xref: /openbmc/qemu/target/ppc/fpu_helper.c (revision 5d9a9a61)
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25 
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28     float128 r;
29 
30     r.high = x.high | 0x0000800000000000;
31     r.low = x.low;
32     return r;
33 }
34 
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38 
39 static inline float32 bfp32_neg(float32 a)
40 {
41     if (unlikely(float32_is_any_nan(a))) {
42         return a;
43     } else {
44         return float32_chs(a);
45     }
46 }
47 
48 static inline bool fp_exceptions_enabled(CPUPPCState *env)
49 {
50 #ifdef CONFIG_USER_ONLY
51     return true;
52 #else
53     return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
54 #endif
55 }
56 
57 /*****************************************************************************/
58 /* Floating point operations helpers */
59 
60 /*
61  * This is the non-arithmatic conversion that happens e.g. on loads.
62  * In the Power ISA pseudocode, this is called DOUBLE.
63  */
64 uint64_t helper_todouble(uint32_t arg)
65 {
66     uint32_t abs_arg = arg & 0x7fffffff;
67     uint64_t ret;
68 
69     if (likely(abs_arg >= 0x00800000)) {
70         if (unlikely(extract32(arg, 23, 8) == 0xff)) {
71             /* Inf or NAN.  */
72             ret  = (uint64_t)extract32(arg, 31, 1) << 63;
73             ret |= (uint64_t)0x7ff << 52;
74             ret |= (uint64_t)extract32(arg, 0, 23) << 29;
75         } else {
76             /* Normalized operand.  */
77             ret  = (uint64_t)extract32(arg, 30, 2) << 62;
78             ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
79             ret |= (uint64_t)extract32(arg, 0, 30) << 29;
80         }
81     } else {
82         /* Zero or Denormalized operand.  */
83         ret = (uint64_t)extract32(arg, 31, 1) << 63;
84         if (unlikely(abs_arg != 0)) {
85             /*
86              * Denormalized operand.
87              * Shift fraction so that the msb is in the implicit bit position.
88              * Thus, shift is in the range [1:23].
89              */
90             int shift = clz32(abs_arg) - 8;
91             /*
92              * The first 3 terms compute the float64 exponent.  We then bias
93              * this result by -1 so that we can swallow the implicit bit below.
94              */
95             int exp = -126 - shift + 1023 - 1;
96 
97             ret |= (uint64_t)exp << 52;
98             ret += (uint64_t)abs_arg << (52 - 23 + shift);
99         }
100     }
101     return ret;
102 }
103 
104 /*
105  * This is the non-arithmatic conversion that happens e.g. on stores.
106  * In the Power ISA pseudocode, this is called SINGLE.
107  */
108 uint32_t helper_tosingle(uint64_t arg)
109 {
110     int exp = extract64(arg, 52, 11);
111     uint32_t ret;
112 
113     if (likely(exp > 896)) {
114         /* No denormalization required (includes Inf, NaN).  */
115         ret  = extract64(arg, 62, 2) << 30;
116         ret |= extract64(arg, 29, 30);
117     } else {
118         /*
119          * Zero or Denormal result.  If the exponent is in bounds for
120          * a single-precision denormal result, extract the proper
121          * bits.  If the input is not zero, and the exponent is out of
122          * bounds, then the result is undefined; this underflows to
123          * zero.
124          */
125         ret = extract64(arg, 63, 1) << 31;
126         if (unlikely(exp >= 874)) {
127             /* Denormal result.  */
128             ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
129         }
130     }
131     return ret;
132 }
133 
134 static inline int ppc_float32_get_unbiased_exp(float32 f)
135 {
136     return ((f >> 23) & 0xFF) - 127;
137 }
138 
139 static inline int ppc_float64_get_unbiased_exp(float64 f)
140 {
141     return ((f >> 52) & 0x7FF) - 1023;
142 }
143 
144 #define COMPUTE_FPRF(tp)                                          \
145 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg)           \
146 {                                                                 \
147     bool neg = tp##_is_neg(arg);                                  \
148     target_ulong fprf;                                            \
149     if (likely(tp##_is_normal(arg))) {                            \
150         fprf = neg ? 0x08 << FPSCR_FPRF : 0x04 << FPSCR_FPRF;     \
151     } else if (tp##_is_zero(arg)) {                               \
152         fprf = neg ? 0x12 << FPSCR_FPRF : 0x02 << FPSCR_FPRF;     \
153     } else if (tp##_is_zero_or_denormal(arg)) {                   \
154         fprf = neg ? 0x18 << FPSCR_FPRF : 0x14 << FPSCR_FPRF;     \
155     } else if (tp##_is_infinity(arg)) {                           \
156         fprf = neg ? 0x09 << FPSCR_FPRF : 0x05 << FPSCR_FPRF;     \
157     } else {                                                      \
158         float_status dummy = { };  /* snan_bit_is_one = 0 */      \
159         if (tp##_is_signaling_nan(arg, &dummy)) {                 \
160             fprf = 0x00 << FPSCR_FPRF;                            \
161         } else {                                                  \
162             fprf = 0x11 << FPSCR_FPRF;                            \
163         }                                                         \
164     }                                                             \
165     env->fpscr = (env->fpscr & ~FP_FPRF) | fprf;                  \
166 }
167 
168 COMPUTE_FPRF(float16)
169 COMPUTE_FPRF(float32)
170 COMPUTE_FPRF(float64)
171 COMPUTE_FPRF(float128)
172 
173 /* Floating-point invalid operations exception */
174 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
175 {
176     /* Update the floating-point invalid operation summary */
177     env->fpscr |= FP_VX;
178     /* Update the floating-point exception summary */
179     env->fpscr |= FP_FX;
180     if (env->fpscr & FP_VE) {
181         /* Update the floating-point enabled exception summary */
182         env->fpscr |= FP_FEX;
183         if (fp_exceptions_enabled(env)) {
184             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
185                                    POWERPC_EXCP_FP | op, retaddr);
186         }
187     }
188 }
189 
190 static void finish_invalid_op_arith(CPUPPCState *env, int op,
191                                     bool set_fpcc, uintptr_t retaddr)
192 {
193     env->fpscr &= ~(FP_FR | FP_FI);
194     if (!(env->fpscr & FP_VE)) {
195         if (set_fpcc) {
196             env->fpscr &= ~FP_FPCC;
197             env->fpscr |= (FP_C | FP_FU);
198         }
199     }
200     finish_invalid_op_excp(env, op, retaddr);
201 }
202 
203 /* Signalling NaN */
204 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
205 {
206     env->fpscr |= FP_VXSNAN;
207     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
208 }
209 
210 /* Magnitude subtraction of infinities */
211 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
212                                    uintptr_t retaddr)
213 {
214     env->fpscr |= FP_VXISI;
215     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
216 }
217 
218 /* Division of infinity by infinity */
219 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
220                                    uintptr_t retaddr)
221 {
222     env->fpscr |= FP_VXIDI;
223     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
224 }
225 
226 /* Division of zero by zero */
227 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
228                                    uintptr_t retaddr)
229 {
230     env->fpscr |= FP_VXZDZ;
231     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
232 }
233 
234 /* Multiplication of zero by infinity */
235 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
236                                    uintptr_t retaddr)
237 {
238     env->fpscr |= FP_VXIMZ;
239     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
240 }
241 
242 /* Square root of a negative number */
243 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
244                                     uintptr_t retaddr)
245 {
246     env->fpscr |= FP_VXSQRT;
247     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
248 }
249 
250 /* Ordered comparison of NaN */
251 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
252                                   uintptr_t retaddr)
253 {
254     env->fpscr |= FP_VXVC;
255     if (set_fpcc) {
256         env->fpscr &= ~FP_FPCC;
257         env->fpscr |= (FP_C | FP_FU);
258     }
259     /* Update the floating-point invalid operation summary */
260     env->fpscr |= FP_VX;
261     /* Update the floating-point exception summary */
262     env->fpscr |= FP_FX;
263     /* We must update the target FPR before raising the exception */
264     if (env->fpscr & FP_VE) {
265         CPUState *cs = env_cpu(env);
266 
267         cs->exception_index = POWERPC_EXCP_PROGRAM;
268         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
269         /* Update the floating-point enabled exception summary */
270         env->fpscr |= FP_FEX;
271         /* Exception is deferred */
272     }
273 }
274 
275 /* Invalid conversion */
276 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
277                                    uintptr_t retaddr)
278 {
279     env->fpscr |= FP_VXCVI;
280     env->fpscr &= ~(FP_FR | FP_FI);
281     if (!(env->fpscr & FP_VE)) {
282         if (set_fpcc) {
283             env->fpscr &= ~FP_FPCC;
284             env->fpscr |= (FP_C | FP_FU);
285         }
286     }
287     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
288 }
289 
290 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
291 {
292     env->fpscr |= FP_ZX;
293     env->fpscr &= ~(FP_FR | FP_FI);
294     /* Update the floating-point exception summary */
295     env->fpscr |= FP_FX;
296     if (env->fpscr & FP_ZE) {
297         /* Update the floating-point enabled exception summary */
298         env->fpscr |= FP_FEX;
299         if (fp_exceptions_enabled(env)) {
300             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
301                                    POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
302                                    raddr);
303         }
304     }
305 }
306 
307 static inline int float_overflow_excp(CPUPPCState *env)
308 {
309     CPUState *cs = env_cpu(env);
310 
311     env->fpscr |= FP_OX;
312     /* Update the floating-point exception summary */
313     env->fpscr |= FP_FX;
314 
315     bool overflow_enabled = !!(env->fpscr & FP_OE);
316     if (overflow_enabled) {
317         /* Update the floating-point enabled exception summary */
318         env->fpscr |= FP_FEX;
319         /* We must update the target FPR before raising the exception */
320         cs->exception_index = POWERPC_EXCP_PROGRAM;
321         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
322     }
323 
324     return overflow_enabled ? 0 : float_flag_inexact;
325 }
326 
327 static inline void float_underflow_excp(CPUPPCState *env)
328 {
329     CPUState *cs = env_cpu(env);
330 
331     env->fpscr |= FP_UX;
332     /* Update the floating-point exception summary */
333     env->fpscr |= FP_FX;
334     if (env->fpscr & FP_UE) {
335         /* Update the floating-point enabled exception summary */
336         env->fpscr |= FP_FEX;
337         /* We must update the target FPR before raising the exception */
338         cs->exception_index = POWERPC_EXCP_PROGRAM;
339         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
340     }
341 }
342 
343 static inline void float_inexact_excp(CPUPPCState *env)
344 {
345     CPUState *cs = env_cpu(env);
346 
347     env->fpscr |= FP_XX;
348     /* Update the floating-point exception summary */
349     env->fpscr |= FP_FX;
350     if (env->fpscr & FP_XE) {
351         /* Update the floating-point enabled exception summary */
352         env->fpscr |= FP_FEX;
353         /* We must update the target FPR before raising the exception */
354         cs->exception_index = POWERPC_EXCP_PROGRAM;
355         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
356     }
357 }
358 
359 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
360 {
361     uint32_t mask = 1u << bit;
362     if (env->fpscr & mask) {
363         ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask);
364     }
365 }
366 
367 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
368 {
369     uint32_t mask = 1u << bit;
370     if (!(env->fpscr & mask)) {
371         ppc_store_fpscr(env, env->fpscr | mask);
372     }
373 }
374 
375 void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles)
376 {
377     target_ulong mask = 0;
378     int i;
379 
380     /* TODO: push this extension back to translation time */
381     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
382         if (nibbles & (1 << i)) {
383             mask |= (target_ulong) 0xf << (4 * i);
384         }
385     }
386     val = (val & mask) | (env->fpscr & ~mask);
387     ppc_store_fpscr(env, val);
388 }
389 
390 static void do_fpscr_check_status(CPUPPCState *env, uintptr_t raddr)
391 {
392     CPUState *cs = env_cpu(env);
393     target_ulong fpscr = env->fpscr;
394     int error = 0;
395 
396     if ((fpscr & FP_OX) && (fpscr & FP_OE)) {
397         error = POWERPC_EXCP_FP_OX;
398     } else if ((fpscr & FP_UX) && (fpscr & FP_UE)) {
399         error = POWERPC_EXCP_FP_UX;
400     } else if ((fpscr & FP_XX) && (fpscr & FP_XE)) {
401         error = POWERPC_EXCP_FP_XX;
402     } else if ((fpscr & FP_ZX) && (fpscr & FP_ZE)) {
403         error = POWERPC_EXCP_FP_ZX;
404     } else if (fpscr & FP_VE) {
405         if (fpscr & FP_VXSOFT) {
406             error = POWERPC_EXCP_FP_VXSOFT;
407         } else if (fpscr & FP_VXSNAN) {
408             error = POWERPC_EXCP_FP_VXSNAN;
409         } else if (fpscr & FP_VXISI) {
410             error = POWERPC_EXCP_FP_VXISI;
411         } else if (fpscr & FP_VXIDI) {
412             error = POWERPC_EXCP_FP_VXIDI;
413         } else if (fpscr & FP_VXZDZ) {
414             error = POWERPC_EXCP_FP_VXZDZ;
415         } else if (fpscr & FP_VXIMZ) {
416             error = POWERPC_EXCP_FP_VXIMZ;
417         } else if (fpscr & FP_VXVC) {
418             error = POWERPC_EXCP_FP_VXVC;
419         } else if (fpscr & FP_VXSQRT) {
420             error = POWERPC_EXCP_FP_VXSQRT;
421         } else if (fpscr & FP_VXCVI) {
422             error = POWERPC_EXCP_FP_VXCVI;
423         } else {
424             return;
425         }
426     } else {
427         return;
428     }
429     cs->exception_index = POWERPC_EXCP_PROGRAM;
430     env->error_code = error | POWERPC_EXCP_FP;
431     env->fpscr |= FP_FEX;
432     /* Deferred floating-point exception after target FPSCR update */
433     if (fp_exceptions_enabled(env)) {
434         raise_exception_err_ra(env, cs->exception_index,
435                                env->error_code, raddr);
436     }
437 }
438 
439 void helper_fpscr_check_status(CPUPPCState *env)
440 {
441     do_fpscr_check_status(env, GETPC());
442 }
443 
444 static void do_float_check_status(CPUPPCState *env, bool change_fi,
445                                   uintptr_t raddr)
446 {
447     CPUState *cs = env_cpu(env);
448     int status = get_float_exception_flags(&env->fp_status);
449 
450     if (status & float_flag_overflow) {
451         status |= float_overflow_excp(env);
452     } else if (status & float_flag_underflow) {
453         float_underflow_excp(env);
454     }
455     if (status & float_flag_inexact) {
456         float_inexact_excp(env);
457     }
458     if (change_fi) {
459         env->fpscr = FIELD_DP64(env->fpscr, FPSCR, FI,
460                                 !!(status & float_flag_inexact));
461     }
462 
463     if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
464         (env->error_code & POWERPC_EXCP_FP)) {
465         /* Deferred floating-point exception after target FPR update */
466         if (fp_exceptions_enabled(env)) {
467             raise_exception_err_ra(env, cs->exception_index,
468                                    env->error_code, raddr);
469         }
470     }
471 }
472 
473 void helper_float_check_status(CPUPPCState *env)
474 {
475     do_float_check_status(env, true, GETPC());
476 }
477 
478 void helper_reset_fpstatus(CPUPPCState *env)
479 {
480     set_float_exception_flags(0, &env->fp_status);
481 }
482 
483 static void float_invalid_op_addsub(CPUPPCState *env, int flags,
484                                     bool set_fpcc, uintptr_t retaddr)
485 {
486     if (flags & float_flag_invalid_isi) {
487         float_invalid_op_vxisi(env, set_fpcc, retaddr);
488     } else if (flags & float_flag_invalid_snan) {
489         float_invalid_op_vxsnan(env, retaddr);
490     }
491 }
492 
493 static inline void addsub_flags_handler(CPUPPCState *env, int flags,
494                                         uintptr_t ra)
495 {
496     if (unlikely(flags & float_flag_invalid)) {
497         float_invalid_op_addsub(env, flags, 1, ra);
498     }
499 }
500 
501 static void float_invalid_op_mul(CPUPPCState *env, int flags,
502                                  bool set_fprc, uintptr_t retaddr)
503 {
504     if (flags & float_flag_invalid_imz) {
505         float_invalid_op_vximz(env, set_fprc, retaddr);
506     } else if (flags & float_flag_invalid_snan) {
507         float_invalid_op_vxsnan(env, retaddr);
508     }
509 }
510 
511 static inline void mul_flags_handler(CPUPPCState *env, int flags, uintptr_t ra)
512 {
513     if (unlikely(flags & float_flag_invalid)) {
514         float_invalid_op_mul(env, flags, 1, ra);
515     }
516 }
517 
518 static void float_invalid_op_div(CPUPPCState *env, int flags,
519                                  bool set_fprc, uintptr_t retaddr)
520 {
521     if (flags & float_flag_invalid_idi) {
522         float_invalid_op_vxidi(env, set_fprc, retaddr);
523     } else if (flags & float_flag_invalid_zdz) {
524         float_invalid_op_vxzdz(env, set_fprc, retaddr);
525     } else if (flags & float_flag_invalid_snan) {
526         float_invalid_op_vxsnan(env, retaddr);
527     }
528 }
529 
530 static inline void div_flags_handler(CPUPPCState *env, int flags, uintptr_t ra)
531 {
532     if (unlikely(flags & float_flag_invalid)) {
533         float_invalid_op_div(env, flags, 1, ra);
534     }
535     if (unlikely(flags & float_flag_divbyzero)) {
536         float_zero_divide_excp(env, ra);
537     }
538 }
539 
540 static uint64_t float_invalid_cvt(CPUPPCState *env, int flags,
541                                   uint64_t ret, uint64_t ret_nan,
542                                   bool set_fprc, uintptr_t retaddr)
543 {
544     /*
545      * VXCVI is different from most in that it sets two exception bits,
546      * VXCVI and VXSNAN for an SNaN input.
