xref: /openbmc/qemu/target/ppc/fpu_helper.c (revision 40f23e4e)
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25 
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28     float128 r;
29 
30     r.high = x.high | 0x0000800000000000;
31     r.low = x.low;
32     return r;
33 }
34 
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38 
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
40 {
41 #ifdef CONFIG_USER_ONLY
42     return true;
43 #else
44     return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
46 }
47 
48 /*****************************************************************************/
49 /* Floating point operations helpers */
50 
51 /*
52  * This is the non-arithmatic conversion that happens e.g. on loads.
53  * In the Power ISA pseudocode, this is called DOUBLE.
54  */
55 uint64_t helper_todouble(uint32_t arg)
56 {
57     uint32_t abs_arg = arg & 0x7fffffff;
58     uint64_t ret;
59 
60     if (likely(abs_arg >= 0x00800000)) {
61         if (unlikely(extract32(arg, 23, 8) == 0xff)) {
62             /* Inf or NAN.  */
63             ret  = (uint64_t)extract32(arg, 31, 1) << 63;
64             ret |= (uint64_t)0x7ff << 52;
65             ret |= (uint64_t)extract32(arg, 0, 23) << 29;
66         } else {
67             /* Normalized operand.  */
68             ret  = (uint64_t)extract32(arg, 30, 2) << 62;
69             ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
70             ret |= (uint64_t)extract32(arg, 0, 30) << 29;
71         }
72     } else {
73         /* Zero or Denormalized operand.  */
74         ret = (uint64_t)extract32(arg, 31, 1) << 63;
75         if (unlikely(abs_arg != 0)) {
76             /*
77              * Denormalized operand.
78              * Shift fraction so that the msb is in the implicit bit position.
79              * Thus, shift is in the range [1:23].
80              */
81             int shift = clz32(abs_arg) - 8;
82             /*
83              * The first 3 terms compute the float64 exponent.  We then bias
84              * this result by -1 so that we can swallow the implicit bit below.
85              */
86             int exp = -126 - shift + 1023 - 1;
87 
88             ret |= (uint64_t)exp << 52;
89             ret += (uint64_t)abs_arg << (52 - 23 + shift);
90         }
91     }
92     return ret;
93 }
94 
95 /*
96  * This is the non-arithmatic conversion that happens e.g. on stores.
97  * In the Power ISA pseudocode, this is called SINGLE.
98  */
99 uint32_t helper_tosingle(uint64_t arg)
100 {
101     int exp = extract64(arg, 52, 11);
102     uint32_t ret;
103 
104     if (likely(exp > 896)) {
105         /* No denormalization required (includes Inf, NaN).  */
106         ret  = extract64(arg, 62, 2) << 30;
107         ret |= extract64(arg, 29, 30);
108     } else {
109         /*
110          * Zero or Denormal result.  If the exponent is in bounds for
111          * a single-precision denormal result, extract the proper
112          * bits.  If the input is not zero, and the exponent is out of
113          * bounds, then the result is undefined; this underflows to
114          * zero.
115          */
116         ret = extract64(arg, 63, 1) << 31;
117         if (unlikely(exp >= 874)) {
118             /* Denormal result.  */
119             ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
120         }
121     }
122     return ret;
123 }
124 
125 static inline int ppc_float32_get_unbiased_exp(float32 f)
126 {
127     return ((f >> 23) & 0xFF) - 127;
128 }
129 
130 static inline int ppc_float64_get_unbiased_exp(float64 f)
131 {
132     return ((f >> 52) & 0x7FF) - 1023;
133 }
134 
135 /* Classify a floating-point number.  */
136 enum {
137     is_normal   = 1,
138     is_zero     = 2,
139     is_denormal = 4,
140     is_inf      = 8,
141     is_qnan     = 16,
142     is_snan     = 32,
143     is_neg      = 64,
144 };
145 
146 #define COMPUTE_CLASS(tp)                                      \
147 static int tp##_classify(tp arg)                               \
148 {                                                              \
149     int ret = tp##_is_neg(arg) * is_neg;                       \
150     if (unlikely(tp##_is_any_nan(arg))) {                      \
151         float_status dummy = { };  /* snan_bit_is_one = 0 */   \
152         ret |= (tp##_is_signaling_nan(arg, &dummy)             \
153                 ? is_snan : is_qnan);                          \
154     } else if (unlikely(tp##_is_infinity(arg))) {              \
155         ret |= is_inf;                                         \
156     } else if (tp##_is_zero(arg)) {                            \
157         ret |= is_zero;                                        \
158     } else if (tp##_is_zero_or_denormal(arg)) {                \
159         ret |= is_denormal;                                    \
160     } else {                                                   \
161         ret |= is_normal;                                      \
162     }                                                          \
163     return ret;                                                \
164 }
165 
166 COMPUTE_CLASS(float16)
167 COMPUTE_CLASS(float32)
168 COMPUTE_CLASS(float64)
169 COMPUTE_CLASS(float128)
170 
171 static void set_fprf_from_class(CPUPPCState *env, int class)
172 {
173     static const uint8_t fprf[6][2] = {
174         { 0x04, 0x08 },  /* normalized */
175         { 0x02, 0x12 },  /* zero */
176         { 0x14, 0x18 },  /* denormalized */
177         { 0x05, 0x09 },  /* infinity */
178         { 0x11, 0x11 },  /* qnan */
179         { 0x00, 0x00 },  /* snan -- flags are undefined */
180     };
181     bool isneg = class & is_neg;
182 
183     env->fpscr &= ~FP_FPRF;
184     env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
185 }
186 
187 #define COMPUTE_FPRF(tp)                                \
188 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
189 {                                                       \
190     set_fprf_from_class(env, tp##_classify(arg));       \
191 }
192 
193 COMPUTE_FPRF(float16)
194 COMPUTE_FPRF(float32)
195 COMPUTE_FPRF(float64)
196 COMPUTE_FPRF(float128)
197 
198 /* Floating-point invalid operations exception */
199 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
200 {
201     /* Update the floating-point invalid operation summary */
202     env->fpscr |= FP_VX;
203     /* Update the floating-point exception summary */
204     env->fpscr |= FP_FX;
205     if (fpscr_ve != 0) {
206         /* Update the floating-point enabled exception summary */
