xref: /openbmc/qemu/target/ppc/fpu_helper.c (revision 7f709ce7)
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 
25 static inline float128 float128_snan_to_qnan(float128 x)
26 {
27     float128 r;
28 
29     r.high = x.high | 0x0000800000000000;
30     r.low = x.low;
31     return r;
32 }
33 
34 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
35 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
36 #define float16_snan_to_qnan(x) ((x) | 0x0200)
37 
38 /*****************************************************************************/
39 /* Floating point operations helpers */
40 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
41 {
42     CPU_FloatU f;
43     CPU_DoubleU d;
44 
45     f.l = arg;
46     d.d = float32_to_float64(f.f, &env->fp_status);
47     return d.ll;
48 }
49 
50 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
51 {
52     CPU_FloatU f;
53     CPU_DoubleU d;
54 
55     d.ll = arg;
56     f.f = float64_to_float32(d.d, &env->fp_status);
57     return f.l;
58 }
59 
60 static inline int ppc_float32_get_unbiased_exp(float32 f)
61 {
62     return ((f >> 23) & 0xFF) - 127;
63 }
64 
65 static inline int ppc_float64_get_unbiased_exp(float64 f)
66 {
67     return ((f >> 52) & 0x7FF) - 1023;
68 }
69 
70 #define COMPUTE_FPRF(tp)                                       \
71 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg)        \
72 {                                                              \
73     int isneg;                                                 \
74     int fprf;                                                  \
75                                                                \
76     isneg = tp##_is_neg(arg);                                  \
77     if (unlikely(tp##_is_any_nan(arg))) {                      \
78         if (tp##_is_signaling_nan(arg, &env->fp_status)) {     \
79             /* Signaling NaN: flags are undefined */           \
80             fprf = 0x00;                                       \
81         } else {                                               \
82             /* Quiet NaN */                                    \
83             fprf = 0x11;                                       \
84         }                                                      \
85     } else if (unlikely(tp##_is_infinity(arg))) {              \
86         /* +/- infinity */                                     \
87         if (isneg) {                                           \
88             fprf = 0x09;                                       \
89         } else {                                               \
90             fprf = 0x05;                                       \
91         }                                                      \
92     } else {                                                   \
93         if (tp##_is_zero(arg)) {                               \
94             /* +/- zero */                                     \
95             if (isneg) {                                       \
96                 fprf = 0x12;                                   \
97             } else {                                           \
98                 fprf = 0x02;                                   \
99             }                                                  \
100         } else {                                               \
101             if (tp##_is_zero_or_denormal(arg)) {               \
102                 /* Denormalized numbers */                     \
103                 fprf = 0x10;                                   \
104             } else {                                           \
105                 /* Normalized numbers */                       \
106                 fprf = 0x00;                                   \
107             }                                                  \
108             if (isneg) {                                       \
109                 fprf |= 0x08;                                  \
110             } else {                                           \
111                 fprf |= 0x04;                                  \
112             }                                                  \
113         }                                                      \
114     }                                                          \
115     /* We update FPSCR_FPRF */                                 \
116     env->fpscr &= ~(0x1F << FPSCR_FPRF);                       \
117     env->fpscr |= fprf << FPSCR_FPRF;                          \
118 }
119 
120 COMPUTE_FPRF(float16)
121 COMPUTE_FPRF(float32)
122 COMPUTE_FPRF(float64)
123 COMPUTE_FPRF(float128)
124 
125 /* Floating-point invalid operations exception */
126 static inline __attribute__((__always_inline__))
127 uint64_t float_invalid_op_excp(CPUPPCState *env, int op, int set_fpcc)
128 {
129     CPUState *cs = CPU(ppc_env_get_cpu(env));
130     uint64_t ret = 0;
131     int ve;
132 
133     ve = fpscr_ve;
134     switch (op) {
135     case POWERPC_EXCP_FP_VXSNAN:
136         env->fpscr |= 1 << FPSCR_VXSNAN;
137         break;
138     case POWERPC_EXCP_FP_VXSOFT:
139         env->fpscr |= 1 << FPSCR_VXSOFT;
140         break;
141     case POWERPC_EXCP_FP_VXISI:
142         /* Magnitude subtraction of infinities */
143         env->fpscr |= 1 << FPSCR_VXISI;
144         goto update_arith;
145     case POWERPC_EXCP_FP_VXIDI:
146         /* Division of infinity by infinity */
147         env->fpscr |= 1 << FPSCR_VXIDI;
148         goto update_arith;
149     case POWERPC_EXCP_FP_VXZDZ:
150         /* Division of zero by zero */
151         env->fpscr |= 1 << FPSCR_VXZDZ;
152         goto update_arith;
153     case POWERPC_EXCP_FP_VXIMZ:
154         /* Multiplication of zero by infinity */
155         env->fpscr |= 1 << FPSCR_VXIMZ;
156         goto update_arith;
157     case POWERPC_EXCP_FP_VXVC:
158         /* Ordered comparison of NaN */
159         env->fpscr |= 1 << FPSCR_VXVC;
160         if (set_fpcc) {
161             env->fpscr &= ~(0xF << FPSCR_FPCC);
162             env->fpscr |= 0x11 << FPSCR_FPCC;
163         }
164         /* We must update the target FPR before raising the exception */
165         if (ve != 0) {
166             cs->exception_index = POWERPC_EXCP_PROGRAM;
167             env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
168             /* Update the floating-point enabled exception summary */
169             env->fpscr |= 1 << FPSCR_FEX;
170             /* Exception is differed */
171             ve = 0;
172         }
173         break;
174     case POWERPC_EXCP_FP_VXSQRT:
175         /* Square root of a negative number */
176         env->fpscr |= 1 << FPSCR_VXSQRT;
177     update_arith:
178         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
179         if (ve == 0) {
180             /* Set the result to quiet NaN */
181             ret = 0x7FF8000000000000ULL;
182             if (set_fpcc) {
183                 env->fpscr &= ~(0xF << FPSCR_FPCC);
184                 env->fpscr |= 0x11 << FPSCR_FPCC;
185             }
186         }
187         break;
188     case POWERPC_EXCP_FP_VXCVI:
189         /* Invalid conversion */
190         env->fpscr |= 1 << FPSCR_VXCVI;
191         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
192         if (ve == 0) {
193             /* Set the result to quiet NaN */
194             ret = 0x7FF8000000000000ULL;
195             if (set_fpcc) {
196                 env->fpscr &= ~(0xF << FPSCR_FPCC);
197                 env->fpscr |= 0x11 << FPSCR_FPCC;
198             }
199         }
200         break;
201     }
202     /* Update the floating-point invalid operation summary */
203     env->fpscr |= 1 << FPSCR_VX;
204     /* Update the floating-point exception summary */
205     env->fpscr |= FP_FX;
206     if (ve != 0) {
207         /* Update the floating-point enabled exception summary */
208         env->fpscr |= 1 << FPSCR_FEX;
209         if (msr_fe0 != 0 || msr_fe1 != 0) {
210             /* GETPC() works here because this is inline */
211             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
212                                    POWERPC_EXCP_FP | op, GETPC());
213         }
214     }
215     return ret;
216 }
217 
218 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
219 {
220     env->fpscr |= 1 << FPSCR_ZX;
221     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
222     /* Update the floating-point exception summary */
223     env->fpscr |= FP_FX;
224     if (fpscr_ze != 0) {
225         /* Update the floating-point enabled exception summary */
226         env->fpscr |= 1 << FPSCR_FEX;
227         if (msr_fe0 != 0 || msr_fe1 != 0) {
228             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
229                                    POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
230                                    raddr);
231         }
232     }
233 }
234 
235 static inline void float_overflow_excp(CPUPPCState *env)
236 {
237     CPUState *cs = CPU(ppc_env_get_cpu(env));
238 
239     env->fpscr |= 1 << FPSCR_OX;
240     /* Update the floating-point exception summary */
241     env->fpscr |= FP_FX;
242     if (fpscr_oe != 0) {
243         /* XXX: should adjust the result */
244         /* Update the floating-point enabled exception summary */
245         env->fpscr |= 1 << FPSCR_FEX;
246         /* We must update the target FPR before raising the exception */
247         cs->exception_index = POWERPC_EXCP_PROGRAM;
248         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
249     } else {
250         env->fpscr |= 1 << FPSCR_XX;
251         env->fpscr |= 1 << FPSCR_FI;
252     }
253 }
254 
255 static inline void float_underflow_excp(CPUPPCState *env)
256 {
257     CPUState *cs = CPU(ppc_env_get_cpu(env));
258 
259     env->fpscr |= 1 << FPSCR_UX;
260     /* Update the floating-point exception summary */
261     env->fpscr |= FP_FX;
262     if (fpscr_ue != 0) {
263         /* XXX: should adjust the result */
264         /* Update the floating-point enabled exception summary */
265         env->fpscr |= 1 << FPSCR_FEX;
266         /* We must update the target FPR before raising the exception */
267         cs->exception_index = POWERPC_EXCP_PROGRAM;
268         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
269     }
270 }
271 
272 static inline void float_inexact_excp(CPUPPCState *env)
273 {
274     CPUState *cs = CPU(ppc_env_get_cpu(env));
275 
276     env->fpscr |= 1 << FPSCR_XX;
277     /* Update the floating-point exception summary */
278     env->fpscr |= FP_FX;
279     if (fpscr_xe != 0) {
280         /* Update the floating-point enabled exception summary */
281         env->fpscr |= 1 << FPSCR_FEX;
282         /* We must update the target FPR before raising the exception */
283         cs->exception_index = POWERPC_EXCP_PROGRAM;
284         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
285     }
286 }
287 
288 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
289 {
290     int rnd_type;
291 
292     /* Set rounding mode */
293     switch (fpscr_rn) {
294     case 0:
295         /* Best approximation (round to nearest) */
296         rnd_type = float_round_nearest_even;
297         break;
298     case 1:
299         /* Smaller magnitude (round toward zero) */
300         rnd_type = float_round_to_zero;
301         break;
302     case 2:
303         /* Round toward +infinite */
304         rnd_type = float_round_up;
305         break;
306     default:
307     case 3:
308         /* Round toward -infinite */
309         rnd_type = float_round_down;
310         break;
311     }
312     set_float_rounding_mode(rnd_type, &env->fp_status);
313 }
314 
315 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
316 {
317     int prev;
318 
319     prev = (env->fpscr >> bit) & 1;
320     env->fpscr &= ~(1 << bit);
321     if (prev == 1) {
322         switch (bit) {
323         case FPSCR_RN1:
324         case FPSCR_RN:
325             fpscr_set_rounding_mode(env);
326             break;
327         default:
328             break;
329         }
330     }
331 }
332 
333 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
334 {
335     CPUState *cs = CPU(ppc_env_get_cpu(env));
336     int prev;
337 
338     prev = (env->fpscr >> bit) & 1;
339     env->fpscr |= 1 << bit;
340     if (prev == 0) {
341         switch (bit) {
342         case FPSCR_VX:
343             env->fpscr |= FP_FX;
344             if (fpscr_ve) {
345                 goto raise_ve;
346             }
347             break;
348         case FPSCR_OX:
349             env->fpscr |= FP_FX;
350             if (fpscr_oe) {
351                 goto raise_oe;
352             }
353             break;
354         case FPSCR_UX:
355             env->fpscr |= FP_FX;
356             if (fpscr_ue) {
357                 goto raise_ue;
358             }
359             break;
360         case FPSCR_ZX:
361             env->fpscr |= FP_FX;
362             if (fpscr_ze) {
363                 goto raise_ze;
364             }
365             break;
366         case FPSCR_XX:
367             env->fpscr |= FP_FX;
368             if (fpscr_xe) {
369                 goto raise_xe;
370             }
371             break;
372         case FPSCR_VXSNAN:
373         case FPSCR_VXISI:
374         case FPSCR_VXIDI:
375         case FPSCR_VXZDZ:
376         case FPSCR_VXIMZ:
377         case FPSCR_VXVC:
378         case FPSCR_VXSOFT:
379         case FPSCR_VXSQRT:
380         case FPSCR_VXCVI:
381             env->fpscr |= 1 << FPSCR_VX;
382             env->fpscr |= FP_FX;
383             if (fpscr_ve != 0) {
384                 goto raise_ve;
385             }
386             break;
387         case FPSCR_VE:
388             if (fpscr_vx != 0) {
389             raise_ve:
390                 env->error_code = POWERPC_EXCP_FP;
391                 if (fpscr_vxsnan) {
392                     env->error_code |= POWERPC_EXCP_FP_VXSNAN;
393                 }
394                 if (fpscr_vxisi) {
395                     env->error_code |= POWERPC_EXCP_FP_VXISI;
396                 }
397                 if (fpscr_vxidi) {
398                     env->error_code |= POWERPC_EXCP_FP_VXIDI;
399                 }
400                 if (fpscr_vxzdz) {
401                     env->error_code |= POWERPC_EXCP_FP_VXZDZ;
402                 }
403                 if (fpscr_vximz) {
404                     env->error_code |= POWERPC_EXCP_FP_VXIMZ;
405                 }
406                 if (fpscr_vxvc) {
407                     env->error_code |= POWERPC_EXCP_FP_VXVC;
408                 }
409                 if (fpscr_vxsoft) {
410                     env->error_code |= POWERPC_EXCP_FP_VXSOFT;
411                 }
412                 if (fpscr_vxsqrt) {
413                     env->error_code |= POWERPC_EXCP_FP_VXSQRT;
414                 }
415                 if (fpscr_vxcvi) {
416                     env->error_code |= POWERPC_EXCP_FP_VXCVI;
417                 }
418                 goto raise_excp;
419             }
420             break;
421         case FPSCR_OE:
422             if (fpscr_ox != 0) {
423             raise_oe:
424                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
425                 goto raise_excp;
426             }
427             break;
428         case FPSCR_UE:
429             if (fpscr_ux != 0) {
430             raise_ue:
431                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
432                 goto raise_excp;
433             }
434             break;
435         case FPSCR_ZE:
436             if (fpscr_zx != 0) {
437             raise_ze:
438                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
439                 goto raise_excp;
440             }
441             break;
442         case FPSCR_XE:
443             if (fpscr_xx != 0) {
444             raise_xe:
445                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
446                 goto raise_excp;
447             }
448             break;
449         case FPSCR_RN1:
450         case FPSCR_RN:
451             fpscr_set_rounding_mode(env);
452             break;
453         default:
454             break;
455         raise_excp:
456             /* Update the floating-point enabled exception summary */
457             env->fpscr |= 1 << FPSCR_FEX;
458             /* We have to update Rc1 before raising the exception */
459             cs->exception_index = POWERPC_EXCP_PROGRAM;
460             break;
461         }
462     }
463 }
464 
465 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
466 {
467     CPUState *cs = CPU(ppc_env_get_cpu(env));
468     target_ulong prev, new;
469     int i;
470 
471     prev = env->fpscr;
472     new = (target_ulong)arg;
473     new &= ~0x60000000LL;
474     new |= prev & 0x60000000LL;
475     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
476         if (mask & (1 << i)) {
477             env->fpscr &= ~(0xFLL << (4 * i));
478             env->fpscr |= new & (0xFLL << (4 * i));
479         }
480     }
481     /* Update VX and FEX */
482     if (fpscr_ix != 0) {
483         env->fpscr |= 1 << FPSCR_VX;
484     } else {
485         env->fpscr &= ~(1 << FPSCR_VX);
486     }
487     if ((fpscr_ex & fpscr_eex) != 0) {
488         env->fpscr |= 1 << FPSCR_FEX;
489         cs->exception_index = POWERPC_EXCP_PROGRAM;
490         /* XXX: we should compute it properly */
491         env->error_code = POWERPC_EXCP_FP;
492     } else {
493         env->fpscr &= ~(1 << FPSCR_FEX);
494     }
495     fpscr_set_rounding_mode(env);
496 }
497 
498 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
499 {
500     helper_store_fpscr(env, arg, mask);
501 }
502 
503 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
504 {
505     CPUState *cs = CPU(ppc_env_get_cpu(env));
506     int status = get_float_exception_flags(&env->fp_status);
507 
508     if (status & float_flag_divbyzero) {
509         float_zero_divide_excp(env, raddr);
510     } else if (status & float_flag_overflow) {
511         float_overflow_excp(env);
512     } else if (status & float_flag_underflow) {
513         float_underflow_excp(env);
514     } else if (status & float_flag_inexact) {
515         float_inexact_excp(env);
516     }
517 
518     if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
519         (env->error_code & POWERPC_EXCP_FP)) {
520         /* Differred floating-point exception after target FPR update */
521         if (msr_fe0 != 0 || msr_fe1 != 0) {
522             raise_exception_err_ra(env, cs->exception_index,
523                                    env->error_code, raddr);
524         }
525     }
526 }
527 
528 static inline  __attribute__((__always_inline__))
529 void float_check_status(CPUPPCState *env)
530 {
531     /* GETPC() works here because this is inline */
532     do_float_check_status(env, GETPC());
533 }
534 
535 void helper_float_check_status(CPUPPCState *env)
536 {
537     do_float_check_status(env, GETPC());
538 }
539 
540 void helper_reset_fpstatus(CPUPPCState *env)
541 {
542     set_float_exception_flags(0, &env->fp_status);
543 }
544 
545 /* fadd - fadd. */
546 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
547 {
548     CPU_DoubleU farg1, farg2;
549 
550     farg1.ll = arg1;
551     farg2.ll = arg2;
552 
553     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
554                  float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
555         /* Magnitude subtraction of infinities */
556         farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
557     } else {
558         if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
559                      float64_is_signaling_nan(farg2.d, &env->fp_status))) {
560             /* sNaN addition */
561             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
562         }
563         farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
564     }
565 
566     return farg1.ll;
567 }
568 
569 /* fsub - fsub. */
570 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
571 {
572     CPU_DoubleU farg1, farg2;
573 
574     farg1.ll = arg1;