547      */
548     if (flags & float_flag_invalid_snan) {
549         env->fpscr |= FP_VXSNAN;
550     }
551     float_invalid_op_vxcvi(env, set_fprc, retaddr);
552 
553     return flags & float_flag_invalid_cvti ? ret : ret_nan;
554 }
555 
556 #define FPU_FCTI(op, cvt, nanval)                                      \
557 uint64_t helper_##op(CPUPPCState *env, float64 arg)                    \
558 {                                                                      \
559     uint64_t ret = float64_to_##cvt(arg, &env->fp_status);             \
560     int flags = get_float_exception_flags(&env->fp_status);            \
561     if (unlikely(flags & float_flag_invalid)) {                        \
562         ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC());  \
563     }                                                                  \
564     return ret;                                                        \
565 }
566 
567 FPU_FCTI(fctiw, int32, 0x80000000U)
568 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
569 FPU_FCTI(fctiwu, uint32, 0x00000000U)
570 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
571 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
572 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
573 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
574 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
575 
576 #define FPU_FCFI(op, cvtr, is_single)                      \
577 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
578 {                                                          \
579     CPU_DoubleU farg;                                      \
580                                                            \
581     if (is_single) {                                       \
582         float32 tmp = cvtr(arg, &env->fp_status);          \
583         farg.d = float32_to_float64(tmp, &env->fp_status); \
584     } else {                                               \
585         farg.d = cvtr(arg, &env->fp_status);               \
586     }                                                      \
587     do_float_check_status(env, true, GETPC());             \
588     return farg.ll;                                        \
589 }
590 
591 FPU_FCFI(fcfid, int64_to_float64, 0)
592 FPU_FCFI(fcfids, int64_to_float32, 1)
593 FPU_FCFI(fcfidu, uint64_to_float64, 0)
594 FPU_FCFI(fcfidus, uint64_to_float32, 1)
595 
596 static uint64_t do_fri(CPUPPCState *env, uint64_t arg,
597                        FloatRoundMode rounding_mode)
598 {
599     FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status);
600     int flags;
601 
602     set_float_rounding_mode(rounding_mode, &env->fp_status);
603     arg = float64_round_to_int(arg, &env->fp_status);
604     set_float_rounding_mode(old_rounding_mode, &env->fp_status);
605 
606     flags = get_float_exception_flags(&env->fp_status);
607     if (flags & float_flag_invalid_snan) {
608         float_invalid_op_vxsnan(env, GETPC());
609     }
610 
611     /* fri* does not set FPSCR[XX] */
612     set_float_exception_flags(flags & ~float_flag_inexact, &env->fp_status);
613     do_float_check_status(env, true, GETPC());
614 
615     return arg;
616 }
617 
618 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
619 {
620     return do_fri(env, arg, float_round_ties_away);
621 }
622 
623 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
624 {
625     return do_fri(env, arg, float_round_to_zero);
626 }
627 
628 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
629 {
630     return do_fri(env, arg, float_round_up);
631 }
632 
633 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
634 {
635     return do_fri(env, arg, float_round_down);
636 }
637 
638 static void float_invalid_op_madd(CPUPPCState *env, int flags,
639                                   bool set_fpcc, uintptr_t retaddr)
640 {
641     if (flags & float_flag_invalid_imz) {
642         float_invalid_op_vximz(env, set_fpcc, retaddr);
643     } else {
644         float_invalid_op_addsub(env, flags, set_fpcc, retaddr);
645     }
646 }
647 
648 static float64 do_fmadd(CPUPPCState *env, float64 a, float64 b,
649                          float64 c, int madd_flags, uintptr_t retaddr)
650 {
651     float64 ret = float64_muladd(a, b, c, madd_flags, &env->fp_status);
652     int flags = get_float_exception_flags(&env->fp_status);
653 
654     if (unlikely(flags & float_flag_invalid)) {
655         float_invalid_op_madd(env, flags, 1, retaddr);
656     }
657     return ret;
658 }
659 
660 static uint64_t do_fmadds(CPUPPCState *env, float64 a, float64 b,
661                           float64 c, int madd_flags, uintptr_t retaddr)
662 {
663     float64 ret = float64r32_muladd(a, b, c, madd_flags, &env->fp_status);
664     int flags = get_float_exception_flags(&env->fp_status);
665 
666     if (unlikely(flags & float_flag_invalid)) {
667         float_invalid_op_madd(env, flags, 1, retaddr);
668     }
669     return ret;
670 }
671 
672 #define FPU_FMADD(op, madd_flags)                                    \
673     uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,            \
674                          uint64_t arg2, uint64_t arg3)               \
675     { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \
676     uint64_t helper_##op##S(CPUPPCState *env, uint64_t arg1,         \
677                          uint64_t arg2, uint64_t arg3)               \
678     { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); }
679 
680 #define MADD_FLGS 0
681 #define MSUB_FLGS float_muladd_negate_c
682 #define NMADD_FLGS float_muladd_negate_result
683 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
684 
685 FPU_FMADD(FMADD, MADD_FLGS)
686 FPU_FMADD(FNMADD, NMADD_FLGS)
687 FPU_FMADD(FMSUB, MSUB_FLGS)
688 FPU_FMADD(FNMSUB, NMSUB_FLGS)
689 
690 /* frsp - frsp. */
691 static uint64_t do_frsp(CPUPPCState *env, uint64_t arg, uintptr_t retaddr)
692 {
693     float32 f32 = float64_to_float32(arg, &env->fp_status);
694     int flags = get_float_exception_flags(&env->fp_status);
695 
696     if (unlikely(flags & float_flag_invalid_snan)) {
697         float_invalid_op_vxsnan(env, retaddr);
698     }
699     return helper_todouble(f32);
700 }
701 
702 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
703 {
704     return do_frsp(env, arg, GETPC());
705 }
706 
707 static void float_invalid_op_sqrt(CPUPPCState *env, int flags,
708                                   bool set_fpcc, uintptr_t retaddr)
709 {
710     if (unlikely(flags & float_flag_invalid_sqrt)) {
711         float_invalid_op_vxsqrt(env, set_fpcc, retaddr);
712     } else if (unlikely(flags & float_flag_invalid_snan)) {
713         float_invalid_op_vxsnan(env, retaddr);
714     }
715 }
716 
717 #define FPU_FSQRT(name, op)                                                   \
718 float64 helper_##name(CPUPPCState *env, float64 arg)                          \
719 {                                                                             \
720     float64 ret = op(arg, &env->fp_status);                                   \
721     int flags = get_float_exception_flags(&env->fp_status);                   \
722                                                                               \
723     if (unlikely(flags & float_flag_invalid)) {                               \
724         float_invalid_op_sqrt(env, flags, 1, GETPC());                        \
725     }                                                                         \
726                                                                               \
727     return ret;                                                               \
728 }
729 
730 FPU_FSQRT(FSQRT, float64_sqrt)
731 FPU_FSQRT(FSQRTS, float64r32_sqrt)
732 
733 #define FPU_FRE(name, op)                                                     \
734 float64 helper_##name(CPUPPCState *env, float64 arg)                          \
735 {                                                                             \
736     /* "Estimate" the reciprocal with actual division.  */                    \
737     float64 ret = op(float64_one, arg, &env->fp_status);                      \
738     int flags = get_float_exception_flags(&env->fp_status);                   \
739                                                                               \
740     if (unlikely(flags & float_flag_invalid_snan)) {                          \
741         float_invalid_op_vxsnan(env, GETPC());                                \
742     }                                                                         \
743     if (unlikely(flags & float_flag_divbyzero)) {                             \
744         float_zero_divide_excp(env, GETPC());                                 \
745         /* For FPSCR.ZE == 0, the result is 1/2.  */                          \
746         ret = float64_set_sign(float64_half, float64_is_neg(arg));            \
747     }                                                                         \
748                                                                               \
749     return ret;                                                               \
750 }
751 
752 #define FPU_FRSQRTE(name, op)                                                 \
753 float64 helper_##name(CPUPPCState *env, float64 arg)                          \
754 {                                                                             \
755     /* "Estimate" the reciprocal with actual division.  */                    \
756     float64 rets = float64_sqrt(arg, &env->fp_status);                        \
757     float64 retd = op(float64_one, rets, &env->fp_status);                    \
758     int flags = get_float_exception_flags(&env->fp_status);                   \
759                                                                               \
760     if (unlikely(flags & float_flag_invalid)) {                               \
761         float_invalid_op_sqrt(env, flags, 1, GETPC());                        \
762     }                                                                         \
763     if (unlikely(flags & float_flag_divbyzero)) {                             \
764         /* Reciprocal of (square root of) zero.  */                           \
765         float_zero_divide_excp(env, GETPC());                                 \
766     }                                                                         \
767                                                                               \
768     return retd;                                                              \
769 }
770 
771 #define FPU_HELPER(name, op, flags_handler)                                   \
772 float64 helper_##name(CPUPPCState *env, float64 arg1, float64 arg2)           \
773 {                                                                             \
774     float64 ret = op(arg1, arg2, &env->fp_status);                            \
775     int flags = get_float_exception_flags(&env->fp_status);                   \
776     uintptr_t ra = GETPC();                                                   \
777     flags_handler(env, flags, ra);                                            \
778     return ret;                                                               \
779 }
780 
781 FPU_FRE(FRE, float64_div)
782 FPU_FRE(FRES, float64r32_div)
783 FPU_FRSQRTE(FRSQRTE, float64_div)
784 FPU_FRSQRTE(FRSQRTES, float64r32_div)
785 FPU_HELPER(FADD, float64_add, addsub_flags_handler)
786 FPU_HELPER(FADDS, float64r32_add, addsub_flags_handler)
787 FPU_HELPER(FSUB, float64_sub, addsub_flags_handler)
788 FPU_HELPER(FSUBS, float64r32_sub, addsub_flags_handler)
789 FPU_HELPER(FMUL, float64_mul, mul_flags_handler)
790 FPU_HELPER(FMULS, float64r32_mul, mul_flags_handler)
791 FPU_HELPER(FDIV, float64_div, div_flags_handler)
792 FPU_HELPER(FDIVS, float64r32_div, div_flags_handler)
793 
794 /* fsel - fsel. */
795 uint64_t helper_FSEL(uint64_t a, uint64_t b, uint64_t c)
796 {
797     CPU_DoubleU fa;
798 
799     fa.ll = a;
800 
801     if ((!float64_is_neg(fa.d) || float64_is_zero(fa.d)) &&
802         !float64_is_any_nan(fa.d)) {
803         return c;
804     } else {
805         return b;
806     }
807 }
808 
809 uint32_t helper_FTDIV(uint64_t fra, uint64_t frb)
810 {
811     int fe_flag = 0;
812     int fg_flag = 0;
813 
814     if (unlikely(float64_is_infinity(fra) ||
815                  float64_is_infinity(frb) ||
816                  float64_is_zero(frb))) {
817         fe_flag = 1;
818         fg_flag = 1;
819     } else {
820         int e_a = ppc_float64_get_unbiased_exp(fra);
821         int e_b = ppc_float64_get_unbiased_exp(frb);
822 
823         if (unlikely(float64_is_any_nan(fra) ||
824                      float64_is_any_nan(frb))) {
825             fe_flag = 1;
826         } else if ((e_b <= -1022) || (e_b >= 1021)) {
827             fe_flag = 1;
828         } else if (!float64_is_zero(fra) &&
829                    (((e_a - e_b) >= 1023) ||
830                     ((e_a - e_b) <= -1021) ||
831                     (e_a <= -970))) {
832             fe_flag = 1;
833         }
834 
835         if (unlikely(float64_is_zero_or_denormal(frb))) {
836             /* XB is not zero because of the above check and */
837             /* so must be denormalized.                      */
838             fg_flag = 1;
839         }
840     }
841 
842     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
843 }
844 
845 uint32_t helper_FTSQRT(uint64_t frb)
846 {
847     int fe_flag = 0;
848     int fg_flag = 0;
849 
850     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
851         fe_flag = 1;
852         fg_flag = 1;
853     } else {
854         int e_b = ppc_float64_get_unbiased_exp(frb);
855 
856         if (unlikely(float64_is_any_nan(frb))) {
857             fe_flag = 1;
858         } else if (unlikely(float64_is_zero(frb))) {
859             fe_flag = 1;
860         } else if (unlikely(float64_is_neg(frb))) {
861             fe_flag = 1;
862         } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
863             fe_flag = 1;
864         }
865 
866         if (unlikely(float64_is_zero_or_denormal(frb))) {
867             /* XB is not zero because of the above check and */
868             /* therefore must be denormalized.               */
869             fg_flag = 1;
870         }
871     }
872 
873     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
874 }
875 
876 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
877                   uint32_t crfD)
878 {
879     CPU_DoubleU farg1, farg2;
880     uint32_t ret = 0;
881 
882     farg1.ll = arg1;
883     farg2.ll = arg2;
884 
885     if (unlikely(float64_is_any_nan(farg1.d) ||
886                  float64_is_any_nan(farg2.d))) {
887         ret = 0x01UL;
888     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
889         ret = 0x08UL;
890     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
891         ret = 0x04UL;
892     } else {
893         ret = 0x02UL;
894     }
895 
896     env->fpscr &= ~FP_FPCC;
897     env->fpscr |= ret << FPSCR_FPCC;
898     env->crf[crfD] = ret;
899     if (unlikely(ret == 0x01UL
900                  && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
901                      float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
902         /* sNaN comparison */
903         float_invalid_op_vxsnan(env, GETPC());
904     }
905 }
906 
907 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
908                   uint32_t crfD)
909 {
910     CPU_DoubleU farg1, farg2;
911     uint32_t ret = 0;
912 
913     farg1.ll = arg1;
914     farg2.ll = arg2;
915 
916     if (unlikely(float64_is_any_nan(farg1.d) ||
917                  float64_is_any_nan(farg2.d))) {
918         ret = 0x01UL;
919     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
920         ret = 0x08UL;
921     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
922         ret = 0x04UL;
923     } else {
924         ret = 0x02UL;
925     }
926 
927     env->fpscr &= ~FP_FPCC;
928     env->fpscr |= ret << FPSCR_FPCC;
929     env->crf[crfD] = (uint32_t) ret;
930     if (unlikely(ret == 0x01UL)) {
931         float_invalid_op_vxvc(env, 1, GETPC());
932         if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
933             float64_is_signaling_nan(farg2.d, &env->fp_status)) {
934             /* sNaN comparison */
935             float_invalid_op_vxsnan(env, GETPC());
936         }
937     }
938 }
939 
940 /* Single-precision floating-point conversions */
941 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
942 {
943     CPU_FloatU u;
944 
945     u.f = int32_to_float32(val, &env->vec_status);
946 
947     return u.l;
948 }
949 
950 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
951 {
952     CPU_FloatU u;
953 
954     u.f = uint32_to_float32(val, &env->vec_status);
955 
956     return u.l;
957 }
958 
959 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
960 {
961     CPU_FloatU u;
962 
963     u.l = val;
964     /* NaN are not treated the same way IEEE 754 does */
965     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
966         return 0;
967     }
968 
969     return float32_to_int32(u.f, &env->vec_status);
970 }
971 
972 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
973 {
974     CPU_FloatU u;
975 
976     u.l = val;
977     /* NaN are not treated the same way IEEE 754 does */
978     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
979         return 0;
980     }
981 
982     return float32_to_uint32(u.f, &env->vec_status);
983 }
984 
985 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
986 {
987     CPU_FloatU u;
988 
989     u.l = val;
990     /* NaN are not treated the same way IEEE 754 does */
991     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
992         return 0;
993     }
994 
995     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
996 }
997 
998 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
999 {
1000     CPU_FloatU u;
1001 
1002     u.l = val;
1003     /* NaN are not treated the same way IEEE 754 does */
1004     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1005         return 0;
1006     }
1007 
1008     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1009 }
1010 
1011 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1012 {
1013     CPU_FloatU u;
1014     float32 tmp;
1015 
1016     u.f = int32_to_float32(val, &env->vec_status);
1017     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1018     u.f = float32_div(u.f, tmp, &env->vec_status);
1019 
1020     return u.l;
1021 }
1022 
1023 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1024 {
1025     CPU_FloatU u;
1026     float32 tmp;
1027 
1028     u.f = uint32_to_float32(val, &env->vec_status);
1029     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1030     u.f = float32_div(u.f, tmp, &env->vec_status);
1031 
1032     return u.l;
1033 }
1034 
1035 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1036 {
1037     CPU_FloatU u;
1038     float32 tmp;
1039 
1040     u.l = val;
1041     /* NaN are not treated the same way IEEE 754 does */
1042     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1043         return 0;
1044     }
1045     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1046     u.f = float32_mul(u.f, tmp, &env->vec_status);
1047 
1048     return float32_to_int32(u.f, &env->vec_status);
1049 }
1050 
1051 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1052 {
1053     CPU_FloatU u;
1054     float32 tmp;
1055 
1056     u.l = val;
1057     /* NaN are not treated the same way IEEE 754 does */
1058     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1059         return 0;
1060     }
1061     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1062     u.f = float32_mul(u.f, tmp, &env->vec_status);
1063 
1064     return float32_to_uint32(u.f, &env->vec_status);
1065 }
1066 
1067 #define HELPER_SPE_SINGLE_CONV(name)                              \
1068     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1069     {                                                             \
1070         return e##name(env, val);                                 \
1071     }
1072 /* efscfsi */
1073 HELPER_SPE_SINGLE_CONV(fscfsi);
1074 /* efscfui */
1075 HELPER_SPE_SINGLE_CONV(fscfui);
1076 /* efscfuf */
1077 HELPER_SPE_SINGLE_CONV(fscfuf);
1078 /* efscfsf */
1079 HELPER_SPE_SINGLE_CONV(fscfsf);
1080 /* efsctsi */
1081 HELPER_SPE_SINGLE_CONV(fsctsi);
1082 /* efsctui */
1083 HELPER_SPE_SINGLE_CONV(fsctui);
1084 /* efsctsiz */
1085 HELPER_SPE_SINGLE_CONV(fsctsiz);
1086 /* efsctuiz */
1087 HELPER_SPE_SINGLE_CONV(fsctuiz);
1088 /* efsctsf */
1089 HELPER_SPE_SINGLE_CONV(fsctsf);
1090 /* efsctuf */
1091 HELPER_SPE_SINGLE_CONV(fsctuf);
1092 
1093 #define HELPER_SPE_VECTOR_CONV(name)                            \
1094     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1095     {                                                           \
1096         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1097             (uint64_t)e##name(env, val);                        \
1098     }
1099 /* evfscfsi */
1100 HELPER_SPE_VECTOR_CONV(fscfsi);