207         env->fpscr |= FP_FEX;
208         if (fp_exceptions_enabled(env)) {
209             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
210                                    POWERPC_EXCP_FP | op, retaddr);
211         }
212     }
213 }
214 
215 static void finish_invalid_op_arith(CPUPPCState *env, int op,
216                                     bool set_fpcc, uintptr_t retaddr)
217 {
218     env->fpscr &= ~(FP_FR | FP_FI);
219     if (fpscr_ve == 0) {
220         if (set_fpcc) {
221             env->fpscr &= ~FP_FPCC;
222             env->fpscr |= (FP_C | FP_FU);
223         }
224     }
225     finish_invalid_op_excp(env, op, retaddr);
226 }
227 
228 /* Signalling NaN */
229 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
230 {
231     env->fpscr |= FP_VXSNAN;
232     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
233 }
234 
235 /* Magnitude subtraction of infinities */
236 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
237                                    uintptr_t retaddr)
238 {
239     env->fpscr |= FP_VXISI;
240     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
241 }
242 
243 /* Division of infinity by infinity */
244 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
245                                    uintptr_t retaddr)
246 {
247     env->fpscr |= FP_VXIDI;
248     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
249 }
250 
251 /* Division of zero by zero */
252 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
253                                    uintptr_t retaddr)
254 {
255     env->fpscr |= FP_VXZDZ;
256     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
257 }
258 
259 /* Multiplication of zero by infinity */
260 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
261                                    uintptr_t retaddr)
262 {
263     env->fpscr |= FP_VXIMZ;
264     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
265 }
266 
267 /* Square root of a negative number */
268 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
269                                     uintptr_t retaddr)
270 {
271     env->fpscr |= FP_VXSQRT;
272     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
273 }
274 
275 /* Ordered comparison of NaN */
276 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
277                                   uintptr_t retaddr)
278 {
279     env->fpscr |= FP_VXVC;
280     if (set_fpcc) {
281         env->fpscr &= ~FP_FPCC;
282         env->fpscr |= (FP_C | FP_FU);
283     }
284     /* Update the floating-point invalid operation summary */
285     env->fpscr |= FP_VX;
286     /* Update the floating-point exception summary */
287     env->fpscr |= FP_FX;
288     /* We must update the target FPR before raising the exception */
289     if (fpscr_ve != 0) {
290         CPUState *cs = env_cpu(env);
291 
292         cs->exception_index = POWERPC_EXCP_PROGRAM;
293         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
294         /* Update the floating-point enabled exception summary */
295         env->fpscr |= FP_FEX;
296         /* Exception is deferred */
297     }
298 }
299 
300 /* Invalid conversion */
301 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
302                                    uintptr_t retaddr)
303 {
304     env->fpscr |= FP_VXCVI;
305     env->fpscr &= ~(FP_FR | FP_FI);
306     if (fpscr_ve == 0) {
307         if (set_fpcc) {
308             env->fpscr &= ~FP_FPCC;
309             env->fpscr |= (FP_C | FP_FU);
310         }
311     }
312     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
313 }
314 
315 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
316 {
317     env->fpscr |= FP_ZX;
318     env->fpscr &= ~(FP_FR | FP_FI);
319     /* Update the floating-point exception summary */
320     env->fpscr |= FP_FX;
321     if (fpscr_ze != 0) {
322         /* Update the floating-point enabled exception summary */
323         env->fpscr |= FP_FEX;
324         if (fp_exceptions_enabled(env)) {
325             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
326                                    POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
327                                    raddr);
328         }
329     }
330 }
331 
332 static inline void float_overflow_excp(CPUPPCState *env)
333 {
334     CPUState *cs = env_cpu(env);
335 
336     env->fpscr |= FP_OX;
337     /* Update the floating-point exception summary */
338     env->fpscr |= FP_FX;
339     if (fpscr_oe != 0) {
340         /* XXX: should adjust the result */
341         /* Update the floating-point enabled exception summary */
342         env->fpscr |= FP_FEX;
343         /* We must update the target FPR before raising the exception */
344         cs->exception_index = POWERPC_EXCP_PROGRAM;
345         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
346     } else {
347         env->fpscr |= FP_XX;
348         env->fpscr |= FP_FI;
349     }
350 }
351 
352 static inline void float_underflow_excp(CPUPPCState *env)
353 {
354     CPUState *cs = env_cpu(env);
355 
356     env->fpscr |= FP_UX;
357     /* Update the floating-point exception summary */
358     env->fpscr |= FP_FX;
359     if (fpscr_ue != 0) {
360         /* XXX: should adjust the result */
361         /* Update the floating-point enabled exception summary */
362         env->fpscr |= FP_FEX;
363         /* We must update the target FPR before raising the exception */
364         cs->exception_index = POWERPC_EXCP_PROGRAM;
365         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
366     }
367 }
368 
369 static inline void float_inexact_excp(CPUPPCState *env)
370 {
371     CPUState *cs = env_cpu(env);
372 
373     env->fpscr |= FP_FI;
374     env->fpscr |= FP_XX;
375     /* Update the floating-point exception summary */
376     env->fpscr |= FP_FX;
377     if (fpscr_xe != 0) {
378         /* Update the floating-point enabled exception summary */
379         env->fpscr |= FP_FEX;
380         /* We must update the target FPR before raising the exception */
381         cs->exception_index = POWERPC_EXCP_PROGRAM;
382         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
383     }
384 }
385 
386 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
387 {
388     uint32_t mask = 1u << bit;
389     if (env->fpscr & mask) {
390         ppc_store_fpscr(env, env->fpscr & ~(target_ulong)mask);
391     }
392 }
393 
394 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
395 {
396     uint32_t mask = 1u << bit;
397     if (!(env->fpscr & mask)) {
398         ppc_store_fpscr(env, env->fpscr | mask);
