&env->fp_status);
516 
517     if (unlikely(flags & float_flag_invalid)) {
518         float_invalid_op_addsub(env, flags, 1, GETPC());
519     }
520 
521     return ret;
522 }
523 
524 /* fadds - fadds. */
525 float64 helper_fadds(CPUPPCState *env, float64 arg1, float64 arg2)
526 {
527     float64 ret = float64r32_add(arg1, arg2, &env->fp_status);
528     int flags = get_float_exception_flags(&env->fp_status);
529 
530     if (unlikely(flags & float_flag_invalid)) {
531         float_invalid_op_addsub(env, flags, 1, GETPC());
532     }
533     return ret;
534 }
535 
536 /* fsub - fsub. */
537 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
538 {
539     float64 ret = float64_sub(arg1, arg2, &env->fp_status);
540     int flags = get_float_exception_flags(&env->fp_status);
541 
542     if (unlikely(flags & float_flag_invalid)) {
543         float_invalid_op_addsub(env, flags, 1, GETPC());
544     }
545 
546     return ret;
547 }
548 
549 /* fsubs - fsubs. */
550 float64 helper_fsubs(CPUPPCState *env, float64 arg1, float64 arg2)
551 {
552     float64 ret = float64r32_sub(arg1, arg2, &env->fp_status);
553     int flags = get_float_exception_flags(&env->fp_status);
554 
555     if (unlikely(flags & float_flag_invalid)) {
556         float_invalid_op_addsub(env, flags, 1, GETPC());
557     }
558     return ret;
559 }
560 
561 static void float_invalid_op_mul(CPUPPCState *env, int flags,
562                                  bool set_fprc, uintptr_t retaddr)
563 {
564     if (flags & float_flag_invalid_imz) {
565         float_invalid_op_vximz(env, set_fprc, retaddr);
566     } else if (flags & float_flag_invalid_snan) {
567         float_invalid_op_vxsnan(env, retaddr);
568     }
569 }
570 
571 /* fmul - fmul. */
572 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
573 {
574     float64 ret = float64_mul(arg1, arg2, &env->fp_status);
575     int flags = get_float_exception_flags(&env->fp_status);
576 
577     if (unlikely(flags & float_flag_invalid)) {
578         float_invalid_op_mul(env, flags, 1, GETPC());
579     }
580 
581     return ret;
582 }
583 
584 /* fmuls - fmuls. */
585 float64 helper_fmuls(CPUPPCState *env, float64 arg1, float64 arg2)
586 {
587     float64 ret = float64r32_mul(arg1, arg2, &env->fp_status);
588     int flags = get_float_exception_flags(&env->fp_status);
589 
590     if (unlikely(flags & float_flag_invalid)) {
591         float_invalid_op_mul(env, flags, 1, GETPC());
592     }
593     return ret;
594 }
595 
596 static void float_invalid_op_div(CPUPPCState *env, int flags,
597                                  bool set_fprc, uintptr_t retaddr)
598 {
599     if (flags & float_flag_invalid_idi) {
600         float_invalid_op_vxidi(env, set_fprc, retaddr);
601     } else if (flags & float_flag_invalid_zdz) {
602         float_invalid_op_vxzdz(env, set_fprc, retaddr);
603     } else if (flags & float_flag_invalid_snan) {
604         float_invalid_op_vxsnan(env, retaddr);
605     }
606 }
607 
608 /* fdiv - fdiv. */
609 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
610 {
611     float64 ret = float64_div(arg1, arg2, &env->fp_status);
612     int flags = get_float_exception_flags(&env->fp_status);
613 
614     if (unlikely(flags & float_flag_invalid)) {
615         float_invalid_op_div(env, flags, 1, GETPC());
616     }
617     if (unlikely(flags & float_flag_divbyzero)) {
618         float_zero_divide_excp(env, GETPC());
619     }
620 
621     return ret;
622 }
623 
624 /* fdivs - fdivs. */
625 float64 helper_fdivs(CPUPPCState *env, float64 arg1, float64 arg2)
626 {
627     float64 ret = float64r32_div(arg1, arg2, &env->fp_status);
628     int flags = get_float_exception_flags(&env->fp_status);
629 
630     if (unlikely(flags & float_flag_invalid)) {
631         float_invalid_op_div(env, flags, 1, GETPC());
632     }
633     if (unlikely(flags & float_flag_divbyzero)) {
634         float_zero_divide_excp(env, GETPC());
635     }
636 
637     return ret;
638 }
639 
640 static uint64_t float_invalid_cvt(CPUPPCState *env, int flags,
641                                   uint64_t ret, uint64_t ret_nan,
642                                   bool set_fprc, uintptr_t retaddr)
643 {
644     /*
645      * VXCVI is different from most in that it sets two exception bits,
646      * VXCVI and VXSNAN for an SNaN input.
647      */
648     if (flags & float_flag_invalid_snan) {
649         env->fpscr |= FP_VXSNAN;
650     }
651     float_invalid_op_vxcvi(env, set_fprc, retaddr);
652 
653     return flags & float_flag_invalid_cvti ? ret : ret_nan;
654 }
655 
656 #define FPU_FCTI(op, cvt, nanval)                                      \
657 uint64_t helper_##op(CPUPPCState *env, float64 arg)                    \
658 {                                                                      \
659     uint64_t ret = float64_to_##cvt(arg, &env->fp_status);             \
660     int flags = get_float_exception_flags(&env->fp_status);            \
661     if (unlikely(flags & float_flag_invalid)) {                        \
662         ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC());  \
663     }                                                                  \
664     return ret;                                                        \
665 }
666 
667 FPU_FCTI(fctiw, int32, 0x80000000U)
668 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
669 FPU_FCTI(fctiwu, uint32, 0x00000000U)
670 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
671 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
672 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
673 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
674 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
675 
676 #define FPU_FCFI(op, cvtr, is_single)                      \
677 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
678 {                                                          \
679     CPU_DoubleU farg;                                      \
680                                                            \
681     if (is_single) {                                       \
682         float32 tmp = cvtr(arg, &env->fp_status);          \
683         farg.d = float32_to_float64(tmp, &env->fp_status); \
684     } else {                                               \
685         farg.d = cvtr(arg, &env->fp_status);               \
686     }                                                      \
687     do_float_check_status(env, GETPC());                   \
688     return farg.ll;                                        \
689 }
690 
691 FPU_FCFI(fcfid, int64_to_float64, 0)
692 FPU_FCFI(fcfids, int64_to_float32, 1)
693 FPU_FCFI(fcfidu, uint64_to_float64, 0)
694 FPU_FCFI(fcfidus, uint64_to_float32, 1)
695 
696 static uint64_t do_fri(CPUPPCState *env, uint64_t arg,
697                        FloatRoundMode rounding_mode)
698 {
699     FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status);
700     int flags;
701 
702     set_float_rounding_mode(rounding_mode, &env->fp_status);
703     arg = float64_round_to_int(arg, &env->fp_status);
704     set_float_rounding_mode(old_rounding_mode, &env->fp_status);
705 
706     flags = get_float_exception_flags(&env->fp_status);
707     if (flags & float_flag_invalid_snan) {
708         float_invalid_op_vxsnan(env, GETPC());
709     }
710 
711     /* fri* does not set FPSCR[XX] */
712     set_float_exception_flags(flags & ~float_flag_inexact, &env->fp_status);
713     do_float_check_status(env, GETPC());
714 
715     return arg;
716 }
717 
718 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
719 {
720     return do_fri(env, arg, float_round_ties_away);
721 }
722 
723 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
724 {
725     return do_fri(env, arg, float_round_to_zero);
726 }
727 
728 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
729 {
730     return do_fri(env, arg, float_round_up);
731 }
732 
733 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
734 {
735     return do_fri(env, arg, float_round_down);
736 }
737 
738 static void float_invalid_op_madd(CPUPPCState *env, int flags,
739                                   bool set_fpcc, uintptr_t retaddr)
740 {
741     if (flags & float_flag_invalid_imz) {
742         float_invalid_op_vximz(env, set_fpcc, retaddr);
743     } else {
744         float_invalid_op_addsub(env, flags, set_fpcc, retaddr);
745     }
746 }
747 
748 static float64 do_fmadd(CPUPPCState *env, float64 a, float64 b,
749                          float64 c, int madd_flags, uintptr_t retaddr)
750 {
751     float64 ret = float64_muladd(a, b, c, madd_flags, &env->fp_status);
752     int flags = get_float_exception_flags(&env->fp_status);
753 
754     if (unlikely(flags & float_flag_invalid)) {
755         float_invalid_op_madd(env, flags, 1, retaddr);
756     }
757     return ret;
758 }
759 
760 static uint64_t do_fmadds(CPUPPCState *env, float64 a, float64 b,
761                           float64 c, int madd_flags, uintptr_t retaddr)
762 {
763     float64 ret = float64r32_muladd(a, b, c, madd_flags, &env->fp_status);
764     int flags = get_float_exception_flags(&env->fp_status);
765 
766     if (unlikely(flags & float_flag_invalid)) {
767         float_invalid_op_madd(env, flags, 1, retaddr);
768     }
769     return ret;
770 }
771 
772 #define FPU_FMADD(op, madd_flags)                                    \
773     uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,            \
774                          uint64_t arg2, uint64_t arg3)               \
775     { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \
776     uint64_t helper_##op##s(CPUPPCState *env, uint64_t arg1,         \
777                          uint64_t arg2, uint64_t arg3)               \
778     { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); }
779 
780 #define MADD_FLGS 0
781 #define MSUB_FLGS float_muladd_negate_c
782 #define NMADD_FLGS float_muladd_negate_result
783 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
784 
785 FPU_FMADD(fmadd, MADD_FLGS)
786 FPU_FMADD(fnmadd, NMADD_FLGS)
787 FPU_FMADD(fmsub, MSUB_FLGS)
788 FPU_FMADD(fnmsub, NMSUB_FLGS)
789 
790 /* frsp - frsp. */
791 static uint64_t do_frsp(CPUPPCState *env, uint64_t arg, uintptr_t retaddr)
792 {
793     float32 f32 = float64_to_float32(arg, &env->fp_status);
794     int flags = get_float_exception_flags(&env->fp_status);
795 
796     if (unlikely(flags & float_flag_invalid_snan)) {
797         float_invalid_op_vxsnan(env, retaddr);
798     }
799     return helper_todouble(f32);
800 }
801 
802 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
803 {
804     return do_frsp(env, arg, GETPC());
805 }
806 
807 static void float_invalid_op_sqrt(CPUPPCState *env, int flags,
808                                   bool set_fpcc, uintptr_t retaddr)
809 {
810     if (unlikely(flags & float_flag_invalid_sqrt)) {
811         float_invalid_op_vxsqrt(env, set_fpcc, retaddr);
812     } else if (unlikely(flags & float_flag_invalid_snan)) {
813         float_invalid_op_vxsnan(env, retaddr);
814     }
815 }
816 
817 /* fsqrt - fsqrt. */
818 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
819 {
820     float64 ret = float64_sqrt(arg, &env->fp_status);
821     int flags = get_float_exception_flags(&env->fp_status);
822 
823     if (unlikely(flags & float_flag_invalid)) {
824         float_invalid_op_sqrt(env, flags, 1, GETPC());
825     }
826 
827     return ret;
828 }
829 
830 /* fsqrts - fsqrts. */
831 float64 helper_fsqrts(CPUPPCState *env, float64 arg)
832 {
833     float64 ret = float64r32_sqrt(arg, &env->fp_status);
834     int flags = get_float_exception_flags(&env->fp_status);
835 
836     if (unlikely(flags & float_flag_invalid)) {
837         float_invalid_op_sqrt(env, flags, 1, GETPC());
838     }
839     return ret;
840 }
841 
842 /* fre - fre. */
843 float64 helper_fre(CPUPPCState *env, float64 arg)
844 {
845     /* "Estimate" the reciprocal with actual division.  */
846     float64 ret = float64_div(float64_one, arg, &env->fp_status);
847     int flags = get_float_exception_flags(&env->fp_status);
848 
849     if (unlikely(flags & float_flag_invalid_snan)) {
850         float_invalid_op_vxsnan(env, GETPC());
851     }
852     if (unlikely(flags & float_flag_divbyzero)) {
853         float_zero_divide_excp(env, GETPC());
854         /* For FPSCR.ZE == 0, the result is 1/2.  */
855         ret = float64_set_sign(float64_half, float64_is_neg(arg));
856     }
857 
858     return ret;
859 }
860 
861 /* fres - fres. */
862 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
863 {
864     /* "Estimate" the reciprocal with actual division.  */
865     float64 ret = float64r32_div(float64_one, arg, &env->fp_status);
866     int flags = get_float_exception_flags(&env->fp_status);
867 
868     if (unlikely(flags & float_flag_invalid_snan)) {
869         float_invalid_op_vxsnan(env, GETPC());
870     }
871     if (unlikely(flags & float_flag_divbyzero)) {
872         float_zero_divide_excp(env, GETPC());
873         /* For FPSCR.ZE == 0, the result is 1/2.  */
874         ret = float64_set_sign(float64_half, float64_is_neg(arg));
875     }
876 
877     return ret;
878 }
879 
880 /* frsqrte  - frsqrte. */
881 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
882 {
883     /* "Estimate" the reciprocal with actual division.  */
884     float64 rets = float64_sqrt(arg, &env->fp_status);
885     float64 retd = float64_div(float64_one, rets, &env->fp_status);
886     int flags = get_float_exception_flags(&env->fp_status);
887 
888     if (unlikely(flags & float_flag_invalid)) {
889         float_invalid_op_sqrt(env, flags, 1, GETPC());
890     }
891     if (unlikely(flags & float_flag_divbyzero)) {
892         /* Reciprocal of (square root of) zero.  */
893         float_zero_divide_excp(env, GETPC());
894     }
895 
896     return retd;
897 }
898 
899 /* frsqrtes  - frsqrtes. */
900 float64 helper_frsqrtes(CPUPPCState *env, float64 arg)
901 {
902     /* "Estimate" the reciprocal with actual division.  */
903     float64 rets = float64_sqrt(arg, &env->fp_status);
904     float64 retd = float64r32_div(float64_one, rets, &env->fp_status);
905     int flags = get_float_exception_flags(&env->fp_status);
906 
907     if (unlikely(flags & float_flag_invalid)) {
908         float_invalid_op_sqrt(env, flags, 1, GETPC());
909     }
910     if (unlikely(flags & float_flag_divbyzero)) {
911         /* Reciprocal of (square root of) zero.  */
912         float_zero_divide_excp(env, GETPC());
913     }
914 
915     return retd;
916 }
917 
918 /* fsel - fsel. */
919 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
920                      uint64_t arg3)
921 {
922     CPU_DoubleU farg1;
923 
924     farg1.ll = arg1;
925 
926     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
927         !float64_is_any_nan(farg1.d)) {
928         return arg2;
929     } else {
930         return arg3;
931     }
932 }
933 
934 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
935 {
936     int fe_flag = 0;
937     int fg_flag = 0;
938 
939     if (unlikely(float64_is_infinity(fra) ||
940                  float64_is_infinity(frb) ||
941                  float64_is_zero(frb))) {
942         fe_flag = 1;
943         fg_flag = 1;
944     } else {
945         int e_a = ppc_float64_get_unbiased_exp(fra);
946         int e_b = ppc_float64_get_unbiased_exp(frb);
947 
948         if (unlikely(float64_is_any_nan(fra) ||
949                      float64_is_any_nan(frb))) {
950             fe_flag = 1;
951         } else if ((e_b <= -1022) || (e_b >= 1021)) {
952             fe_flag = 1;
953         } else if (!float64_is_zero(fra) &&
954                    (((e_a - e_b) >= 1023) ||
955                     ((e_a - e_b) <= -1021) ||
956                     (e_a <= -970))) {
957             fe_flag = 1;
958         }
959 
960         if (unlikely(float64_is_zero_or_denormal(frb))) {
961             /* XB is not zero because of the above check and */