1101 /* evfscfui */
1102 HELPER_SPE_VECTOR_CONV(fscfui);
1103 /* evfscfuf */
1104 HELPER_SPE_VECTOR_CONV(fscfuf);
1105 /* evfscfsf */
1106 HELPER_SPE_VECTOR_CONV(fscfsf);
1107 /* evfsctsi */
1108 HELPER_SPE_VECTOR_CONV(fsctsi);
1109 /* evfsctui */
1110 HELPER_SPE_VECTOR_CONV(fsctui);
1111 /* evfsctsiz */
1112 HELPER_SPE_VECTOR_CONV(fsctsiz);
1113 /* evfsctuiz */
1114 HELPER_SPE_VECTOR_CONV(fsctuiz);
1115 /* evfsctsf */
1116 HELPER_SPE_VECTOR_CONV(fsctsf);
1117 /* evfsctuf */
1118 HELPER_SPE_VECTOR_CONV(fsctuf);
1119 
1120 /* Single-precision floating-point arithmetic */
1121 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1122 {
1123     CPU_FloatU u1, u2;
1124 
1125     u1.l = op1;
1126     u2.l = op2;
1127     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1128     return u1.l;
1129 }
1130 
1131 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1132 {
1133     CPU_FloatU u1, u2;
1134 
1135     u1.l = op1;
1136     u2.l = op2;
1137     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1138     return u1.l;
1139 }
1140 
1141 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1142 {
1143     CPU_FloatU u1, u2;
1144 
1145     u1.l = op1;
1146     u2.l = op2;
1147     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1148     return u1.l;
1149 }
1150 
1151 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1152 {
1153     CPU_FloatU u1, u2;
1154 
1155     u1.l = op1;
1156     u2.l = op2;
1157     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1158     return u1.l;
1159 }
1160 
1161 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1162     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1163     {                                                                   \
1164         return e##name(env, op1, op2);                                  \
1165     }
1166 /* efsadd */
1167 HELPER_SPE_SINGLE_ARITH(fsadd);
1168 /* efssub */
1169 HELPER_SPE_SINGLE_ARITH(fssub);
1170 /* efsmul */
1171 HELPER_SPE_SINGLE_ARITH(fsmul);
1172 /* efsdiv */
1173 HELPER_SPE_SINGLE_ARITH(fsdiv);
1174 
1175 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1176     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1177     {                                                                   \
1178         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1179             (uint64_t)e##name(env, op1, op2);                           \
1180     }
1181 /* evfsadd */
1182 HELPER_SPE_VECTOR_ARITH(fsadd);
1183 /* evfssub */
1184 HELPER_SPE_VECTOR_ARITH(fssub);
1185 /* evfsmul */
1186 HELPER_SPE_VECTOR_ARITH(fsmul);
1187 /* evfsdiv */
1188 HELPER_SPE_VECTOR_ARITH(fsdiv);
1189 
1190 /* Single-precision floating-point comparisons */
1191 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1192 {
1193     CPU_FloatU u1, u2;
1194 
1195     u1.l = op1;
1196     u2.l = op2;
1197     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1198 }
1199 
1200 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1201 {
1202     CPU_FloatU u1, u2;
1203 
1204     u1.l = op1;
1205     u2.l = op2;
1206     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1207 }
1208 
1209 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1210 {
1211     CPU_FloatU u1, u2;
1212 
1213     u1.l = op1;
1214     u2.l = op2;
1215     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1216 }
1217 
1218 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1219 {
1220     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1221     return efscmplt(env, op1, op2);
1222 }
1223 
1224 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1225 {
1226     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1227     return efscmpgt(env, op1, op2);
1228 }
1229 
1230 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1231 {
1232     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1233     return efscmpeq(env, op1, op2);
1234 }
1235 
1236 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1237     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1238     {                                                                   \
1239         return e##name(env, op1, op2);                                  \
1240     }
1241 /* efststlt */
1242 HELPER_SINGLE_SPE_CMP(fststlt);
1243 /* efststgt */
1244 HELPER_SINGLE_SPE_CMP(fststgt);
1245 /* efststeq */
1246 HELPER_SINGLE_SPE_CMP(fststeq);
1247 /* efscmplt */
1248 HELPER_SINGLE_SPE_CMP(fscmplt);
1249 /* efscmpgt */
1250 HELPER_SINGLE_SPE_CMP(fscmpgt);
1251 /* efscmpeq */
1252 HELPER_SINGLE_SPE_CMP(fscmpeq);
1253 
1254 static inline uint32_t evcmp_merge(int t0, int t1)
1255 {
1256     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1257 }
1258 
1259 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1260     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1261     {                                                                   \
1262         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1263                            e##name(env, op1, op2));                     \
1264     }
1265 /* evfststlt */
1266 HELPER_VECTOR_SPE_CMP(fststlt);
1267 /* evfststgt */
1268 HELPER_VECTOR_SPE_CMP(fststgt);
1269 /* evfststeq */
1270 HELPER_VECTOR_SPE_CMP(fststeq);
1271 /* evfscmplt */
1272 HELPER_VECTOR_SPE_CMP(fscmplt);
1273 /* evfscmpgt */
1274 HELPER_VECTOR_SPE_CMP(fscmpgt);
1275 /* evfscmpeq */
1276 HELPER_VECTOR_SPE_CMP(fscmpeq);
1277 
1278 /* Double-precision floating-point conversion */
1279 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1280 {
1281     CPU_DoubleU u;
1282 
1283     u.d = int32_to_float64(val, &env->vec_status);
1284 
1285     return u.ll;
1286 }
1287 
1288 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1289 {
1290     CPU_DoubleU u;
1291 
1292     u.d = int64_to_float64(val, &env->vec_status);
1293 
1294     return u.ll;
1295 }
1296 
1297 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1298 {
1299     CPU_DoubleU u;
1300 
1301     u.d = uint32_to_float64(val, &env->vec_status);
1302 
1303     return u.ll;
1304 }
1305 
1306 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1307 {
1308     CPU_DoubleU u;
1309 
1310     u.d = uint64_to_float64(val, &env->vec_status);
1311 
1312     return u.ll;
1313 }
1314 
1315 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1316 {
1317     CPU_DoubleU u;
1318 
1319     u.ll = val;
1320     /* NaN are not treated the same way IEEE 754 does */
1321     if (unlikely(float64_is_any_nan(u.d))) {
1322         return 0;
1323     }
1324 
1325     return float64_to_int32(u.d, &env->vec_status);
1326 }
1327 
1328 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1329 {
1330     CPU_DoubleU u;
1331 
1332     u.ll = val;
1333     /* NaN are not treated the same way IEEE 754 does */
1334     if (unlikely(float64_is_any_nan(u.d))) {
1335         return 0;
1336     }
1337 
1338     return float64_to_uint32(u.d, &env->vec_status);
1339 }
1340 
1341 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1342 {
1343     CPU_DoubleU u;
1344 
1345     u.ll = val;
1346     /* NaN are not treated the same way IEEE 754 does */
1347     if (unlikely(float64_is_any_nan(u.d))) {
1348         return 0;
1349     }
1350 
1351     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1352 }
1353 
1354 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1355 {
1356     CPU_DoubleU u;
1357 
1358     u.ll = val;
1359     /* NaN are not treated the same way IEEE 754 does */
1360     if (unlikely(float64_is_any_nan(u.d))) {
1361         return 0;
1362     }
1363 
1364     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1365 }
1366 
1367 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1368 {
1369     CPU_DoubleU u;
1370 
1371     u.ll = val;
1372     /* NaN are not treated the same way IEEE 754 does */
1373     if (unlikely(float64_is_any_nan(u.d))) {
1374         return 0;
1375     }
1376 
1377     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1378 }
1379 
1380 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1381 {
1382     CPU_DoubleU u;
1383 
1384     u.ll = val;
1385     /* NaN are not treated the same way IEEE 754 does */
1386     if (unlikely(float64_is_any_nan(u.d))) {
1387         return 0;
1388     }
1389 
1390     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1391 }
1392 
1393 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1394 {
1395     CPU_DoubleU u;
1396     float64 tmp;
1397 
1398     u.d = int32_to_float64(val, &env->vec_status);
1399     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1400     u.d = float64_div(u.d, tmp, &env->vec_status);
1401 
1402     return u.ll;
1403 }
1404 
1405 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1406 {
1407     CPU_DoubleU u;
1408     float64 tmp;
1409 
1410     u.d = uint32_to_float64(val, &env->vec_status);
1411     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1412     u.d = float64_div(u.d, tmp, &env->vec_status);
1413 
1414     return u.ll;
1415 }
1416 
1417 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1418 {
1419     CPU_DoubleU u;
1420     float64 tmp;
1421 
1422     u.ll = val;
1423     /* NaN are not treated the same way IEEE 754 does */
1424     if (unlikely(float64_is_any_nan(u.d))) {
1425         return 0;
1426     }
1427     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1428     u.d = float64_mul(u.d, tmp, &env->vec_status);
1429 
1430     return float64_to_int32(u.d, &env->vec_status);
1431 }
1432 
1433 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1434 {
1435     CPU_DoubleU u;
1436     float64 tmp;
1437 
1438     u.ll = val;
1439     /* NaN are not treated the same way IEEE 754 does */
1440     if (unlikely(float64_is_any_nan(u.d))) {
1441         return 0;
1442     }
1443     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1444     u.d = float64_mul(u.d, tmp, &env->vec_status);
1445 
1446     return float64_to_uint32(u.d, &env->vec_status);
1447 }
1448 
1449 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1450 {
1451     CPU_DoubleU u1;
1452     CPU_FloatU u2;
1453 
1454     u1.ll = val;
1455     u2.f = float64_to_float32(u1.d, &env->vec_status);
1456 
1457     return u2.l;
1458 }
1459 
1460 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1461 {
1462     CPU_DoubleU u2;
1463     CPU_FloatU u1;
1464 
1465     u1.l = val;
1466     u2.d = float32_to_float64(u1.f, &env->vec_status);
1467 
1468     return u2.ll;
1469 }
1470 
1471 /* Double precision fixed-point arithmetic */
1472 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1473 {
1474     CPU_DoubleU u1, u2;
1475 
1476     u1.ll = op1;
1477     u2.ll = op2;
1478     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1479     return u1.ll;
1480 }
1481 
1482 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1483 {
1484     CPU_DoubleU u1, u2;
1485 
1486     u1.ll = op1;
1487     u2.ll = op2;
1488     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1489     return u1.ll;
1490 }
1491 
1492 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1493 {
1494     CPU_DoubleU u1, u2;
1495 
1496     u1.ll = op1;
1497     u2.ll = op2;
1498     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1499     return u1.ll;
1500 }
1501 
1502 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1503 {
1504     CPU_DoubleU u1, u2;
1505 
1506     u1.ll = op1;
1507     u2.ll = op2;
1508     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1509     return u1.ll;
1510 }
1511 
1512 /* Double precision floating point helpers */
1513 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1514 {
1515     CPU_DoubleU u1, u2;
1516 
1517     u1.ll = op1;
1518     u2.ll = op2;
1519     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1520 }
1521 
1522 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1523 {
1524     CPU_DoubleU u1, u2;
1525 
1526     u1.ll = op1;
1527     u2.ll = op2;
1528     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1529 }
1530 
1531 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1532 {
1533     CPU_DoubleU u1, u2;
1534 
1535     u1.ll = op1;
1536     u2.ll = op2;
1537     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1538 }
1539 
1540 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1541 {
1542     /* XXX: TODO: test special values (NaN, infinites, ...) */
1543     return helper_efdtstlt(env, op1, op2);
1544 }
1545 
1546 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1547 {
1548     /* XXX: TODO: test special values (NaN, infinites, ...) */
1549     return helper_efdtstgt(env, op1, op2);
1550 }
1551 
1552 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1553 {
1554     /* XXX: TODO: test special values (NaN, infinites, ...) */
1555     return helper_efdtsteq(env, op1, op2);
1556 }
1557 
1558 #define float64_to_float64(x, env) x
1559 
1560 
1561 /*
1562  * VSX_ADD_SUB - VSX floating point add/subtract
1563  *   name  - instruction mnemonic
1564  *   op    - operation (add or sub)
1565  *   nels  - number of elements (1, 2 or 4)
1566  *   tp    - type (float32 or float64)
1567  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1568  *   sfifprf - set FI and FPRF
1569  */
1570 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfifprf, r2sp)                  \
1571 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                          \
1572                    ppc_vsr_t *xa, ppc_vsr_t *xb)                             \
1573 {                                                                            \
1574     ppc_vsr_t t = { };                                                       \
1575     int i;                                                                   \
1576                                                                              \
1577     helper_reset_fpstatus(env);                                              \
1578                                                                              \
1579     for (i = 0; i < nels; i++) {                                             \
1580         float_status tstat = env->fp_status;                                 \
1581         set_float_exception_flags(0, &tstat);                                \
1582         t.fld = tp##_##op(xa->fld, xb->fld, &tstat);                         \
1583         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1584                                                                              \
1585         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1586             float_invalid_op_addsub(env, tstat.float_exception_flags,        \
1587                                     sfifprf, GETPC());                       \
1588         }                                                                    \
1589                                                                              \
1590         if (r2sp) {                                                          \
1591             t.fld = do_frsp(env, t.fld, GETPC());                            \
1592         }                                                                    \
1593                                                                              \
1594         if (sfifprf) {                                                       \
1595             helper_compute_fprf_float64(env, t.fld);                         \
1596         }                                                                    \
1597     }                                                                        \
1598     *xt = t;                                                                 \
1599     do_float_check_status(env, sfifprf, GETPC());                            \
1600 }
1601 
1602 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1603 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1604 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1605 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1606 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1607 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1608 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1609 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1610 
1611 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1612                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1613 {
1614     ppc_vsr_t t = *xt;
1615     float_status tstat;
1616 
1617     helper_reset_fpstatus(env);
1618 
1619     tstat = env->fp_status;
1620     if (unlikely(Rc(opcode) != 0)) {
1621         tstat.float_rounding_mode = float_round_to_odd;
1622     }
1623 
1624     set_float_exception_flags(0, &tstat);
1625     t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1626     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1627 
1628     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1629         float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
1630     }
1631 
1632     helper_compute_fprf_float128(env, t.f128);
1633 
1634     *xt = t;
1635     do_float_check_status(env, true, GETPC());
1636 }
1637 
1638 /*
1639  * VSX_MUL - VSX floating point multiply
1640  *   op    - instruction mnemonic
1641  *   nels  - number of elements (1, 2 or 4)
1642  *   tp    - type (float32 or float64)
1643  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1644  *   sfifprf - set FI and FPRF
1645  */
1646 #define VSX_MUL(op, nels, tp, fld, sfifprf, r2sp)                            \
1647 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                            \
1648                  ppc_vsr_t *xa, ppc_vsr_t *xb)                               \
1649 {                                                                            \
1650     ppc_vsr_t t = { };                                                       \
1651     int i;                                                                   \
1652                                                                              \
1653     helper_reset_fpstatus(env);                                              \
1654                                                                              \
1655     for (i = 0; i < nels; i++) {                                             \
1656         float_status tstat = env->fp_status;                                 \
1657         set_float_exception_flags(0, &tstat);                                \
1658         t.fld = tp##_mul(xa->fld, xb->fld, &tstat);                          \
1659         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1660                                                                              \
1661         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1662             float_invalid_op_mul(env, tstat.float_exception_flags,           \
1663                                  sfifprf, GETPC());                          \
1664         }                                                                    \
1665                                                                              \
1666         if (r2sp) {                                                          \
1667             t.fld = do_frsp(env, t.fld, GETPC());                            \
1668         }                                                                    \
1669                                                                              \
1670         if (sfifprf) {                                                       \
1671             helper_compute_fprf_float64(env, t.fld);                         \
1672         }                                                                    \
1673     }                                                                        \
1674                                                                              \
1675     *xt = t;                                                                 \
1676     do_float_check_status(env, sfifprf, GETPC());                            \
1677 }
1678 
1679 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1680 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1681 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1682 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1683 
1684 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1685                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1686 {
1687     ppc_vsr_t t = *xt;
1688     float_status tstat;
1689 
1690     helper_reset_fpstatus(env);
1691     tstat = env->fp_status;
1692     if (unlikely(Rc(opcode) != 0)) {
1693         tstat.float_rounding_mode = float_round_to_odd;
1694     }
1695 
1696     set_float_exception_flags(0, &tstat);
1697     t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1698     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1699 
1700     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1701         float_invalid_op_mul(env, tstat.float_exception_flags, 1, GETPC());
1702     }
1703     helper_compute_fprf_float128(env, t.f128);
1704 
1705     *xt = t;
1706     do_float_check_status(env, true, GETPC());
1707 }
1708 
1709 /*
1710  * VSX_DIV - VSX floating point divide
1711  *   op    - instruction mnemonic
1712  *   nels  - number of elements (1, 2 or 4)
1713  *   tp    - type (float32 or float64)
1714  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1715  *   sfifprf - set FI and FPRF
1716  */