399     }
400 }
401 
402 void helper_store_fpscr(CPUPPCState *env, uint64_t val, uint32_t nibbles)
403 {
404     target_ulong mask = 0;
405     int i;
406 
407     /* TODO: push this extension back to translation time */
408     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
409         if (nibbles & (1 << i)) {
410             mask |= (target_ulong) 0xf << (4 * i);
411         }
412     }
413     val = (val & mask) | (env->fpscr & ~mask);
414     ppc_store_fpscr(env, val);
415 }
416 
417 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
418 {
419     CPUState *cs = env_cpu(env);
420     int status = get_float_exception_flags(&env->fp_status);
421 
422     if (status & float_flag_overflow) {
423         float_overflow_excp(env);
424     } else if (status & float_flag_underflow) {
425         float_underflow_excp(env);
426     }
427     if (status & float_flag_inexact) {
428         float_inexact_excp(env);
429     } else {
430         env->fpscr &= ~FP_FI; /* clear the FPSCR[FI] bit */
431     }
432 
433     if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
434         (env->error_code & POWERPC_EXCP_FP)) {
435         /* Deferred floating-point exception after target FPR update */
436         if (fp_exceptions_enabled(env)) {
437             raise_exception_err_ra(env, cs->exception_index,
438                                    env->error_code, raddr);
439         }
440     }
441 }
442 
443 void helper_float_check_status(CPUPPCState *env)
444 {
445     do_float_check_status(env, GETPC());
446 }
447 
448 void helper_reset_fpstatus(CPUPPCState *env)
449 {
450     set_float_exception_flags(0, &env->fp_status);
451 }
452 
453 static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
454                                     uintptr_t retaddr, int classes)
455 {
456     if ((classes & ~is_neg) == is_inf) {
457         /* Magnitude subtraction of infinities */
458         float_invalid_op_vxisi(env, set_fpcc, retaddr);
459     } else if (classes & is_snan) {
460         float_invalid_op_vxsnan(env, retaddr);
461     }
462 }
463 
464 /* fadd - fadd. */
465 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
466 {
467     float64 ret = float64_add(arg1, arg2, &env->fp_status);
468     int status = get_float_exception_flags(&env->fp_status);
469 
470     if (unlikely(status & float_flag_invalid)) {
471         float_invalid_op_addsub(env, 1, GETPC(),
472                                 float64_classify(arg1) |
473                                 float64_classify(arg2));
474     }
475 
476     return ret;
477 }
478 
479 /* fsub - fsub. */
480 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
481 {
482     float64 ret = float64_sub(arg1, arg2, &env->fp_status);
483     int status = get_float_exception_flags(&env->fp_status);
484 
485     if (unlikely(status & float_flag_invalid)) {
486         float_invalid_op_addsub(env, 1, GETPC(),
487                                 float64_classify(arg1) |
488                                 float64_classify(arg2));
489     }
490 
491     return ret;
492 }
493 
494 static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
495                                  uintptr_t retaddr, int classes)
496 {
497     if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
498         /* Multiplication of zero by infinity */
499         float_invalid_op_vximz(env, set_fprc, retaddr);
500     } else if (classes & is_snan) {
501         float_invalid_op_vxsnan(env, retaddr);
502     }
503 }
504 
505 /* fmul - fmul. */
506 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
507 {
508     float64 ret = float64_mul(arg1, arg2, &env->fp_status);
509     int status = get_float_exception_flags(&env->fp_status);
510 
511     if (unlikely(status & float_flag_invalid)) {
512         float_invalid_op_mul(env, 1, GETPC(),
513                              float64_classify(arg1) |
514                              float64_classify(arg2));
515     }
516 
517     return ret;
518 }
519 
520 static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
521                                  uintptr_t retaddr, int classes)
522 {
523     classes &= ~is_neg;
524     if (classes == is_inf) {
525         /* Division of infinity by infinity */
526         float_invalid_op_vxidi(env, set_fprc, retaddr);
527     } else if (classes == is_zero) {
528         /* Division of zero by zero */
529         float_invalid_op_vxzdz(env, set_fprc, retaddr);
530     } else if (classes & is_snan) {
531         float_invalid_op_vxsnan(env, retaddr);
532     }
533 }
534 
535 /* fdiv - fdiv. */
536 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
537 {
538     float64 ret = float64_div(arg1, arg2, &env->fp_status);
539     int status = get_float_exception_flags(&env->fp_status);
540 
541     if (unlikely(status)) {
542         if (status & float_flag_invalid) {
543             float_invalid_op_div(env, 1, GETPC(),
544                                  float64_classify(arg1) |
545                                  float64_classify(arg2));
546         }
547         if (status & float_flag_divbyzero) {
548             float_zero_divide_excp(env, GETPC());
549         }
550     }
551 
552     return ret;
553 }
554 
555 static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
556                               uintptr_t retaddr, int class1)
557 {
558     float_invalid_op_vxcvi(env, set_fprc, retaddr);
559     if (class1 & is_snan) {
560         float_invalid_op_vxsnan(env, retaddr);
561     }
562 }
563 
564 #define FPU_FCTI(op, cvt, nanval)                                      \
565 uint64_t helper_##op(CPUPPCState *env, float64 arg)                    \
566 {                                                                      \
567     uint64_t ret = float64_to_##cvt(arg, &env->fp_status);             \
568     int status = get_float_exception_flags(&env->fp_status);           \
569                                                                        \
570     if (unlikely(status)) {                                            \
571         if (status & float_flag_invalid) {                             \
572             float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
573             ret = nanval;                                              \
574         }                                                              \
575         do_float_check_status(env, GETPC());                           \
576     }                                                                  \
577     return ret;                                                        \