962             /* so must be denormalized.                      */
963             fg_flag = 1;
964         }
965     }
966 
967     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
968 }
969 
970 uint32_t helper_ftsqrt(uint64_t frb)
971 {
972     int fe_flag = 0;
973     int fg_flag = 0;
974 
975     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
976         fe_flag = 1;
977         fg_flag = 1;
978     } else {
979         int e_b = ppc_float64_get_unbiased_exp(frb);
980 
981         if (unlikely(float64_is_any_nan(frb))) {
982             fe_flag = 1;
983         } else if (unlikely(float64_is_zero(frb))) {
984             fe_flag = 1;
985         } else if (unlikely(float64_is_neg(frb))) {
986             fe_flag = 1;
987         } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
988             fe_flag = 1;
989         }
990 
991         if (unlikely(float64_is_zero_or_denormal(frb))) {
992             /* XB is not zero because of the above check and */
993             /* therefore must be denormalized.               */
994             fg_flag = 1;
995         }
996     }
997 
998     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
999 }
1000 
1001 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1002                   uint32_t crfD)
1003 {
1004     CPU_DoubleU farg1, farg2;
1005     uint32_t ret = 0;
1006 
1007     farg1.ll = arg1;
1008     farg2.ll = arg2;
1009 
1010     if (unlikely(float64_is_any_nan(farg1.d) ||
1011                  float64_is_any_nan(farg2.d))) {
1012         ret = 0x01UL;
1013     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1014         ret = 0x08UL;
1015     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1016         ret = 0x04UL;
1017     } else {
1018         ret = 0x02UL;
1019     }
1020 
1021     env->fpscr &= ~FP_FPCC;
1022     env->fpscr |= ret << FPSCR_FPCC;
1023     env->crf[crfD] = ret;
1024     if (unlikely(ret == 0x01UL
1025                  && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1026                      float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1027         /* sNaN comparison */
1028         float_invalid_op_vxsnan(env, GETPC());
1029     }
1030 }
1031 
1032 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1033                   uint32_t crfD)
1034 {
1035     CPU_DoubleU farg1, farg2;
1036     uint32_t ret = 0;
1037 
1038     farg1.ll = arg1;
1039     farg2.ll = arg2;
1040 
1041     if (unlikely(float64_is_any_nan(farg1.d) ||
1042                  float64_is_any_nan(farg2.d))) {
1043         ret = 0x01UL;
1044     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1045         ret = 0x08UL;
1046     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1047         ret = 0x04UL;
1048     } else {
1049         ret = 0x02UL;
1050     }
1051 
1052     env->fpscr &= ~FP_FPCC;
1053     env->fpscr |= ret << FPSCR_FPCC;
1054     env->crf[crfD] = (uint32_t) ret;
1055     if (unlikely(ret == 0x01UL)) {
1056         float_invalid_op_vxvc(env, 1, GETPC());
1057         if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1058             float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1059             /* sNaN comparison */
1060             float_invalid_op_vxsnan(env, GETPC());
1061         }
1062     }
1063 }
1064 
1065 /* Single-precision floating-point conversions */
1066 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1067 {
1068     CPU_FloatU u;
1069 
1070     u.f = int32_to_float32(val, &env->vec_status);
1071 
1072     return u.l;
1073 }
1074 
1075 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1076 {
1077     CPU_FloatU u;
1078 
1079     u.f = uint32_to_float32(val, &env->vec_status);
1080 
1081     return u.l;
1082 }
1083 
1084 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1085 {
1086     CPU_FloatU u;
1087 
1088     u.l = val;
1089     /* NaN are not treated the same way IEEE 754 does */
1090     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1091         return 0;
1092     }
1093 
1094     return float32_to_int32(u.f, &env->vec_status);
1095 }
1096 
1097 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1098 {
1099     CPU_FloatU u;
1100 
1101     u.l = val;
1102     /* NaN are not treated the same way IEEE 754 does */
1103     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1104         return 0;
1105     }
1106 
1107     return float32_to_uint32(u.f, &env->vec_status);
1108 }
1109 
1110 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1111 {
1112     CPU_FloatU u;
1113 
1114     u.l = val;
1115     /* NaN are not treated the same way IEEE 754 does */
1116     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1117         return 0;
1118     }
1119 
1120     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1121 }
1122 
1123 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1124 {
1125     CPU_FloatU u;
1126 
1127     u.l = val;
1128     /* NaN are not treated the same way IEEE 754 does */
1129     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1130         return 0;
1131     }
1132 
1133     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1134 }
1135 
1136 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1137 {
1138     CPU_FloatU u;
1139     float32 tmp;
1140 
1141     u.f = int32_to_float32(val, &env->vec_status);
1142     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1143     u.f = float32_div(u.f, tmp, &env->vec_status);
1144 
1145     return u.l;
1146 }
1147 
1148 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1149 {
1150     CPU_FloatU u;
1151     float32 tmp;
1152 
1153     u.f = uint32_to_float32(val, &env->vec_status);
1154     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1155     u.f = float32_div(u.f, tmp, &env->vec_status);
1156 
1157     return u.l;
1158 }
1159 
1160 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1161 {
1162     CPU_FloatU u;
1163     float32 tmp;
1164 
1165     u.l = val;
1166     /* NaN are not treated the same way IEEE 754 does */
1167     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1168         return 0;
1169     }
1170     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1171     u.f = float32_mul(u.f, tmp, &env->vec_status);
1172 
1173     return float32_to_int32(u.f, &env->vec_status);
1174 }
1175 
1176 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1177 {
1178     CPU_FloatU u;
1179     float32 tmp;
1180 
1181     u.l = val;
1182     /* NaN are not treated the same way IEEE 754 does */
1183     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1184         return 0;
1185     }
1186     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1187     u.f = float32_mul(u.f, tmp, &env->vec_status);
1188 
1189     return float32_to_uint32(u.f, &env->vec_status);
1190 }
1191 
1192 #define HELPER_SPE_SINGLE_CONV(name)                              \
1193     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1194     {                                                             \
1195         return e##name(env, val);                                 \
1196     }
1197 /* efscfsi */
1198 HELPER_SPE_SINGLE_CONV(fscfsi);
1199 /* efscfui */
1200 HELPER_SPE_SINGLE_CONV(fscfui);
1201 /* efscfuf */
1202 HELPER_SPE_SINGLE_CONV(fscfuf);
1203 /* efscfsf */
1204 HELPER_SPE_SINGLE_CONV(fscfsf);
1205 /* efsctsi */
1206 HELPER_SPE_SINGLE_CONV(fsctsi);
1207 /* efsctui */
1208 HELPER_SPE_SINGLE_CONV(fsctui);
1209 /* efsctsiz */
1210 HELPER_SPE_SINGLE_CONV(fsctsiz);
1211 /* efsctuiz */
1212 HELPER_SPE_SINGLE_CONV(fsctuiz);
1213 /* efsctsf */
1214 HELPER_SPE_SINGLE_CONV(fsctsf);
1215 /* efsctuf */
1216 HELPER_SPE_SINGLE_CONV(fsctuf);
1217 
1218 #define HELPER_SPE_VECTOR_CONV(name)                            \
1219     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1220     {                                                           \
1221         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1222             (uint64_t)e##name(env, val);                        \
1223     }
1224 /* evfscfsi */
1225 HELPER_SPE_VECTOR_CONV(fscfsi);
1226 /* evfscfui */
1227 HELPER_SPE_VECTOR_CONV(fscfui);
1228 /* evfscfuf */
1229 HELPER_SPE_VECTOR_CONV(fscfuf);
1230 /* evfscfsf */
1231 HELPER_SPE_VECTOR_CONV(fscfsf);
1232 /* evfsctsi */
1233 HELPER_SPE_VECTOR_CONV(fsctsi);
1234 /* evfsctui */
1235 HELPER_SPE_VECTOR_CONV(fsctui);
1236 /* evfsctsiz */
1237 HELPER_SPE_VECTOR_CONV(fsctsiz);
1238 /* evfsctuiz */
1239 HELPER_SPE_VECTOR_CONV(fsctuiz);
1240 /* evfsctsf */
1241 HELPER_SPE_VECTOR_CONV(fsctsf);
1242 /* evfsctuf */
1243 HELPER_SPE_VECTOR_CONV(fsctuf);
1244 
1245 /* Single-precision floating-point arithmetic */
1246 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1247 {
1248     CPU_FloatU u1, u2;
1249 
1250     u1.l = op1;
1251     u2.l = op2;
1252     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1253     return u1.l;
1254 }
1255 
1256 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1257 {
1258     CPU_FloatU u1, u2;
1259 
1260     u1.l = op1;
1261     u2.l = op2;
1262     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1263     return u1.l;
1264 }
1265 
1266 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1267 {
1268     CPU_FloatU u1, u2;
1269 
1270     u1.l = op1;
1271     u2.l = op2;
1272     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1273     return u1.l;
1274 }
1275 
1276 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1277 {
1278     CPU_FloatU u1, u2;
1279 
1280     u1.l = op1;
1281     u2.l = op2;
1282     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1283     return u1.l;
1284 }
1285 
1286 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1287     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1288     {                                                                   \
1289         return e##name(env, op1, op2);                                  \
1290     }
1291 /* efsadd */
1292 HELPER_SPE_SINGLE_ARITH(fsadd);
1293 /* efssub */
1294 HELPER_SPE_SINGLE_ARITH(fssub);
1295 /* efsmul */
1296 HELPER_SPE_SINGLE_ARITH(fsmul);
1297 /* efsdiv */
1298 HELPER_SPE_SINGLE_ARITH(fsdiv);
1299 
1300 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1301     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1302     {                                                                   \
1303         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1304             (uint64_t)e##name(env, op1, op2);                           \
1305     }
1306 /* evfsadd */
1307 HELPER_SPE_VECTOR_ARITH(fsadd);
1308 /* evfssub */
1309 HELPER_SPE_VECTOR_ARITH(fssub);
1310 /* evfsmul */
1311 HELPER_SPE_VECTOR_ARITH(fsmul);
1312 /* evfsdiv */
1313 HELPER_SPE_VECTOR_ARITH(fsdiv);
1314 
1315 /* Single-precision floating-point comparisons */
1316 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1317 {
1318     CPU_FloatU u1, u2;
1319 
1320     u1.l = op1;
1321     u2.l = op2;
1322     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1323 }
1324 
1325 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1326 {
1327     CPU_FloatU u1, u2;
1328 
1329     u1.l = op1;
1330     u2.l = op2;
1331     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1332 }
1333 
1334 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1335 {
1336     CPU_FloatU u1, u2;
1337 
1338     u1.l = op1;
1339     u2.l = op2;
1340     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1341 }
1342 
1343 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1344 {
1345     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1346     return efscmplt(env, op1, op2);
1347 }
1348 
1349 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1350 {
1351     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1352     return efscmpgt(env, op1, op2);
1353 }
1354 
1355 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1356 {
1357     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1358     return efscmpeq(env, op1, op2);
1359 }
1360 
1361 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1362     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1363     {                                                                   \
1364         return e##name(env, op1, op2);                                  \
1365     }
1366 /* efststlt */
1367 HELPER_SINGLE_SPE_CMP(fststlt);
1368 /* efststgt */
1369 HELPER_SINGLE_SPE_CMP(fststgt);
1370 /* efststeq */
1371 HELPER_SINGLE_SPE_CMP(fststeq);
1372 /* efscmplt */
1373 HELPER_SINGLE_SPE_CMP(fscmplt);
1374 /* efscmpgt */
1375 HELPER_SINGLE_SPE_CMP(fscmpgt);
1376 /* efscmpeq */
1377 HELPER_SINGLE_SPE_CMP(fscmpeq);
1378 
1379 static inline uint32_t evcmp_merge(int t0, int t1)
1380 {
1381     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1382 }
1383 
1384 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1385     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1386     {                                                                   \
1387         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1388                            e##name(env, op1, op2));                     \
1389     }
1390 /* evfststlt */
1391 HELPER_VECTOR_SPE_CMP(fststlt);
1392 /* evfststgt */
1393 HELPER_VECTOR_SPE_CMP(fststgt);
1394 /* evfststeq */
1395 HELPER_VECTOR_SPE_CMP(fststeq);
1396 /* evfscmplt */
1397 HELPER_VECTOR_SPE_CMP(fscmplt);
1398 /* evfscmpgt */
1399 HELPER_VECTOR_SPE_CMP(fscmpgt);
1400 /* evfscmpeq */
1401 HELPER_VECTOR_SPE_CMP(fscmpeq);
1402 
1403 /* Double-precision floating-point conversion */
1404 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1405 {
1406     CPU_DoubleU u;
1407 
1408     u.d = int32_to_float64(val, &env->vec_status);
1409 
1410     return u.ll;
1411 }
1412 
1413 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1414 {
1415     CPU_DoubleU u;
1416 
1417     u.d = int64_to_float64(val, &env->vec_status);
1418 
1419     return u.ll;
1420 }
1421 
1422 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1423 {
1424     CPU_DoubleU u;
1425 
1426     u.d = uint32_to_float64(val, &env->vec_status);
1427 
1428     return u.ll;
1429 }
1430 
1431 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1432 {
1433     CPU_DoubleU u;
1434 
1435     u.d = uint64_to_float64(val, &env->vec_status);
1436 
1437     return u.ll;
1438 }
1439 
1440 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1441 {
1442     CPU_DoubleU u;
1443 
1444     u.ll = val;
1445     /* NaN are not treated the same way IEEE 754 does */
1446     if (unlikely(float64_is_any_nan(u.d))) {
1447         return 0;
1448     }
1449 
1450     return float64_to_int32(u.d, &env->vec_status);
1451 }
1452 
1453 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1454 {
1455     CPU_DoubleU u;
1456 
1457     u.ll = val;
1458     /* NaN are not treated the same way IEEE 754 does */
1459     if (unlikely(float64_is_any_nan(u.d))) {
1460         return 0;
1461     }
1462 
1463     return float64_to_uint32(u.d, &env->vec_status);
1464 }
1465 
1466 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1467 {
1468     CPU_DoubleU u;
1469 
1470     u.ll = val;
1471     /* NaN are not treated the same way IEEE 754 does */
1472     if (unlikely(float64_is_any_nan(u.d))) {
1473         return 0;
1474     }
1475 
1476     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1477 }
1478 
1479 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1480 {
1481     CPU_DoubleU u;
1482 
1483     u.ll = val;
1484     /* NaN are not treated the same way IEEE 754 does */
1485     if (unlikely(float64_is_any_nan(u.d))) {
1486         return 0;
1487     }
1488 
1489     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1490 }
1491 
1492 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1493 {
1494     CPU_DoubleU u;
1495 
1496     u.ll = val;
1497     /* NaN are not treated the same way IEEE 754 does */
1498     if (unlikely(float64_is_any_nan(u.d))) {
1499         return 0;
1500     }
1501 
1502     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1503 }
1504 