1717 #define VSX_DIV(op, nels, tp, fld, sfifprf, r2sp)                             \
1718 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
1719                  ppc_vsr_t *xa, ppc_vsr_t *xb)                                \
1720 {                                                                             \
1721     ppc_vsr_t t = { };                                                        \
1722     int i;                                                                    \
1723                                                                               \
1724     helper_reset_fpstatus(env);                                               \
1725                                                                               \
1726     for (i = 0; i < nels; i++) {                                              \
1727         float_status tstat = env->fp_status;                                  \
1728         set_float_exception_flags(0, &tstat);                                 \
1729         t.fld = tp##_div(xa->fld, xb->fld, &tstat);                           \
1730         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1731                                                                               \
1732         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1733             float_invalid_op_div(env, tstat.float_exception_flags,            \
1734                                  sfifprf, GETPC());                           \
1735         }                                                                     \
1736         if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {   \
1737             float_zero_divide_excp(env, GETPC());                             \
1738         }                                                                     \
1739                                                                               \
1740         if (r2sp) {                                                           \
1741             t.fld = do_frsp(env, t.fld, GETPC());                             \
1742         }                                                                     \
1743                                                                               \
1744         if (sfifprf) {                                                        \
1745             helper_compute_fprf_float64(env, t.fld);                          \
1746         }                                                                     \
1747     }                                                                         \
1748                                                                               \
1749     *xt = t;                                                                  \
1750     do_float_check_status(env, sfifprf, GETPC());                             \
1751 }
1752 
1753 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1754 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1755 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1756 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1757 
1758 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
1759                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1760 {
1761     ppc_vsr_t t = *xt;
1762     float_status tstat;
1763 
1764     helper_reset_fpstatus(env);
1765     tstat = env->fp_status;
1766     if (unlikely(Rc(opcode) != 0)) {
1767         tstat.float_rounding_mode = float_round_to_odd;
1768     }
1769 
1770     set_float_exception_flags(0, &tstat);
1771     t.f128 = float128_div(xa->f128, xb->f128, &tstat);
1772     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1773 
1774     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1775         float_invalid_op_div(env, tstat.float_exception_flags, 1, GETPC());
1776     }
1777     if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
1778         float_zero_divide_excp(env, GETPC());
1779     }
1780 
1781     helper_compute_fprf_float128(env, t.f128);
1782     *xt = t;
1783     do_float_check_status(env, true, GETPC());
1784 }
1785 
1786 /*
1787  * VSX_RE  - VSX floating point reciprocal estimate
1788  *   op    - instruction mnemonic
1789  *   nels  - number of elements (1, 2 or 4)
1790  *   tp    - type (float32 or float64)
1791  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1792  *   sfifprf - set FI and FPRF
1793  */
1794 #define VSX_RE(op, nels, tp, fld, sfifprf, r2sp)                              \
1795 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)              \
1796 {                                                                             \
1797     ppc_vsr_t t = { };                                                        \
1798     int i;                                                                    \
1799                                                                               \
1800     helper_reset_fpstatus(env);                                               \
1801                                                                               \
1802     for (i = 0; i < nels; i++) {                                              \
1803         if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
1804             float_invalid_op_vxsnan(env, GETPC());                            \
1805         }                                                                     \
1806         t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status);                 \
1807                                                                               \
1808         if (r2sp) {                                                           \
1809             t.fld = do_frsp(env, t.fld, GETPC());                             \
1810         }                                                                     \
1811                                                                               \
1812         if (sfifprf) {                                                        \
1813             helper_compute_fprf_float64(env, t.fld);                          \
1814         }                                                                     \
1815     }                                                                         \
1816                                                                               \
1817     *xt = t;                                                                  \
1818     do_float_check_status(env, sfifprf, GETPC());                             \
1819 }
1820 
1821 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
1822 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
1823 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
1824 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
1825 
1826 /*
1827  * VSX_SQRT - VSX floating point square root
1828  *   op    - instruction mnemonic
1829  *   nels  - number of elements (1, 2 or 4)
1830  *   tp    - type (float32 or float64)
1831  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1832  *   sfifprf - set FI and FPRF
1833  */
1834 #define VSX_SQRT(op, nels, tp, fld, sfifprf, r2sp)                           \
1835 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
1836 {                                                                            \
1837     ppc_vsr_t t = { };                                                       \
1838     int i;                                                                   \
1839                                                                              \
1840     helper_reset_fpstatus(env);                                              \
1841                                                                              \
1842     for (i = 0; i < nels; i++) {                                             \
1843         float_status tstat = env->fp_status;                                 \
1844         set_float_exception_flags(0, &tstat);                                \
1845         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
1846         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1847                                                                              \
1848         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1849             float_invalid_op_sqrt(env, tstat.float_exception_flags,          \
1850                                   sfifprf, GETPC());                         \
1851         }                                                                    \
1852                                                                              \
1853         if (r2sp) {                                                          \
1854             t.fld = do_frsp(env, t.fld, GETPC());                            \
1855         }                                                                    \
1856                                                                              \
1857         if (sfifprf) {                                                       \
1858             helper_compute_fprf_float64(env, t.fld);                         \
1859         }                                                                    \
1860     }                                                                        \
1861                                                                              \
1862     *xt = t;                                                                 \
1863     do_float_check_status(env, sfifprf, GETPC());                            \
1864 }
1865 
1866 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
1867 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
1868 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
1869 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
1870 
1871 /*
1872  *VSX_RSQRTE - VSX floating point reciprocal square root estimate
1873  *   op    - instruction mnemonic
1874  *   nels  - number of elements (1, 2 or 4)
1875  *   tp    - type (float32 or float64)
1876  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1877  *   sfifprf - set FI and FPRF
1878  */
1879 #define VSX_RSQRTE(op, nels, tp, fld, sfifprf, r2sp)                         \
1880 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
1881 {                                                                            \
1882     ppc_vsr_t t = { };                                                       \
1883     int i;                                                                   \
1884                                                                              \
1885     helper_reset_fpstatus(env);                                              \
1886                                                                              \
1887     for (i = 0; i < nels; i++) {                                             \
1888         float_status tstat = env->fp_status;                                 \
1889         set_float_exception_flags(0, &tstat);                                \
1890         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
1891         t.fld = tp##_div(tp##_one, t.fld, &tstat);                           \
1892         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1893         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1894             float_invalid_op_sqrt(env, tstat.float_exception_flags,          \
1895                                   sfifprf, GETPC());                         \
1896         }                                                                    \
1897         if (r2sp) {                                                          \
1898             t.fld = do_frsp(env, t.fld, GETPC());                            \
1899         }                                                                    \
1900                                                                              \
1901         if (sfifprf) {                                                       \
1902             helper_compute_fprf_float64(env, t.fld);                         \
1903         }                                                                    \
1904     }                                                                        \
1905                                                                              \
1906     *xt = t;                                                                 \
1907     do_float_check_status(env, sfifprf, GETPC());                            \
1908 }
1909 
1910 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
1911 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
1912 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
1913 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
1914 
1915 /*
1916  * VSX_TDIV - VSX floating point test for divide
1917  *   op    - instruction mnemonic
1918  *   nels  - number of elements (1, 2 or 4)
1919  *   tp    - type (float32 or float64)
1920  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1921  *   emin  - minimum unbiased exponent
1922  *   emax  - maximum unbiased exponent
1923  *   nbits - number of fraction bits
1924  */
1925 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
1926 void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
1927                  ppc_vsr_t *xa, ppc_vsr_t *xb)                          \
1928 {                                                                       \
1929     int i;                                                              \
1930     int fe_flag = 0;                                                    \
1931     int fg_flag = 0;                                                    \
1932                                                                         \
1933     for (i = 0; i < nels; i++) {                                        \
1934         if (unlikely(tp##_is_infinity(xa->fld) ||                       \
1935                      tp##_is_infinity(xb->fld) ||                       \
1936                      tp##_is_zero(xb->fld))) {                          \
1937             fe_flag = 1;                                                \
1938             fg_flag = 1;                                                \
1939         } else {                                                        \
1940             int e_a = ppc_##tp##_get_unbiased_exp(xa->fld);             \
1941             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
1942                                                                         \
1943             if (unlikely(tp##_is_any_nan(xa->fld) ||                    \
1944                          tp##_is_any_nan(xb->fld))) {                   \
1945                 fe_flag = 1;                                            \
1946             } else if ((e_b <= emin) || (e_b >= (emax - 2))) {          \
1947                 fe_flag = 1;                                            \
1948             } else if (!tp##_is_zero(xa->fld) &&                        \
1949                        (((e_a - e_b) >= emax) ||                        \
1950                         ((e_a - e_b) <= (emin + 1)) ||                  \
1951                         (e_a <= (emin + nbits)))) {                     \
1952                 fe_flag = 1;                                            \
1953             }                                                           \
1954                                                                         \
1955             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
1956                 /*                                                      \
1957                  * XB is not zero because of the above check and so     \
1958                  * must be denormalized.                                \
1959                  */                                                     \
1960                 fg_flag = 1;                                            \
1961             }                                                           \
1962         }                                                               \
1963     }                                                                   \
1964                                                                         \
1965     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
1966 }
1967 
1968 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
1969 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
1970 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
1971 
1972 /*
1973  * VSX_TSQRT - VSX floating point test for square root
1974  *   op    - instruction mnemonic
1975  *   nels  - number of elements (1, 2 or 4)
1976  *   tp    - type (float32 or float64)
1977  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1978  *   emin  - minimum unbiased exponent
1979  *   emax  - maximum unbiased exponent
1980  *   nbits - number of fraction bits
1981  */
1982 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
1983 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)      \
1984 {                                                                       \
1985     int i;                                                              \
1986     int fe_flag = 0;                                                    \
1987     int fg_flag = 0;                                                    \
1988                                                                         \
1989     for (i = 0; i < nels; i++) {                                        \
1990         if (unlikely(tp##_is_infinity(xb->fld) ||                       \
1991                      tp##_is_zero(xb->fld))) {                          \
1992             fe_flag = 1;                                                \
1993             fg_flag = 1;                                                \
1994         } else {                                                        \
1995             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
1996                                                                         \
1997             if (unlikely(tp##_is_any_nan(xb->fld))) {                   \
1998                 fe_flag = 1;                                            \
1999             } else if (unlikely(tp##_is_zero(xb->fld))) {               \
2000                 fe_flag = 1;                                            \
2001             } else if (unlikely(tp##_is_neg(xb->fld))) {                \
2002                 fe_flag = 1;                                            \
2003             } else if (!tp##_is_zero(xb->fld) &&                        \
2004                        (e_b <= (emin + nbits))) {                       \
2005                 fe_flag = 1;                                            \
2006             }                                                           \
2007                                                                         \
2008             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2009                 /*                                                      \
2010                  * XB is not zero because of the above check and        \
2011                  * therefore must be denormalized.                      \
2012                  */                                                     \
2013                 fg_flag = 1;                                            \
2014             }                                                           \
2015         }                                                               \
2016     }                                                                   \
2017                                                                         \
2018     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2019 }
2020 
2021 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2022 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2023 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2024 
2025 /*
2026  * VSX_MADD - VSX floating point muliply/add variations
2027  *   op    - instruction mnemonic
2028  *   nels  - number of elements (1, 2 or 4)
2029  *   tp    - type (float32 or float64)
2030  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2031  *   maddflgs - flags for the float*muladd routine that control the
2032  *           various forms (madd, msub, nmadd, nmsub)
2033  *   sfifprf - set FI and FPRF
2034  */
2035 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfifprf)                        \
2036 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
2037                  ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3)                 \
2038 {                                                                             \
2039     ppc_vsr_t t = { };                                                        \
2040     int i;                                                                    \
2041                                                                               \
2042     helper_reset_fpstatus(env);                                               \
2043                                                                               \
2044     for (i = 0; i < nels; i++) {                                              \
2045         float_status tstat = env->fp_status;                                  \