575     farg2.ll = arg2;
576 
577     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
578                  float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
579         /* Magnitude subtraction of infinities */
580         farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
581     } else {
582         if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
583                      float64_is_signaling_nan(farg2.d, &env->fp_status))) {
584             /* sNaN subtraction */
585             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
586         }
587         farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
588     }
589 
590     return farg1.ll;
591 }
592 
593 /* fmul - fmul. */
594 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
595 {
596     CPU_DoubleU farg1, farg2;
597 
598     farg1.ll = arg1;
599     farg2.ll = arg2;
600 
601     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
602                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
603         /* Multiplication of zero by infinity */
604         farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
605     } else {
606         if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
607                      float64_is_signaling_nan(farg2.d, &env->fp_status))) {
608             /* sNaN multiplication */
609             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
610         }
611         farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
612     }
613 
614     return farg1.ll;
615 }
616 
617 /* fdiv - fdiv. */
618 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
619 {
620     CPU_DoubleU farg1, farg2;
621 
622     farg1.ll = arg1;
623     farg2.ll = arg2;
624 
625     if (unlikely(float64_is_infinity(farg1.d) &&
626                  float64_is_infinity(farg2.d))) {
627         /* Division of infinity by infinity */
628         farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
629     } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
630         /* Division of zero by zero */
631         farg1.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
632     } else {
633         if (unlikely(float64_is_signaling_nan(farg1.d, &env->fp_status) ||
634                      float64_is_signaling_nan(farg2.d, &env->fp_status))) {
635             /* sNaN division */
636             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
637         }
638         farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
639     }
640 
641     return farg1.ll;
642 }
643 
644 
645 #define FPU_FCTI(op, cvt, nanval)                                      \
646 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)                   \
647 {                                                                      \
648     CPU_DoubleU farg;                                                  \
649                                                                        \
650     farg.ll = arg;                                                     \
651     farg.ll = float64_to_##cvt(farg.d, &env->fp_status);               \
652                                                                        \
653     if (unlikely(env->fp_status.float_exception_flags)) {              \
654         if (float64_is_any_nan(arg)) {                                 \
655             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
656             if (float64_is_signaling_nan(arg, &env->fp_status)) {      \
657                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
658             }                                                          \
659             farg.ll = nanval;                                          \
660         } else if (env->fp_status.float_exception_flags &              \
661                    float_flag_invalid) {                               \
662             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
663         }                                                              \
664         float_check_status(env);                                       \
665     }                                                                  \
666     return farg.ll;                                                    \
667  }
668 
669 FPU_FCTI(fctiw, int32, 0x80000000U)
670 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
671 FPU_FCTI(fctiwu, uint32, 0x00000000U)
672 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
673 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
674 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
675 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
676 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
677 
678 #define FPU_FCFI(op, cvtr, is_single)                      \
679 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
680 {                                                          \
681     CPU_DoubleU farg;                                      \
682                                                            \
683     if (is_single) {                                       \
684         float32 tmp = cvtr(arg, &env->fp_status);          \
685         farg.d = float32_to_float64(tmp, &env->fp_status); \
686     } else {                                               \
687         farg.d = cvtr(arg, &env->fp_status);               \
688     }                                                      \
689     float_check_status(env);                               \
690     return farg.ll;                                        \
691 }
692 
693 FPU_FCFI(fcfid, int64_to_float64, 0)
694 FPU_FCFI(fcfids, int64_to_float32, 1)
695 FPU_FCFI(fcfidu, uint64_to_float64, 0)
696 FPU_FCFI(fcfidus, uint64_to_float32, 1)
697 
698 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
699                               int rounding_mode)
700 {
701     CPU_DoubleU farg;
702 
703     farg.ll = arg;
704 
705     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
706         /* sNaN round */
707         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
708         farg.ll = arg | 0x0008000000000000ULL;
709     } else {
710         int inexact = get_float_exception_flags(&env->fp_status) &
711                       float_flag_inexact;
712         set_float_rounding_mode(rounding_mode, &env->fp_status);
713         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
714         /* Restore rounding mode from FPSCR */
715         fpscr_set_rounding_mode(env);
716 
717         /* fri* does not set FPSCR[XX] */
718         if (!inexact) {
719             env->fp_status.float_exception_flags &= ~float_flag_inexact;
720         }
721     }
722     float_check_status(env);
723     return farg.ll;
724 }
725 
726 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
727 {
728     return do_fri(env, arg, float_round_ties_away);
729 }
730 
731 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
732 {
733     return do_fri(env, arg, float_round_to_zero);
734 }
735 
736 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
737 {
738     return do_fri(env, arg, float_round_up);
739 }
740 
741 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
742 {
743     return do_fri(env, arg, float_round_down);
744 }
745 
746 #define FPU_MADDSUB_UPDATE(NAME, TP)                                    \
747 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3,           \
748                  unsigned int madd_flags)                               \
749 {                                                                       \
750     if (TP##_is_signaling_nan(arg1, &env->fp_status) ||                 \
751         TP##_is_signaling_nan(arg2, &env->fp_status) ||                 \
752         TP##_is_signaling_nan(arg3, &env->fp_status)) {                 \
753         /* sNaN operation */                                            \
754         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);          \
755     }                                                                   \
756     if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) ||               \
757         (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) {               \
758         /* Multiplication of zero by infinity */                        \
759         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);           \
760     }                                                                   \
761     if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) &&           \
762         TP##_is_infinity(arg3)) {                                       \
763         uint8_t aSign, bSign, cSign;                                    \
764                                                                         \
765         aSign = TP##_is_neg(arg1);                                      \
766         bSign = TP##_is_neg(arg2);                                      \
767         cSign = TP##_is_neg(arg3);                                      \
768         if (madd_flags & float_muladd_negate_c) {                       \
769             cSign ^= 1;                                                 \
770         }                                                               \
771         if (aSign ^ bSign ^ cSign) {                                    \
772             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);       \
773         }                                                               \
774     }                                                                   \
775 }
776 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
777 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
778 
779 #define FPU_FMADD(op, madd_flags)                                       \
780 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,                   \
781                      uint64_t arg2, uint64_t arg3)                      \
782 {                                                                       \
783     uint32_t flags;                                                     \
784     float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags,          \
785                                  &env->fp_status);                      \
786     flags = get_float_exception_flags(&env->fp_status);                 \
787     if (flags) {                                                        \
788         if (flags & float_flag_invalid) {                               \
789             float64_maddsub_update_excp(env, arg1, arg2, arg3,          \
790                                         madd_flags);                    \
791         }                                                               \
792         float_check_status(env);                                        \
793     }                                                                   \
794     return ret;                                                         \
795 }
796 
797 #define MADD_FLGS 0
798 #define MSUB_FLGS float_muladd_negate_c
799 #define NMADD_FLGS float_muladd_negate_result
800 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
801 
802 FPU_FMADD(fmadd, MADD_FLGS)
803 FPU_FMADD(fnmadd, NMADD_FLGS)
804 FPU_FMADD(fmsub, MSUB_FLGS)
805 FPU_FMADD(fnmsub, NMSUB_FLGS)
806 
807 /* frsp - frsp. */
808 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
809 {
810     CPU_DoubleU farg;
811     float32 f32;
812 
813     farg.ll = arg;
814 
815     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
816         /* sNaN square root */
817         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
818     }
819     f32 = float64_to_float32(farg.d, &env->fp_status);
820     farg.d = float32_to_float64(f32, &env->fp_status);
821 
822     return farg.ll;
823 }
824 
825 /* fsqrt - fsqrt. */
826 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
827 {
828     CPU_DoubleU farg;
829 
830     farg.ll = arg;
831 
832     if (unlikely(float64_is_any_nan(farg.d))) {
833         if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
834             /* sNaN reciprocal square root */
835             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
836             farg.ll = float64_snan_to_qnan(farg.ll);
837         }
838     } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
839         /* Square root of a negative nonzero number */
840         farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
841     } else {
842         farg.d = float64_sqrt(farg.d, &env->fp_status);
843     }
844     return farg.ll;
845 }
846 
847 /* fre - fre. */
848 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
849 {
850     CPU_DoubleU farg;
851 
852     farg.ll = arg;
853 
854     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
855         /* sNaN reciprocal */
856         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
857     }
858     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
859     return farg.d;
860 }
861 
862 /* fres - fres. */
863 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
864 {
865     CPU_DoubleU farg;
866     float32 f32;
867 
868     farg.ll = arg;
869 
870     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
871         /* sNaN reciprocal */
872         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
873     }
874     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
875     f32 = float64_to_float32(farg.d, &env->fp_status);
876     farg.d = float32_to_float64(f32, &env->fp_status);
877 
878     return farg.ll;
879 }
880 
881 /* frsqrte  - frsqrte. */
882 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
883 {
884     CPU_DoubleU farg;
885 
886     farg.ll = arg;
887 
888     if (unlikely(float64_is_any_nan(farg.d))) {
889         if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
890             /* sNaN reciprocal square root */
891             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
892             farg.ll = float64_snan_to_qnan(farg.ll);
893         }
894     } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
895         /* Reciprocal square root of a negative nonzero number */
896         farg.ll = float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
897     } else {
898         farg.d = float64_sqrt(farg.d, &env->fp_status);
899         farg.d = float64_div(float64_one, farg.d, &env->fp_status);
900     }
901 
902     return farg.ll;
903 }
904 
905 /* fsel - fsel. */
906 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
907                      uint64_t arg3)
908 {
909     CPU_DoubleU farg1;
910 
911     farg1.ll = arg1;
912 
913     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
914         !float64_is_any_nan(farg1.d)) {
915         return arg2;
916     } else {
917         return arg3;
918     }
919 }
920 
921 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
922 {
923     int fe_flag = 0;
924     int fg_flag = 0;
925 
926     if (unlikely(float64_is_infinity(fra) ||
927                  float64_is_infinity(frb) ||
928                  float64_is_zero(frb))) {
929         fe_flag = 1;
930         fg_flag = 1;
931     } else {
932         int e_a = ppc_float64_get_unbiased_exp(fra);
933         int e_b = ppc_float64_get_unbiased_exp(frb);
934 
935         if (unlikely(float64_is_any_nan(fra) ||
936                      float64_is_any_nan(frb))) {
937             fe_flag = 1;
938         } else if ((e_b <= -1022) || (e_b >= 1021)) {
939             fe_flag = 1;
940         } else if (!float64_is_zero(fra) &&
941                    (((e_a - e_b) >= 1023) ||
942                     ((e_a - e_b) <= -1021) ||
943                     (e_a <= -970))) {
944             fe_flag = 1;
945         }
946 
947         if (unlikely(float64_is_zero_or_denormal(frb))) {
948             /* XB is not zero because of the above check and */
949             /* so must be denormalized.                      */
950             fg_flag = 1;
951         }
952     }
953 
954     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
955 }
956 
957 uint32_t helper_ftsqrt(uint64_t frb)
958 {
959     int fe_flag = 0;
960     int fg_flag = 0;
961 
962     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
963         fe_flag = 1;
964         fg_flag = 1;
965     } else {
966         int e_b = ppc_float64_get_unbiased_exp(frb);
967 
968         if (unlikely(float64_is_any_nan(frb))) {
969             fe_flag = 1;
970         } else if (unlikely(float64_is_zero(frb))) {
971             fe_flag = 1;
972         } else if (unlikely(float64_is_neg(frb))) {
973             fe_flag = 1;
974         } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
975             fe_flag = 1;
976         }
977 
978         if (unlikely(float64_is_zero_or_denormal(frb))) {
979             /* XB is not zero because of the above check and */
980             /* therefore must be denormalized.               */
981             fg_flag = 1;
982         }
983     }
984 
985     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
986 }
987 
988 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
989                   uint32_t crfD)
990 {
991     CPU_DoubleU farg1, farg2;
992     uint32_t ret = 0;
993 
994     farg1.ll = arg1;
995     farg2.ll = arg2;
996 
997     if (unlikely(float64_is_any_nan(farg1.d) ||
998                  float64_is_any_nan(farg2.d))) {
999         ret = 0x01UL;
1000     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1001         ret = 0x08UL;
1002     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1003         ret = 0x04UL;
1004     } else {
1005         ret = 0x02UL;
1006     }
1007 
1008     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1009     env->fpscr |= ret << FPSCR_FPRF;
1010     env->crf[crfD] = ret;
1011     if (unlikely(ret == 0x01UL
1012                  && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1013                      float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1014         /* sNaN comparison */
1015         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1016     }
1017 }
1018 
1019 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1020                   uint32_t crfD)
1021 {
1022     CPU_DoubleU farg1, farg2;
1023     uint32_t ret = 0;
1024 
1025     farg1.ll = arg1;
1026     farg2.ll = arg2;
1027 
1028     if (unlikely(float64_is_any_nan(farg1.d) ||
1029                  float64_is_any_nan(farg2.d))) {
1030         ret = 0x01UL;
1031     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1032         ret = 0x08UL;
1033     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1034         ret = 0x04UL;
1035     } else {
1036         ret = 0x02UL;
1037     }
1038 
1039     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1040     env->fpscr |= ret << FPSCR_FPRF;
1041     env->crf[crfD] = ret;
1042     if (unlikely(ret == 0x01UL)) {
1043         if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1044             float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1045             /* sNaN comparison */
1046             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1047                                   POWERPC_EXCP_FP_VXVC, 1);
1048         } else {
1049             /* qNaN comparison */
1050             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1051         }
1052     }
1053 }
1054 
1055 /* Single-precision floating-point conversions */
1056 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1057 {
1058     CPU_FloatU u;
1059 
1060     u.f = int32_to_float32(val, &env->vec_status);
1061 
1062     return u.l;
1063 }
1064 
1065 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1066 {
1067     CPU_FloatU u;
1068 
1069     u.f = uint32_to_float32(val, &env->vec_status);
1070 
1071     return u.l;
1072 }
1073 
1074 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1075 {
1076     CPU_FloatU u;
1077 
1078     u.l = val;
1079     /* NaN are not treated the same way IEEE 754 does */
1080     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1081         return 0;
1082     }
1083 
1084     return float32_to_int32(u.f, &env->vec_status);
1085 }
1086 
1087 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1088 {
1089     CPU_FloatU u;
1090 