1505 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1506 {
1507     CPU_DoubleU u;
1508 
1509     u.ll = val;
1510     /* NaN are not treated the same way IEEE 754 does */
1511     if (unlikely(float64_is_any_nan(u.d))) {
1512         return 0;
1513     }
1514 
1515     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1516 }
1517 
1518 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1519 {
1520     CPU_DoubleU u;
1521     float64 tmp;
1522 
1523     u.d = int32_to_float64(val, &env->vec_status);
1524     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1525     u.d = float64_div(u.d, tmp, &env->vec_status);
1526 
1527     return u.ll;
1528 }
1529 
1530 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1531 {
1532     CPU_DoubleU u;
1533     float64 tmp;
1534 
1535     u.d = uint32_to_float64(val, &env->vec_status);
1536     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1537     u.d = float64_div(u.d, tmp, &env->vec_status);
1538 
1539     return u.ll;
1540 }
1541 
1542 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1543 {
1544     CPU_DoubleU u;
1545     float64 tmp;
1546 
1547     u.ll = val;
1548     /* NaN are not treated the same way IEEE 754 does */
1549     if (unlikely(float64_is_any_nan(u.d))) {
1550         return 0;
1551     }
1552     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1553     u.d = float64_mul(u.d, tmp, &env->vec_status);
1554 
1555     return float64_to_int32(u.d, &env->vec_status);
1556 }
1557 
1558 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1559 {
1560     CPU_DoubleU u;
1561     float64 tmp;
1562 
1563     u.ll = val;
1564     /* NaN are not treated the same way IEEE 754 does */
1565     if (unlikely(float64_is_any_nan(u.d))) {
1566         return 0;
1567     }
1568     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1569     u.d = float64_mul(u.d, tmp, &env->vec_status);
1570 
1571     return float64_to_uint32(u.d, &env->vec_status);
1572 }
1573 
1574 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1575 {
1576     CPU_DoubleU u1;
1577     CPU_FloatU u2;
1578 
1579     u1.ll = val;
1580     u2.f = float64_to_float32(u1.d, &env->vec_status);
1581 
1582     return u2.l;
1583 }
1584 
1585 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1586 {
1587     CPU_DoubleU u2;
1588     CPU_FloatU u1;
1589 
1590     u1.l = val;
1591     u2.d = float32_to_float64(u1.f, &env->vec_status);
1592 
1593     return u2.ll;
1594 }
1595 
1596 /* Double precision fixed-point arithmetic */
1597 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1598 {
1599     CPU_DoubleU u1, u2;
1600 
1601     u1.ll = op1;
1602     u2.ll = op2;
1603     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1604     return u1.ll;
1605 }
1606 
1607 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1608 {
1609     CPU_DoubleU u1, u2;
1610 
1611     u1.ll = op1;
1612     u2.ll = op2;
1613     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1614     return u1.ll;
1615 }
1616 
1617 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1618 {
1619     CPU_DoubleU u1, u2;
1620 
1621     u1.ll = op1;
1622     u2.ll = op2;
1623     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1624     return u1.ll;
1625 }
1626 
1627 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1628 {
1629     CPU_DoubleU u1, u2;
1630 
1631     u1.ll = op1;
1632     u2.ll = op2;
1633     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1634     return u1.ll;
1635 }
1636 
1637 /* Double precision floating point helpers */
1638 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1639 {
1640     CPU_DoubleU u1, u2;
1641 
1642     u1.ll = op1;
1643     u2.ll = op2;
1644     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1645 }
1646 
1647 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1648 {
1649     CPU_DoubleU u1, u2;
1650 
1651     u1.ll = op1;
1652     u2.ll = op2;
1653     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1654 }
1655 
1656 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1657 {
1658     CPU_DoubleU u1, u2;
1659 
1660     u1.ll = op1;
1661     u2.ll = op2;
1662     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1663 }
1664 
1665 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1666 {
1667     /* XXX: TODO: test special values (NaN, infinites, ...) */
1668     return helper_efdtstlt(env, op1, op2);
1669 }
1670 
1671 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1672 {
1673     /* XXX: TODO: test special values (NaN, infinites, ...) */
1674     return helper_efdtstgt(env, op1, op2);
1675 }
1676 
1677 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1678 {
1679     /* XXX: TODO: test special values (NaN, infinites, ...) */
1680     return helper_efdtsteq(env, op1, op2);
1681 }
1682 
1683 #define float64_to_float64(x, env) x
1684 
1685 
1686 /*
1687  * VSX_ADD_SUB - VSX floating point add/subtract
1688  *   name  - instruction mnemonic
1689  *   op    - operation (add or sub)
1690  *   nels  - number of elements (1, 2 or 4)
1691  *   tp    - type (float32 or float64)
1692  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1693  *   sfprf - set FPRF
1694  */
1695 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1696 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                          \
1697                    ppc_vsr_t *xa, ppc_vsr_t *xb)                             \
1698 {                                                                            \
1699     ppc_vsr_t t = { };                                                       \
1700     int i;                                                                   \
1701                                                                              \
1702     helper_reset_fpstatus(env);                                              \
1703                                                                              \
1704     for (i = 0; i < nels; i++) {                                             \
1705         float_status tstat = env->fp_status;                                 \
1706         set_float_exception_flags(0, &tstat);                                \
1707         t.fld = tp##_##op(xa->fld, xb->fld, &tstat);                         \
1708         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1709                                                                              \
1710         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1711             float_invalid_op_addsub(env, tstat.float_exception_flags,        \
1712                                     sfprf, GETPC());                         \
1713         }                                                                    \
1714                                                                              \
1715         if (r2sp) {                                                          \
1716             t.fld = do_frsp(env, t.fld, GETPC());                            \
1717         }                                                                    \
1718                                                                              \
1719         if (sfprf) {                                                         \
1720             helper_compute_fprf_float64(env, t.fld);                         \
1721         }                                                                    \
1722     }                                                                        \
1723     *xt = t;                                                                 \
1724     do_float_check_status(env, GETPC());                                     \
1725 }
1726 
1727 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1728 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1729 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1730 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1731 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1732 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1733 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1734 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1735 
1736 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1737                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1738 {
1739     ppc_vsr_t t = *xt;
1740     float_status tstat;
1741 
1742     helper_reset_fpstatus(env);
1743 
1744     tstat = env->fp_status;
1745     if (unlikely(Rc(opcode) != 0)) {
1746         tstat.float_rounding_mode = float_round_to_odd;
1747     }
1748 
1749     set_float_exception_flags(0, &tstat);
1750     t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1751     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1752 
1753     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1754         float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
1755     }
1756 
1757     helper_compute_fprf_float128(env, t.f128);
1758 
1759     *xt = t;
1760     do_float_check_status(env, GETPC());
1761 }
1762 
1763 /*
1764  * VSX_MUL - VSX floating point multiply
1765  *   op    - instruction mnemonic
1766  *   nels  - number of elements (1, 2 or 4)
1767  *   tp    - type (float32 or float64)
1768  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1769  *   sfprf - set FPRF
1770  */
1771 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1772 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                            \
1773                  ppc_vsr_t *xa, ppc_vsr_t *xb)                               \
1774 {                                                                            \
1775     ppc_vsr_t t = { };                                                       \
1776     int i;                                                                   \
1777                                                                              \
1778     helper_reset_fpstatus(env);                                              \
1779                                                                              \
1780     for (i = 0; i < nels; i++) {                                             \
1781         float_status tstat = env->fp_status;                                 \
1782         set_float_exception_flags(0, &tstat);                                \
1783         t.fld = tp##_mul(xa->fld, xb->fld, &tstat);                          \
1784         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1785                                                                              \
1786         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1787             float_invalid_op_mul(env, tstat.float_exception_flags,           \
1788                                  sfprf, GETPC());                            \
1789         }                                                                    \
1790                                                                              \
1791         if (r2sp) {                                                          \
1792             t.fld = do_frsp(env, t.fld, GETPC());                            \
1793         }                                                                    \
1794                                                                              \
1795         if (sfprf) {                                                         \
1796             helper_compute_fprf_float64(env, t.fld);                         \
1797         }                                                                    \
1798     }                                                                        \
1799                                                                              \
1800     *xt = t;                                                                 \
1801     do_float_check_status(env, GETPC());                                     \
1802 }
1803 
1804 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1805 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1806 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1807 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1808 
1809 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1810                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1811 {
1812     ppc_vsr_t t = *xt;
1813     float_status tstat;
1814 
1815     helper_reset_fpstatus(env);
1816     tstat = env->fp_status;
1817     if (unlikely(Rc(opcode) != 0)) {
1818         tstat.float_rounding_mode = float_round_to_odd;
1819     }
1820 
1821     set_float_exception_flags(0, &tstat);
1822     t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1823     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1824 
1825     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1826         float_invalid_op_mul(env, tstat.float_exception_flags, 1, GETPC());
1827     }
1828     helper_compute_fprf_float128(env, t.f128);
1829 
1830     *xt = t;
1831     do_float_check_status(env, GETPC());
1832 }
1833 
1834 /*
1835  * VSX_DIV - VSX floating point divide
1836  *   op    - instruction mnemonic
1837  *   nels  - number of elements (1, 2 or 4)
1838  *   tp    - type (float32 or float64)
1839  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1840  *   sfprf - set FPRF
1841  */
1842 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1843 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
1844                  ppc_vsr_t *xa, ppc_vsr_t *xb)                                \
1845 {                                                                             \
1846     ppc_vsr_t t = { };                                                        \
1847     int i;                                                                    \
1848                                                                               \
1849     helper_reset_fpstatus(env);                                               \
1850                                                                               \
1851     for (i = 0; i < nels; i++) {                                              \
1852         float_status tstat = env->fp_status;                                  \
1853         set_float_exception_flags(0, &tstat);                                 \
1854         t.fld = tp##_div(xa->fld, xb->fld, &tstat);                           \
1855         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1856                                                                               \
1857         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1858             float_invalid_op_div(env, tstat.float_exception_flags,            \
1859                                  sfprf, GETPC());                             \
1860         }                                                                     \
1861         if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {   \
1862             float_zero_divide_excp(env, GETPC());                             \
1863         }                                                                     \
1864                                                                               \
1865         if (r2sp) {                                                           \
1866             t.fld = do_frsp(env, t.fld, GETPC());                             \
1867         }                                                                     \
1868                                                                               \
1869         if (sfprf) {                                                          \
1870             helper_compute_fprf_float64(env, t.fld);                          \
1871         }                                                                     \
1872     }                                                                         \
1873                                                                               \
1874     *xt = t;                                                                  \
1875     do_float_check_status(env, GETPC());                                      \