2046         set_float_exception_flags(0, &tstat);                                 \
2047         t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld, maddflgs, &tstat);     \
2048         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2049                                                                               \
2050         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2051             float_invalid_op_madd(env, tstat.float_exception_flags,           \
2052                                   sfifprf, GETPC());                          \
2053         }                                                                     \
2054                                                                               \
2055         if (sfifprf) {                                                        \
2056             helper_compute_fprf_float64(env, t.fld);                          \
2057         }                                                                     \
2058     }                                                                         \
2059     *xt = t;                                                                  \
2060     do_float_check_status(env, sfifprf, GETPC());                             \
2061 }
2062 
2063 VSX_MADD(XSMADDDP, 1, float64, VsrD(0), MADD_FLGS, 1)
2064 VSX_MADD(XSMSUBDP, 1, float64, VsrD(0), MSUB_FLGS, 1)
2065 VSX_MADD(XSNMADDDP, 1, float64, VsrD(0), NMADD_FLGS, 1)
2066 VSX_MADD(XSNMSUBDP, 1, float64, VsrD(0), NMSUB_FLGS, 1)
2067 VSX_MADD(XSMADDSP, 1, float64r32, VsrD(0), MADD_FLGS, 1)
2068 VSX_MADD(XSMSUBSP, 1, float64r32, VsrD(0), MSUB_FLGS, 1)
2069 VSX_MADD(XSNMADDSP, 1, float64r32, VsrD(0), NMADD_FLGS, 1)
2070 VSX_MADD(XSNMSUBSP, 1, float64r32, VsrD(0), NMSUB_FLGS, 1)
2071 
2072 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0)
2073 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0)
2074 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0)
2075 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0)
2076 
2077 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0)
2078 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0)
2079 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0)
2080 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0)
2081 
2082 /*
2083  * VSX_MADDQ - VSX floating point quad-precision muliply/add
2084  *   op    - instruction mnemonic
2085  *   maddflgs - flags for the float*muladd routine that control the
2086  *           various forms (madd, msub, nmadd, nmsub)
2087  *   ro    - round to odd
2088  */
2089 #define VSX_MADDQ(op, maddflgs, ro)                                            \
2090 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\
2091                  ppc_vsr_t *s3)                                                \
2092 {                                                                              \
2093     ppc_vsr_t t = *xt;                                                         \
2094                                                                                \
2095     helper_reset_fpstatus(env);                                                \
2096                                                                                \
2097     float_status tstat = env->fp_status;                                       \
2098     set_float_exception_flags(0, &tstat);                                      \
2099     if (ro) {                                                                  \
2100         tstat.float_rounding_mode = float_round_to_odd;                        \
2101     }                                                                          \
2102     t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat);  \
2103     env->fp_status.float_exception_flags |= tstat.float_exception_flags;       \
2104                                                                                \
2105     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {          \
2106         float_invalid_op_madd(env, tstat.float_exception_flags,                \
2107                               false, GETPC());                                 \
2108     }                                                                          \
2109                                                                                \
2110     helper_compute_fprf_float128(env, t.f128);                                 \
2111     *xt = t;                                                                   \
2112     do_float_check_status(env, true, GETPC());                                 \
2113 }
2114 
2115 VSX_MADDQ(XSMADDQP, MADD_FLGS, 0)
2116 VSX_MADDQ(XSMADDQPO, MADD_FLGS, 1)
2117 VSX_MADDQ(XSMSUBQP, MSUB_FLGS, 0)
2118 VSX_MADDQ(XSMSUBQPO, MSUB_FLGS, 1)
2119 VSX_MADDQ(XSNMADDQP, NMADD_FLGS, 0)
2120 VSX_MADDQ(XSNMADDQPO, NMADD_FLGS, 1)
2121 VSX_MADDQ(XSNMSUBQP, NMSUB_FLGS, 0)
2122 VSX_MADDQ(XSNMSUBQPO, NMSUB_FLGS, 0)
2123 
2124 /*
2125  * VSX_SCALAR_CMP - VSX scalar floating point compare
2126  *   op    - instruction mnemonic
2127  *   tp    - type
2128  *   cmp   - comparison operation
2129  *   fld   - vsr_t field
2130  *   svxvc - set VXVC bit
2131  */
2132 #define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc)                               \
2133         void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2134                 ppc_vsr_t *xa, ppc_vsr_t *xb)                                 \
2135 {                                                                             \
2136     int flags;                                                                \
2137     bool r, vxvc;                                                             \
2138                                                                               \
2139     helper_reset_fpstatus(env);                                               \
2140                                                                               \
2141     if (svxvc) {                                                              \
2142         r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status);                    \
2143     } else {                                                                  \
2144         r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status);            \
2145     }                                                                         \
2146                                                                               \
2147     flags = get_float_exception_flags(&env->fp_status);                       \
2148     if (unlikely(flags & float_flag_invalid)) {                               \
2149         vxvc = svxvc;                                                         \
2150         if (flags & float_flag_invalid_snan) {                                \
2151             float_invalid_op_vxsnan(env, GETPC());                            \
2152             vxvc &= !(env->fpscr & FP_VE);                                    \
2153         }                                                                     \
2154         if (vxvc) {                                                           \
2155             float_invalid_op_vxvc(env, 0, GETPC());                           \
2156         }                                                                     \
2157     }                                                                         \
2158                                                                               \
2159     memset(xt, 0, sizeof(*xt));                                               \
2160     memset(&xt->fld, -r, sizeof(xt->fld));                                    \
2161     do_float_check_status(env, false, GETPC());                               \
2162 }
2163 
2164 VSX_SCALAR_CMP(XSCMPEQDP, float64, eq, VsrD(0), 0)
2165 VSX_SCALAR_CMP(XSCMPGEDP, float64, le, VsrD(0), 1)
2166 VSX_SCALAR_CMP(XSCMPGTDP, float64, lt, VsrD(0), 1)
2167 VSX_SCALAR_CMP(XSCMPEQQP, float128, eq, f128, 0)
2168 VSX_SCALAR_CMP(XSCMPGEQP, float128, le, f128, 1)
2169 VSX_SCALAR_CMP(XSCMPGTQP, float128, lt, f128, 1)
2170 
2171 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2172                        ppc_vsr_t *xa, ppc_vsr_t *xb)
2173 {
2174     int64_t exp_a, exp_b;
2175     uint32_t cc;
2176 
2177     exp_a = extract64(xa->VsrD(0), 52, 11);
2178     exp_b = extract64(xb->VsrD(0), 52, 11);
2179 
2180     if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2181                  float64_is_any_nan(xb->VsrD(0)))) {
2182         cc = CRF_SO;
2183     } else {
2184         if (exp_a < exp_b) {
2185             cc = CRF_LT;
2186         } else if (exp_a > exp_b) {
2187             cc = CRF_GT;
2188         } else {
2189             cc = CRF_EQ;
2190         }
2191     }
2192 
2193     env->fpscr &= ~FP_FPCC;
2194     env->fpscr |= cc << FPSCR_FPCC;
2195     env->crf[BF(opcode)] = cc;
2196 
2197     do_float_check_status(env, false, GETPC());
2198 }
2199 
2200 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2201                        ppc_vsr_t *xa, ppc_vsr_t *xb)
2202 {
2203     int64_t exp_a, exp_b;
2204     uint32_t cc;
2205 
2206     exp_a = extract64(xa->VsrD(0), 48, 15);
2207     exp_b = extract64(xb->VsrD(0), 48, 15);
2208 
2209     if (unlikely(float128_is_any_nan(xa->f128) ||
2210                  float128_is_any_nan(xb->f128))) {
2211         cc = CRF_SO;
2212     } else {
2213         if (exp_a < exp_b) {
2214             cc = CRF_LT;
2215         } else if (exp_a > exp_b) {
2216             cc = CRF_GT;
2217         } else {
2218             cc = CRF_EQ;
2219         }
2220     }
2221 
2222     env->fpscr &= ~FP_FPCC;
2223     env->fpscr |= cc << FPSCR_FPCC;
2224     env->crf[BF(opcode)] = cc;
2225 
2226     do_float_check_status(env, false, GETPC());
2227 }
2228 
2229 static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb,
2230                                  int crf_idx, bool ordered)
2231 {
2232     uint32_t cc;
2233     bool vxsnan_flag = false, vxvc_flag = false;
2234 
2235     helper_reset_fpstatus(env);
2236 
2237     switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) {
2238     case float_relation_less:
2239         cc = CRF_LT;
2240         break;
2241     case float_relation_equal:
2242         cc = CRF_EQ;
2243         break;
2244     case float_relation_greater:
2245         cc = CRF_GT;
2246         break;
2247     case float_relation_unordered:
2248         cc = CRF_SO;
2249 
2250         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||
2251             float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {
2252             vxsnan_flag = true;
2253             if (!(env->fpscr & FP_VE) && ordered) {
2254                 vxvc_flag = true;
2255             }
2256         } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||
2257                    float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) {
2258             if (ordered) {
2259                 vxvc_flag = true;
2260             }
2261         }
2262 
2263         break;
2264     default:
2265         g_assert_not_reached();
2266     }
2267 
2268     env->fpscr &= ~FP_FPCC;
2269     env->fpscr |= cc << FPSCR_FPCC;
2270     env->crf[crf_idx] = cc;
2271 
2272     if (vxsnan_flag) {
2273         float_invalid_op_vxsnan(env, GETPC());
2274     }
2275     if (vxvc_flag) {
2276         float_invalid_op_vxvc(env, 0, GETPC());
2277     }
2278 
2279     do_float_check_status(env, false, GETPC());
2280 }
2281 
2282 void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2283                      ppc_vsr_t *xb)
2284 {
2285     do_scalar_cmp(env, xa, xb, BF(opcode), true);
2286 }
2287 
2288 void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2289                      ppc_vsr_t *xb)
2290 {
2291     do_scalar_cmp(env, xa, xb, BF(opcode), false);
2292 }
2293 
2294 static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa,
2295                                   ppc_vsr_t *xb, int crf_idx, bool ordered)
2296 {
2297     uint32_t cc;
2298     bool vxsnan_flag = false, vxvc_flag = false;
2299 
2300     helper_reset_fpstatus(env);
2301 
2302     switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) {
2303     case float_relation_less:
2304         cc = CRF_LT;
2305         break;
2306     case float_relation_equal:
2307         cc = CRF_EQ;
2308         break;
2309     case float_relation_greater:
2310         cc = CRF_GT;
2311         break;
2312     case float_relation_unordered:
2313         cc = CRF_SO;
2314 
2315         if (float128_is_signaling_nan(xa->f128, &env->fp_status) ||
2316             float128_is_signaling_nan(xb->f128, &env->fp_status)) {
2317             vxsnan_flag = true;
2318             if (!(env->fpscr & FP_VE) && ordered) {
2319                 vxvc_flag = true;
2320             }
2321         } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) ||
2322                    float128_is_quiet_nan(xb->f128, &env->fp_status)) {
2323             if (ordered) {
2324                 vxvc_flag = true;
2325             }
2326         }
2327 
2328         break;
2329     default:
2330         g_assert_not_reached();
2331     }
2332 
2333     env->fpscr &= ~FP_FPCC;
2334     env->fpscr |= cc << FPSCR_FPCC;
2335     env->crf[crf_idx] = cc;
2336 
2337     if (vxsnan_flag) {
2338         float_invalid_op_vxsnan(env, GETPC());
2339     }
2340     if (vxvc_flag) {
2341         float_invalid_op_vxvc(env, 0, GETPC());
2342     }
2343 
2344     do_float_check_status(env, false, GETPC());
2345 }
2346 
2347 void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2348                      ppc_vsr_t *xb)
2349 {
2350     do_scalar_cmpq(env, xa, xb, BF(opcode), true);
2351 }
2352 
2353 void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2354                      ppc_vsr_t *xb)
2355 {
2356     do_scalar_cmpq(env, xa, xb, BF(opcode), false);
2357 }
2358 
2359 /*
2360  * VSX_MAX_MIN - VSX floating point maximum/minimum
2361  *   name  - instruction mnemonic
2362  *   op    - operation (max or min)
2363  *   nels  - number of elements (1, 2 or 4)
2364  *   tp    - type (float32 or float64)
2365  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2366  */
2367 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2368 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                           \
2369                    ppc_vsr_t *xa, ppc_vsr_t *xb)                              \
2370 {                                                                             \
2371     ppc_vsr_t t = { };                                                        \
2372     int i;                                                                    \
2373                                                                               \
2374     for (i = 0; i < nels; i++) {                                              \
2375         t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status);                 \
2376         if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) ||       \
2377                      tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
2378             float_invalid_op_vxsnan(env, GETPC());                            \
2379         }                                                                     \
2380     }                                                                         \
2381                                                                               \
2382     *xt = t;                                                                  \
2383     do_float_check_status(env, false, GETPC());                               \
2384 }
2385 
2386 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2387 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2388 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2389 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2390 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2391 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2392 
2393 #define VSX_MAX_MINC(name, max, tp, fld)                                      \
2394 void helper_##name(CPUPPCState *env,                                          \
2395                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2396 {                                                                             \
2397     ppc_vsr_t t = { };                                                        \
2398     bool first;                                                               \
2399                                                                               \
2400     helper_reset_fpstatus(env);                                               \
2401                                                                               \
2402     if (max) {                                                                \
2403         first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status);             \
2404     } else {                                                                  \
2405         first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status);             \
2406     }                                                                         \
2407                                                                               \
2408     if (first) {                                                              \
2409         t.fld = xa->fld;                                                      \
2410     } else {                                                                  \
2411         t.fld = xb->fld;                                                      \
2412         if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \
2413             float_invalid_op_vxsnan(env, GETPC());                            \
2414         }                                                                     \
2415     }                                                                         \
2416                                                                               \
2417     *xt = t;                                                                  \
2418 }
2419 
2420 VSX_MAX_MINC(XSMAXCDP, true, float64, VsrD(0));
2421 VSX_MAX_MINC(XSMINCDP, false, float64, VsrD(0));
2422 VSX_MAX_MINC(XSMAXCQP, true, float128, f128);
2423 VSX_MAX_MINC(XSMINCQP, false, float128, f128);
2424 
2425 #define VSX_MAX_MINJ(name, max)                                               \
2426 void helper_##name(CPUPPCState *env,                                          \
2427                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2428 {                                                                             \
2429     ppc_vsr_t t = { };                                                        \
2430     bool vxsnan_flag = false, vex_flag = false;                               \
2431                                                                               \
2432     if (unlikely(float64_is_any_nan(xa->VsrD(0)))) {                          \
2433         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) {         \
2434             vxsnan_flag = true;                                               \
2435         }                                                                     \
2436         t.VsrD(0) = xa->VsrD(0);                                              \
2437     } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) {                   \
2438         if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {         \
2439             vxsnan_flag = true;                                               \
2440         }                                                                     \
2441         t.VsrD(0) = xb->VsrD(0);                                              \
2442     } else if (float64_is_zero(xa->VsrD(0)) &&                                \
2443                float64_is_zero(xb->VsrD(0))) {                                \
2444         if (max) {                                                            \
2445             if (!float64_is_neg(xa->VsrD(0)) ||                               \
2446                 !float64_is_neg(xb->VsrD(0))) {                               \
2447                 t.VsrD(0) = 0ULL;                                             \
2448             } else {                                                          \
2449                 t.VsrD(0) = 0x8000000000000000ULL;                            \
2450             }                                                                 \
2451         } else {                                                              \
2452             if (float64_is_neg(xa->VsrD(0)) ||                                \
2453                 float64_is_neg(xb->VsrD(0))) {                                \
2454                 t.VsrD(0) = 0x8000000000000000ULL;                            \
2455             } else {                                                          \
2456                 t.VsrD(0) = 0ULL;                                             \
2457             }                                                                 \
2458         }                                                                     \
2459     } else if ((max &&                                                        \