1091     u.l = val;
1092     /* NaN are not treated the same way IEEE 754 does */
1093     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1094         return 0;
1095     }
1096 
1097     return float32_to_uint32(u.f, &env->vec_status);
1098 }
1099 
1100 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1101 {
1102     CPU_FloatU u;
1103 
1104     u.l = val;
1105     /* NaN are not treated the same way IEEE 754 does */
1106     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1107         return 0;
1108     }
1109 
1110     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1111 }
1112 
1113 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1114 {
1115     CPU_FloatU u;
1116 
1117     u.l = val;
1118     /* NaN are not treated the same way IEEE 754 does */
1119     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1120         return 0;
1121     }
1122 
1123     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1124 }
1125 
1126 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1127 {
1128     CPU_FloatU u;
1129     float32 tmp;
1130 
1131     u.f = int32_to_float32(val, &env->vec_status);
1132     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1133     u.f = float32_div(u.f, tmp, &env->vec_status);
1134 
1135     return u.l;
1136 }
1137 
1138 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1139 {
1140     CPU_FloatU u;
1141     float32 tmp;
1142 
1143     u.f = uint32_to_float32(val, &env->vec_status);
1144     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1145     u.f = float32_div(u.f, tmp, &env->vec_status);
1146 
1147     return u.l;
1148 }
1149 
1150 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1151 {
1152     CPU_FloatU u;
1153     float32 tmp;
1154 
1155     u.l = val;
1156     /* NaN are not treated the same way IEEE 754 does */
1157     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1158         return 0;
1159     }
1160     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1161     u.f = float32_mul(u.f, tmp, &env->vec_status);
1162 
1163     return float32_to_int32(u.f, &env->vec_status);
1164 }
1165 
1166 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1167 {
1168     CPU_FloatU u;
1169     float32 tmp;
1170 
1171     u.l = val;
1172     /* NaN are not treated the same way IEEE 754 does */
1173     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1174         return 0;
1175     }
1176     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1177     u.f = float32_mul(u.f, tmp, &env->vec_status);
1178 
1179     return float32_to_uint32(u.f, &env->vec_status);
1180 }
1181 
1182 #define HELPER_SPE_SINGLE_CONV(name)                              \
1183     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1184     {                                                             \
1185         return e##name(env, val);                                 \
1186     }
1187 /* efscfsi */
1188 HELPER_SPE_SINGLE_CONV(fscfsi);
1189 /* efscfui */
1190 HELPER_SPE_SINGLE_CONV(fscfui);
1191 /* efscfuf */
1192 HELPER_SPE_SINGLE_CONV(fscfuf);
1193 /* efscfsf */
1194 HELPER_SPE_SINGLE_CONV(fscfsf);
1195 /* efsctsi */
1196 HELPER_SPE_SINGLE_CONV(fsctsi);
1197 /* efsctui */
1198 HELPER_SPE_SINGLE_CONV(fsctui);
1199 /* efsctsiz */
1200 HELPER_SPE_SINGLE_CONV(fsctsiz);
1201 /* efsctuiz */
1202 HELPER_SPE_SINGLE_CONV(fsctuiz);
1203 /* efsctsf */
1204 HELPER_SPE_SINGLE_CONV(fsctsf);
1205 /* efsctuf */
1206 HELPER_SPE_SINGLE_CONV(fsctuf);
1207 
1208 #define HELPER_SPE_VECTOR_CONV(name)                            \
1209     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1210     {                                                           \
1211         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1212             (uint64_t)e##name(env, val);                        \
1213     }
1214 /* evfscfsi */
1215 HELPER_SPE_VECTOR_CONV(fscfsi);
1216 /* evfscfui */
1217 HELPER_SPE_VECTOR_CONV(fscfui);
1218 /* evfscfuf */
1219 HELPER_SPE_VECTOR_CONV(fscfuf);
1220 /* evfscfsf */
1221 HELPER_SPE_VECTOR_CONV(fscfsf);
1222 /* evfsctsi */
1223 HELPER_SPE_VECTOR_CONV(fsctsi);
1224 /* evfsctui */
1225 HELPER_SPE_VECTOR_CONV(fsctui);
1226 /* evfsctsiz */
1227 HELPER_SPE_VECTOR_CONV(fsctsiz);
1228 /* evfsctuiz */
1229 HELPER_SPE_VECTOR_CONV(fsctuiz);
1230 /* evfsctsf */
1231 HELPER_SPE_VECTOR_CONV(fsctsf);
1232 /* evfsctuf */
1233 HELPER_SPE_VECTOR_CONV(fsctuf);
1234 
1235 /* Single-precision floating-point arithmetic */
1236 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1237 {
1238     CPU_FloatU u1, u2;
1239 
1240     u1.l = op1;
1241     u2.l = op2;
1242     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1243     return u1.l;
1244 }
1245 
1246 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1247 {
1248     CPU_FloatU u1, u2;
1249 
1250     u1.l = op1;
1251     u2.l = op2;
1252     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1253     return u1.l;
1254 }
1255 
1256 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1257 {
1258     CPU_FloatU u1, u2;
1259 
1260     u1.l = op1;
1261     u2.l = op2;
1262     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1263     return u1.l;
1264 }
1265 
1266 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1267 {
1268     CPU_FloatU u1, u2;
1269 
1270     u1.l = op1;
1271     u2.l = op2;
1272     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1273     return u1.l;
1274 }
1275 
1276 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1277     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1278     {                                                                   \
1279         return e##name(env, op1, op2);                                  \
1280     }
1281 /* efsadd */
1282 HELPER_SPE_SINGLE_ARITH(fsadd);
1283 /* efssub */
1284 HELPER_SPE_SINGLE_ARITH(fssub);
1285 /* efsmul */
1286 HELPER_SPE_SINGLE_ARITH(fsmul);
1287 /* efsdiv */
1288 HELPER_SPE_SINGLE_ARITH(fsdiv);
1289 
1290 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1291     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1292     {                                                                   \
1293         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1294             (uint64_t)e##name(env, op1, op2);                           \
1295     }
1296 /* evfsadd */
1297 HELPER_SPE_VECTOR_ARITH(fsadd);
1298 /* evfssub */
1299 HELPER_SPE_VECTOR_ARITH(fssub);
1300 /* evfsmul */
1301 HELPER_SPE_VECTOR_ARITH(fsmul);
1302 /* evfsdiv */
1303 HELPER_SPE_VECTOR_ARITH(fsdiv);
1304 
1305 /* Single-precision floating-point comparisons */
1306 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1307 {
1308     CPU_FloatU u1, u2;
1309 
1310     u1.l = op1;
1311     u2.l = op2;
1312     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1313 }
1314 
1315 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1316 {
1317     CPU_FloatU u1, u2;
1318 
1319     u1.l = op1;
1320     u2.l = op2;
1321     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1322 }
1323 
1324 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1325 {
1326     CPU_FloatU u1, u2;
1327 
1328     u1.l = op1;
1329     u2.l = op2;
1330     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1331 }
1332 
1333 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1334 {
1335     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1336     return efscmplt(env, op1, op2);
1337 }
1338 
1339 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1340 {
1341     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1342     return efscmpgt(env, op1, op2);
1343 }
1344 
1345 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1346 {
1347     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1348     return efscmpeq(env, op1, op2);
1349 }
1350 
1351 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1352     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1353     {                                                                   \
1354         return e##name(env, op1, op2);                                  \
1355     }
1356 /* efststlt */
1357 HELPER_SINGLE_SPE_CMP(fststlt);
1358 /* efststgt */
1359 HELPER_SINGLE_SPE_CMP(fststgt);
1360 /* efststeq */
1361 HELPER_SINGLE_SPE_CMP(fststeq);
1362 /* efscmplt */
1363 HELPER_SINGLE_SPE_CMP(fscmplt);
1364 /* efscmpgt */
1365 HELPER_SINGLE_SPE_CMP(fscmpgt);
1366 /* efscmpeq */
1367 HELPER_SINGLE_SPE_CMP(fscmpeq);
1368 
1369 static inline uint32_t evcmp_merge(int t0, int t1)
1370 {
1371     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1372 }
1373 
1374 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1375     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1376     {                                                                   \
1377         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1378                            e##name(env, op1, op2));                     \
1379     }
1380 /* evfststlt */
1381 HELPER_VECTOR_SPE_CMP(fststlt);
1382 /* evfststgt */
1383 HELPER_VECTOR_SPE_CMP(fststgt);
1384 /* evfststeq */
1385 HELPER_VECTOR_SPE_CMP(fststeq);
1386 /* evfscmplt */
1387 HELPER_VECTOR_SPE_CMP(fscmplt);
1388 /* evfscmpgt */
1389 HELPER_VECTOR_SPE_CMP(fscmpgt);
1390 /* evfscmpeq */
1391 HELPER_VECTOR_SPE_CMP(fscmpeq);
1392 
1393 /* Double-precision floating-point conversion */
1394 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1395 {
1396     CPU_DoubleU u;
1397 
1398     u.d = int32_to_float64(val, &env->vec_status);
1399 
1400     return u.ll;
1401 }
1402 
1403 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1404 {
1405     CPU_DoubleU u;
1406 
1407     u.d = int64_to_float64(val, &env->vec_status);
1408 
1409     return u.ll;
1410 }
1411 
1412 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1413 {
1414     CPU_DoubleU u;
1415 
1416     u.d = uint32_to_float64(val, &env->vec_status);
1417 
1418     return u.ll;
1419 }
1420 
1421 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1422 {
1423     CPU_DoubleU u;
1424 
1425     u.d = uint64_to_float64(val, &env->vec_status);
1426 
1427     return u.ll;
1428 }
1429 
1430 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1431 {
1432     CPU_DoubleU u;
1433 
1434     u.ll = val;
1435     /* NaN are not treated the same way IEEE 754 does */
1436     if (unlikely(float64_is_any_nan(u.d))) {
1437         return 0;
1438     }
1439 
1440     return float64_to_int32(u.d, &env->vec_status);
1441 }
1442 
1443 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1444 {
1445     CPU_DoubleU u;
1446 
1447     u.ll = val;
1448     /* NaN are not treated the same way IEEE 754 does */
1449     if (unlikely(float64_is_any_nan(u.d))) {
1450         return 0;
1451     }
1452 
1453     return float64_to_uint32(u.d, &env->vec_status);
1454 }
1455 
1456 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1457 {
1458     CPU_DoubleU u;
1459 
1460     u.ll = val;
1461     /* NaN are not treated the same way IEEE 754 does */
1462     if (unlikely(float64_is_any_nan(u.d))) {
1463         return 0;
1464     }
1465 
1466     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1467 }
1468 
1469 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1470 {
1471     CPU_DoubleU u;
1472 
1473     u.ll = val;
1474     /* NaN are not treated the same way IEEE 754 does */
1475     if (unlikely(float64_is_any_nan(u.d))) {
1476         return 0;
1477     }
1478 
1479     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1480 }
1481 
1482 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1483 {
1484     CPU_DoubleU u;
1485 
1486     u.ll = val;
1487     /* NaN are not treated the same way IEEE 754 does */
1488     if (unlikely(float64_is_any_nan(u.d))) {
1489         return 0;
1490     }
1491 
1492     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1493 }
1494 
1495 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1496 {
1497     CPU_DoubleU u;
1498 
1499     u.ll = val;
1500     /* NaN are not treated the same way IEEE 754 does */
1501     if (unlikely(float64_is_any_nan(u.d))) {
1502         return 0;
1503     }
1504 
1505     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1506 }
1507 
1508 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1509 {
1510     CPU_DoubleU u;
1511     float64 tmp;
1512 
1513     u.d = int32_to_float64(val, &env->vec_status);
1514     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1515     u.d = float64_div(u.d, tmp, &env->vec_status);
1516 
1517     return u.ll;
1518 }
1519 
1520 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1521 {
1522     CPU_DoubleU u;
1523     float64 tmp;
1524 
1525     u.d = uint32_to_float64(val, &env->vec_status);
1526     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1527     u.d = float64_div(u.d, tmp, &env->vec_status);
1528 
1529     return u.ll;
1530 }
1531 
1532 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1533 {
1534     CPU_DoubleU u;
1535     float64 tmp;
1536 
1537     u.ll = val;
1538     /* NaN are not treated the same way IEEE 754 does */
1539     if (unlikely(float64_is_any_nan(u.d))) {
1540         return 0;
1541     }
1542     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1543     u.d = float64_mul(u.d, tmp, &env->vec_status);
1544 
1545     return float64_to_int32(u.d, &env->vec_status);
1546 }
1547 
1548 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1549 {
1550     CPU_DoubleU u;
1551     float64 tmp;
1552 
1553     u.ll = val;
1554     /* NaN are not treated the same way IEEE 754 does */
1555     if (unlikely(float64_is_any_nan(u.d))) {
1556         return 0;
1557     }
1558     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1559     u.d = float64_mul(u.d, tmp, &env->vec_status);
1560 
1561     return float64_to_uint32(u.d, &env->vec_status);
1562 }
1563 
1564 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1565 {
1566     CPU_DoubleU u1;
1567     CPU_FloatU u2;
1568 
1569     u1.ll = val;
1570     u2.f = float64_to_float32(u1.d, &env->vec_status);
1571 
1572     return u2.l;
1573 }
1574 
1575 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1576 {
1577     CPU_DoubleU u2;
1578     CPU_FloatU u1;
1579 
1580     u1.l = val;
1581     u2.d = float32_to_float64(u1.f, &env->vec_status);
1582 
1583     return u2.ll;
1584 }
1585 
1586 /* Double precision fixed-point arithmetic */
1587 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1588 {
1589     CPU_DoubleU u1, u2;
1590 
1591     u1.ll = op1;
1592     u2.ll = op2;
1593     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1594     return u1.ll;
1595 }
1596 
1597 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1598 {
1599     CPU_DoubleU u1, u2;
1600 
1601     u1.ll = op1;
1602     u2.ll = op2;
1603     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1604     return u1.ll;
1605 }
1606 
1607 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1608 {
1609     CPU_DoubleU u1, u2;
1610 
1611     u1.ll = op1;
1612     u2.ll = op2;
1613     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1614     return u1.ll;
1615 }
1616 
1617 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1618 {
1619     CPU_DoubleU u1, u2;
1620 
1621     u1.ll = op1;
1622     u2.ll = op2;
1623     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1624     return u1.ll;
1625 }
1626 
1627 /* Double precision floating point helpers */
1628 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1629 {
1630     CPU_DoubleU u1, u2;
1631 
1632     u1.ll = op1;
1633     u2.ll = op2;
1634     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1635 }
1636 
1637 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1638 {
1639     CPU_DoubleU u1, u2;
1640 
1641     u1.ll = op1;
1642     u2.ll = op2;
1643     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1644 }
1645 
1646 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1647 {
1648     CPU_DoubleU u1, u2;
1649 
1650     u1.ll = op1;
1651     u2.ll = op2;
1652     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1653 }
1654 
1655 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1656 {
1657     /* XXX: TODO: test special values (NaN, infinites, ...) */
1658     return helper_efdtstlt(env, op1, op2);
1659 }
1660 
1661 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1662 {
1663     /* XXX: TODO: test special values (NaN, infinites, ...) */
1664     return helper_efdtstgt(env, op1, op2);
1665 }
1666 
1667 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1668 {
1669     /* XXX: TODO: test special values (NaN, infinites, ...) */
1670     return helper_efdtsteq(env, op1, op2);
1671 }
1672 
1673 #define float64_to_float64(x, env) x
1674 
1675 
1676 /* VSX_ADD_SUB - VSX floating point add/subract
1677  *   name  - instruction mnemonic
1678  *   op    - operation (add or sub)
1679  *   nels  - number of elements (1, 2 or 4)
1680  *   tp    - type (float32 or float64)
1681  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1682  *   sfprf - set FPRF
1683  */
1684 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1685 void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
1686 {                                                                            \
1687     ppc_vsr_t xt, xa, xb;                                                    \
1688     int i;                                                                   \
1689                                                                              \
1690     getVSR(xA(opcode), &xa, env);                                            \
1691     getVSR(xB(opcode), &xb, env);                                            \
1692     getVSR(xT(opcode), &xt, env);                                            \
1693     helper_reset_fpstatus(env);                                              \
1694                                                                              \
1695     for (i = 0; i < nels; i++) {                                             \
1696         float_status tstat = env->fp_status;                                 \
1697         set_float_exception_flags(0, &tstat);                                \
1698         xt.fld = tp##_##op(xa.fld, xb.fld, &tstat);                          \
1699         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1700                                                                              \
1701         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1702             if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {      \
1703                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);    \
1704             } else if (tp##_is_signaling_nan(xa.fld, &tstat) ||              \
1705                        tp##_is_signaling_nan(xb.fld, &tstat)) {              \
1706                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1707             }                                                                \
1708         }                                                                    \
1709                                                                              \
1710         if (r2sp) {                                                          \
1711             xt.fld = helper_frsp(env, xt.fld);                               \
1712         }                                                                    \
1713                                                                              \
1714         if (sfprf) {                                                         \
1715             helper_compute_fprf_float64(env, xt.fld);                        \
1716         }                                                                    \
1717     }                                                                        \
1718     putVSR(xT(opcode), &xt, env);                                            \
1719     float_check_status(env);                                                 \
1720 }
1721 
1722 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1723 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1724 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1725 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1726 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1727 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1728 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1729 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1730 