578 }
579 
580 FPU_FCTI(fctiw, int32, 0x80000000U)
581 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
582 FPU_FCTI(fctiwu, uint32, 0x00000000U)
583 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
584 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
585 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
586 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
587 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
588 
589 #define FPU_FCFI(op, cvtr, is_single)                      \
590 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
591 {                                                          \
592     CPU_DoubleU farg;                                      \
593                                                            \
594     if (is_single) {                                       \
595         float32 tmp = cvtr(arg, &env->fp_status);          \
596         farg.d = float32_to_float64(tmp, &env->fp_status); \
597     } else {                                               \
598         farg.d = cvtr(arg, &env->fp_status);               \
599     }                                                      \
600     do_float_check_status(env, GETPC());                   \
601     return farg.ll;                                        \
602 }
603 
604 FPU_FCFI(fcfid, int64_to_float64, 0)
605 FPU_FCFI(fcfids, int64_to_float32, 1)
606 FPU_FCFI(fcfidu, uint64_to_float64, 0)
607 FPU_FCFI(fcfidus, uint64_to_float32, 1)
608 
609 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
610                               int rounding_mode)
611 {
612     CPU_DoubleU farg;
613     FloatRoundMode old_rounding_mode = get_float_rounding_mode(&env->fp_status);
614 
615     farg.ll = arg;
616 
617     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
618         /* sNaN round */
619         float_invalid_op_vxsnan(env, GETPC());
620         farg.ll = arg | 0x0008000000000000ULL;
621     } else {
622         int inexact = get_float_exception_flags(&env->fp_status) &
623                       float_flag_inexact;
624         set_float_rounding_mode(rounding_mode, &env->fp_status);
625         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
626         set_float_rounding_mode(old_rounding_mode, &env->fp_status);
627 
628         /* fri* does not set FPSCR[XX] */
629         if (!inexact) {
630             env->fp_status.float_exception_flags &= ~float_flag_inexact;
631         }
632     }
633     do_float_check_status(env, GETPC());
634     return farg.ll;
635 }
636 
637 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
638 {
639     return do_fri(env, arg, float_round_ties_away);
640 }
641 
642 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
643 {
644     return do_fri(env, arg, float_round_to_zero);
645 }
646 
647 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
648 {
649     return do_fri(env, arg, float_round_up);
650 }
651 
652 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
653 {
654     return do_fri(env, arg, float_round_down);
655 }
656 
657 #define FPU_MADDSUB_UPDATE(NAME, TP)                                    \
658 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3,           \
659                  unsigned int madd_flags, uintptr_t retaddr)            \
660 {                                                                       \
661     if (TP##_is_signaling_nan(arg1, &env->fp_status) ||                 \
662         TP##_is_signaling_nan(arg2, &env->fp_status) ||                 \
663         TP##_is_signaling_nan(arg3, &env->fp_status)) {                 \
664         /* sNaN operation */                                            \
665         float_invalid_op_vxsnan(env, retaddr);                          \
666     }                                                                   \
667     if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) ||               \
668         (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) {               \
669         /* Multiplication of zero by infinity */                        \
670         float_invalid_op_vximz(env, 1, retaddr);                        \
671     }                                                                   \
672     if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) &&           \
673         TP##_is_infinity(arg3)) {                                       \
674         uint8_t aSign, bSign, cSign;                                    \
675                                                                         \
676         aSign = TP##_is_neg(arg1);                                      \
677         bSign = TP##_is_neg(arg2);                                      \
678         cSign = TP##_is_neg(arg3);                                      \
679         if (madd_flags & float_muladd_negate_c) {                       \
680             cSign ^= 1;                                                 \
681         }                                                               \
682         if (aSign ^ bSign ^ cSign) {                                    \
683             float_invalid_op_vxisi(env, 1, retaddr);                    \
684         }                                                               \
685     }                                                                   \
686 }
687 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
688 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
689 
690 #define FPU_FMADD(op, madd_flags)                                       \
691 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,                   \
692                      uint64_t arg2, uint64_t arg3)                      \
693 {                                                                       \
694     uint32_t flags;                                                     \
695     float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags,          \
696                                  &env->fp_status);                      \
697     flags = get_float_exception_flags(&env->fp_status);                 \
698     if (flags) {                                                        \
699         if (flags & float_flag_invalid) {                               \
700             float64_maddsub_update_excp(env, arg1, arg2, arg3,          \
701                                         madd_flags, GETPC());           \
702         }                                                               \
703         do_float_check_status(env, GETPC());                            \