2460                !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) ||     \
2461                (!max &&                                                       \
2462                float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) {      \
2463         t.VsrD(0) = xa->VsrD(0);                                              \
2464     } else {                                                                  \
2465         t.VsrD(0) = xb->VsrD(0);                                              \
2466     }                                                                         \
2467                                                                               \
2468     vex_flag = (env->fpscr & FP_VE) && vxsnan_flag;                           \
2469     if (vxsnan_flag) {                                                        \
2470         float_invalid_op_vxsnan(env, GETPC());                                \
2471     }                                                                         \
2472     if (!vex_flag) {                                                          \
2473         *xt = t;                                                              \
2474     }                                                                         \
2475 }                                                                             \
2476 
2477 VSX_MAX_MINJ(XSMAXJDP, 1);
2478 VSX_MAX_MINJ(XSMINJDP, 0);
2479 
2480 /*
2481  * VSX_CMP - VSX floating point compare
2482  *   op    - instruction mnemonic
2483  *   nels  - number of elements (1, 2 or 4)
2484  *   tp    - type (float32 or float64)
2485  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2486  *   cmp   - comparison operation
2487  *   svxvc - set VXVC bit
2488  *   exp   - expected result of comparison
2489  */
2490 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2491 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2492                      ppc_vsr_t *xa, ppc_vsr_t *xb)                        \
2493 {                                                                         \
2494     ppc_vsr_t t = *xt;                                                    \
2495     uint32_t crf6 = 0;                                                    \
2496     int i;                                                                \
2497     int all_true = 1;                                                     \
2498     int all_false = 1;                                                    \
2499                                                                           \
2500     helper_reset_fpstatus(env);                                           \
2501                                                                           \
2502     for (i = 0; i < nels; i++) {                                          \
2503         if (unlikely(tp##_is_any_nan(xa->fld) ||                          \
2504                      tp##_is_any_nan(xb->fld))) {                         \
2505             if (tp##_is_signaling_nan(xa->fld, &env->fp_status) ||        \
2506                 tp##_is_signaling_nan(xb->fld, &env->fp_status)) {        \
2507                 float_invalid_op_vxsnan(env, GETPC());                    \
2508             }                                                             \
2509             if (svxvc) {                                                  \
2510                 float_invalid_op_vxvc(env, 0, GETPC());                   \
2511             }                                                             \
2512             t.fld = 0;                                                    \
2513             all_true = 0;                                                 \
2514         } else {                                                          \
2515             if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) {   \
2516                 t.fld = -1;                                               \
2517                 all_false = 0;                                            \
2518             } else {                                                      \
2519                 t.fld = 0;                                                \
2520                 all_true = 0;                                             \
2521             }                                                             \
2522         }                                                                 \
2523     }                                                                     \
2524                                                                           \
2525     *xt = t;                                                              \
2526     crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);                  \
2527     return crf6;                                                          \
2528 }
2529 
2530 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2531 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2532 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2533 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2534 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2535 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2536 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2537 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2538 
2539 /*
2540  * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2541  *   op    - instruction mnemonic
2542  *   nels  - number of elements (1, 2 or 4)
2543  *   stp   - source type (float32 or float64)
2544  *   ttp   - target type (float32 or float64)
2545  *   sfld  - source vsr_t field
2546  *   tfld  - target vsr_t field (f32 or f64)
2547  *   sfifprf - set FI and FPRF
2548  */
2549 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf)  \
2550 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2551 {                                                                  \
2552     ppc_vsr_t t = { };                                             \
2553     int i;                                                         \
2554                                                                    \
2555     helper_reset_fpstatus(env);                                    \
2556                                                                    \
2557     for (i = 0; i < nels; i++) {                                   \
2558         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);        \
2559         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2560                                             &env->fp_status))) {   \
2561             float_invalid_op_vxsnan(env, GETPC());                 \
2562             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2563         }                                                          \
2564         if (sfifprf) {                                             \
2565             helper_compute_fprf_##ttp(env, t.tfld);                \
2566         }                                                          \
2567     }                                                              \
2568                                                                    \
2569     *xt = t;                                                       \
2570     do_float_check_status(env, sfifprf, GETPC());                  \
2571 }
2572 
2573 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2574 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2575 
2576 #define VSX_CVT_FP_TO_FP2(op, nels, stp, ttp, sfifprf)                \
2577 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)      \
2578 {                                                                     \
2579     ppc_vsr_t t = { };                                                \
2580     int i;                                                            \
2581                                                                       \
2582     helper_reset_fpstatus(env);                                       \
2583                                                                       \
2584     for (i = 0; i < nels; i++) {                                      \
2585         t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
2586         if (unlikely(stp##_is_signaling_nan(xb->VsrD(i),              \
2587                                             &env->fp_status))) {      \
2588             float_invalid_op_vxsnan(env, GETPC());                    \
2589             t.VsrW(2 * i) = ttp##_snan_to_qnan(t.VsrW(2 * i));        \
2590         }                                                             \
2591         if (sfifprf) {                                                \
2592             helper_compute_fprf_##ttp(env, t.VsrW(2 * i));            \
2593         }                                                             \
2594         t.VsrW(2 * i + 1) = t.VsrW(2 * i);                            \
2595     }                                                                 \
2596                                                                       \
2597     *xt = t;                                                          \
2598     do_float_check_status(env, sfifprf, GETPC());                     \
2599 }
2600 
2601 VSX_CVT_FP_TO_FP2(xvcvdpsp, 2, float64, float32, 0)
2602 VSX_CVT_FP_TO_FP2(xscvdpsp, 1, float64, float32, 1)
2603 
2604 /*
2605  * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2606  *   op    - instruction mnemonic
2607  *   nels  - number of elements (1, 2 or 4)
2608  *   stp   - source type (float32 or float64)
2609  *   ttp   - target type (float32 or float64)
2610  *   sfld  - source vsr_t field
2611  *   tfld  - target vsr_t field (f32 or f64)
2612  *   sfprf - set FPRF
2613  */
2614 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)  \
2615 void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
2616                  ppc_vsr_t *xt, ppc_vsr_t *xb)                          \
2617 {                                                                       \
2618     ppc_vsr_t t = *xt;                                                  \
2619     int i;                                                              \
2620                                                                         \
2621     helper_reset_fpstatus(env);                                         \
2622                                                                         \
2623     for (i = 0; i < nels; i++) {                                        \
2624         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
2625         if (unlikely(stp##_is_signaling_nan(xb->sfld,                   \
2626                                             &env->fp_status))) {        \
2627             float_invalid_op_vxsnan(env, GETPC());                      \
2628             t.tfld = ttp##_snan_to_qnan(t.tfld);                        \
2629         }                                                               \
2630         if (sfprf) {                                                    \
2631             helper_compute_fprf_##ttp(env, t.tfld);                     \
2632         }                                                               \
2633     }                                                                   \
2634                                                                         \
2635     *xt = t;                                                            \
2636     do_float_check_status(env, true, GETPC());                          \
2637 }
2638 
2639 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2640 
2641 /*
2642  * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2643  *                       involving one half precision value
2644  *   op    - instruction mnemonic
2645  *   nels  - number of elements (1, 2 or 4)
2646  *   stp   - source type
2647  *   ttp   - target type
2648  *   sfld  - source vsr_t field
2649  *   tfld  - target vsr_t field
2650  *   sfifprf - set FI and FPRF
2651  */
2652 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2653 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2654 {                                                                  \
2655     ppc_vsr_t t = { };                                             \
2656     int i;                                                         \
2657                                                                    \
2658     helper_reset_fpstatus(env);                                    \
2659                                                                    \
2660     for (i = 0; i < nels; i++) {                                   \
2661         t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status);     \
2662         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2663                                             &env->fp_status))) {   \
2664             float_invalid_op_vxsnan(env, GETPC());                 \
2665             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2666         }                                                          \
2667         if (sfifprf) {                                             \
2668             helper_compute_fprf_##ttp(env, t.tfld);                \
2669         }                                                          \
2670     }                                                              \
2671                                                                    \
2672     *xt = t;                                                       \
2673     do_float_check_status(env, sfifprf, GETPC());                  \
2674 }
2675 
2676 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2677 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2678 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0)
2679 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2680 
2681 void helper_XVCVSPBF16(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
2682 {
2683     ppc_vsr_t t = { };
2684     int i, status;
2685 
2686     helper_reset_fpstatus(env);
2687 
2688     for (i = 0; i < 4; i++) {
2689         t.VsrH(2 * i + 1) = float32_to_bfloat16(xb->VsrW(i), &env->fp_status);
2690     }
2691 
2692     status = get_float_exception_flags(&env->fp_status);
2693     if (unlikely(status & float_flag_invalid_snan)) {
2694         float_invalid_op_vxsnan(env, GETPC());
2695     }
2696 
2697     *xt = t;
2698     do_float_check_status(env, false, GETPC());
2699 }
2700 
2701 void helper_XSCVQPDP(CPUPPCState *env, uint32_t ro, ppc_vsr_t *xt,
2702                      ppc_vsr_t *xb)
2703 {
2704     ppc_vsr_t t = { };
2705     float_status tstat;
2706 
2707     helper_reset_fpstatus(env);
2708 
2709     tstat = env->fp_status;
2710     if (ro != 0) {
2711         tstat.float_rounding_mode = float_round_to_odd;
2712     }
2713 
2714     t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2715     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2716     if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2717         float_invalid_op_vxsnan(env, GETPC());
2718         t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2719     }
2720     helper_compute_fprf_float64(env, t.VsrD(0));
2721 
2722     *xt = t;
2723     do_float_check_status(env, true, GETPC());
2724 }
2725 
2726 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2727 {
2728     uint64_t result, sign, exp, frac;
2729 
2730     helper_reset_fpstatus(env);
2731     float_status tstat = env->fp_status;
2732     set_float_exception_flags(0, &tstat);
2733 
2734     sign = extract64(xb, 63,  1);
2735     exp  = extract64(xb, 52, 11);
2736     frac = extract64(xb,  0, 52) | 0x10000000000000ULL;
2737 
2738     if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
2739         /* DP denormal operand.  */
2740         /* Exponent override to DP min exp.  */
2741         exp = 1;
2742         /* Implicit bit override to 0.  */
2743         frac = deposit64(frac, 53, 1, 0);
2744     }
2745 
2746     if (unlikely(exp < 897 && frac != 0)) {
2747         /* SP tiny operand.  */
2748         if (897 - exp > 63) {
2749             frac = 0;
2750         } else {
2751             /* Denormalize until exp = SP min exp.  */
2752             frac >>= (897 - exp);
2753         }
2754         /* Exponent override to SP min exp - 1.  */
2755         exp = 896;
2756     }
2757 
2758     result = sign << 31;
2759     result |= extract64(exp, 10, 1) << 30;
2760     result |= extract64(exp, 0, 7) << 23;
2761     result |= extract64(frac, 29, 23);
2762 
2763     /* hardware replicates result to both words of the doubleword result.  */
2764     return (result << 32) | result;
2765 }
2766 
2767 uint64_t helper_XSCVSPDPN(uint64_t xb)
2768 {
2769     return helper_todouble(xb >> 32);
2770 }
2771 
2772 /*
2773  * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2774  *   op    - instruction mnemonic
2775  *   nels  - number of elements (1, 2 or 4)
2776  *   stp   - source type (float32 or float64)
2777  *   ttp   - target type (int32, uint32, int64 or uint64)
2778  *   sfld  - source vsr_t field
2779  *   tfld  - target vsr_t field
2780  *   sfi   - set FI
2781  *   rnan  - resulting NaN
2782  */
2783 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, sfi, rnan)         \
2784 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2785 {                                                                            \
2786     int all_flags = 0;                                                       \
2787     ppc_vsr_t t = { };                                                       \
2788     int i, flags;                                                            \
2789                                                                              \
2790     for (i = 0; i < nels; i++) {                                             \
2791         helper_reset_fpstatus(env);                                          \
2792         t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);  \
2793         flags = env->fp_status.float_exception_flags;                        \
2794         all_flags |= flags;                                                  \
2795         if (unlikely(flags & float_flag_invalid)) {                          \
2796             t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\
2797         }                                                                    \
2798     }                                                                        \
2799                                                                              \
2800     *xt = t;                                                                 \
2801     env->fp_status.float_exception_flags = all_flags;                        \
2802     do_float_check_status(env, sfi, GETPC());                                \
2803 }
2804 
2805 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), true, \
2806                   0x8000000000000000ULL)
2807 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), true, 0ULL)
2808 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), false, \
2809                   0x8000000000000000ULL)
2810 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), false, \
2811                   0ULL)
2812 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), false, \
2813                   0x8000000000000000ULL)
2814 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), false, \
2815                   0x80000000ULL)
2816 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), \
2817                   false, 0ULL)
2818 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), false, 0U)
2819 
2820 #define VSX_CVT_FP_TO_INT128(op, tp, rnan)                                     \
2821 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)               \
2822 {                                                                              \
2823     ppc_vsr_t t;                                                               \
2824     int flags;                                                                 \
2825                                                                                \
2826     helper_reset_fpstatus(env);                                                \
2827     t.s128 = float128_to_##tp##_round_to_zero(xb->f128, &env->fp_status);      \
2828     flags = get_float_exception_flags(&env->fp_status);                        \
2829     if (unlikely(flags & float_flag_invalid)) {                                \
2830         t.VsrD(0) = float_invalid_cvt(env, flags, t.VsrD(0), rnan, 0, GETPC());\
2831         t.VsrD(1) = -(t.VsrD(0) & 1);                                          \
2832     }                                                                          \
2833                                                                                \
2834     *xt = t;                                                                   \
2835     do_float_check_status(env, true, GETPC());                                 \
2836 }
2837 
2838 VSX_CVT_FP_TO_INT128(XSCVQPUQZ, uint128, 0)
2839 VSX_CVT_FP_TO_INT128(XSCVQPSQZ, int128, 0x8000000000000000ULL);
2840 
2841 /*
2842  * Likewise, except that the result is duplicated into both subwords.