1876 }
1877 
1878 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1879 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1880 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1881 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1882 
1883 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
1884                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1885 {
1886     ppc_vsr_t t = *xt;
1887     float_status tstat;
1888 
1889     helper_reset_fpstatus(env);
1890     tstat = env->fp_status;
1891     if (unlikely(Rc(opcode) != 0)) {
1892         tstat.float_rounding_mode = float_round_to_odd;
1893     }
1894 
1895     set_float_exception_flags(0, &tstat);
1896     t.f128 = float128_div(xa->f128, xb->f128, &tstat);
1897     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1898 
1899     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1900         float_invalid_op_div(env, tstat.float_exception_flags, 1, GETPC());
1901     }
1902     if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
1903         float_zero_divide_excp(env, GETPC());
1904     }
1905 
1906     helper_compute_fprf_float128(env, t.f128);
1907     *xt = t;
1908     do_float_check_status(env, GETPC());
1909 }
1910 
1911 /*
1912  * VSX_RE  - VSX floating point reciprocal estimate
1913  *   op    - instruction mnemonic
1914  *   nels  - number of elements (1, 2 or 4)
1915  *   tp    - type (float32 or float64)
1916  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1917  *   sfprf - set FPRF
1918  */
1919 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
1920 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)              \
1921 {                                                                             \
1922     ppc_vsr_t t = { };                                                        \
1923     int i;                                                                    \
1924                                                                               \
1925     helper_reset_fpstatus(env);                                               \
1926                                                                               \
1927     for (i = 0; i < nels; i++) {                                              \
1928         if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
1929             float_invalid_op_vxsnan(env, GETPC());                            \
1930         }                                                                     \
1931         t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status);                 \
1932                                                                               \
1933         if (r2sp) {                                                           \
1934             t.fld = do_frsp(env, t.fld, GETPC());                             \
1935         }                                                                     \
1936                                                                               \
1937         if (sfprf) {                                                          \
1938             helper_compute_fprf_float64(env, t.fld);                          \
1939         }                                                                     \
1940     }                                                                         \
1941                                                                               \
1942     *xt = t;                                                                  \
1943     do_float_check_status(env, GETPC());                                      \
1944 }
1945 
1946 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
1947 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
1948 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
1949 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
1950 
1951 /*
1952  * VSX_SQRT - VSX floating point square root
1953  *   op    - instruction mnemonic
1954  *   nels  - number of elements (1, 2 or 4)
1955  *   tp    - type (float32 or float64)
1956  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1957  *   sfprf - set FPRF
1958  */
1959 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
1960 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
1961 {                                                                            \
1962     ppc_vsr_t t = { };                                                       \
1963     int i;                                                                   \
1964                                                                              \
1965     helper_reset_fpstatus(env);                                              \
1966                                                                              \
1967     for (i = 0; i < nels; i++) {                                             \
1968         float_status tstat = env->fp_status;                                 \
1969         set_float_exception_flags(0, &tstat);                                \
1970         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
1971         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1972                                                                              \
1973         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1974             float_invalid_op_sqrt(env, tstat.float_exception_flags,          \
1975                                   sfprf, GETPC());                           \
1976         }                                                                    \
1977                                                                              \
1978         if (r2sp) {                                                          \
1979             t.fld = do_frsp(env, t.fld, GETPC());                            \
1980         }                                                                    \
1981                                                                              \
1982         if (sfprf) {                                                         \
1983             helper_compute_fprf_float64(env, t.fld);                         \
1984         }                                                                    \
1985     }                                                                        \
1986                                                                              \
1987     *xt = t;                                                                 \
1988     do_float_check_status(env, GETPC());                                     \
1989 }
1990 
1991 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
1992 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
1993 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
1994 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
1995 
1996 /*
1997  *VSX_RSQRTE - VSX floating point reciprocal square root estimate
1998  *   op    - instruction mnemonic
1999  *   nels  - number of elements (1, 2 or 4)
2000  *   tp    - type (float32 or float64)
2001  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2002  *   sfprf - set FPRF
2003  */
2004 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2005 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2006 {                                                                            \
2007     ppc_vsr_t t = { };                                                       \
2008     int i;                                                                   \
2009                                                                              \
2010     helper_reset_fpstatus(env);                                              \
2011                                                                              \
2012     for (i = 0; i < nels; i++) {                                             \
2013         float_status tstat = env->fp_status;                                 \
2014         set_float_exception_flags(0, &tstat);                                \
2015         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
2016         t.fld = tp##_div(tp##_one, t.fld, &tstat);                           \
2017         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2018         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2019             float_invalid_op_sqrt(env, tstat.float_exception_flags,          \
2020                                   sfprf, GETPC());                           \
2021         }                                                                    \
2022         if (r2sp) {                                                          \
2023             t.fld = do_frsp(env, t.fld, GETPC());                            \
2024         }                                                                    \
2025                                                                              \
2026         if (sfprf) {                                                         \
2027             helper_compute_fprf_float64(env, t.fld);                         \
2028         }                                                                    \
2029     }                                                                        \
2030                                                                              \
2031     *xt = t;                                                                 \
2032     do_float_check_status(env, GETPC());                                     \
2033 }
2034 
2035 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2036 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2037 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2038 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2039 
2040 /*
2041  * VSX_TDIV - VSX floating point test for divide
2042  *   op    - instruction mnemonic
2043  *   nels  - number of elements (1, 2 or 4)
2044  *   tp    - type (float32 or float64)
2045  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2046  *   emin  - minimum unbiased exponent
2047  *   emax  - maximum unbiased exponent
2048  *   nbits - number of fraction bits
2049  */
2050 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2051 void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
2052                  ppc_vsr_t *xa, ppc_vsr_t *xb)                          \
2053 {                                                                       \
2054     int i;                                                              \
2055     int fe_flag = 0;                                                    \
2056     int fg_flag = 0;                                                    \
2057                                                                         \
2058     for (i = 0; i < nels; i++) {                                        \
2059         if (unlikely(tp##_is_infinity(xa->fld) ||                       \
2060                      tp##_is_infinity(xb->fld) ||                       \
2061                      tp##_is_zero(xb->fld))) {                          \
2062             fe_flag = 1;                                                \
2063             fg_flag = 1;                                                \
2064         } else {                                                        \
2065             int e_a = ppc_##tp##_get_unbiased_exp(xa->fld);             \
2066             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
2067                                                                         \
2068             if (unlikely(tp##_is_any_nan(xa->fld) ||                    \
2069                          tp##_is_any_nan(xb->fld))) {                   \
2070                 fe_flag = 1;                                            \
2071             } else if ((e_b <= emin) || (e_b >= (emax - 2))) {          \
2072                 fe_flag = 1;                                            \
2073             } else if (!tp##_is_zero(xa->fld) &&                        \
2074                        (((e_a - e_b) >= emax) ||                        \
2075                         ((e_a - e_b) <= (emin + 1)) ||                  \
2076                         (e_a <= (emin + nbits)))) {                     \
2077                 fe_flag = 1;                                            \
2078             }                                                           \
2079                                                                         \
2080             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2081                 /*                                                      \
2082                  * XB is not zero because of the above check and so     \
2083                  * must be denormalized.                                \
2084                  */                                                     \
2085                 fg_flag = 1;                                            \
2086             }                                                           \
2087         }                                                               \
2088     }                                                                   \
2089                                                                         \
2090     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2091 }
2092 
2093 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2094 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2095 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2096 
2097 /*
2098  * VSX_TSQRT - VSX floating point test for square root
2099  *   op    - instruction mnemonic
2100  *   nels  - number of elements (1, 2 or 4)
2101  *   tp    - type (float32 or float64)
2102  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2103  *   emin  - minimum unbiased exponent
2104  *   emax  - maximum unbiased exponent
2105  *   nbits - number of fraction bits
2106  */
2107 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2108 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)      \
2109 {                                                                       \
2110     int i;                                                              \
2111     int fe_flag = 0;                                                    \
2112     int fg_flag = 0;                                                    \
2113                                                                         \
2114     for (i = 0; i < nels; i++) {                                        \
2115         if (unlikely(tp##_is_infinity(xb->fld) ||                       \
2116                      tp##_is_zero(xb->fld))) {                          \
2117             fe_flag = 1;                                                \
2118             fg_flag = 1;                                                \
2119         } else {                                                        \
2120             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
2121                                                                         \
2122             if (unlikely(tp##_is_any_nan(xb->fld))) {                   \
2123                 fe_flag = 1;                                            \
2124             } else if (unlikely(tp##_is_zero(xb->fld))) {               \
2125                 fe_flag = 1;                                            \
2126             } else if (unlikely(tp##_is_neg(xb->fld))) {                \
2127                 fe_flag = 1;                                            \
2128             } else if (!tp##_is_zero(xb->fld) &&                        \
2129                        (e_b <= (emin + nbits))) {                       \
2130                 fe_flag = 1;                                            \
2131             }                                                           \
2132                                                                         \