1731 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode)
1732 {
1733     ppc_vsr_t xt, xa, xb;
1734     float_status tstat;
1735 
1736     getVSR(rA(opcode) + 32, &xa, env);
1737     getVSR(rB(opcode) + 32, &xb, env);
1738     getVSR(rD(opcode) + 32, &xt, env);
1739     helper_reset_fpstatus(env);
1740 
1741     tstat = env->fp_status;
1742     if (unlikely(Rc(opcode) != 0)) {
1743         tstat.float_rounding_mode = float_round_to_odd;
1744     }
1745 
1746     set_float_exception_flags(0, &tstat);
1747     xt.f128 = float128_add(xa.f128, xb.f128, &tstat);
1748     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1749 
1750     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1751         if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
1752             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
1753         } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1754                    float128_is_signaling_nan(xb.f128, &tstat)) {
1755             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1756         }
1757     }
1758 
1759     helper_compute_fprf_float128(env, xt.f128);
1760 
1761     putVSR(rD(opcode) + 32, &xt, env);
1762     float_check_status(env);
1763 }
1764 
1765 /* VSX_MUL - VSX floating point multiply
1766  *   op    - instruction mnemonic
1767  *   nels  - number of elements (1, 2 or 4)
1768  *   tp    - type (float32 or float64)
1769  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1770  *   sfprf - set FPRF
1771  */
1772 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1773 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1774 {                                                                            \
1775     ppc_vsr_t xt, xa, xb;                                                    \
1776     int i;                                                                   \
1777                                                                              \
1778     getVSR(xA(opcode), &xa, env);                                            \
1779     getVSR(xB(opcode), &xb, env);                                            \
1780     getVSR(xT(opcode), &xt, env);                                            \
1781     helper_reset_fpstatus(env);                                              \
1782                                                                              \
1783     for (i = 0; i < nels; i++) {                                             \
1784         float_status tstat = env->fp_status;                                 \
1785         set_float_exception_flags(0, &tstat);                                \
1786         xt.fld = tp##_mul(xa.fld, xb.fld, &tstat);                           \
1787         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1788                                                                              \
1789         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1790             if ((tp##_is_infinity(xa.fld) && tp##_is_zero(xb.fld)) ||        \
1791                 (tp##_is_infinity(xb.fld) && tp##_is_zero(xa.fld))) {        \
1792                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf);    \
1793             } else if (tp##_is_signaling_nan(xa.fld, &tstat) ||              \
1794                        tp##_is_signaling_nan(xb.fld, &tstat)) {              \
1795                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1796             }                                                                \
1797         }                                                                    \
1798                                                                              \
1799         if (r2sp) {                                                          \
1800             xt.fld = helper_frsp(env, xt.fld);                               \
1801         }                                                                    \
1802                                                                              \
1803         if (sfprf) {                                                         \
1804             helper_compute_fprf_float64(env, xt.fld);                        \
1805         }                                                                    \
1806     }                                                                        \
1807                                                                              \
1808     putVSR(xT(opcode), &xt, env);                                            \
1809     float_check_status(env);                                                 \
1810 }
1811 
1812 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1813 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1814 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1815 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1816 
1817 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode)
1818 {
1819     ppc_vsr_t xt, xa, xb;
1820     float_status tstat;
1821 
1822     getVSR(rA(opcode) + 32, &xa, env);
1823     getVSR(rB(opcode) + 32, &xb, env);
1824     getVSR(rD(opcode) + 32, &xt, env);
1825 
1826     helper_reset_fpstatus(env);
1827     tstat = env->fp_status;
1828     if (unlikely(Rc(opcode) != 0)) {
1829         tstat.float_rounding_mode = float_round_to_odd;
1830     }
1831 
1832     set_float_exception_flags(0, &tstat);
1833     xt.f128 = float128_mul(xa.f128, xb.f128, &tstat);
1834     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1835 
1836     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1837         if ((float128_is_infinity(xa.f128) && float128_is_zero(xb.f128)) ||
1838             (float128_is_infinity(xb.f128) && float128_is_zero(xa.f128))) {
1839             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
1840         } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1841                    float128_is_signaling_nan(xb.f128, &tstat)) {
1842             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1843         }
1844     }
1845     helper_compute_fprf_float128(env, xt.f128);
1846 
1847     putVSR(rD(opcode) + 32, &xt, env);
1848     float_check_status(env);
1849 }
1850 
1851 /* VSX_DIV - VSX floating point divide
1852  *   op    - instruction mnemonic
1853  *   nels  - number of elements (1, 2 or 4)
1854  *   tp    - type (float32 or float64)
1855  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1856  *   sfprf - set FPRF
1857  */
1858 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1859 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1860 {                                                                             \
1861     ppc_vsr_t xt, xa, xb;                                                     \
1862     int i;                                                                    \
1863                                                                               \
1864     getVSR(xA(opcode), &xa, env);                                             \
1865     getVSR(xB(opcode), &xb, env);                                             \
1866     getVSR(xT(opcode), &xt, env);                                             \
1867     helper_reset_fpstatus(env);                                               \
1868                                                                               \
1869     for (i = 0; i < nels; i++) {                                              \
1870         float_status tstat = env->fp_status;                                  \
1871         set_float_exception_flags(0, &tstat);                                 \
1872         xt.fld = tp##_div(xa.fld, xb.fld, &tstat);                            \
1873         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1874                                                                               \
1875         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1876             if (tp##_is_infinity(xa.fld) && tp##_is_infinity(xb.fld)) {       \
1877                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf);     \
1878             } else if (tp##_is_zero(xa.fld) &&                                \
1879                 tp##_is_zero(xb.fld)) {                                       \
1880                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf);     \
1881             } else if (tp##_is_signaling_nan(xa.fld, &tstat) ||               \
1882                 tp##_is_signaling_nan(xb.fld, &tstat)) {                      \
1883                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1884             }                                                                 \
1885         }                                                                     \
1886                                                                               \
1887         if (r2sp) {                                                           \
1888             xt.fld = helper_frsp(env, xt.fld);                                \
1889         }                                                                     \
1890                                                                               \
1891         if (sfprf) {                                                          \
1892             helper_compute_fprf_float64(env, xt.fld);                         \
1893         }                                                                     \
1894     }                                                                         \
1895                                                                               \
1896     putVSR(xT(opcode), &xt, env);                                             \
1897     float_check_status(env);                                                  \
1898 }
1899 
1900 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1901 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1902 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1903 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1904 
1905 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode)
1906 {
1907     ppc_vsr_t xt, xa, xb;
1908     float_status tstat;
1909 
1910     getVSR(rA(opcode) + 32, &xa, env);
1911     getVSR(rB(opcode) + 32, &xb, env);
1912     getVSR(rD(opcode) + 32, &xt, env);
1913 
1914     helper_reset_fpstatus(env);
1915     tstat = env->fp_status;
1916     if (unlikely(Rc(opcode) != 0)) {
1917         tstat.float_rounding_mode = float_round_to_odd;
1918     }
1919 
1920     set_float_exception_flags(0, &tstat);
1921     xt.f128 = float128_div(xa.f128, xb.f128, &tstat);
1922     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1923 
1924     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1925         if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
1926             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
1927         } else if (float128_is_zero(xa.f128) &&
1928             float128_is_zero(xb.f128)) {
1929             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
1930         } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
1931             float128_is_signaling_nan(xb.f128, &tstat)) {
1932             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1933         }
1934     }
1935 
1936     helper_compute_fprf_float128(env, xt.f128);
1937     putVSR(rD(opcode) + 32, &xt, env);
1938     float_check_status(env);
1939 }
1940 
1941 /* VSX_RE  - VSX floating point reciprocal estimate
1942  *   op    - instruction mnemonic
1943  *   nels  - number of elements (1, 2 or 4)
1944  *   tp    - type (float32 or float64)
1945  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1946  *   sfprf - set FPRF
1947  */
1948 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
1949 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1950 {                                                                             \
1951     ppc_vsr_t xt, xb;                                                         \
1952     int i;                                                                    \
1953                                                                               \
1954     getVSR(xB(opcode), &xb, env);                                             \
1955     getVSR(xT(opcode), &xt, env);                                             \
1956     helper_reset_fpstatus(env);                                               \
1957                                                                               \
1958     for (i = 0; i < nels; i++) {                                              \
1959         if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
1960                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1961         }                                                                     \
1962         xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \
1963                                                                               \
1964         if (r2sp) {                                                           \
1965             xt.fld = helper_frsp(env, xt.fld);                                \
1966         }                                                                     \
1967                                                                               \
1968         if (sfprf) {                                                          \
1969             helper_compute_fprf_float64(env, xt.fld);                         \
1970         }                                                                     \
1971     }                                                                         \
1972                                                                               \
1973     putVSR(xT(opcode), &xt, env);                                             \
1974     float_check_status(env);                                                  \
1975 }
1976 
1977 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
1978 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
1979 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
1980 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
1981 
1982 /* VSX_SQRT - VSX floating point square root
1983  *   op    - instruction mnemonic
1984  *   nels  - number of elements (1, 2 or 4)
1985  *   tp    - type (float32 or float64)
1986  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1987  *   sfprf - set FPRF
1988  */
1989 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
1990 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1991 {                                                                            \
1992     ppc_vsr_t xt, xb;                                                        \
1993     int i;                                                                   \
1994                                                                              \
1995     getVSR(xB(opcode), &xb, env);                                            \
1996     getVSR(xT(opcode), &xt, env);                                            \
1997     helper_reset_fpstatus(env);                                              \
1998                                                                              \
1999     for (i = 0; i < nels; i++) {                                             \
2000         float_status tstat = env->fp_status;                                 \
2001         set_float_exception_flags(0, &tstat);                                \
2002         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2003         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2004                                                                              \
2005         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2006             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2007                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2008             } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
2009                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2010             }                                                                \
2011         }                                                                    \
2012                                                                              \
2013         if (r2sp) {                                                          \
2014             xt.fld = helper_frsp(env, xt.fld);                               \
2015         }                                                                    \
2016                                                                              \
2017         if (sfprf) {                                                         \
2018             helper_compute_fprf_float64(env, xt.fld);                        \
2019         }                                                                    \
2020     }                                                                        \
2021                                                                              \
2022     putVSR(xT(opcode), &xt, env);                                            \
2023     float_check_status(env);                                                 \
2024 }
2025 
2026 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2027 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2028 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2029 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2030 
2031 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2032  *   op    - instruction mnemonic
2033  *   nels  - number of elements (1, 2 or 4)
2034  *   tp    - type (float32 or float64)
2035  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2036  *   sfprf - set FPRF
2037  */
2038 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2039 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2040 {                                                                            \
2041     ppc_vsr_t xt, xb;                                                        \
2042     int i;                                                                   \
2043                                                                              \
2044     getVSR(xB(opcode), &xb, env);                                            \
2045     getVSR(xT(opcode), &xt, env);                                            \
2046     helper_reset_fpstatus(env);                                              \
2047                                                                              \
2048     for (i = 0; i < nels; i++) {                                             \
2049         float_status tstat = env->fp_status;                                 \
2050         set_float_exception_flags(0, &tstat);                                \
2051         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2052         xt.fld = tp##_div(tp##_one, xt.fld, &tstat);                         \
2053         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2054                                                                              \
2055         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2056             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2057                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2058             } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
2059                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2060             }                                                                \
2061         }                                                                    \
2062                                                                              \
2063         if (r2sp) {                                                          \
2064             xt.fld = helper_frsp(env, xt.fld);                               \
2065         }                                                                    \
2066                                                                              \