2843  * Power ISA v3.1 has Programming Notes for these insns:
2844  *     Previous versions of the architecture allowed the contents of
2845  *     word 0 of the result register to be undefined. However, all
2846  *     processors that support this instruction write the result into
2847  *     words 0 and 1 (and words 2 and 3) of the result register, as
2848  *     is required by this version of the architecture.
2849  */
2850 #define VSX_CVT_FP_TO_INT2(op, nels, stp, ttp, sfi, rnan)                    \
2851 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2852 {                                                                            \
2853     int all_flags = 0;                                                       \
2854     ppc_vsr_t t = { };                                                       \
2855     int i, flags;                                                            \
2856                                                                              \
2857     for (i = 0; i < nels; i++) {                                             \
2858         helper_reset_fpstatus(env);                                          \
2859         t.VsrW(2 * i) = stp##_to_##ttp##_round_to_zero(xb->VsrD(i),          \
2860                                                        &env->fp_status);     \
2861         flags = env->fp_status.float_exception_flags;                        \
2862         all_flags |= flags;                                                  \
2863         if (unlikely(flags & float_flag_invalid)) {                          \
2864             t.VsrW(2 * i) = float_invalid_cvt(env, flags, t.VsrW(2 * i),     \
2865                                               rnan, 0, GETPC());             \
2866         }                                                                    \
2867         t.VsrW(2 * i + 1) = t.VsrW(2 * i);                                   \
2868     }                                                                        \
2869                                                                              \
2870     *xt = t;                                                                 \
2871     env->fp_status.float_exception_flags = all_flags;                        \
2872     do_float_check_status(env, sfi, GETPC());                                \
2873 }
2874 
2875 VSX_CVT_FP_TO_INT2(xscvdpsxws, 1, float64, int32, true, 0x80000000U)
2876 VSX_CVT_FP_TO_INT2(xscvdpuxws, 1, float64, uint32, true, 0U)
2877 VSX_CVT_FP_TO_INT2(xvcvdpsxws, 2, float64, int32, false, 0x80000000U)
2878 VSX_CVT_FP_TO_INT2(xvcvdpuxws, 2, float64, uint32, false, 0U)
2879 
2880 /*
2881  * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2882  *   op    - instruction mnemonic
2883  *   stp   - source type (float32 or float64)
2884  *   ttp   - target type (int32, uint32, int64 or uint64)
2885  *   sfld  - source vsr_t field
2886  *   tfld  - target vsr_t field
2887  *   rnan  - resulting NaN
2888  */
2889 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \
2890 void helper_##op(CPUPPCState *env, uint32_t opcode,                          \
2891                  ppc_vsr_t *xt, ppc_vsr_t *xb)                               \
2892 {                                                                            \
2893     ppc_vsr_t t = { };                                                       \
2894     int flags;                                                               \
2895                                                                              \
2896     helper_reset_fpstatus(env);                                              \
2897                                                                              \
2898     t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);      \
2899     flags = get_float_exception_flags(&env->fp_status);                      \
2900     if (flags & float_flag_invalid) {                                        \
2901         t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());    \
2902     }                                                                        \
2903                                                                              \
2904     *xt = t;                                                                 \
2905     do_float_check_status(env, true, GETPC());                               \
2906 }
2907 
2908 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \
2909                   0x8000000000000000ULL)
2910 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \
2911                   0xffffffff80000000ULL)
2912 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
2913 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
2914 
2915 /*
2916  * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2917  *   op    - instruction mnemonic
2918  *   nels  - number of elements (1, 2 or 4)
2919  *   stp   - source type (int32, uint32, int64 or uint64)
2920  *   ttp   - target type (float32 or float64)
2921  *   sfld  - source vsr_t field
2922  *   tfld  - target vsr_t field
2923  *   jdef  - definition of the j index (i or 2*i)
2924  *   sfifprf - set FI and FPRF
2925  */
2926 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf, r2sp)\
2927 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \
2928 {                                                                       \
2929     ppc_vsr_t t = { };                                                  \
2930     int i;                                                              \
2931                                                                         \
2932     helper_reset_fpstatus(env);                                         \
2933                                                                         \
2934     for (i = 0; i < nels; i++) {                                        \
2935         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
2936         if (r2sp) {                                                     \
2937             t.tfld = do_frsp(env, t.tfld, GETPC());                     \
2938         }                                                               \
2939         if (sfifprf) {                                                  \
2940             helper_compute_fprf_float64(env, t.tfld);                   \
2941         }                                                               \
2942     }                                                                   \
2943                                                                         \
2944     *xt = t;                                                            \
2945     do_float_check_status(env, sfifprf, GETPC());                       \
2946 }
2947 
2948 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2949 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2950 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2951 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2952 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2953 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2954 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
2955 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
2956 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2957 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2958 
2959 #define VSX_CVT_INT_TO_FP2(op, stp, ttp)                                \
2960 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \
2961 {                                                                       \
2962     ppc_vsr_t t = { };                                                  \
2963     int i;                                                              \
2964                                                                         \
2965     for (i = 0; i < 2; i++) {                                           \
2966         t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status);   \
2967         t.VsrW(2 * i + 1) = t.VsrW(2 * i);                              \
2968     }                                                                   \
2969                                                                         \
2970     *xt = t;                                                            \
2971     do_float_check_status(env, false, GETPC());                         \
2972 }
2973 
2974 VSX_CVT_INT_TO_FP2(xvcvsxdsp, int64, float32)
2975 VSX_CVT_INT_TO_FP2(xvcvuxdsp, uint64, float32)
2976 
2977 #define VSX_CVT_INT128_TO_FP(op, tp)                            \
2978 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)\
2979 {                                                               \
2980     helper_reset_fpstatus(env);                                 \
2981     xt->f128 = tp##_to_float128(xb->s128, &env->fp_status);     \
2982     helper_compute_fprf_float128(env, xt->f128);                \
2983     do_float_check_status(env, true, GETPC());                  \
2984 }
2985 
2986 VSX_CVT_INT128_TO_FP(XSCVUQQP, uint128);
2987 VSX_CVT_INT128_TO_FP(XSCVSQQP, int128);
2988 
2989 /*
2990  * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
2991  *   op    - instruction mnemonic
2992  *   stp   - source type (int32, uint32, int64 or uint64)
2993  *   ttp   - target type (float32 or float64)
2994  *   sfld  - source vsr_t field
2995  *   tfld  - target vsr_t field
2996  */
2997 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \
2998 void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
2999                  ppc_vsr_t *xt, ppc_vsr_t *xb)                          \
3000 {                                                                       \
3001     ppc_vsr_t t = *xt;                                                  \
3002                                                                         \
3003     helper_reset_fpstatus(env);                                         \
3004     t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);                 \
3005     helper_compute_fprf_##ttp(env, t.tfld);                             \
3006                                                                         \
3007     *xt = t;                                                            \
3008     do_float_check_status(env, true, GETPC());                          \
3009 }
3010 
3011 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3012 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3013 
3014 /*
3015  * For "use current rounding mode", define a value that will not be
3016  * one of the existing rounding model enums.
3017  */
3018 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3019   float_round_up + float_round_to_zero)
3020 
3021 /*
3022  * VSX_ROUND - VSX floating point round
3023  *   op    - instruction mnemonic
3024  *   nels  - number of elements (1, 2 or 4)
3025  *   tp    - type (float32 or float64)
3026  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3027  *   rmode - rounding mode
3028  *   sfifprf - set FI and FPRF
3029  */
3030 #define VSX_ROUND(op, nels, tp, fld, rmode, sfifprf)                   \
3031 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)       \
3032 {                                                                      \
3033     ppc_vsr_t t = { };                                                 \
3034     int i;                                                             \
3035     FloatRoundMode curr_rounding_mode;                                 \
3036                                                                        \
3037     helper_reset_fpstatus(env);                                        \
3038                                                                        \
3039     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3040         curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
3041         set_float_rounding_mode(rmode, &env->fp_status);               \
3042     }                                                                  \
3043                                                                        \
3044     for (i = 0; i < nels; i++) {                                       \
3045         if (unlikely(tp##_is_signaling_nan(xb->fld,                    \
3046                                            &env->fp_status))) {        \
3047             float_invalid_op_vxsnan(env, GETPC());                     \
3048             t.fld = tp##_snan_to_qnan(xb->fld);                        \
3049         } else {                                                       \
3050             t.fld = tp##_round_to_int(xb->fld, &env->fp_status);       \
3051         }                                                              \
3052         if (sfifprf) {                                                 \
3053             helper_compute_fprf_float64(env, t.fld);                   \
3054         }                                                              \
3055     }                                                                  \
3056                                                                        \
3057     /*                                                                 \
3058      * If this is not a "use current rounding mode" instruction,       \
3059      * then inhibit setting of the XX bit and restore rounding         \
3060      * mode from FPSCR                                                 \
3061      */                                                                \
3062     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3063         set_float_rounding_mode(curr_rounding_mode, &env->fp_status);  \
3064         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
3065     }                                                                  \
3066                                                                        \
3067     *xt = t;                                                           \
3068     do_float_check_status(env, sfifprf, GETPC());                      \
3069 }
3070 
3071 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3072 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3073 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3074 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3075 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3076 
3077 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3078 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3079 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3080 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3081 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3082 
3083 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3084 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3085 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3086 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3087 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3088 
3089 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3090 {
3091     helper_reset_fpstatus(env);
3092 
3093     uint64_t xt = do_frsp(env, xb, GETPC());
3094 
3095     helper_compute_fprf_float64(env, xt);
3096     do_float_check_status(env, true, GETPC());
3097     return xt;
3098 }
3099 
3100 void helper_XVXSIGSP(ppc_vsr_t *xt, ppc_vsr_t *xb)
3101 {
3102     ppc_vsr_t t = { };
3103     uint32_t exp, i, fraction;
3104 
3105     for (i = 0; i < 4; i++) {
3106         exp = (xb->VsrW(i) >> 23) & 0xFF;
3107         fraction = xb->VsrW(i) & 0x7FFFFF;
3108         if (exp != 0 && exp != 255) {
3109             t.VsrW(i) = fraction | 0x00800000;
3110         } else {
3111             t.VsrW(i) = fraction;
3112         }
3113     }
3114     *xt = t;
3115 }
3116 
3117 #define VSX_TSTDC(tp)                                       \
3118 static int32_t tp##_tstdc(tp b, uint32_t dcmx)              \
3119 {                                                           \
3120     uint32_t match = 0;                                     \
3121     uint32_t sign = tp##_is_neg(b);                         \
3122     if (tp##_is_any_nan(b)) {                               \
3123         match = extract32(dcmx, 6, 1);                      \
3124     } else if (tp##_is_infinity(b)) {                       \
3125         match = extract32(dcmx, 4 + !sign, 1);              \
3126     } else if (tp##_is_zero(b)) {                           \
3127         match = extract32(dcmx, 2 + !sign, 1);              \
3128     } else if (tp##_is_zero_or_denormal(b)) {               \
3129         match = extract32(dcmx, 0 + !sign, 1);              \
3130     }                                                       \
3131     return (match != 0);                                    \
3132 }
3133 
3134 VSX_TSTDC(float32)
3135 VSX_TSTDC(float64)
3136 VSX_TSTDC(float128)
3137 #undef VSX_TSTDC
3138 
3139 void helper_XVTSTDCDP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3140 {
3141     int i;
3142     for (i = 0; i < 2; i++) {
3143         t->s64[i] = (int64_t)-float64_tstdc(b->f64[i], dcmx);
3144     }
3145 }
3146 
3147 void helper_XVTSTDCSP(ppc_vsr_t *t, ppc_vsr_t *b, uint64_t dcmx, uint32_t v)
3148 {
3149     int i;
3150     for (i = 0; i < 4; i++) {
3151         t->s32[i] = (int32_t)-float32_tstdc(b->f32[i], dcmx);
3152     }
3153 }
3154 
3155 static bool not_SP_value(float64 val)
3156 {
3157     return val != helper_todouble(helper_tosingle(val));
3158 }
3159 
3160 /*
3161  * VSX_XS_TSTDC - VSX Scalar Test Data Class
3162  *   NAME  - instruction name
3163  *   FLD   - vsr_t field (VsrD(0) or f128)
3164  *   TP    - type (float64 or float128)
3165  */
3166 #define VSX_XS_TSTDC(NAME, FLD, TP)                                         \
3167     void helper_##NAME(CPUPPCState *env, uint32_t bf,                       \
3168                        uint32_t dcmx, ppc_vsr_t *b)                         \
3169     {                                                                       \
3170         uint32_t cc, match, sign = TP##_is_neg(b->FLD);                     \
3171         match = TP##_tstdc(b->FLD, dcmx);                                   \