2133             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2134                 /*                                                      \
2135                  * XB is not zero because of the above check and        \
2136                  * therefore must be denormalized.                      \
2137                  */                                                     \
2138                 fg_flag = 1;                                            \
2139             }                                                           \
2140         }                                                               \
2141     }                                                                   \
2142                                                                         \
2143     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2144 }
2145 
2146 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2147 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2148 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2149 
2150 /*
2151  * VSX_MADD - VSX floating point muliply/add variations
2152  *   op    - instruction mnemonic
2153  *   nels  - number of elements (1, 2 or 4)
2154  *   tp    - type (float32 or float64)
2155  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2156  *   maddflgs - flags for the float*muladd routine that control the
2157  *           various forms (madd, msub, nmadd, nmsub)
2158  *   sfprf - set FPRF
2159  *   r2sp  - round intermediate double precision result to single precision
2160  */
2161 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp)                    \
2162 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
2163                  ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3)                 \
2164 {                                                                             \
2165     ppc_vsr_t t = *xt;                                                        \
2166     int i;                                                                    \
2167                                                                               \
2168     helper_reset_fpstatus(env);                                               \
2169                                                                               \
2170     for (i = 0; i < nels; i++) {                                              \
2171         float_status tstat = env->fp_status;                                  \
2172         set_float_exception_flags(0, &tstat);                                 \
2173         if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2174             /*                                                                \
2175              * Avoid double rounding errors by rounding the intermediate      \
2176              * result to odd.                                                 \
2177              */                                                               \
2178             set_float_rounding_mode(float_round_to_zero, &tstat);             \
2179             t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld,                    \
2180                                 maddflgs, &tstat);                            \
2181             t.fld |= (get_float_exception_flags(&tstat) &                     \
2182                       float_flag_inexact) != 0;                               \
2183         } else {                                                              \
2184             t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld,                    \
2185                                 maddflgs, &tstat);                            \
2186         }                                                                     \
2187         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2188                                                                               \
2189         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2190             float_invalid_op_madd(env, tstat.float_exception_flags,           \
2191                                   sfprf, GETPC());                            \
2192         }                                                                     \
2193                                                                               \
2194         if (r2sp) {                                                           \
2195             t.fld = do_frsp(env, t.fld, GETPC());                             \
2196         }                                                                     \
2197                                                                               \
2198         if (sfprf) {                                                          \
2199             helper_compute_fprf_float64(env, t.fld);                          \
2200         }                                                                     \
2201     }                                                                         \
2202     *xt = t;                                                                  \
2203     do_float_check_status(env, GETPC());                                      \
2204 }
2205 
2206 VSX_MADD(XSMADDDP, 1, float64, VsrD(0), MADD_FLGS, 1, 0)
2207 VSX_MADD(XSMSUBDP, 1, float64, VsrD(0), MSUB_FLGS, 1, 0)
2208 VSX_MADD(XSNMADDDP, 1, float64, VsrD(0), NMADD_FLGS, 1, 0)
2209 VSX_MADD(XSNMSUBDP, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0)
2210 VSX_MADD(XSMADDSP, 1, float64, VsrD(0), MADD_FLGS, 1, 1)
2211 VSX_MADD(XSMSUBSP, 1, float64, VsrD(0), MSUB_FLGS, 1, 1)
2212 VSX_MADD(XSNMADDSP, 1, float64, VsrD(0), NMADD_FLGS, 1, 1)
2213 VSX_MADD(XSNMSUBSP, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1)
2214 
2215 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0)
2216 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0)
2217 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0)
2218 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0)
2219 
2220 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0)
2221 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0)
2222 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0)
2223 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0)
2224 
2225 /*
2226  * VSX_MADDQ - VSX floating point quad-precision muliply/add
2227  *   op    - instruction mnemonic
2228  *   maddflgs - flags for the float*muladd routine that control the
2229  *           various forms (madd, msub, nmadd, nmsub)
2230  *   ro    - round to odd
2231  */
2232 #define VSX_MADDQ(op, maddflgs, ro)                                            \
2233 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\
2234                  ppc_vsr_t *s3)                                                \
2235 {                                                                              \
2236     ppc_vsr_t t = *xt;                                                         \
2237                                                                                \
2238     helper_reset_fpstatus(env);                                                \
2239                                                                                \
2240     float_status tstat = env->fp_status;                                       \
2241     set_float_exception_flags(0, &tstat);                                      \
2242     if (ro) {                                                                  \
2243         tstat.float_rounding_mode = float_round_to_odd;                        \
2244     }                                                                          \
2245     t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat);  \
2246     env->fp_status.float_exception_flags |= tstat.float_exception_flags;       \
2247                                                                                \
2248     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {          \
2249         float_invalid_op_madd(env, tstat.float_exception_flags,                \
2250                               false, GETPC());                                 \
2251     }                                                                          \
2252                                                                                \
2253     helper_compute_fprf_float128(env, t.f128);                                 \
2254     *xt = t;                                                                   \
2255     do_float_check_status(env, GETPC());                                       \
2256 }
2257 
2258 VSX_MADDQ(XSMADDQP, MADD_FLGS, 0)
2259 VSX_MADDQ(XSMADDQPO, MADD_FLGS, 1)
2260 VSX_MADDQ(XSMSUBQP, MSUB_FLGS, 0)
2261 VSX_MADDQ(XSMSUBQPO, MSUB_FLGS, 1)
2262 VSX_MADDQ(XSNMADDQP, NMADD_FLGS, 0)
2263 VSX_MADDQ(XSNMADDQPO, NMADD_FLGS, 1)
2264 VSX_MADDQ(XSNMSUBQP, NMSUB_FLGS, 0)
2265 VSX_MADDQ(XSNMSUBQPO, NMSUB_FLGS, 0)
2266 
2267 /*
2268  * VSX_SCALAR_CMP - VSX scalar floating point compare
2269  *   op    - instruction mnemonic
2270  *   tp    - type
2271  *   cmp   - comparison operation
2272  *   fld   - vsr_t field
2273  *   svxvc - set VXVC bit
2274  */
2275 #define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc)                               \
2276         void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2277                 ppc_vsr_t *xa, ppc_vsr_t *xb)                                 \
2278 {                                                                             \
2279     int flags;                                                                \
2280     bool r, vxvc;                                                             \
2281                                                                               \
2282     helper_reset_fpstatus(env);                                               \
2283                                                                               \
2284     if (svxvc) {                                                              \
2285         r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status);                    \
2286     } else {                                                                  \
2287         r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status);            \
2288     }                                                                         \
2289                                                                               \
2290     flags = get_float_exception_flags(&env->fp_status);                       \
2291     if (unlikely(flags & float_flag_invalid)) {                               \
2292         vxvc = svxvc;                                                         \
2293         if (flags & float_flag_invalid_snan) {                                \
2294             float_invalid_op_vxsnan(env, GETPC());                            \
2295             vxvc &= fpscr_ve == 0;                                            \
2296         }                                                                     \
2297         if (vxvc) {                                                           \
2298             float_invalid_op_vxvc(env, 0, GETPC());                           \
2299         }                                                                     \
2300     }                                                                         \
2301                                                                               \
2302     memset(xt, 0, sizeof(*xt));                                               \
2303     memset(&xt->fld, -r, sizeof(xt->fld));                                    \
2304     do_float_check_status(env, GETPC());                                      \
2305 }
2306 
2307 VSX_SCALAR_CMP(XSCMPEQDP, float64, eq, VsrD(0), 0)
2308 VSX_SCALAR_CMP(XSCMPGEDP, float64, le, VsrD(0), 1)
2309 VSX_SCALAR_CMP(XSCMPGTDP, float64, lt, VsrD(0), 1)
2310 VSX_SCALAR_CMP(XSCMPEQQP, float128, eq, f128, 0)
2311 VSX_SCALAR_CMP(XSCMPGEQP, float128, le, f128, 1)
2312 VSX_SCALAR_CMP(XSCMPGTQP, float128, lt, f128, 1)
2313 
2314 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2315                        ppc_vsr_t *xa, ppc_vsr_t *xb)
2316 {
2317     int64_t exp_a, exp_b;
2318     uint32_t cc;
2319 
2320     exp_a = extract64(xa->VsrD(0), 52, 11);
2321     exp_b = extract64(xb->VsrD(0), 52, 11);
2322 
2323     if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2324                  float64_is_any_nan(xb->VsrD(0)))) {
2325         cc = CRF_SO;
2326     } else {
2327         if (exp_a < exp_b) {
2328             cc = CRF_LT;
2329         } else if (exp_a > exp_b) {
2330             cc = CRF_GT;
2331         } else {
2332             cc = CRF_EQ;
2333         }
2334     }
2335 
2336     env->fpscr &= ~FP_FPCC;
2337     env->fpscr |= cc << FPSCR_FPCC;
2338     env->crf[BF(opcode)] = cc;
2339 
2340     do_float_check_status(env, GETPC());
2341 }
2342 
2343 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2344                        ppc_vsr_t *xa, ppc_vsr_t *xb)
2345 {
2346     int64_t exp_a, exp_b;
2347     uint32_t cc;
2348 
2349     exp_a = extract64(xa->VsrD(0), 48, 15);
2350     exp_b = extract64(xb->VsrD(0), 48, 15);
2351 
2352     if (unlikely(float128_is_any_nan(xa->f128) ||
2353                  float128_is_any_nan(xb->f128))) {
2354         cc = CRF_SO;
2355     } else {
2356         if (exp_a < exp_b) {
2357             cc = CRF_LT;
2358         } else if (exp_a > exp_b) {
2359             cc = CRF_GT;
2360         } else {
2361             cc = CRF_EQ;
2362         }
2363     }
2364 
2365     env->fpscr &= ~FP_FPCC;
2366     env->fpscr |= cc << FPSCR_FPCC;
2367     env->crf[BF(opcode)] = cc;
2368 
2369     do_float_check_status(env, GETPC());
2370 }
2371 
2372 static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb,
2373                                  int crf_idx, bool ordered)
2374 {
2375     uint32_t cc;
2376     bool vxsnan_flag = false, vxvc_flag = false;
2377 
2378     helper_reset_fpstatus(env);
2379 
2380     switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) {
2381     case float_relation_less:
2382         cc = CRF_LT;
2383         break;
2384     case float_relation_equal:
2385         cc = CRF_EQ;
2386         break;
2387     case float_relation_greater:
2388         cc = CRF_GT;
2389         break;
2390     case float_relation_unordered:
2391         cc = CRF_SO;
2392 
2393         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||
2394             float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {
2395             vxsnan_flag = true;
2396             if (fpscr_ve == 0 && ordered) {
2397                 vxvc_flag = true;
2398             }
2399         } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||
2400                    float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) {
2401             if (ordered) {
2402                 vxvc_flag = true;
2403             }
2404         }
2405 
2406         break;
2407     default:
2408         g_assert_not_reached();
2409     }
2410 
2411     env->fpscr &= ~FP_FPCC;
2412     env->fpscr |= cc << FPSCR_FPCC;
2413     env->crf[crf_idx] = cc;
2414 
2415     if (vxsnan_flag) {
2416         float_invalid_op_vxsnan(env, GETPC());
2417     }
2418     if (vxvc_flag) {
2419         float_invalid_op_vxvc(env, 0, GETPC());
2420     }
2421 
2422     do_float_check_status(env, GETPC());
2423 }
2424 
2425 void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2426                      ppc_vsr_t *xb)
2427 {
2428     do_scalar_cmp(env, xa, xb, BF(opcode), true);
2429 }
2430 
2431 void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2432                      ppc_vsr_t *xb)
2433 {
2434     do_scalar_cmp(env, xa, xb, BF(opcode), false);
2435 }
2436 
2437 static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa,
2438                                   ppc_vsr_t *xb, int crf_idx, bool ordered)
2439 {
2440     uint32_t cc;
2441     bool vxsnan_flag = false, vxvc_flag = false;
2442 
2443     helper_reset_fpstatus(env);
2444 
2445     switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) {