704     }                                                                   \
705     return ret;                                                         \
706 }
707 
708 #define MADD_FLGS 0
709 #define MSUB_FLGS float_muladd_negate_c
710 #define NMADD_FLGS float_muladd_negate_result
711 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
712 
713 FPU_FMADD(fmadd, MADD_FLGS)
714 FPU_FMADD(fnmadd, NMADD_FLGS)
715 FPU_FMADD(fmsub, MSUB_FLGS)
716 FPU_FMADD(fnmsub, NMSUB_FLGS)
717 
718 /* frsp - frsp. */
719 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
720 {
721     CPU_DoubleU farg;
722     float32 f32;
723 
724     farg.ll = arg;
725 
726     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
727         float_invalid_op_vxsnan(env, GETPC());
728     }
729     f32 = float64_to_float32(farg.d, &env->fp_status);
730     farg.d = float32_to_float64(f32, &env->fp_status);
731 
732     return farg.ll;
733 }
734 
735 /* fsqrt - fsqrt. */
736 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
737 {
738     float64 ret = float64_sqrt(arg, &env->fp_status);
739     int status = get_float_exception_flags(&env->fp_status);
740 
741     if (unlikely(status & float_flag_invalid)) {
742         if (unlikely(float64_is_any_nan(arg))) {
743             if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
744                 /* sNaN square root */
745                 float_invalid_op_vxsnan(env, GETPC());
746             }
747         } else {
748             /* Square root of a negative nonzero number */
749             float_invalid_op_vxsqrt(env, 1, GETPC());
750         }
751     }
752 
753     return ret;
754 }
755 
756 /* fre - fre. */
757 float64 helper_fre(CPUPPCState *env, float64 arg)
758 {
759     /* "Estimate" the reciprocal with actual division.  */
760     float64 ret = float64_div(float64_one, arg, &env->fp_status);
761     int status = get_float_exception_flags(&env->fp_status);
762 
763     if (unlikely(status)) {
764         if (status & float_flag_invalid) {
765             if (float64_is_signaling_nan(arg, &env->fp_status)) {
766                 /* sNaN reciprocal */
767                 float_invalid_op_vxsnan(env, GETPC());
768             }
769         }
770         if (status & float_flag_divbyzero) {
771             float_zero_divide_excp(env, GETPC());
772             /* For FPSCR.ZE == 0, the result is 1/2.  */
773             ret = float64_set_sign(float64_half, float64_is_neg(arg));
774         }
775     }
776 
777     return ret;
778 }
779 
780 /* fres - fres. */
781 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
782 {
783     CPU_DoubleU farg;
784     float32 f32;
785 
786     farg.ll = arg;
787 
788     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
789         /* sNaN reciprocal */
790         float_invalid_op_vxsnan(env, GETPC());
791     }
792     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
793     f32 = float64_to_float32(farg.d, &env->fp_status);
794     farg.d = float32_to_float64(f32, &env->fp_status);
795 
796     return farg.ll;
797 }
798 
799 /* frsqrte  - frsqrte. */
800 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
801 {
802     /* "Estimate" the reciprocal with actual division.  */
803     float64 rets = float64_sqrt(arg, &env->fp_status);
804     float64 retd = float64_div(float64_one, rets, &env->fp_status);
805     int status = get_float_exception_flags(&env->fp_status);
806 
807     if (unlikely(status)) {
808         if (status & float_flag_invalid) {
809             if (float64_is_signaling_nan(arg, &env->fp_status)) {
810                 /* sNaN reciprocal */
811                 float_invalid_op_vxsnan(env, GETPC());
812             } else {
813                 /* Square root of a negative nonzero number */
814                 float_invalid_op_vxsqrt(env, 1, GETPC());
815             }
816         }
817         if (status & float_flag_divbyzero) {
818             /* Reciprocal of (square root of) zero.  */
819             float_zero_divide_excp(env, GETPC());
820         }
821     }
822 
823     return retd;
824 }
825 
826 /* fsel - fsel. */
827 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
828                      uint64_t arg3)
829 {
830     CPU_DoubleU farg1;
831 
832     farg1.ll = arg1;
833 
834     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
835         !float64_is_any_nan(farg1.d)) {
836         return arg2;
837     } else {
838         return arg3;
839     }
840 }
841 
842 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
843 {
844     int fe_flag = 0;
845     int fg_flag = 0;
846 
847     if (unlikely(float64_is_infinity(fra) ||
848                  float64_is_infinity(frb) ||
849                  float64_is_zero(frb))) {
850         fe_flag = 1;
851         fg_flag = 1;
852     } else {
853         int e_a = ppc_float64_get_unbiased_exp(fra);
854         int e_b = ppc_float64_get_unbiased_exp(frb);
855 
856         if (unlikely(float64_is_any_nan(fra) ||
857                      float64_is_any_nan(frb))) {
858             fe_flag = 1;
859         } else if ((e_b <= -1022) || (e_b >= 1021)) {
860             fe_flag = 1;
861         } else if (!float64_is_zero(fra) &&
862                    (((e_a - e_b) >= 1023) ||
863                     ((e_a - e_b) <= -1021) ||
864                     (e_a <= -970))) {
865             fe_flag = 1;
866         }
867 
868         if (unlikely(float64_is_zero_or_denormal(frb))) {
869             /* XB is not zero because of the above check and */
870             /* so must be denormalized.                      */
871             fg_flag = 1;
872         }
873     }
874 
875     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
876 }
877 
878 uint32_t helper_ftsqrt(uint64_t frb)
879 {
880     int fe_flag = 0;
881     int fg_flag = 0;
882 
883     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
884         fe_flag = 1;
885         fg_flag = 1;
886     } else {
887         int e_b = ppc_float64_get_unbiased_exp(frb);
888 
889         if (unlikely(float64_is_any_nan(frb))) {
890             fe_flag = 1;
891         } else if (unlikely(float64_is_zero(frb))) {
892             fe_flag = 1;
893         } else if (unlikely(float64_is_neg(frb))) {
894             fe_flag = 1;
895         } else if (!float64_is_zero(frb) && (e_b <= (-1022 + 52))) {
896             fe_flag = 1;
897         }
898 
899         if (unlikely(float64_is_zero_or_denormal(frb))) {
900             /* XB is not zero because of the above check and */
901             /* therefore must be denormalized.               */