2067         if (sfprf) {                                                         \
2068             helper_compute_fprf_float64(env, xt.fld);                        \
2069         }                                                                    \
2070     }                                                                        \
2071                                                                              \
2072     putVSR(xT(opcode), &xt, env);                                            \
2073     float_check_status(env);                                                 \
2074 }
2075 
2076 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2077 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2078 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2079 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2080 
2081 /* VSX_TDIV - VSX floating point test for divide
2082  *   op    - instruction mnemonic
2083  *   nels  - number of elements (1, 2 or 4)
2084  *   tp    - type (float32 or float64)
2085  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2086  *   emin  - minimum unbiased exponent
2087  *   emax  - maximum unbiased exponent
2088  *   nbits - number of fraction bits
2089  */
2090 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2091 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2092 {                                                                       \
2093     ppc_vsr_t xa, xb;                                                   \
2094     int i;                                                              \
2095     int fe_flag = 0;                                                    \
2096     int fg_flag = 0;                                                    \
2097                                                                         \
2098     getVSR(xA(opcode), &xa, env);                                       \
2099     getVSR(xB(opcode), &xb, env);                                       \
2100                                                                         \
2101     for (i = 0; i < nels; i++) {                                        \
2102         if (unlikely(tp##_is_infinity(xa.fld) ||                        \
2103                      tp##_is_infinity(xb.fld) ||                        \
2104                      tp##_is_zero(xb.fld))) {                           \
2105             fe_flag = 1;                                                \
2106             fg_flag = 1;                                                \
2107         } else {                                                        \
2108             int e_a = ppc_##tp##_get_unbiased_exp(xa.fld);              \
2109             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2110                                                                         \
2111             if (unlikely(tp##_is_any_nan(xa.fld) ||                     \
2112                          tp##_is_any_nan(xb.fld))) {                    \
2113                 fe_flag = 1;                                            \
2114             } else if ((e_b <= emin) || (e_b >= (emax-2))) {            \
2115                 fe_flag = 1;                                            \
2116             } else if (!tp##_is_zero(xa.fld) &&                         \
2117                        (((e_a - e_b) >= emax) ||                        \
2118                         ((e_a - e_b) <= (emin+1)) ||                    \
2119                          (e_a <= (emin+nbits)))) {                      \
2120                 fe_flag = 1;                                            \
2121             }                                                           \
2122                                                                         \
2123             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2124                 /* XB is not zero because of the above check and */     \
2125                 /* so must be denormalized.                      */     \
2126                 fg_flag = 1;                                            \
2127             }                                                           \
2128         }                                                               \
2129     }                                                                   \
2130                                                                         \
2131     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2132 }
2133 
2134 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2135 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2136 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2137 
2138 /* VSX_TSQRT - VSX floating point test for square root
2139  *   op    - instruction mnemonic
2140  *   nels  - number of elements (1, 2 or 4)
2141  *   tp    - type (float32 or float64)
2142  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2143  *   emin  - minimum unbiased exponent
2144  *   emax  - maximum unbiased exponent
2145  *   nbits - number of fraction bits
2146  */
2147 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2148 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2149 {                                                                       \
2150     ppc_vsr_t xa, xb;                                                   \
2151     int i;                                                              \
2152     int fe_flag = 0;                                                    \
2153     int fg_flag = 0;                                                    \
2154                                                                         \
2155     getVSR(xA(opcode), &xa, env);                                       \
2156     getVSR(xB(opcode), &xb, env);                                       \
2157                                                                         \
2158     for (i = 0; i < nels; i++) {                                        \
2159         if (unlikely(tp##_is_infinity(xb.fld) ||                        \
2160                      tp##_is_zero(xb.fld))) {                           \
2161             fe_flag = 1;                                                \
2162             fg_flag = 1;                                                \
2163         } else {                                                        \
2164             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2165                                                                         \
2166             if (unlikely(tp##_is_any_nan(xb.fld))) {                    \
2167                 fe_flag = 1;                                            \
2168             } else if (unlikely(tp##_is_zero(xb.fld))) {                \
2169                 fe_flag = 1;                                            \
2170             } else if (unlikely(tp##_is_neg(xb.fld))) {                 \
2171                 fe_flag = 1;                                            \
2172             } else if (!tp##_is_zero(xb.fld) &&                         \
2173                       (e_b <= (emin+nbits))) {                          \
2174                 fe_flag = 1;                                            \
2175             }                                                           \
2176                                                                         \
2177             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2178                 /* XB is not zero because of the above check and */     \
2179                 /* therefore must be denormalized.               */     \
2180                 fg_flag = 1;                                            \
2181             }                                                           \
2182         }                                                               \
2183     }                                                                   \
2184                                                                         \
2185     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2186 }
2187 
2188 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2189 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2190 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2191 
2192 /* VSX_MADD - VSX floating point muliply/add variations
2193  *   op    - instruction mnemonic
2194  *   nels  - number of elements (1, 2 or 4)
2195  *   tp    - type (float32 or float64)
2196  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2197  *   maddflgs - flags for the float*muladd routine that control the
2198  *           various forms (madd, msub, nmadd, nmsub)
2199  *   afrm  - A form (1=A, 0=M)
2200  *   sfprf - set FPRF
2201  */
2202 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \
2203 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2204 {                                                                             \
2205     ppc_vsr_t xt_in, xa, xb, xt_out;                                          \
2206     ppc_vsr_t *b, *c;                                                         \
2207     int i;                                                                    \
2208                                                                               \
2209     if (afrm) { /* AxB + T */                                                 \
2210         b = &xb;                                                              \
2211         c = &xt_in;                                                           \
2212     } else { /* AxT + B */                                                    \
2213         b = &xt_in;                                                           \
2214         c = &xb;                                                              \
2215     }                                                                         \
2216                                                                               \
2217     getVSR(xA(opcode), &xa, env);                                             \
2218     getVSR(xB(opcode), &xb, env);                                             \
2219     getVSR(xT(opcode), &xt_in, env);                                          \
2220                                                                               \
2221     xt_out = xt_in;                                                           \
2222                                                                               \
2223     helper_reset_fpstatus(env);                                               \
2224                                                                               \
2225     for (i = 0; i < nels; i++) {                                              \
2226         float_status tstat = env->fp_status;                                  \
2227         set_float_exception_flags(0, &tstat);                                 \
2228         if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2229             /* Avoid double rounding errors by rounding the intermediate */   \
2230             /* result to odd.                                            */   \
2231             set_float_rounding_mode(float_round_to_zero, &tstat);             \
2232             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2233                                        maddflgs, &tstat);                     \
2234             xt_out.fld |= (get_float_exception_flags(&tstat) &                \
2235                               float_flag_inexact) != 0;                       \
2236         } else {                                                              \
2237             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2238                                         maddflgs, &tstat);                    \
2239         }                                                                     \
2240         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2241                                                                               \
2242         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2243             tp##_maddsub_update_excp(env, xa.fld, b->fld, c->fld, maddflgs);  \
2244         }                                                                     \
2245                                                                               \
2246         if (r2sp) {                                                           \
2247             xt_out.fld = helper_frsp(env, xt_out.fld);                        \
2248         }                                                                     \
2249                                                                               \
2250         if (sfprf) {                                                          \
2251             helper_compute_fprf_float64(env, xt_out.fld);                     \
2252         }                                                                     \
2253     }                                                                         \
2254     putVSR(xT(opcode), &xt_out, env);                                         \
2255     float_check_status(env);                                                  \
2256 }
2257 
2258 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2259 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2260 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2261 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2262 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2263 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2264 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2265 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2266 
2267 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2268 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2269 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2270 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2271 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2272 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2273 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2274 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2275 
2276 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2277 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2278 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2279 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2280 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2281 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2282 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2283 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2284 
2285 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2286 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2287 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2288 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2289 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2290 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2291 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2292 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2293 
2294 /* VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2295  *   op    - instruction mnemonic
2296  *   cmp   - comparison operation
2297  *   exp   - expected result of comparison
2298  *   svxvc - set VXVC bit
2299  */
2300 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc)                                \
2301 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2302 {                                                                             \
2303     ppc_vsr_t xt, xa, xb;                                                     \
2304     bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false;            \
2305                                                                               \
2306     getVSR(xA(opcode), &xa, env);                                             \
2307     getVSR(xB(opcode), &xb, env);                                             \
2308     getVSR(xT(opcode), &xt, env);                                             \
2309                                                                               \
2310     if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||              \
2311         float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {              \
2312         vxsnan_flag = true;                                                   \
2313         if (fpscr_ve == 0 && svxvc) {                                         \
2314             vxvc_flag = true;                                                 \
2315         }                                                                     \
2316     } else if (svxvc) {                                                       \
2317         vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) ||      \
2318             float64_is_quiet_nan(xb.VsrD(0), &env->fp_status);                \
2319     }                                                                         \
2320     if (vxsnan_flag) {                                                        \
2321         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);                \
2322     }                                                                         \
2323     if (vxvc_flag) {                                                          \
2324         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);                  \
2325     }                                                                         \
2326     vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag);                        \
2327                                                                               \
2328     if (!vex_flag) {                                                          \
2329         if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) {  \
2330             xt.VsrD(0) = -1;                                                  \
2331             xt.VsrD(1) = 0;                                                   \
2332         } else {                                                              \
2333             xt.VsrD(0) = 0;                                                   \
2334             xt.VsrD(1) = 0;                                                   \
2335         }                                                                     \
2336     }                                                                         \
2337     putVSR(xT(opcode), &xt, env);                                             \
2338     helper_float_check_status(env);                                           \
2339 }
2340 
2341 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2342 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2343 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2344 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2345 
2346 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode)
2347 {
2348     ppc_vsr_t xa, xb;
2349     int64_t exp_a, exp_b;
2350     uint32_t cc;
2351 
2352     getVSR(xA(opcode), &xa, env);
2353     getVSR(xB(opcode), &xb, env);
2354 
2355     exp_a = extract64(xa.VsrD(0), 52, 11);
2356     exp_b = extract64(xb.VsrD(0), 52, 11);
2357 
2358     if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||
2359                  float64_is_any_nan(xb.VsrD(0)))) {
2360         cc = CRF_SO;
2361     } else {
2362         if (exp_a < exp_b) {
2363             cc = CRF_LT;
2364         } else if (exp_a > exp_b) {
2365             cc = CRF_GT;
2366         } else {
2367             cc = CRF_EQ;
2368         }
2369     }
2370 
2371     env->fpscr &= ~(0x0F << FPSCR_FPRF);
2372     env->fpscr |= cc << FPSCR_FPRF;
2373     env->crf[BF(opcode)] = cc;
2374 
2375     helper_float_check_status(env);
2376 }
2377 
2378 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode)
2379 {
2380     ppc_vsr_t xa, xb;
2381     int64_t exp_a, exp_b;
2382     uint32_t cc;
2383 
2384     getVSR(rA(opcode) + 32, &xa, env);
2385     getVSR(rB(opcode) + 32, &xb, env);
2386 
2387     exp_a = extract64(xa.VsrD(0), 48, 15);
2388     exp_b = extract64(xb.VsrD(0), 48, 15);
2389 