2446     case float_relation_less:
2447         cc = CRF_LT;
2448         break;
2449     case float_relation_equal:
2450         cc = CRF_EQ;
2451         break;
2452     case float_relation_greater:
2453         cc = CRF_GT;
2454         break;
2455     case float_relation_unordered:
2456         cc = CRF_SO;
2457 
2458         if (float128_is_signaling_nan(xa->f128, &env->fp_status) ||
2459             float128_is_signaling_nan(xb->f128, &env->fp_status)) {
2460             vxsnan_flag = true;
2461             if (fpscr_ve == 0 && ordered) {
2462                 vxvc_flag = true;
2463             }
2464         } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) ||
2465                    float128_is_quiet_nan(xb->f128, &env->fp_status)) {
2466             if (ordered) {
2467                 vxvc_flag = true;
2468             }
2469         }
2470 
2471         break;
2472     default:
2473         g_assert_not_reached();
2474     }
2475 
2476     env->fpscr &= ~FP_FPCC;
2477     env->fpscr |= cc << FPSCR_FPCC;
2478     env->crf[crf_idx] = cc;
2479 
2480     if (vxsnan_flag) {
2481         float_invalid_op_vxsnan(env, GETPC());
2482     }
2483     if (vxvc_flag) {
2484         float_invalid_op_vxvc(env, 0, GETPC());
2485     }
2486 
2487     do_float_check_status(env, GETPC());
2488 }
2489 
2490 void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2491                      ppc_vsr_t *xb)
2492 {
2493     do_scalar_cmpq(env, xa, xb, BF(opcode), true);
2494 }
2495 
2496 void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2497                      ppc_vsr_t *xb)
2498 {
2499     do_scalar_cmpq(env, xa, xb, BF(opcode), false);
2500 }
2501 
2502 /*
2503  * VSX_MAX_MIN - VSX floating point maximum/minimum
2504  *   name  - instruction mnemonic
2505  *   op    - operation (max or min)
2506  *   nels  - number of elements (1, 2 or 4)
2507  *   tp    - type (float32 or float64)
2508  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2509  */
2510 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2511 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                           \
2512                    ppc_vsr_t *xa, ppc_vsr_t *xb)                              \
2513 {                                                                             \
2514     ppc_vsr_t t = { };                                                        \
2515     int i;                                                                    \
2516                                                                               \
2517     for (i = 0; i < nels; i++) {                                              \
2518         t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status);                 \
2519         if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) ||       \
2520                      tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
2521             float_invalid_op_vxsnan(env, GETPC());                            \
2522         }                                                                     \
2523     }                                                                         \
2524                                                                               \
2525     *xt = t;                                                                  \
2526     do_float_check_status(env, GETPC());                                      \
2527 }
2528 
2529 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2530 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2531 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2532 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2533 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2534 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2535 
2536 #define VSX_MAX_MINC(name, max, tp, fld)                                      \
2537 void helper_##name(CPUPPCState *env,                                          \
2538                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2539 {                                                                             \
2540     ppc_vsr_t t = { };                                                        \
2541     bool first;                                                               \
2542                                                                               \
2543     if (max) {                                                                \
2544         first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status);             \
2545     } else {                                                                  \
2546         first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status);             \
2547     }                                                                         \
2548                                                                               \
2549     if (first) {                                                              \
2550         t.fld = xa->fld;                                                      \
2551     } else {                                                                  \
2552         t.fld = xb->fld;                                                      \
2553         if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \
2554             float_invalid_op_vxsnan(env, GETPC());                            \
2555         }                                                                     \
2556     }                                                                         \
2557                                                                               \
2558     *xt = t;                                                                  \
2559 }
2560 
2561 VSX_MAX_MINC(XSMAXCDP, true, float64, VsrD(0));
2562 VSX_MAX_MINC(XSMINCDP, false, float64, VsrD(0));
2563 VSX_MAX_MINC(XSMAXCQP, true, float128, f128);
2564 VSX_MAX_MINC(XSMINCQP, false, float128, f128);
2565 
2566 #define VSX_MAX_MINJ(name, max)                                               \
2567 void helper_##name(CPUPPCState *env,                                          \
2568                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2569 {                                                                             \
2570     ppc_vsr_t t = { };                                                        \
2571     bool vxsnan_flag = false, vex_flag = false;                               \
2572                                                                               \
2573     if (unlikely(float64_is_any_nan(xa->VsrD(0)))) {                          \
2574         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) {         \
2575             vxsnan_flag = true;                                               \
2576         }                                                                     \
2577         t.VsrD(0) = xa->VsrD(0);                                              \
2578     } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) {                   \
2579         if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {         \
2580             vxsnan_flag = true;                                               \
2581         }                                                                     \
2582         t.VsrD(0) = xb->VsrD(0);                                              \
2583     } else if (float64_is_zero(xa->VsrD(0)) &&                                \
2584                float64_is_zero(xb->VsrD(0))) {                                \
2585         if (max) {                                                            \
2586             if (!float64_is_neg(xa->VsrD(0)) ||                               \
2587                 !float64_is_neg(xb->VsrD(0))) {                               \
2588                 t.VsrD(0) = 0ULL;                                             \
2589             } else {                                                          \
2590                 t.VsrD(0) = 0x8000000000000000ULL;                            \
2591             }                                                                 \
2592         } else {                                                              \
2593             if (float64_is_neg(xa->VsrD(0)) ||                                \
2594                 float64_is_neg(xb->VsrD(0))) {                                \
2595                 t.VsrD(0) = 0x8000000000000000ULL;                            \
2596             } else {                                                          \
2597                 t.VsrD(0) = 0ULL;                                             \
2598             }                                                                 \
2599         }                                                                     \
2600     } else if ((max &&                                                        \
2601                !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) ||     \
2602                (!max &&                                                       \
2603                float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) {      \
2604         t.VsrD(0) = xa->VsrD(0);                                              \
2605     } else {                                                                  \
2606         t.VsrD(0) = xb->VsrD(0);                                              \
2607     }                                                                         \
2608                                                                               \
2609     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2610     if (vxsnan_flag) {                                                        \
2611         float_invalid_op_vxsnan(env, GETPC());                                \
2612     }                                                                         \
2613     if (!vex_flag) {                                                          \
2614         *xt = t;                                                              \
2615     }                                                                         \
2616 }                                                                             \
2617 
2618 VSX_MAX_MINJ(XSMAXJDP, 1);
2619 VSX_MAX_MINJ(XSMINJDP, 0);
2620 
2621 /*
2622  * VSX_CMP - VSX floating point compare
2623  *   op    - instruction mnemonic
2624  *   nels  - number of elements (1, 2 or 4)
2625  *   tp    - type (float32 or float64)
2626  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2627  *   cmp   - comparison operation
2628  *   svxvc - set VXVC bit
2629  *   exp   - expected result of comparison
2630  */
2631 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2632 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2633                      ppc_vsr_t *xa, ppc_vsr_t *xb)                        \
2634 {                                                                         \
2635     ppc_vsr_t t = *xt;                                                    \
2636     uint32_t crf6 = 0;                                                    \
2637     int i;                                                                \
2638     int all_true = 1;                                                     \
2639     int all_false = 1;                                                    \
2640                                                                           \
2641     for (i = 0; i < nels; i++) {                                          \
2642         if (unlikely(tp##_is_any_nan(xa->fld) ||                          \
2643                      tp##_is_any_nan(xb->fld))) {                         \
2644             if (tp##_is_signaling_nan(xa->fld, &env->fp_status) ||        \
2645                 tp##_is_signaling_nan(xb->fld, &env->fp_status)) {        \
2646                 float_invalid_op_vxsnan(env, GETPC());                    \
2647             }                                                             \
2648             if (svxvc) {                                                  \
2649                 float_invalid_op_vxvc(env, 0, GETPC());                   \
2650             }                                                             \
2651             t.fld = 0;                                                    \
2652             all_true = 0;                                                 \
2653         } else {                                                          \
2654             if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) {   \
2655                 t.fld = -1;                                               \
2656                 all_false = 0;                                            \
2657             } else {                                                      \
2658                 t.fld = 0;                                                \
2659                 all_true = 0;                                             \
2660             }                                                             \
2661         }                                                                 \
2662     }                                                                     \
2663                                                                           \
2664     *xt = t;                                                              \
2665     crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);                  \
2666     return crf6;                                                          \
2667 }
2668 
2669 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2670 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2671 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2672 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2673 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2674 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2675 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2676 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2677 
2678 /*
2679  * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2680  *   op    - instruction mnemonic
2681  *   nels  - number of elements (1, 2 or 4)
2682  *   stp   - source type (float32 or float64)
2683  *   ttp   - target type (float32 or float64)
2684  *   sfld  - source vsr_t field
2685  *   tfld  - target vsr_t field (f32 or f64)
2686  *   sfprf - set FPRF
2687  */
2688 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2689 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2690 {                                                                  \
2691     ppc_vsr_t t = { };                                             \
2692     int i;                                                         \
2693                                                                    \
2694     for (i = 0; i < nels; i++) {                                   \
2695         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);        \
2696         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2697                                             &env->fp_status))) {   \
2698             float_invalid_op_vxsnan(env, GETPC());                 \
2699             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2700         }                                                          \
2701         if (sfprf) {                                               \
2702             helper_compute_fprf_##ttp(env, t.tfld);                \
2703         }                                                          \
2704     }                                                              \
2705                                                                    \
2706     *xt = t;                                                       \
2707     do_float_check_status(env, GETPC());                           \
2708 }
2709 