902             fg_flag = 1;
903         }
904     }
905 
906     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
907 }
908 
909 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
910                   uint32_t crfD)
911 {
912     CPU_DoubleU farg1, farg2;
913     uint32_t ret = 0;
914 
915     farg1.ll = arg1;
916     farg2.ll = arg2;
917 
918     if (unlikely(float64_is_any_nan(farg1.d) ||
919                  float64_is_any_nan(farg2.d))) {
920         ret = 0x01UL;
921     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
922         ret = 0x08UL;
923     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
924         ret = 0x04UL;
925     } else {
926         ret = 0x02UL;
927     }
928 
929     env->fpscr &= ~FP_FPCC;
930     env->fpscr |= ret << FPSCR_FPCC;
931     env->crf[crfD] = ret;
932     if (unlikely(ret == 0x01UL
933                  && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
934                      float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
935         /* sNaN comparison */
936         float_invalid_op_vxsnan(env, GETPC());
937     }
938 }
939 
940 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
941                   uint32_t crfD)
942 {
943     CPU_DoubleU farg1, farg2;
944     uint32_t ret = 0;
945 
946     farg1.ll = arg1;
947     farg2.ll = arg2;
948 
949     if (unlikely(float64_is_any_nan(farg1.d) ||
950                  float64_is_any_nan(farg2.d))) {
951         ret = 0x01UL;
952     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
953         ret = 0x08UL;
954     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
955         ret = 0x04UL;
956     } else {
957         ret = 0x02UL;
958     }
959 
960     env->fpscr &= ~FP_FPCC;
961     env->fpscr |= ret << FPSCR_FPCC;
962     env->crf[crfD] = (uint32_t) ret;
963     if (unlikely(ret == 0x01UL)) {
964         float_invalid_op_vxvc(env, 1, GETPC());
965         if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
966             float64_is_signaling_nan(farg2.d, &env->fp_status)) {
967             /* sNaN comparison */
968             float_invalid_op_vxsnan(env, GETPC());
969         }
970     }
971 }
972 
973 /* Single-precision floating-point conversions */
974 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
975 {
976     CPU_FloatU u;
977 
978     u.f = int32_to_float32(val, &env->vec_status);
979 
980     return u.l;
981 }
982 
983 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
984 {
985     CPU_FloatU u;
986 
987     u.f = uint32_to_float32(val, &env->vec_status);
988 
989     return u.l;
990 }
991 
992 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
993 {
994     CPU_FloatU u;
995 
996     u.l = val;
997     /* NaN are not treated the same way IEEE 754 does */
998     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
999         return 0;
1000     }
1001 
1002     return float32_to_int32(u.f, &env->vec_status);
1003 }
1004 
1005 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1006 {
1007     CPU_FloatU u;
1008 
1009     u.l = val;
1010     /* NaN are not treated the same way IEEE 754 does */
1011     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1012         return 0;
1013     }
1014 
1015     return float32_to_uint32(u.f, &env->vec_status);
1016 }
1017 
1018 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1019 {
1020     CPU_FloatU u;
1021 
1022     u.l = val;
1023     /* NaN are not treated the same way IEEE 754 does */
1024     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1025         return 0;
1026     }
1027 
1028     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1029 }
1030 
1031 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1032 {
1033     CPU_FloatU u;
1034 
1035     u.l = val;
1036     /* NaN are not treated the same way IEEE 754 does */
1037     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1038         return 0;
1039     }
1040 
1041     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1042 }
1043 
1044 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1045 {
1046     CPU_FloatU u;
1047     float32 tmp;
1048 
1049     u.f = int32_to_float32(val, &env->vec_status);
1050     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1051     u.f = float32_div(u.f, tmp, &env->vec_status);
1052 
1053     return u.l;
1054 }
1055 
1056 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1057 {
1058     CPU_FloatU u;
1059     float32 tmp;
1060 
1061     u.f = uint32_to_float32(val, &env->vec_status);
1062     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1063     u.f = float32_div(u.f, tmp, &env->vec_status);
1064 
1065     return u.l;
1066 }
1067 
1068 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1069 {
1070     CPU_FloatU u;
1071     float32 tmp;
1072 
1073     u.l = val;
1074     /* NaN are not treated the same way IEEE 754 does */
1075     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1076         return 0;
1077     }
1078     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1079     u.f = float32_mul(u.f, tmp, &env->vec_status);
1080 
1081     return float32_to_int32(u.f, &env->vec_status);
1082 }
1083 
1084 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1085 {
1086     CPU_FloatU u;
1087     float32 tmp;
1088 
1089     u.l = val;
1090     /* NaN are not treated the same way IEEE 754 does */
1091     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1092         return 0;
1093     }
1094     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1095     u.f = float32_mul(u.f, tmp, &env->vec_status);
1096 
1097     return float32_to_uint32(u.f, &env->vec_status);
1098 }
1099 
1100 #define HELPER_SPE_SINGLE_CONV(name)                              \
1101     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1102     {                                                             \
1103         return e##name(env, val);                                 \
1104     }
1105 /* efscfsi */
1106 HELPER_SPE_SINGLE_CONV(fscfsi);
1107 /* efscfui */
1108 HELPER_SPE_SINGLE_CONV(fscfui);
1109 /* efscfuf */
1110 HELPER_SPE_SINGLE_CONV(fscfuf);
1111 /* efscfsf */
1112 HELPER_SPE_SINGLE_CONV(fscfsf);
1113 /* efsctsi */
1114 HELPER_SPE_SINGLE_CONV(fsctsi);
1115 /* efsctui */
1116 HELPER_SPE_SINGLE_CONV(fsctui);
1117 /* efsctsiz */
1118 HELPER_SPE_SINGLE_CONV(fsctsiz);
1119 /* efsctuiz */
1120 HELPER_SPE_SINGLE_CONV(fsctuiz);
1121 /* efsctsf */
1122 HELPER_SPE_SINGLE_CONV(fsctsf);
1123 /* efsctuf */
1124 HELPER_SPE_SINGLE_CONV(fsctuf);
1125 
1126 #define HELPER_SPE_VECTOR_CONV(name)                            \