2390     if (unlikely(float128_is_any_nan(xa.f128) ||
2391                  float128_is_any_nan(xb.f128))) {
2392         cc = CRF_SO;
2393     } else {
2394         if (exp_a < exp_b) {
2395             cc = CRF_LT;
2396         } else if (exp_a > exp_b) {
2397             cc = CRF_GT;
2398         } else {
2399             cc = CRF_EQ;
2400         }
2401     }
2402 
2403     env->fpscr &= ~(0x0F << FPSCR_FPRF);
2404     env->fpscr |= cc << FPSCR_FPRF;
2405     env->crf[BF(opcode)] = cc;
2406 
2407     helper_float_check_status(env);
2408 }
2409 
2410 #define VSX_SCALAR_CMP(op, ordered)                                      \
2411 void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
2412 {                                                                        \
2413     ppc_vsr_t xa, xb;                                                    \
2414     uint32_t cc = 0;                                                     \
2415     bool vxsnan_flag = false, vxvc_flag = false;                         \
2416                                                                          \
2417     helper_reset_fpstatus(env);                                          \
2418     getVSR(xA(opcode), &xa, env);                                        \
2419     getVSR(xB(opcode), &xb, env);                                        \
2420                                                                          \
2421     if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||         \
2422         float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {         \
2423         vxsnan_flag = true;                                              \
2424         cc = CRF_SO;                                                     \
2425         if (fpscr_ve == 0 && ordered) {                                  \
2426             vxvc_flag = true;                                            \
2427         }                                                                \
2428     } else if (float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) ||      \
2429                float64_is_quiet_nan(xb.VsrD(0), &env->fp_status)) {      \
2430         cc = CRF_SO;                                                     \
2431         if (ordered) {                                                   \
2432             vxvc_flag = true;                                            \
2433         }                                                                \
2434     }                                                                    \
2435     if (vxsnan_flag) {                                                   \
2436         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);           \
2437     }                                                                    \
2438     if (vxvc_flag) {                                                     \
2439         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);             \
2440     }                                                                    \
2441                                                                          \
2442     if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {           \
2443         cc |= CRF_LT;                                                    \
2444     } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {   \
2445         cc |= CRF_GT;                                                    \
2446     } else {                                                             \
2447         cc |= CRF_EQ;                                                    \
2448     }                                                                    \
2449                                                                          \
2450     env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \
2451     env->fpscr |= cc << FPSCR_FPRF;                                      \
2452     env->crf[BF(opcode)] = cc;                                           \
2453                                                                          \
2454     float_check_status(env);                                             \
2455 }
2456 
2457 VSX_SCALAR_CMP(xscmpodp, 1)
2458 VSX_SCALAR_CMP(xscmpudp, 0)
2459 
2460 #define VSX_SCALAR_CMPQ(op, ordered)                                    \
2461 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2462 {                                                                       \
2463     ppc_vsr_t xa, xb;                                                   \
2464     uint32_t cc = 0;                                                    \
2465     bool vxsnan_flag = false, vxvc_flag = false;                        \
2466                                                                         \
2467     helper_reset_fpstatus(env);                                         \
2468     getVSR(rA(opcode) + 32, &xa, env);                                  \
2469     getVSR(rB(opcode) + 32, &xb, env);                                  \
2470                                                                         \
2471     if (float128_is_signaling_nan(xa.f128, &env->fp_status) ||          \
2472         float128_is_signaling_nan(xb.f128, &env->fp_status)) {          \
2473         vxsnan_flag = true;                                             \
2474         cc = CRF_SO;                                                    \
2475         if (fpscr_ve == 0 && ordered) {                                 \
2476             vxvc_flag = true;                                           \
2477         }                                                               \
2478     } else if (float128_is_quiet_nan(xa.f128, &env->fp_status) ||       \
2479                float128_is_quiet_nan(xb.f128, &env->fp_status)) {       \
2480         cc = CRF_SO;                                                    \
2481         if (ordered) {                                                  \
2482             vxvc_flag = true;                                           \
2483         }                                                               \
2484     }                                                                   \
2485     if (vxsnan_flag) {                                                  \
2486         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);          \
2487     }                                                                   \
2488     if (vxvc_flag) {                                                    \
2489         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);            \
2490     }                                                                   \
2491                                                                         \
2492     if (float128_lt(xa.f128, xb.f128, &env->fp_status)) {               \
2493         cc |= CRF_LT;                                                   \
2494     } else if (!float128_le(xa.f128, xb.f128, &env->fp_status)) {       \
2495         cc |= CRF_GT;                                                   \
2496     } else {                                                            \
2497         cc |= CRF_EQ;                                                   \
2498     }                                                                   \
2499                                                                         \
2500     env->fpscr &= ~(0x0F << FPSCR_FPRF);                                \
2501     env->fpscr |= cc << FPSCR_FPRF;                                     \
2502     env->crf[BF(opcode)] = cc;                                          \
2503                                                                         \
2504     float_check_status(env);                                            \
2505 }
2506 
2507 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2508 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2509 
2510 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2511  *   name  - instruction mnemonic
2512  *   op    - operation (max or min)
2513  *   nels  - number of elements (1, 2 or 4)
2514  *   tp    - type (float32 or float64)
2515  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2516  */
2517 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2518 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2519 {                                                                             \
2520     ppc_vsr_t xt, xa, xb;                                                     \
2521     int i;                                                                    \
2522                                                                               \
2523     getVSR(xA(opcode), &xa, env);                                             \
2524     getVSR(xB(opcode), &xb, env);                                             \
2525     getVSR(xT(opcode), &xt, env);                                             \
2526                                                                               \
2527     for (i = 0; i < nels; i++) {                                              \
2528         xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \
2529         if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) ||        \
2530                      tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
2531             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
2532         }                                                                     \
2533     }                                                                         \
2534                                                                               \
2535     putVSR(xT(opcode), &xt, env);                                             \
2536     float_check_status(env);                                                  \
2537 }
2538 
2539 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2540 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2541 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2542 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2543 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2544 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2545 
2546 #define VSX_MAX_MINC(name, max)                                               \
2547 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2548 {                                                                             \
2549     ppc_vsr_t xt, xa, xb;                                                     \
2550     bool vxsnan_flag = false, vex_flag = false;                               \
2551                                                                               \
2552     getVSR(rA(opcode) + 32, &xa, env);                                        \
2553     getVSR(rB(opcode) + 32, &xb, env);                                        \
2554     getVSR(rD(opcode) + 32, &xt, env);                                        \
2555                                                                               \
2556     if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                            \
2557                  float64_is_any_nan(xb.VsrD(0)))) {                           \
2558         if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||          \
2559             float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {          \
2560             vxsnan_flag = true;                                               \
2561         }                                                                     \
2562         xt.VsrD(0) = xb.VsrD(0);                                              \
2563     } else if ((max &&                                                        \
2564                !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) ||       \
2565                (!max &&                                                       \
2566                float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) {        \
2567         xt.VsrD(0) = xa.VsrD(0);                                              \
2568     } else {                                                                  \
2569         xt.VsrD(0) = xb.VsrD(0);                                              \
2570     }                                                                         \
2571                                                                               \
2572     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2573     if (vxsnan_flag) {                                                        \
2574             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
2575     }                                                                         \
2576     if (!vex_flag) {                                                          \
2577         putVSR(rD(opcode) + 32, &xt, env);                                    \
2578     }                                                                         \
2579 }                                                                             \
2580 
2581 VSX_MAX_MINC(xsmaxcdp, 1);
2582 VSX_MAX_MINC(xsmincdp, 0);
2583 
2584 #define VSX_MAX_MINJ(name, max)                                               \
2585 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2586 {                                                                             \
2587     ppc_vsr_t xt, xa, xb;                                                     \
2588     bool vxsnan_flag = false, vex_flag = false;                               \
2589                                                                               \
2590     getVSR(rA(opcode) + 32, &xa, env);                                        \
2591     getVSR(rB(opcode) + 32, &xb, env);                                        \
2592     getVSR(rD(opcode) + 32, &xt, env);                                        \
2593                                                                               \
2594     if (unlikely(float64_is_any_nan(xa.VsrD(0)))) {                           \
2595         if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status)) {          \
2596             vxsnan_flag = true;                                               \
2597         }                                                                     \
2598         xt.VsrD(0) = xa.VsrD(0);                                              \
2599     } else if (unlikely(float64_is_any_nan(xb.VsrD(0)))) {                    \
2600         if (float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {          \
2601             vxsnan_flag = true;                                               \
2602         }                                                                     \
2603         xt.VsrD(0) = xb.VsrD(0);                                              \
2604     } else if (float64_is_zero(xa.VsrD(0)) && float64_is_zero(xb.VsrD(0))) {  \
2605         if (max) {                                                            \
2606             if (!float64_is_neg(xa.VsrD(0)) || !float64_is_neg(xb.VsrD(0))) { \
2607                 xt.VsrD(0) = 0ULL;                                            \
2608             } else {                                                          \
2609                 xt.VsrD(0) = 0x8000000000000000ULL;                           \
2610             }                                                                 \
2611         } else {                                                              \
2612             if (float64_is_neg(xa.VsrD(0)) || float64_is_neg(xb.VsrD(0))) {   \
2613                 xt.VsrD(0) = 0x8000000000000000ULL;                           \
2614             } else {                                                          \
2615                 xt.VsrD(0) = 0ULL;                                            \
2616             }                                                                 \
2617         }                                                                     \
2618     } else if ((max &&                                                        \
2619                !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) ||       \
2620                (!max &&                                                       \
2621                float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) {        \
2622         xt.VsrD(0) = xa.VsrD(0);                                              \
2623     } else {                                                                  \
2624         xt.VsrD(0) = xb.VsrD(0);                                              \
2625     }                                                                         \
2626                                                                               \
2627     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2628     if (vxsnan_flag) {                                                        \
2629             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
2630     }                                                                         \
2631     if (!vex_flag) {                                                          \
2632         putVSR(rD(opcode) + 32, &xt, env);                                    \
2633     }                                                                         \
2634 }                                                                             \
2635 
2636 VSX_MAX_MINJ(xsmaxjdp, 1);
2637 VSX_MAX_MINJ(xsminjdp, 0);
2638 
2639 /* VSX_CMP - VSX floating point compare
2640  *   op    - instruction mnemonic
2641  *   nels  - number of elements (1, 2 or 4)
2642  *   tp    - type (float32 or float64)
2643  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2644  *   cmp   - comparison operation
2645  *   svxvc - set VXVC bit
2646  *   exp   - expected result of comparison
2647  */
2648 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2649 void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2650 {                                                                         \
2651     ppc_vsr_t xt, xa, xb;                                                 \
2652     int i;                                                                \
2653     int all_true = 1;                                                     \
2654     int all_false = 1;                                                    \
2655                                                                           \
2656     getVSR(xA(opcode), &xa, env);                                         \
2657     getVSR(xB(opcode), &xb, env);                                         \
2658     getVSR(xT(opcode), &xt, env);                                         \
2659                                                                           \
2660     for (i = 0; i < nels; i++) {                                          \
2661         if (unlikely(tp##_is_any_nan(xa.fld) ||                           \
2662                      tp##_is_any_nan(xb.fld))) {                          \
2663             if (tp##_is_signaling_nan(xa.fld, &env->fp_status) ||         \
2664                 tp##_is_signaling_nan(xb.fld, &env->fp_status)) {         \
2665                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);    \
2666             }                                                             \
2667             if (svxvc) {                                                  \
2668                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);      \
2669             }                                                             \
2670             xt.fld = 0;                                                   \
2671             all_true = 0;                                                 \
2672         } else {                                                          \
2673             if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) {     \
2674                 xt.fld = -1;                                              \
2675                 all_false = 0;                                            \
2676             } else {                                                      \