2710 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2711 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2712 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
2713 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2714 
2715 /*
2716  * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2717  *   op    - instruction mnemonic
2718  *   nels  - number of elements (1, 2 or 4)
2719  *   stp   - source type (float32 or float64)
2720  *   ttp   - target type (float32 or float64)
2721  *   sfld  - source vsr_t field
2722  *   tfld  - target vsr_t field (f32 or f64)
2723  *   sfprf - set FPRF
2724  */
2725 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2726 void helper_##op(CPUPPCState *env, uint32_t opcode,                       \
2727                  ppc_vsr_t *xt, ppc_vsr_t *xb)                            \
2728 {                                                                       \
2729     ppc_vsr_t t = *xt;                                                  \
2730     int i;                                                              \
2731                                                                         \
2732     for (i = 0; i < nels; i++) {                                        \
2733         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
2734         if (unlikely(stp##_is_signaling_nan(xb->sfld,                   \
2735                                             &env->fp_status))) {        \
2736             float_invalid_op_vxsnan(env, GETPC());                      \
2737             t.tfld = ttp##_snan_to_qnan(t.tfld);                        \
2738         }                                                               \
2739         if (sfprf) {                                                    \
2740             helper_compute_fprf_##ttp(env, t.tfld);                     \
2741         }                                                               \
2742     }                                                                   \
2743                                                                         \
2744     *xt = t;                                                            \
2745     do_float_check_status(env, GETPC());                                \
2746 }
2747 
2748 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2749 
2750 /*
2751  * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2752  *                       involving one half precision value
2753  *   op    - instruction mnemonic
2754  *   nels  - number of elements (1, 2 or 4)
2755  *   stp   - source type
2756  *   ttp   - target type
2757  *   sfld  - source vsr_t field
2758  *   tfld  - target vsr_t field
2759  *   sfprf - set FPRF
2760  */
2761 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2762 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2763 {                                                                  \
2764     ppc_vsr_t t = { };                                             \
2765     int i;                                                         \
2766                                                                    \
2767     for (i = 0; i < nels; i++) {                                   \
2768         t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status);     \
2769         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2770                                             &env->fp_status))) {   \
2771             float_invalid_op_vxsnan(env, GETPC());                 \
2772             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2773         }                                                          \
2774         if (sfprf) {                                               \
2775             helper_compute_fprf_##ttp(env, t.tfld);                \
2776         }                                                          \
2777     }                                                              \
2778                                                                    \
2779     *xt = t;                                                       \
2780     do_float_check_status(env, GETPC());                           \
2781 }
2782 
2783 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2784 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2785 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0)
2786 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2787 
2788 void helper_XVCVSPBF16(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
2789 {
2790     ppc_vsr_t t = { };
2791     int i, status;
2792 
2793     for (i = 0; i < 4; i++) {
2794         t.VsrH(2 * i + 1) = float32_to_bfloat16(xb->VsrW(i), &env->fp_status);
2795     }
2796 
2797     status = get_float_exception_flags(&env->fp_status);
2798     if (unlikely(status & float_flag_invalid_snan)) {
2799         float_invalid_op_vxsnan(env, GETPC());
2800     }
2801 
2802     *xt = t;
2803     do_float_check_status(env, GETPC());
2804 }
2805 
2806 void helper_XSCVQPDP(CPUPPCState *env, uint32_t ro, ppc_vsr_t *xt,
2807                      ppc_vsr_t *xb)
2808 {
2809     ppc_vsr_t t = { };
2810     float_status tstat;
2811 
2812     tstat = env->fp_status;
2813     if (ro != 0) {
2814         tstat.float_rounding_mode = float_round_to_odd;
2815     }
2816 
2817     t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2818     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2819     if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2820         float_invalid_op_vxsnan(env, GETPC());
2821         t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2822     }
2823     helper_compute_fprf_float64(env, t.VsrD(0));
2824 
2825     *xt = t;
2826     do_float_check_status(env, GETPC());
2827 }
2828 
2829 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2830 {
2831     uint64_t result, sign, exp, frac;
2832 
2833     float_status tstat = env->fp_status;
2834     set_float_exception_flags(0, &tstat);
2835 
2836     sign = extract64(xb, 63,  1);
2837     exp  = extract64(xb, 52, 11);
2838     frac = extract64(xb,  0, 52) | 0x10000000000000ULL;
2839 
2840     if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
2841         /* DP denormal operand.  */
2842         /* Exponent override to DP min exp.  */
2843         exp = 1;
2844         /* Implicit bit override to 0.  */
2845         frac = deposit64(frac, 53, 1, 0);
2846     }
2847 
2848     if (unlikely(exp < 897 && frac != 0)) {
2849         /* SP tiny operand.  */
2850         if (897 - exp > 63) {
2851             frac = 0;
2852         } else {
2853             /* Denormalize until exp = SP min exp.  */
2854             frac >>= (897 - exp);
2855         }
2856         /* Exponent override to SP min exp - 1.  */
2857         exp = 896;
2858     }
2859 
2860     result = sign << 31;
2861     result |= extract64(exp, 10, 1) << 30;
2862     result |= extract64(exp, 0, 7) << 23;
2863     result |= extract64(frac, 29, 23);
2864 
2865     /* hardware replicates result to both words of the doubleword result.  */
2866     return (result << 32) | result;
2867 }
2868 
2869 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2870 {
2871     return helper_todouble(xb >> 32);
2872 }
2873 
2874 /*
2875  * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2876  *   op    - instruction mnemonic
2877  *   nels  - number of elements (1, 2 or 4)
2878  *   stp   - source type (float32 or float64)
2879  *   ttp   - target type (int32, uint32, int64 or uint64)
2880  *   sfld  - source vsr_t field
2881  *   tfld  - target vsr_t field
2882  *   rnan  - resulting NaN
2883  */
2884 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2885 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2886 {                                                                            \
2887     int all_flags = env->fp_status.float_exception_flags, flags;             \
2888     ppc_vsr_t t = { };                                                       \
2889     int i;                                                                   \
2890                                                                              \
2891     for (i = 0; i < nels; i++) {                                             \
2892         env->fp_status.float_exception_flags = 0;                            \
2893         t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);  \
2894         flags = env->fp_status.float_exception_flags;                        \
2895         if (unlikely(flags & float_flag_invalid)) {                          \
2896             t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\
2897         }                                                                    \
2898         all_flags |= flags;                                                  \
2899     }                                                                        \
2900                                                                              \
2901     *xt = t;                                                                 \
2902     env->fp_status.float_exception_flags = all_flags;                        \
2903     do_float_check_status(env, GETPC());                                     \
2904 }
2905 
2906 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2907                   0x8000000000000000ULL)
2908 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2909                   0x80000000U)
2910 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2911 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2912 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2913                   0x8000000000000000ULL)
2914 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
2915                   0x80000000U)
2916 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2917 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
2918 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
2919                   0x8000000000000000ULL)
2920 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2921 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
2922 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2923 
2924 /*
2925  * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2926  *   op    - instruction mnemonic
2927  *   stp   - source type (float32 or float64)
2928  *   ttp   - target type (int32, uint32, int64 or uint64)
2929  *   sfld  - source vsr_t field
2930  *   tfld  - target vsr_t field
2931  *   rnan  - resulting NaN
2932  */
2933 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \
2934 void helper_##op(CPUPPCState *env, uint32_t opcode,                          \
2935                  ppc_vsr_t *xt, ppc_vsr_t *xb)                               \
2936 {                                                                            \
2937     ppc_vsr_t t = { };                                                       \
2938     int flags;                                                               \
2939                                                                              \
2940     t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);      \
2941     flags = get_float_exception_flags(&env->fp_status);                      \
2942     if (flags & float_flag_invalid) {                                        \
2943         t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());    \
2944     }                                                                        \
2945                                                                              \
2946     *xt = t;                                                                 \
2947     do_float_check_status(env, GETPC());                                     \
2948 }
2949 
2950 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \
2951                   0x8000000000000000ULL)
2952 
2953 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \
2954                   0xffffffff80000000ULL)
2955 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
2956 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
2957 
2958 /*
2959  * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2960  *   op    - instruction mnemonic
2961  *   nels  - number of elements (1, 2 or 4)
2962  *   stp   - source type (int32, uint32, int64 or uint64)
2963  *   ttp   - target type (float32 or float64)
2964  *   sfld  - source vsr_t field
2965  *   tfld  - target vsr_t field
2966  *   jdef  - definition of the j index (i or 2*i)
2967  *   sfprf - set FPRF
2968  */
2969 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
2970 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \
2971 {                                                                       \
2972     ppc_vsr_t t = { };                                                  \
2973     int i;                                                              \
2974                                                                         \
2975     for (i = 0; i < nels; i++) {                                        \
2976         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
2977         if (r2sp) {                                                     \
2978             t.tfld = do_frsp(env, t.tfld, GETPC());                     \
2979         }                                                               \
2980         if (sfprf) {                                                    \
2981             helper_compute_fprf_float64(env, t.tfld);                   \
2982         }                                                               \
2983     }                                                                   \
2984                                                                         \
2985     *xt = t;                                                            \
2986     do_float_check_status(env, GETPC());                                \
2987 }
2988 
2989 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2990 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2991 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2992 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2993 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2994 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2995 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
2996 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
2997 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
2998 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
2999 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3000 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3001 
3002 /*
3003  * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3004  *   op    - instruction mnemonic
3005  *   stp   - source type (int32, uint32, int64 or uint64)
3006  *   ttp   - target type (float32 or float64)
3007  *   sfld  - source vsr_t field
3008  *   tfld  - target vsr_t field
3009  */
3010 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \
3011 void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
3012                  ppc_vsr_t *xt, ppc_vsr_t *xb)                          \
3013 {                                                                       \
3014     ppc_vsr_t t = *xt;                                                  \
3015                                                                         \
3016     t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);                 \
3017     helper_compute_fprf_##ttp(env, t.tfld);                             \
3018                                                                         \
3019     *xt = t;                                                            \
3020     do_float_check_status(env, GETPC());                                \
3021 }
3022 
3023 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3024 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3025 
3026 /*
3027  * For "use current rounding mode", define a value that will not be
3028  * one of the existing rounding model enums.