1127     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1128     {                                                           \
1129         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1130             (uint64_t)e##name(env, val);                        \
1131     }
1132 /* evfscfsi */
1133 HELPER_SPE_VECTOR_CONV(fscfsi);
1134 /* evfscfui */
1135 HELPER_SPE_VECTOR_CONV(fscfui);
1136 /* evfscfuf */
1137 HELPER_SPE_VECTOR_CONV(fscfuf);
1138 /* evfscfsf */
1139 HELPER_SPE_VECTOR_CONV(fscfsf);
1140 /* evfsctsi */
1141 HELPER_SPE_VECTOR_CONV(fsctsi);
1142 /* evfsctui */
1143 HELPER_SPE_VECTOR_CONV(fsctui);
1144 /* evfsctsiz */
1145 HELPER_SPE_VECTOR_CONV(fsctsiz);
1146 /* evfsctuiz */
1147 HELPER_SPE_VECTOR_CONV(fsctuiz);
1148 /* evfsctsf */
1149 HELPER_SPE_VECTOR_CONV(fsctsf);
1150 /* evfsctuf */
1151 HELPER_SPE_VECTOR_CONV(fsctuf);
1152 
1153 /* Single-precision floating-point arithmetic */
1154 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1155 {
1156     CPU_FloatU u1, u2;
1157 
1158     u1.l = op1;
1159     u2.l = op2;
1160     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1161     return u1.l;
1162 }
1163 
1164 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1165 {
1166     CPU_FloatU u1, u2;
1167 
1168     u1.l = op1;
1169     u2.l = op2;
1170     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1171     return u1.l;
1172 }
1173 
1174 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1175 {
1176     CPU_FloatU u1, u2;
1177 
1178     u1.l = op1;
1179     u2.l = op2;
1180     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1181     return u1.l;
1182 }
1183 
1184 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1185 {
1186     CPU_FloatU u1, u2;
1187 
1188     u1.l = op1;
1189     u2.l = op2;
1190     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1191     return u1.l;
1192 }
1193 
1194 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1195     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1196     {                                                                   \
1197         return e##name(env, op1, op2);                                  \
1198     }
1199 /* efsadd */
1200 HELPER_SPE_SINGLE_ARITH(fsadd);
1201 /* efssub */
1202 HELPER_SPE_SINGLE_ARITH(fssub);
1203 /* efsmul */
1204 HELPER_SPE_SINGLE_ARITH(fsmul);
1205 /* efsdiv */
1206 HELPER_SPE_SINGLE_ARITH(fsdiv);
1207 
1208 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1209     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1210     {                                                                   \
1211         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1212             (uint64_t)e##name(env, op1, op2);                           \
1213     }
1214 /* evfsadd */
1215 HELPER_SPE_VECTOR_ARITH(fsadd);
1216 /* evfssub */
1217 HELPER_SPE_VECTOR_ARITH(fssub);
1218 /* evfsmul */
1219 HELPER_SPE_VECTOR_ARITH(fsmul);
1220 /* evfsdiv */
1221 HELPER_SPE_VECTOR_ARITH(fsdiv);
1222 
1223 /* Single-precision floating-point comparisons */
1224 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1225 {
1226     CPU_FloatU u1, u2;
1227 
1228     u1.l = op1;
1229     u2.l = op2;
1230     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1231 }
1232 
1233 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1234 {
1235     CPU_FloatU u1, u2;
1236 
1237     u1.l = op1;
1238     u2.l = op2;
1239     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1240 }
1241 
1242 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1243 {
1244     CPU_FloatU u1, u2;
1245 
1246     u1.l = op1;
1247     u2.l = op2;
1248     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1249 }
1250 
1251 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1252 {
1253     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1254     return efscmplt(env, op1, op2);
1255 }
1256 
1257 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1258 {
1259     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1260     return efscmpgt(env, op1, op2);
1261 }
1262 
1263 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1264 {
1265     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1266     return efscmpeq(env, op1, op2);
1267 }
1268 
1269 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1270     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1271     {                                                                   \
1272         return e##name(env, op1, op2);                                  \
1273     }
1274 /* efststlt */
1275 HELPER_SINGLE_SPE_CMP(fststlt);
1276 /* efststgt */
1277 HELPER_SINGLE_SPE_CMP(fststgt);
1278 /* efststeq */
1279 HELPER_SINGLE_SPE_CMP(fststeq);
1280 /* efscmplt */
1281 HELPER_SINGLE_SPE_CMP(fscmplt);
1282 /* efscmpgt */
1283 HELPER_SINGLE_SPE_CMP(fscmpgt);
1284 /* efscmpeq */
1285 HELPER_SINGLE_SPE_CMP(fscmpeq);
1286 
1287 static inline uint32_t evcmp_merge(int t0, int t1)
1288 {
1289     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1290 }
1291 
1292 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1293     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1294     {                                                                   \
1295         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1296                            e##name(env, op1, op2));                     \
1297     }
1298 /* evfststlt */
1299 HELPER_VECTOR_SPE_CMP(fststlt);
1300 /* evfststgt */
1301 HELPER_VECTOR_SPE_CMP(fststgt);
1302 /* evfststeq */
1303 HELPER_VECTOR_SPE_CMP(fststeq);
1304 /* evfscmplt */
1305 HELPER_VECTOR_SPE_CMP(fscmplt);
1306 /* evfscmpgt */
1307 HELPER_VECTOR_SPE_CMP(fscmpgt);
1308 /* evfscmpeq */
1309 HELPER_VECTOR_SPE_CMP(fscmpeq);
1310 
1311 /* Double-precision floating-point conversion */
1312 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1313 {
1314     CPU_DoubleU u;
1315 
1316     u.d = int32_to_float64(val, &env->vec_status);
1317 
1318     return u.ll;
1319 }
1320 
1321 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1322 {
1323     CPU_DoubleU u;
1324 
1325     u.d = int64_to_float64(val, &env->vec_status);
1326 
1327     return u.ll;
1328 }
1329 
1330 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1331 {
1332     CPU_DoubleU u;
1333 
1334     u.d = uint32_to_float64(val, &env->vec_status);
1335 
1336     return u.ll;
1337 }
1338 
1339 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1340 {
1341     CPU_DoubleU u;
1342 
1343     u.d = uint64_to_float64(val, &env->vec_status);
1344 
1345     return u.ll;
1346 }
1347 
1348 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1349 {