2677                 xt.fld = 0;                                               \
2678                 all_true = 0;                                             \
2679             }                                                             \
2680         }                                                                 \
2681     }                                                                     \
2682                                                                           \
2683     putVSR(xT(opcode), &xt, env);                                         \
2684     if ((opcode >> (31-21)) & 1) {                                        \
2685         env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \
2686     }                                                                     \
2687     float_check_status(env);                                              \
2688  }
2689 
2690 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2691 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2692 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2693 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2694 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2695 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2696 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2697 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2698 
2699 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2700  *   op    - instruction mnemonic
2701  *   nels  - number of elements (1, 2 or 4)
2702  *   stp   - source type (float32 or float64)
2703  *   ttp   - target type (float32 or float64)
2704  *   sfld  - source vsr_t field
2705  *   tfld  - target vsr_t field (f32 or f64)
2706  *   sfprf - set FPRF
2707  */
2708 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2709 void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2710 {                                                                  \
2711     ppc_vsr_t xt, xb;                                              \
2712     int i;                                                         \
2713                                                                    \
2714     getVSR(xB(opcode), &xb, env);                                  \
2715     getVSR(xT(opcode), &xt, env);                                  \
2716                                                                    \
2717     for (i = 0; i < nels; i++) {                                   \
2718         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
2719         if (unlikely(stp##_is_signaling_nan(xb.sfld,               \
2720                                             &env->fp_status))) {   \
2721             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2722             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2723         }                                                          \
2724         if (sfprf) {                                               \
2725             helper_compute_fprf_##ttp(env, xt.tfld);               \
2726         }                                                          \
2727     }                                                              \
2728                                                                    \
2729     putVSR(xT(opcode), &xt, env);                                  \
2730     float_check_status(env);                                       \
2731 }
2732 
2733 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2734 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2735 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2736 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2737 
2738 /* VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2739  *   op    - instruction mnemonic
2740  *   nels  - number of elements (1, 2 or 4)
2741  *   stp   - source type (float32 or float64)
2742  *   ttp   - target type (float32 or float64)
2743  *   sfld  - source vsr_t field
2744  *   tfld  - target vsr_t field (f32 or f64)
2745  *   sfprf - set FPRF
2746  */
2747 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2748 void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2749 {                                                                       \
2750     ppc_vsr_t xt, xb;                                                   \
2751     int i;                                                              \
2752                                                                         \
2753     getVSR(rB(opcode) + 32, &xb, env);                                  \
2754     getVSR(rD(opcode) + 32, &xt, env);                                  \
2755                                                                         \
2756     for (i = 0; i < nels; i++) {                                        \
2757         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2758         if (unlikely(stp##_is_signaling_nan(xb.sfld,                    \
2759                                             &env->fp_status))) {        \
2760             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);      \
2761             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                      \
2762         }                                                               \
2763         if (sfprf) {                                                    \
2764             helper_compute_fprf_##ttp(env, xt.tfld);                    \
2765         }                                                               \
2766     }                                                                   \
2767                                                                         \
2768     putVSR(rD(opcode) + 32, &xt, env);                                  \
2769     float_check_status(env);                                            \
2770 }
2771 
2772 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2773 
2774 /* VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2775  *                       involving one half precision value
2776  *   op    - instruction mnemonic
2777  *   nels  - number of elements (1, 2 or 4)
2778  *   stp   - source type
2779  *   ttp   - target type
2780  *   sfld  - source vsr_t field
2781  *   tfld  - target vsr_t field
2782  *   sfprf - set FPRF
2783  */
2784 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2785 void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2786 {                                                                  \
2787     ppc_vsr_t xt, xb;                                              \
2788     int i;                                                         \
2789                                                                    \
2790     getVSR(xB(opcode), &xb, env);                                  \
2791     memset(&xt, 0, sizeof(xt));                                    \
2792                                                                    \
2793     for (i = 0; i < nels; i++) {                                   \
2794         xt.tfld = stp##_to_##ttp(xb.sfld, 1, &env->fp_status);     \
2795         if (unlikely(stp##_is_signaling_nan(xb.sfld,               \
2796                                             &env->fp_status))) {   \
2797             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2798             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2799         }                                                          \
2800         if (sfprf) {                                               \
2801             helper_compute_fprf_##ttp(env, xt.tfld);               \
2802         }                                                          \
2803     }                                                              \
2804                                                                    \
2805     putVSR(xT(opcode), &xt, env);                                  \
2806     float_check_status(env);                                       \
2807 }
2808 
2809 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2810 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2811 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0)
2812 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2813 
2814 /*
2815  * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2816  * added to this later.
2817  */
2818 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode)
2819 {
2820     ppc_vsr_t xt, xb;
2821     float_status tstat;
2822 
2823     getVSR(rB(opcode) + 32, &xb, env);
2824     memset(&xt, 0, sizeof(xt));
2825 
2826     tstat = env->fp_status;
2827     if (unlikely(Rc(opcode) != 0)) {
2828         tstat.float_rounding_mode = float_round_to_odd;
2829     }
2830 
2831     xt.VsrD(0) = float128_to_float64(xb.f128, &tstat);
2832     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2833     if (unlikely(float128_is_signaling_nan(xb.f128,
2834                                            &tstat))) {
2835         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
2836         xt.VsrD(0) = float64_snan_to_qnan(xt.VsrD(0));
2837     }
2838     helper_compute_fprf_float64(env, xt.VsrD(0));
2839 
2840     putVSR(rD(opcode) + 32, &xt, env);
2841     float_check_status(env);
2842 }
2843 
2844 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2845 {
2846     float_status tstat = env->fp_status;
2847     set_float_exception_flags(0, &tstat);
2848 
2849     return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2850 }
2851 
2852 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2853 {
2854     float_status tstat = env->fp_status;
2855     set_float_exception_flags(0, &tstat);
2856 
2857     return float32_to_float64(xb >> 32, &tstat);
2858 }
2859 
2860 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2861  *   op    - instruction mnemonic
2862  *   nels  - number of elements (1, 2 or 4)
2863  *   stp   - source type (float32 or float64)
2864  *   ttp   - target type (int32, uint32, int64 or uint64)
2865  *   sfld  - source vsr_t field
2866  *   tfld  - target vsr_t field
2867  *   rnan  - resulting NaN
2868  */
2869 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2870 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2871 {                                                                            \
2872     ppc_vsr_t xt, xb;                                                        \
2873     int i;                                                                   \
2874                                                                              \
2875     getVSR(xB(opcode), &xb, env);                                            \
2876     getVSR(xT(opcode), &xt, env);                                            \
2877                                                                              \
2878     for (i = 0; i < nels; i++) {                                             \
2879         if (unlikely(stp##_is_any_nan(xb.sfld))) {                           \
2880             if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) {          \
2881                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2882             }                                                                \
2883             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \
2884             xt.tfld = rnan;                                                  \
2885         } else {                                                             \
2886             xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld,                \
2887                           &env->fp_status);                                  \
2888             if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2889                 float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);        \
2890             }                                                                \
2891         }                                                                    \
2892     }                                                                        \
2893                                                                              \
2894     putVSR(xT(opcode), &xt, env);                                            \
2895     float_check_status(env);                                                 \
2896 }
2897 
2898 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2899                   0x8000000000000000ULL)
2900 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2901                   0x80000000U)
2902 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2903 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2904 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2905                   0x8000000000000000ULL)
2906 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
2907                   0x80000000U)
2908 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2909 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
2910 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
2911                   0x8000000000000000ULL)
2912 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2913 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
2914 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2915 
2916 /* VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2917  *   op    - instruction mnemonic
2918  *   stp   - source type (float32 or float64)
2919  *   ttp   - target type (int32, uint32, int64 or uint64)
2920  *   sfld  - source vsr_t field
2921  *   tfld  - target vsr_t field
2922  *   rnan  - resulting NaN
2923  */
2924 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \
2925 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2926 {                                                                            \
2927     ppc_vsr_t xt, xb;                                                        \
2928                                                                              \
2929     getVSR(rB(opcode) + 32, &xb, env);                                       \
2930     memset(&xt, 0, sizeof(xt));                                              \
2931                                                                              \
2932     if (unlikely(stp##_is_any_nan(xb.sfld))) {                               \
2933         if (stp##_is_signaling_nan(xb.sfld, &env->fp_status)) {              \
2934             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);           \
2935         }                                                                    \
2936         float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);                \
2937         xt.tfld = rnan;                                                      \
2938     } else {                                                                 \
2939         xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld,                    \
2940                       &env->fp_status);                                      \
2941         if (env->fp_status.float_exception_flags & float_flag_invalid) {     \
2942             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \
2943         }                                                                    \
2944     }                                                                        \
2945                                                                              \
2946     putVSR(rD(opcode) + 32, &xt, env);                                       \
2947     float_check_status(env);                                                 \
2948 }
2949 
2950 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \
2951                   0x8000000000000000ULL)
2952 
2953 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \
2954                   0xffffffff80000000ULL)
2955 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
2956 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
2957 
2958 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2959  *   op    - instruction mnemonic
2960  *   nels  - number of elements (1, 2 or 4)
2961  *   stp   - source type (int32, uint32, int64 or uint64)
2962  *   ttp   - target type (float32 or float64)
2963  *   sfld  - source vsr_t field
2964  *   tfld  - target vsr_t field
2965  *   jdef  - definition of the j index (i or 2*i)
2966  *   sfprf - set FPRF
2967  */
2968 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
2969 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2970 {                                                                       \
2971     ppc_vsr_t xt, xb;                                                   \
2972     int i;                                                              \
2973                                                                         \
2974     getVSR(xB(opcode), &xb, env);                                       \
2975     getVSR(xT(opcode), &xt, env);                                       \
2976                                                                         \
2977     for (i = 0; i < nels; i++) {                                        \
2978         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2979         if (r2sp) {                                                     \
2980             xt.tfld = helper_frsp(env, xt.tfld);                        \
2981         }                                                               \
2982         if (sfprf) {                                                    \
2983             helper_compute_fprf_float64(env, xt.tfld);                  \
2984         }                                                               \
2985     }                                                                   \
2986                                                                         \
2987     putVSR(xT(opcode), &xt, env);                                       \
2988     float_check_status(env);                                            \
2989 }
2990 
2991 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2992 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2993 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2994 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2995 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2996 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2997 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
2998 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
2999 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
3000 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
3001 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3002 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3003 
3004 /* VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3005  *   op    - instruction mnemonic
3006  *   stp   - source type (int32, uint32, int64 or uint64)
3007  *   ttp   - target type (float32 or float64)
3008  *   sfld  - source vsr_t field
3009  *   tfld  - target vsr_t field
3010  */
3011 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \
3012 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
3013 {                                                                       \
3014     ppc_vsr_t xt, xb;                                                   \
3015                                                                         \
3016     getVSR(rB(opcode) + 32, &xb, env);                                  \
3017     getVSR(rD(opcode) + 32, &xt, env);                                  \
3018                                                                         \
3019     xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);                 \
3020     helper_compute_fprf_##ttp(env, xt.tfld);                            \
3021                                                                         \
3022     putVSR(xT(opcode) + 32, &xt, env);                                  \
3023     float_check_status(env);                                            \
3024 }
3025 
3026 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3027 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3028 
3029 /* For "use current rounding mode", define a value that will not be one of
3030  * the existing rounding model enums.