3029  */
3030 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3031   float_round_up + float_round_to_zero)
3032 
3033 /*
3034  * VSX_ROUND - VSX floating point round
3035  *   op    - instruction mnemonic
3036  *   nels  - number of elements (1, 2 or 4)
3037  *   tp    - type (float32 or float64)
3038  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3039  *   rmode - rounding mode
3040  *   sfprf - set FPRF
3041  */
3042 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
3043 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)       \
3044 {                                                                      \
3045     ppc_vsr_t t = { };                                                 \
3046     int i;                                                             \
3047     FloatRoundMode curr_rounding_mode;                                 \
3048                                                                        \
3049     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3050         curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
3051         set_float_rounding_mode(rmode, &env->fp_status);               \
3052     }                                                                  \
3053                                                                        \
3054     for (i = 0; i < nels; i++) {                                       \
3055         if (unlikely(tp##_is_signaling_nan(xb->fld,                    \
3056                                            &env->fp_status))) {        \
3057             float_invalid_op_vxsnan(env, GETPC());                     \
3058             t.fld = tp##_snan_to_qnan(xb->fld);                        \
3059         } else {                                                       \
3060             t.fld = tp##_round_to_int(xb->fld, &env->fp_status);       \
3061         }                                                              \
3062         if (sfprf) {                                                   \
3063             helper_compute_fprf_float64(env, t.fld);                   \
3064         }                                                              \
3065     }                                                                  \
3066                                                                        \
3067     /*                                                                 \
3068      * If this is not a "use current rounding mode" instruction,       \
3069      * then inhibit setting of the XX bit and restore rounding         \
3070      * mode from FPSCR                                                 \
3071      */                                                                \
3072     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3073         set_float_rounding_mode(curr_rounding_mode, &env->fp_status);  \
3074         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
3075     }                                                                  \
3076                                                                        \
3077     *xt = t;                                                           \
3078     do_float_check_status(env, GETPC());                               \
3079 }
3080 
3081 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3082 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3083 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3084 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3085 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3086 
3087 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3088 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3089 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3090 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3091 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3092 
3093 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3094 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3095 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3096 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3097 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3098 
3099 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3100 {
3101     helper_reset_fpstatus(env);
3102 
3103     uint64_t xt = do_frsp(env, xb, GETPC());
3104 
3105     helper_compute_fprf_float64(env, xt);
3106     do_float_check_status(env, GETPC());
3107     return xt;
3108 }
3109 
3110 void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
3111 {
3112     ppc_vsr_t t = { };
3113     uint32_t exp, i, fraction;
3114 
3115     for (i = 0; i < 4; i++) {
3116         exp = (xb->VsrW(i) >> 23) & 0xFF;
3117         fraction = xb->VsrW(i) & 0x7FFFFF;
3118         if (exp != 0 && exp != 255) {
3119             t.VsrW(i) = fraction | 0x00800000;
3120         } else {
3121             t.VsrW(i) = fraction;
3122         }
3123     }
3124     *xt = t;
3125 }
3126 
3127 /*
3128  * VSX_TEST_DC - VSX floating point test data class
3129  *   op    - instruction mnemonic
3130  *   nels  - number of elements (1, 2 or 4)
3131  *   xbn   - VSR register number
3132  *   tp    - type (float32 or float64)
3133  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3134  *   tfld   - target vsr_t field (VsrD(*) or VsrW(*))
3135  *   fld_max - target field max
3136  *   scrf - set result in CR and FPCC
3137  */
3138 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf)  \
3139 void helper_##op(CPUPPCState *env, uint32_t opcode)         \
3140 {                                                           \
3141     ppc_vsr_t *xt = &env->vsr[xT(opcode)];                  \
3142     ppc_vsr_t *xb = &env->vsr[xbn];                         \
3143     ppc_vsr_t t = { };                                      \
3144     uint32_t i, sign, dcmx;                                 \
3145     uint32_t cc, match = 0;                                 \
3146                                                             \
3147     if (!scrf) {                                            \
3148         dcmx = DCMX_XV(opcode);                             \
3149     } else {                                                \
3150         t = *xt;                                            \
3151         dcmx = DCMX(opcode);                                \
3152     }                                                       \
3153                                                             \
3154     for (i = 0; i < nels; i++) {                            \
3155         sign = tp##_is_neg(xb->fld);                        \
3156         if (tp##_is_any_nan(xb->fld)) {                     \
3157             match = extract32(dcmx, 6, 1);                  \
3158         } else if (tp##_is_infinity(xb->fld)) {             \
3159             match = extract32(dcmx, 4 + !sign, 1);          \
3160         } else if (tp##_is_zero(xb->fld)) {                 \
3161             match = extract32(dcmx, 2 + !sign, 1);          \
3162         } else if (tp##_is_zero_or_denormal(xb->fld)) {     \
3163             match = extract32(dcmx, 0 + !sign, 1);          \
3164         }                                                   \
3165                                                             \
3166         if (scrf) {                                         \
3167             cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;  \
3168             env->fpscr &= ~FP_FPCC;                         \
3169             env->fpscr |= cc << FPSCR_FPCC;                 \
3170             env->crf[BF(opcode)] = cc;                      \
3171         } else {                                            \
3172             t.tfld = match ? fld_max : 0;                   \
3173         }                                                   \
3174         match = 0;                                          \
3175     }                                                       \
3176     if (!scrf) {                                            \
3177         *xt = t;                                            \
3178     }                                                       \
3179 }
3180 
3181 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3182 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3183 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3184 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3185 
3186 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)
3187 {
3188     uint32_t dcmx, sign, exp;
3189     uint32_t cc, match = 0, not_sp = 0;
3190     float64 arg = xb->VsrD(0);
3191     float64 arg_sp;
3192 
3193     dcmx = DCMX(opcode);
3194     exp = (arg >> 52) & 0x7FF;
3195     sign = float64_is_neg(arg);
3196 
3197     if (float64_is_any_nan(arg)) {
3198         match = extract32(dcmx, 6, 1);
3199     } else if (float64_is_infinity(arg)) {
3200         match = extract32(dcmx, 4 + !sign, 1);
3201     } else if (float64_is_zero(arg)) {
3202         match = extract32(dcmx, 2 + !sign, 1);
3203     } else if (float64_is_zero_or_denormal(arg) || (exp > 0 && exp < 0x381)) {
3204         match = extract32(dcmx, 0 + !sign, 1);
3205     }
3206 
3207     arg_sp = helper_todouble(helper_tosingle(arg));
3208     not_sp = arg != arg_sp;
3209 
3210     cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3211     env->fpscr &= ~FP_FPCC;
3212     env->fpscr |= cc << FPSCR_FPCC;
3213     env->crf[BF(opcode)] = cc;
3214 }
3215 
3216 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3217                    ppc_vsr_t *xt, ppc_vsr_t *xb)
3218 {
3219     ppc_vsr_t t = { };
3220     uint8_t r = Rrm(opcode);
3221     uint8_t ex = Rc(opcode);
3222     uint8_t rmc = RMC(opcode);
3223     uint8_t rmode = 0;
3224     float_status tstat;
3225 
3226     helper_reset_fpstatus(env);
3227 
3228     if (r == 0 && rmc == 0) {
3229         rmode = float_round_ties_away;
3230     } else if (r == 0 && rmc == 0x3) {
3231         rmode = fpscr_rn;
3232     } else if (r == 1) {
3233         switch (rmc) {
3234         case 0:
3235             rmode = float_round_nearest_even;
3236             break;
3237         case 1:
3238             rmode = float_round_to_zero;
3239             break;
3240         case 2:
3241             rmode = float_round_up;
3242             break;
3243         case 3:
3244             rmode = float_round_down;
3245             break;
3246         default:
3247             abort();
3248         }
3249     }
3250 
3251     tstat = env->fp_status;
3252     set_float_exception_flags(0, &tstat);
3253     set_float_rounding_mode(rmode, &tstat);
3254     t.f128 = float128_round_to_int(xb->f128, &tstat);
3255     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3256 
3257     if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3258         float_invalid_op_vxsnan(env, GETPC());
3259     }
3260 
3261     if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3262         env->fp_status.float_exception_flags &= ~float_flag_inexact;
3263     }
3264 
3265     helper_compute_fprf_float128(env, t.f128);
3266     do_float_check_status(env, GETPC());
3267     *xt = t;
3268 }
3269 
3270 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3271                     ppc_vsr_t *xt, ppc_vsr_t *xb)
3272 {
3273     ppc_vsr_t t = { };
3274     uint8_t r = Rrm(opcode);
3275     uint8_t rmc = RMC(opcode);
3276     uint8_t rmode = 0;
3277     floatx80 round_res;
3278     float_status tstat;
3279 
3280     helper_reset_fpstatus(env);
3281 
3282     if (r == 0 && rmc == 0) {
3283         rmode = float_round_ties_away;
3284     } else if (r == 0 && rmc == 0x3) {
3285         rmode = fpscr_rn;
3286     } else if (r == 1) {
3287         switch (rmc) {
3288         case 0:
3289             rmode = float_round_nearest_even;
3290             break;
3291         case 1:
3292             rmode = float_round_to_zero;
3293             break;
3294         case 2:
3295             rmode = float_round_up;
3296             break;
3297         case 3:
3298             rmode = float_round_down;
3299             break;
3300         default:
3301             abort();
3302         }
3303     }
3304 
3305     tstat = env->fp_status;
3306     set_float_exception_flags(0, &tstat);
3307     set_float_rounding_mode(rmode, &tstat);
3308     round_res = float128_to_floatx80(xb->f128, &tstat);
3309     t.f128 = floatx80_to_float128(round_res, &tstat);
3310     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3311 
3312     if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3313         float_invalid_op_vxsnan(env, GETPC());
3314         t.f128 = float128_snan_to_qnan(t.f128);
3315     }
3316 
3317     helper_compute_fprf_float128(env, t.f128);
3318     *xt = t;
3319     do_float_check_status(env, GETPC());
3320 }
3321 
3322 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3323                      ppc_vsr_t *xt, ppc_vsr_t *xb)
3324 {
3325     ppc_vsr_t t = { };
3326     float_status tstat;
3327 
3328     helper_reset_fpstatus(env);
3329 
3330     tstat = env->fp_status;
3331     if (unlikely(Rc(opcode) != 0)) {
3332         tstat.float_rounding_mode = float_round_to_odd;
3333     }
3334 
3335     set_float_exception_flags(0, &tstat);
3336     t.f128 = float128_sqrt(xb->f128, &tstat);
3337     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3338 
3339     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3340         float_invalid_op_sqrt(env, tstat.float_exception_flags, 1, GETPC());
3341     }
3342 
3343     helper_compute_fprf_float128(env, t.f128);
3344     *xt = t;
3345     do_float_check_status(env, GETPC());
3346 }
3347 
3348 void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3349                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3350 {
3351     ppc_vsr_t t = *xt;
3352     float_status tstat;
3353 
3354     helper_reset_fpstatus(env);
3355 
3356     tstat = env->fp_status;
3357     if (unlikely(Rc(opcode) != 0)) {
3358         tstat.float_rounding_mode = float_round_to_odd;
3359     }
3360 
3361     set_float_exception_flags(0, &tstat);
3362     t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3363     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3364 
3365     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3366         float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
3367     }
3368 
3369     helper_compute_fprf_float128(env, t.f128);
3370     *xt = t;
3371     do_float_check_status(env, GETPC());
3372 }
3373