3172         cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;                      \
3173         env->fpscr &= ~FP_FPCC;                                             \
3174         env->fpscr |= cc << FPSCR_FPCC;                                     \
3175         env->crf[bf] = cc;                                                  \
3176     }
3177 
3178 VSX_XS_TSTDC(XSTSTDCDP, VsrD(0), float64)
3179 VSX_XS_TSTDC(XSTSTDCQP, f128, float128)
3180 #undef VSX_XS_TSTDC
3181 
3182 void helper_XSTSTDCSP(CPUPPCState *env, uint32_t bf,
3183                       uint32_t dcmx, ppc_vsr_t *b)
3184 {
3185     uint32_t cc, match, sign = float64_is_neg(b->VsrD(0));
3186     uint32_t exp = (b->VsrD(0) >> 52) & 0x7FF;
3187     int not_sp = (int)not_SP_value(b->VsrD(0));
3188     match = float64_tstdc(b->VsrD(0), dcmx) || (exp > 0 && exp < 0x381);
3189     cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3190     env->fpscr &= ~FP_FPCC;
3191     env->fpscr |= cc << FPSCR_FPCC;
3192     env->crf[bf] = cc;
3193 }
3194 
3195 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3196                    ppc_vsr_t *xt, ppc_vsr_t *xb)
3197 {
3198     ppc_vsr_t t = { };
3199     uint8_t r = Rrm(opcode);
3200     uint8_t ex = Rc(opcode);
3201     uint8_t rmc = RMC(opcode);
3202     uint8_t rmode = 0;
3203     float_status tstat;
3204 
3205     helper_reset_fpstatus(env);
3206 
3207     if (r == 0 && rmc == 0) {
3208         rmode = float_round_ties_away;
3209     } else if (r == 0 && rmc == 0x3) {
3210         rmode = env->fpscr & FP_RN;
3211     } else if (r == 1) {
3212         switch (rmc) {
3213         case 0:
3214             rmode = float_round_nearest_even;
3215             break;
3216         case 1:
3217             rmode = float_round_to_zero;
3218             break;
3219         case 2:
3220             rmode = float_round_up;
3221             break;
3222         case 3:
3223             rmode = float_round_down;
3224             break;
3225         default:
3226             abort();
3227         }
3228     }
3229 
3230     tstat = env->fp_status;
3231     set_float_exception_flags(0, &tstat);
3232     set_float_rounding_mode(rmode, &tstat);
3233     t.f128 = float128_round_to_int(xb->f128, &tstat);
3234     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3235 
3236     if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3237         float_invalid_op_vxsnan(env, GETPC());
3238     }
3239 
3240     if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3241         env->fp_status.float_exception_flags &= ~float_flag_inexact;
3242     }
3243 
3244     helper_compute_fprf_float128(env, t.f128);
3245     do_float_check_status(env, true, GETPC());
3246     *xt = t;
3247 }
3248 
3249 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3250                     ppc_vsr_t *xt, ppc_vsr_t *xb)
3251 {
3252     ppc_vsr_t t = { };
3253     uint8_t r = Rrm(opcode);
3254     uint8_t rmc = RMC(opcode);
3255     uint8_t rmode = 0;
3256     floatx80 round_res;
3257     float_status tstat;
3258 
3259     helper_reset_fpstatus(env);
3260 
3261     if (r == 0 && rmc == 0) {
3262         rmode = float_round_ties_away;
3263     } else if (r == 0 && rmc == 0x3) {
3264         rmode = env->fpscr & FP_RN;
3265     } else if (r == 1) {
3266         switch (rmc) {
3267         case 0:
3268             rmode = float_round_nearest_even;
3269             break;
3270         case 1:
3271             rmode = float_round_to_zero;
3272             break;
3273         case 2:
3274             rmode = float_round_up;
3275             break;
3276         case 3:
3277             rmode = float_round_down;
3278             break;
3279         default:
3280             abort();
3281         }
3282     }
3283 
3284     tstat = env->fp_status;
3285     set_float_exception_flags(0, &tstat);
3286     set_float_rounding_mode(rmode, &tstat);
3287     round_res = float128_to_floatx80(xb->f128, &tstat);
3288     t.f128 = floatx80_to_float128(round_res, &tstat);
3289     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3290 
3291     if (unlikely(tstat.float_exception_flags & float_flag_invalid_snan)) {
3292         float_invalid_op_vxsnan(env, GETPC());
3293         t.f128 = float128_snan_to_qnan(t.f128);
3294     }
3295 
3296     helper_compute_fprf_float128(env, t.f128);
3297     *xt = t;
3298     do_float_check_status(env, true, GETPC());
3299 }
3300 
3301 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3302                      ppc_vsr_t *xt, ppc_vsr_t *xb)
3303 {
3304     ppc_vsr_t t = { };
3305     float_status tstat;
3306 
3307     helper_reset_fpstatus(env);
3308 
3309     tstat = env->fp_status;
3310     if (unlikely(Rc(opcode) != 0)) {
3311         tstat.float_rounding_mode = float_round_to_odd;
3312     }
3313 
3314     set_float_exception_flags(0, &tstat);
3315     t.f128 = float128_sqrt(xb->f128, &tstat);
3316     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3317 
3318     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3319         float_invalid_op_sqrt(env, tstat.float_exception_flags, 1, GETPC());
3320     }
3321 
3322     helper_compute_fprf_float128(env, t.f128);
3323     *xt = t;
3324     do_float_check_status(env, true, GETPC());
3325 }
3326 
3327 void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3328                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3329 {
3330     ppc_vsr_t t = *xt;
3331     float_status tstat;
3332 
3333     helper_reset_fpstatus(env);
3334 
3335     tstat = env->fp_status;
3336     if (unlikely(Rc(opcode) != 0)) {
3337         tstat.float_rounding_mode = float_round_to_odd;
3338     }
3339 
3340     set_float_exception_flags(0, &tstat);
3341     t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3342     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3343 
3344     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3345         float_invalid_op_addsub(env, tstat.float_exception_flags, 1, GETPC());
3346     }
3347 
3348     helper_compute_fprf_float128(env, t.f128);
3349     *xt = t;
3350     do_float_check_status(env, true, GETPC());
3351 }
3352 
3353 static inline void vsxger_excp(CPUPPCState *env, uintptr_t retaddr)
3354 {
3355     /*
3356      * XV*GER instructions execute and set the FPSCR as if exceptions
3357      * are disabled and only at the end throw an exception
3358      */
3359     target_ulong enable;
3360     enable = env->fpscr & (FP_ENABLES | FP_FI | FP_FR);
3361     env->fpscr &= ~(FP_ENABLES | FP_FI | FP_FR);
3362     int status = get_float_exception_flags(&env->fp_status);
3363     if (unlikely(status & float_flag_invalid)) {
3364         if (status & float_flag_invalid_snan) {
3365             float_invalid_op_vxsnan(env, 0);
3366         }
3367         if (status & float_flag_invalid_imz) {
3368             float_invalid_op_vximz(env, false, 0);
3369         }
3370         if (status & float_flag_invalid_isi) {
3371             float_invalid_op_vxisi(env, false, 0);
3372         }
3373     }
3374     do_float_check_status(env, false, retaddr);
3375     env->fpscr |= enable;
3376     do_fpscr_check_status(env, retaddr);
3377 }
3378 
3379 typedef float64 extract_f16(float16, float_status *);
3380 
3381 static float64 extract_hf16(float16 in, float_status *fp_status)
3382 {
3383     return float16_to_float64(in, true, fp_status);
3384 }
3385 
3386 static float64 extract_bf16(bfloat16 in, float_status *fp_status)
3387 {
3388     return bfloat16_to_float64(in, fp_status);
3389 }
3390 
3391 static void vsxger16(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3392                      ppc_acc_t  *at, uint32_t mask, bool acc,
3393                      bool neg_mul, bool neg_acc, extract_f16 extract)
3394 {
3395     float32 r, aux_acc;
3396     float64 psum, va, vb, vc, vd;
3397     int i, j, xmsk_bit, ymsk_bit;
3398     uint8_t pmsk = FIELD_EX32(mask, GER_MSK, PMSK),
3399             xmsk = FIELD_EX32(mask, GER_MSK, XMSK),
3400             ymsk = FIELD_EX32(mask, GER_MSK, YMSK);
3401     float_status *excp_ptr = &env->fp_status;
3402     for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3403         for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3404             if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3405                 va = !(pmsk & 2) ? float64_zero :
3406                                    extract(a->VsrHF(2 * i), excp_ptr);
3407                 vb = !(pmsk & 2) ? float64_zero :
3408                                    extract(b->VsrHF(2 * j), excp_ptr);
3409                 vc = !(pmsk & 1) ? float64_zero :
3410                                    extract(a->VsrHF(2 * i + 1), excp_ptr);
3411                 vd = !(pmsk & 1) ? float64_zero :
3412                                    extract(b->VsrHF(2 * j + 1), excp_ptr);
3413                 psum = float64_mul(va, vb, excp_ptr);
3414                 psum = float64r32_muladd(vc, vd, psum, 0, excp_ptr);
3415                 r = float64_to_float32(psum, excp_ptr);
3416                 if (acc) {
3417                     aux_acc = at[i].VsrSF(j);
3418                     if (neg_mul) {
3419                         r = bfp32_neg(r);
3420                     }
3421                     if (neg_acc) {
3422                         aux_acc = bfp32_neg(aux_acc);
3423                     }
3424                     r = float32_add(r, aux_acc, excp_ptr);
3425                 }
3426                 at[i].VsrSF(j) = r;
3427             } else {
3428                 at[i].VsrSF(j) = float32_zero;
3429             }
3430         }
3431     }
3432     vsxger_excp(env, GETPC());
3433 }
3434 
3435 typedef void vsxger_zero(ppc_vsr_t *at, int, int);
3436 
3437 typedef void vsxger_muladd_f(ppc_vsr_t *, ppc_vsr_t *, ppc_vsr_t *, int, int,
3438                              int flags, float_status *s);
3439 
3440 static void vsxger_muladd32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3441                             int j, int flags, float_status *s)
3442 {
3443     at[i].VsrSF(j) = float32_muladd(a->VsrSF(i), b->VsrSF(j),
3444                                     at[i].VsrSF(j), flags, s);
3445 }
3446 
3447 static void vsxger_mul32(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3448                          int j, int flags, float_status *s)
3449 {
3450     at[i].VsrSF(j) = float32_mul(a->VsrSF(i), b->VsrSF(j), s);
3451 }
3452 
3453 static void vsxger_zero32(ppc_vsr_t *at, int i, int j)
3454 {
3455     at[i].VsrSF(j) = float32_zero;
3456 }
3457 
3458 static void vsxger_muladd64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3459                             int j, int flags, float_status *s)
3460 {
3461     if (j >= 2) {
3462         j -= 2;
3463         at[i].VsrDF(j) = float64_muladd(a[i / 2].VsrDF(i % 2), b->VsrDF(j),
3464                                         at[i].VsrDF(j), flags, s);
3465     }
3466 }
3467 
3468 static void vsxger_mul64(ppc_vsr_t *at, ppc_vsr_t *a, ppc_vsr_t *b, int i,
3469                          int j, int flags, float_status *s)
3470 {
3471     if (j >= 2) {
3472         j -= 2;
3473         at[i].VsrDF(j) = float64_mul(a[i / 2].VsrDF(i % 2), b->VsrDF(j), s);
3474     }
3475 }
3476 
3477 static void vsxger_zero64(ppc_vsr_t *at, int i, int j)
3478 {
3479     if (j >= 2) {
3480         j -= 2;
3481         at[i].VsrDF(j) = float64_zero;
3482     }
3483 }
3484 
3485 static void vsxger(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3486                    ppc_acc_t  *at, uint32_t mask, bool acc, bool neg_mul,
3487                    bool neg_acc, vsxger_muladd_f mul, vsxger_muladd_f muladd,
3488                    vsxger_zero zero)
3489 {
3490     int i, j, xmsk_bit, ymsk_bit, op_flags;
3491     uint8_t xmsk = mask & 0x0F;
3492     uint8_t ymsk = (mask >> 4) & 0x0F;
3493     float_status *excp_ptr = &env->fp_status;
3494     op_flags = (neg_acc ^ neg_mul) ? float_muladd_negate_c : 0;
3495     op_flags |= (neg_mul) ? float_muladd_negate_result : 0;
3496     helper_reset_fpstatus(env);
3497     for (i = 0, xmsk_bit = 1 << 3; i < 4; i++, xmsk_bit >>= 1) {
3498         for (j = 0, ymsk_bit = 1 << 3; j < 4; j++, ymsk_bit >>= 1) {
3499             if ((xmsk_bit & xmsk) && (ymsk_bit & ymsk)) {
3500                 if (acc) {
3501                     muladd(at, a, b, i, j, op_flags, excp_ptr);
3502                 } else {
3503                     mul(at, a, b, i, j, op_flags, excp_ptr);
3504                 }
3505             } else {
3506                 zero(at, i, j);
3507             }
3508         }
3509     }
3510     vsxger_excp(env, GETPC());
3511 }
3512 
3513 QEMU_FLATTEN
3514 void helper_XVBF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3515                        ppc_acc_t *at, uint32_t mask)
3516 {
3517     vsxger16(env, a, b, at, mask, false, false, false, extract_bf16);
3518 }
3519 
3520 QEMU_FLATTEN
3521 void helper_XVBF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3522                          ppc_acc_t *at, uint32_t mask)
3523 {
3524     vsxger16(env, a, b, at, mask, true, false, false, extract_bf16);
3525 }
3526 
3527 QEMU_FLATTEN
3528 void helper_XVBF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3529                          ppc_acc_t *at, uint32_t mask)
3530 {
3531     vsxger16(env, a, b, at, mask, true, false, true, extract_bf16);
3532 }
3533 
3534 QEMU_FLATTEN
3535 void helper_XVBF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3536                          ppc_acc_t *at, uint32_t mask)
3537 {
3538     vsxger16(env, a, b, at, mask, true, true, false, extract_bf16);
3539 }
3540 
3541 QEMU_FLATTEN
3542 void helper_XVBF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3543                          ppc_acc_t *at, uint32_t mask)
3544 {
3545     vsxger16(env, a, b, at, mask, true, true, true, extract_bf16);
3546 }
3547 
3548 QEMU_FLATTEN
3549 void helper_XVF16GER2(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3550                      ppc_acc_t *at, uint32_t mask)
3551 {
3552     vsxger16(env, a, b, at, mask, false, false, false, extract_hf16);
3553 }
3554 
3555 QEMU_FLATTEN
3556 void helper_XVF16GER2PP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3557                         ppc_acc_t *at, uint32_t mask)
3558 {
3559     vsxger16(env, a, b, at, mask, true, false, false, extract_hf16);
3560 }
3561 
3562 QEMU_FLATTEN
3563 void helper_XVF16GER2PN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3564                         ppc_acc_t *at, uint32_t mask)
3565 {
3566     vsxger16(env, a, b, at, mask, true, false, true, extract_hf16);
3567 }
3568 
3569 QEMU_FLATTEN
3570 void helper_XVF16GER2NP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3571                         ppc_acc_t *at, uint32_t mask)
3572 {
3573     vsxger16(env, a, b, at, mask, true, true, false, extract_hf16);
3574 }
3575 
3576 QEMU_FLATTEN
3577 void helper_XVF16GER2NN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3578                         ppc_acc_t *at, uint32_t mask)
3579 {
3580     vsxger16(env, a, b, at, mask, true, true, true, extract_hf16);
3581 }
3582 
3583 QEMU_FLATTEN
3584 void helper_XVF32GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3585                      ppc_acc_t *at, uint32_t mask)
3586 {
3587     vsxger(env, a, b, at, mask, false, false, false, vsxger_mul32,
3588            vsxger_muladd32, vsxger_zero32);
3589 }
3590 
3591 QEMU_FLATTEN
3592 void helper_XVF32GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3593                        ppc_acc_t *at, uint32_t mask)
3594 {
3595     vsxger(env, a, b, at, mask, true, false, false, vsxger_mul32,
3596            vsxger_muladd32, vsxger_zero32);
3597 }
3598 
3599 QEMU_FLATTEN
3600 void helper_XVF32GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3601                        ppc_acc_t *at, uint32_t mask)
3602 {
3603     vsxger(env, a, b, at, mask, true, false, true, vsxger_mul32,
3604            vsxger_muladd32, vsxger_zero32);
3605 }
3606 
3607 QEMU_FLATTEN
3608 void helper_XVF32GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3609                        ppc_acc_t *at, uint32_t mask)
3610 {
3611     vsxger(env, a, b, at, mask, true, true, false, vsxger_mul32,
3612            vsxger_muladd32, vsxger_zero32);
3613 }
3614 
3615 QEMU_FLATTEN
3616 void helper_XVF32GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3617                        ppc_acc_t *at, uint32_t mask)
3618 {
3619     vsxger(env, a, b, at, mask, true, true, true, vsxger_mul32,
3620            vsxger_muladd32, vsxger_zero32);
3621 }
3622 
3623 QEMU_FLATTEN
3624 void helper_XVF64GER(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3625                      ppc_acc_t *at, uint32_t mask)
3626 {
3627     vsxger(env, a, b, at, mask, false, false, false, vsxger_mul64,
3628            vsxger_muladd64, vsxger_zero64);
3629 }
3630 
3631 QEMU_FLATTEN
3632 void helper_XVF64GERPP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3633                        ppc_acc_t *at, uint32_t mask)
3634 {
3635     vsxger(env, a, b, at, mask, true, false, false, vsxger_mul64,
3636            vsxger_muladd64, vsxger_zero64);
3637 }
3638 
3639 QEMU_FLATTEN
3640 void helper_XVF64GERPN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3641                        ppc_acc_t *at, uint32_t mask)
3642 {
3643     vsxger(env, a, b, at, mask, true, false, true, vsxger_mul64,
3644            vsxger_muladd64, vsxger_zero64);
3645 }
3646 
3647 QEMU_FLATTEN
3648 void helper_XVF64GERNP(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3649                        ppc_acc_t *at, uint32_t mask)
3650 {
3651     vsxger(env, a, b, at, mask, true, true, false, vsxger_mul64,
3652            vsxger_muladd64, vsxger_zero64);
3653 }
3654 
3655 QEMU_FLATTEN
3656 void helper_XVF64GERNN(CPUPPCState *env, ppc_vsr_t *a, ppc_vsr_t *b,
3657                        ppc_acc_t *at, uint32_t mask)
3658 {
3659     vsxger(env, a, b, at, mask, true, true, true, vsxger_mul64,
3660            vsxger_muladd64, vsxger_zero64);
3661 }
3662