3031  */
3032 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3033   float_round_up + float_round_to_zero)
3034 
3035 /* VSX_ROUND - VSX floating point round
3036  *   op    - instruction mnemonic
3037  *   nels  - number of elements (1, 2 or 4)
3038  *   tp    - type (float32 or float64)
3039  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3040  *   rmode - rounding mode
3041  *   sfprf - set FPRF
3042  */
3043 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
3044 void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
3045 {                                                                      \
3046     ppc_vsr_t xt, xb;                                                  \
3047     int i;                                                             \
3048     getVSR(xB(opcode), &xb, env);                                      \
3049     getVSR(xT(opcode), &xt, env);                                      \
3050                                                                        \
3051     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3052         set_float_rounding_mode(rmode, &env->fp_status);               \
3053     }                                                                  \
3054                                                                        \
3055     for (i = 0; i < nels; i++) {                                       \
3056         if (unlikely(tp##_is_signaling_nan(xb.fld,                     \
3057                                            &env->fp_status))) {        \
3058             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);     \
3059             xt.fld = tp##_snan_to_qnan(xb.fld);                        \
3060         } else {                                                       \
3061             xt.fld = tp##_round_to_int(xb.fld, &env->fp_status);       \
3062         }                                                              \
3063         if (sfprf) {                                                   \
3064             helper_compute_fprf_float64(env, xt.fld);                  \
3065         }                                                              \
3066     }                                                                  \
3067                                                                        \
3068     /* If this is not a "use current rounding mode" instruction,       \
3069      * then inhibit setting of the XX bit and restore rounding         \
3070      * mode from FPSCR */                                              \
3071     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3072         fpscr_set_rounding_mode(env);                                  \
3073         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
3074     }                                                                  \
3075                                                                        \
3076     putVSR(xT(opcode), &xt, env);                                      \
3077     float_check_status(env);                                           \
3078 }
3079 
3080 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3081 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3082 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3083 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3084 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3085 
3086 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3087 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3088 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3089 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3090 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3091 
3092 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3093 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3094 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3095 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3096 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3097 
3098 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3099 {
3100     helper_reset_fpstatus(env);
3101 
3102     uint64_t xt = helper_frsp(env, xb);
3103 
3104     helper_compute_fprf_float64(env, xt);
3105     float_check_status(env);
3106     return xt;
3107 }
3108 
3109 #define VSX_XXPERM(op, indexed)                                       \
3110 void helper_##op(CPUPPCState *env, uint32_t opcode)                   \
3111 {                                                                     \
3112     ppc_vsr_t xt, xa, pcv, xto;                                       \
3113     int i, idx;                                                       \
3114                                                                       \
3115     getVSR(xA(opcode), &xa, env);                                     \
3116     getVSR(xT(opcode), &xt, env);                                     \
3117     getVSR(xB(opcode), &pcv, env);                                    \
3118                                                                       \
3119     for (i = 0; i < 16; i++) {                                        \
3120         idx = pcv.VsrB(i) & 0x1F;                                     \
3121         if (indexed) {                                                \
3122             idx = 31 - idx;                                           \
3123         }                                                             \
3124         xto.VsrB(i) = (idx <= 15) ? xa.VsrB(idx) : xt.VsrB(idx - 16); \
3125     }                                                                 \
3126     putVSR(xT(opcode), &xto, env);                                    \
3127 }
3128 
3129 VSX_XXPERM(xxperm, 0)
3130 VSX_XXPERM(xxpermr, 1)
3131 
3132 void helper_xvxsigsp(CPUPPCState *env, uint32_t opcode)
3133 {
3134     ppc_vsr_t xt, xb;
3135     uint32_t exp, i, fraction;
3136 
3137     getVSR(xB(opcode), &xb, env);
3138     memset(&xt, 0, sizeof(xt));
3139 
3140     for (i = 0; i < 4; i++) {
3141         exp = (xb.VsrW(i) >> 23) & 0xFF;
3142         fraction = xb.VsrW(i) & 0x7FFFFF;
3143         if (exp != 0 && exp != 255) {
3144             xt.VsrW(i) = fraction | 0x00800000;
3145         } else {
3146             xt.VsrW(i) = fraction;
3147         }
3148     }
3149     putVSR(xT(opcode), &xt, env);
3150 }
3151 
3152 /* VSX_TEST_DC - VSX floating point test data class
3153  *   op    - instruction mnemonic
3154  *   nels  - number of elements (1, 2 or 4)
3155  *   xbn   - VSR register number
3156  *   tp    - type (float32 or float64)
3157  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3158  *   tfld   - target vsr_t field (VsrD(*) or VsrW(*))
3159  *   fld_max - target field max
3160  *   scrf - set result in CR and FPCC
3161  */
3162 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf)  \
3163 void helper_##op(CPUPPCState *env, uint32_t opcode)         \
3164 {                                                           \
3165     ppc_vsr_t xt, xb;                                       \
3166     uint32_t i, sign, dcmx;                                 \
3167     uint32_t cc, match = 0;                                 \
3168                                                             \
3169     getVSR(xbn, &xb, env);                                  \
3170     if (!scrf) {                                            \
3171         memset(&xt, 0, sizeof(xt));                         \
3172         dcmx = DCMX_XV(opcode);                             \
3173     } else {                                                \
3174         dcmx = DCMX(opcode);                                \
3175     }                                                       \
3176                                                             \
3177     for (i = 0; i < nels; i++) {                            \
3178         sign = tp##_is_neg(xb.fld);                         \
3179         if (tp##_is_any_nan(xb.fld)) {                      \
3180             match = extract32(dcmx, 6, 1);                  \
3181         } else if (tp##_is_infinity(xb.fld)) {              \
3182             match = extract32(dcmx, 4 + !sign, 1);          \
3183         } else if (tp##_is_zero(xb.fld)) {                  \
3184             match = extract32(dcmx, 2 + !sign, 1);          \
3185         } else if (tp##_is_zero_or_denormal(xb.fld)) {      \
3186             match = extract32(dcmx, 0 + !sign, 1);          \
3187         }                                                   \
3188                                                             \
3189         if (scrf) {                                         \
3190             cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;  \
3191             env->fpscr &= ~(0x0F << FPSCR_FPRF);            \
3192             env->fpscr |= cc << FPSCR_FPRF;                 \
3193             env->crf[BF(opcode)] = cc;                      \
3194         } else {                                            \
3195             xt.tfld = match ? fld_max : 0;                  \
3196         }                                                   \
3197         match = 0;                                          \
3198     }                                                       \
3199     if (!scrf) {                                            \
3200         putVSR(xT(opcode), &xt, env);                       \
3201     }                                                       \
3202 }
3203 
3204 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3205 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3206 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3207 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3208 
3209 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode)
3210 {
3211     ppc_vsr_t xb;
3212     uint32_t dcmx, sign, exp;
3213     uint32_t cc, match = 0, not_sp = 0;
3214 
3215     getVSR(xB(opcode), &xb, env);
3216     dcmx = DCMX(opcode);
3217     exp = (xb.VsrD(0) >> 52) & 0x7FF;
3218 
3219     sign = float64_is_neg(xb.VsrD(0));
3220     if (float64_is_any_nan(xb.VsrD(0))) {
3221         match = extract32(dcmx, 6, 1);
3222     } else if (float64_is_infinity(xb.VsrD(0))) {
3223         match = extract32(dcmx, 4 + !sign, 1);
3224     } else if (float64_is_zero(xb.VsrD(0))) {
3225         match = extract32(dcmx, 2 + !sign, 1);
3226     } else if (float64_is_zero_or_denormal(xb.VsrD(0)) ||
3227                (exp > 0 && exp < 0x381)) {
3228         match = extract32(dcmx, 0 + !sign, 1);
3229     }
3230 
3231     not_sp = !float64_eq(xb.VsrD(0),
3232                          float32_to_float64(
3233                              float64_to_float32(xb.VsrD(0), &env->fp_status),
3234                              &env->fp_status), &env->fp_status);
3235 
3236     cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3237     env->fpscr &= ~(0x0F << FPSCR_FPRF);
3238     env->fpscr |= cc << FPSCR_FPRF;
3239     env->crf[BF(opcode)] = cc;
3240 }
3241 
3242 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode)
3243 {
3244     ppc_vsr_t xb;
3245     ppc_vsr_t xt;
3246     uint8_t r = Rrm(opcode);
3247     uint8_t ex = Rc(opcode);
3248     uint8_t rmc = RMC(opcode);
3249     uint8_t rmode = 0;
3250     float_status tstat;
3251 
3252     getVSR(rB(opcode) + 32, &xb, env);
3253     memset(&xt, 0, sizeof(xt));
3254     helper_reset_fpstatus(env);
3255 
3256     if (r == 0 && rmc == 0) {
3257         rmode = float_round_ties_away;
3258     } else if (r == 0 && rmc == 0x3) {
3259         rmode = fpscr_rn;
3260     } else if (r == 1) {
3261         switch (rmc) {
3262         case 0:
3263             rmode = float_round_nearest_even;
3264             break;
3265         case 1:
3266             rmode = float_round_to_zero;
3267             break;
3268         case 2:
3269             rmode = float_round_up;
3270             break;
3271         case 3:
3272             rmode = float_round_down;
3273             break;
3274         default:
3275             abort();
3276         }
3277     }
3278 
3279     tstat = env->fp_status;
3280     set_float_exception_flags(0, &tstat);
3281     set_float_rounding_mode(rmode, &tstat);
3282     xt.f128 = float128_round_to_int(xb.f128, &tstat);
3283     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3284 
3285     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3286         if (float128_is_signaling_nan(xb.f128, &tstat)) {
3287             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
3288             xt.f128 = float128_snan_to_qnan(xt.f128);
3289         }
3290     }
3291 
3292     if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3293         env->fp_status.float_exception_flags &= ~float_flag_inexact;
3294     }
3295 
3296     helper_compute_fprf_float128(env, xt.f128);
3297     float_check_status(env);
3298     putVSR(rD(opcode) + 32, &xt, env);
3299 }
3300 
3301 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode)
3302 {
3303     ppc_vsr_t xb;
3304     ppc_vsr_t xt;
3305     uint8_t r = Rrm(opcode);
3306     uint8_t rmc = RMC(opcode);
3307     uint8_t rmode = 0;
3308     floatx80 round_res;
3309     float_status tstat;
3310 
3311     getVSR(rB(opcode) + 32, &xb, env);
3312     memset(&xt, 0, sizeof(xt));
3313     helper_reset_fpstatus(env);
3314 
3315     if (r == 0 && rmc == 0) {
3316         rmode = float_round_ties_away;
3317     } else if (r == 0 && rmc == 0x3) {
3318         rmode = fpscr_rn;
3319     } else if (r == 1) {
3320         switch (rmc) {
3321         case 0:
3322             rmode = float_round_nearest_even;
3323             break;
3324         case 1:
3325             rmode = float_round_to_zero;
3326             break;
3327         case 2:
3328             rmode = float_round_up;
3329             break;
3330         case 3:
3331             rmode = float_round_down;
3332             break;
3333         default:
3334             abort();
3335         }
3336     }
3337 
3338     tstat = env->fp_status;
3339     set_float_exception_flags(0, &tstat);
3340     set_float_rounding_mode(rmode, &tstat);
3341     round_res = float128_to_floatx80(xb.f128, &tstat);
3342     xt.f128 = floatx80_to_float128(round_res, &tstat);
3343     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3344 
3345     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3346         if (float128_is_signaling_nan(xb.f128, &tstat)) {
3347             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);
3348             xt.f128 = float128_snan_to_qnan(xt.f128);
3349         }
3350     }
3351 
3352     helper_compute_fprf_float128(env, xt.f128);
3353     putVSR(rD(opcode) + 32, &xt, env);
3354     float_check_status(env);
3355 }
3356 
3357 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode)
3358 {
3359     ppc_vsr_t xb;
3360     ppc_vsr_t xt;
3361     float_status tstat;
3362 
3363     getVSR(rB(opcode) + 32, &xb, env);
3364     memset(&xt, 0, sizeof(xt));
3365     helper_reset_fpstatus(env);
3366 
3367     tstat = env->fp_status;
3368     if (unlikely(Rc(opcode) != 0)) {
3369         tstat.float_rounding_mode = float_round_to_odd;
3370     }
3371 
3372     set_float_exception_flags(0, &tstat);
3373     xt.f128 = float128_sqrt(xb.f128, &tstat);
3374     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3375 
3376     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3377         if (float128_is_signaling_nan(xb.f128, &tstat)) {
3378             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
3379             xt.f128 = float128_snan_to_qnan(xb.f128);
3380         } else if  (float128_is_quiet_nan(xb.f128, &tstat)) {
3381             xt.f128 = xb.f128;
3382         } else if (float128_is_neg(xb.f128) && !float128_is_zero(xb.f128)) {
3383             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
3384             set_snan_bit_is_one(0, &env->fp_status);
3385             xt.f128 = float128_default_nan(&env->fp_status);
3386         }
3387     }
3388 
3389     helper_compute_fprf_float128(env, xt.f128);
3390     putVSR(rD(opcode) + 32, &xt, env);
3391     float_check_status(env);
3392 }
3393 
3394 void helper_xssubqp(CPUPPCState *env, uint32_t opcode)
3395 {
3396     ppc_vsr_t xt, xa, xb;
3397     float_status tstat;
3398 
3399     getVSR(rA(opcode) + 32, &xa, env);
3400     getVSR(rB(opcode) + 32, &xb, env);
3401     getVSR(rD(opcode) + 32, &xt, env);
3402     helper_reset_fpstatus(env);
3403 
3404     tstat = env->fp_status;
3405     if (unlikely(Rc(opcode) != 0)) {
3406         tstat.float_rounding_mode = float_round_to_odd;
3407     }
3408 
3409     set_float_exception_flags(0, &tstat);
3410     xt.f128 = float128_sub(xa.f128, xb.f128, &tstat);
3411     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3412 
3413     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3414         if (float128_is_infinity(xa.f128) && float128_is_infinity(xb.f128)) {
3415             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
3416         } else if (float128_is_signaling_nan(xa.f128, &tstat) ||
3417                    float128_is_signaling_nan(xb.f128, &tstat)) {
3418             float_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
3419         }
3420     }
3421 
3422     helper_compute_fprf_float128(env, xt.f128);
3423     putVSR(rD(opcode) + 32, &xt, env);
3424     float_check_status(env);
3425 }
3426