1350     CPU_DoubleU u;
1351 
1352     u.ll = val;
1353     /* NaN are not treated the same way IEEE 754 does */
1354     if (unlikely(float64_is_any_nan(u.d))) {
1355         return 0;
1356     }
1357 
1358     return float64_to_int32(u.d, &env->vec_status);
1359 }
1360 
1361 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1362 {
1363     CPU_DoubleU u;
1364 
1365     u.ll = val;
1366     /* NaN are not treated the same way IEEE 754 does */
1367     if (unlikely(float64_is_any_nan(u.d))) {
1368         return 0;
1369     }
1370 
1371     return float64_to_uint32(u.d, &env->vec_status);
1372 }
1373 
1374 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1375 {
1376     CPU_DoubleU u;
1377 
1378     u.ll = val;
1379     /* NaN are not treated the same way IEEE 754 does */
1380     if (unlikely(float64_is_any_nan(u.d))) {
1381         return 0;
1382     }
1383 
1384     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1385 }
1386 
1387 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1388 {
1389     CPU_DoubleU u;
1390 
1391     u.ll = val;
1392     /* NaN are not treated the same way IEEE 754 does */
1393     if (unlikely(float64_is_any_nan(u.d))) {
1394         return 0;
1395     }
1396 
1397     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1398 }
1399 
1400 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1401 {
1402     CPU_DoubleU u;
1403 
1404     u.ll = val;
1405     /* NaN are not treated the same way IEEE 754 does */
1406     if (unlikely(float64_is_any_nan(u.d))) {
1407         return 0;
1408     }
1409 
1410     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1411 }
1412 
1413 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1414 {
1415     CPU_DoubleU u;
1416 
1417     u.ll = val;
1418     /* NaN are not treated the same way IEEE 754 does */
1419     if (unlikely(float64_is_any_nan(u.d))) {
1420         return 0;
1421     }
1422 
1423     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1424 }
1425 
1426 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1427 {
1428     CPU_DoubleU u;
1429     float64 tmp;
1430 
1431     u.d = int32_to_float64(val, &env->vec_status);
1432     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1433     u.d = float64_div(u.d, tmp, &env->vec_status);
1434 
1435     return u.ll;
1436 }
1437 
1438 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1439 {
1440     CPU_DoubleU u;
1441     float64 tmp;
1442 
1443     u.d = uint32_to_float64(val, &env->vec_status);
1444     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1445     u.d = float64_div(u.d, tmp, &env->vec_status);
1446 
1447     return u.ll;
1448 }
1449 
1450 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1451 {
1452     CPU_DoubleU u;
1453     float64 tmp;
1454 
1455     u.ll = val;
1456     /* NaN are not treated the same way IEEE 754 does */
1457     if (unlikely(float64_is_any_nan(u.d))) {
1458         return 0;
1459     }
1460     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1461     u.d = float64_mul(u.d, tmp, &env->vec_status);
1462 
1463     return float64_to_int32(u.d, &env->vec_status);
1464 }
1465 
1466 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1467 {
1468     CPU_DoubleU u;
1469     float64 tmp;
1470 
1471     u.ll = val;
1472     /* NaN are not treated the same way IEEE 754 does */
1473     if (unlikely(float64_is_any_nan(u.d))) {
1474         return 0;
1475     }
1476     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1477     u.d = float64_mul(u.d, tmp, &env->vec_status);
1478 
1479     return float64_to_uint32(u.d, &env->vec_status);
1480 }
1481 
1482 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1483 {
1484     CPU_DoubleU u1;
1485     CPU_FloatU u2;
1486 
1487     u1.ll = val;
1488     u2.f = float64_to_float32(u1.d, &env->vec_status);
1489 
1490     return u2.l;
1491 }
1492 
1493 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1494 {
1495     CPU_DoubleU u2;
1496     CPU_FloatU u1;
1497 
1498     u1.l = val;
1499     u2.d = float32_to_float64(u1.f, &env->vec_status);
1500 
1501     return u2.ll;
1502 }
1503 
1504 /* Double precision fixed-point arithmetic */
1505 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1506 {
1507     CPU_DoubleU u1, u2;
1508 
1509     u1.ll = op1;
1510     u2.ll = op2;
1511     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1512     return u1.ll;
1513 }
1514 
1515 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1516 {
1517     CPU_DoubleU u1, u2;
1518 
1519     u1.ll = op1;
1520     u2.ll = op2;
1521     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1522     return u1.ll;
1523 }
1524 
1525 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1526 {
1527     CPU_DoubleU u1, u2;
1528 
1529     u1.ll = op1;
1530     u2.ll = op2;
1531     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1532     return u1.ll;
1533 }
1534 
1535 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1536 {
1537     CPU_DoubleU u1, u2;
1538 
1539     u1.ll = op1;
1540     u2.ll = op2;
1541     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1542     return u1.ll;
1543 }
1544 
1545 /* Double precision floating point helpers */
1546 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1547 {
1548     CPU_DoubleU u1, u2;
1549 
1550     u1.ll = op1;
1551     u2.ll = op2;
1552     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1553 }
1554 
1555 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1556 {
1557     CPU_DoubleU u1, u2;
1558 
1559     u1.ll = op1;
1560     u2.ll = op2;
1561     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1562 }
1563 
1564 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1565 {
1566     CPU_DoubleU u1, u2;
1567 
1568     u1.ll = op1;
1569     u2.ll = op2;
1570     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1571 }
1572 
1573 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1574 {
1575     /* XXX: TODO: test special values (NaN, infinites, ...) */
1576     return helper_efdtstlt(env, op1, op2);
1577 }
1578 
1579 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1580 {
1581     /* XXX: TODO: test special values (NaN, infinites, ...) */
1582     return helper_efdtstgt(env, op1, op2);
1583 }
1584 
1585 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1586 {
1587     /* XXX: TODO: test special values (NaN, infinites, ...) */
1588     return helper_efdtsteq(env, op1, op2);
1589 }
1590 
1591 #define float64_to_float64(x, env) x
1592 
1593 
1594 /*
1595  * VSX_ADD_SUB - VSX floating point add/subtract
1596  *   name  - instruction mnemonic
1597  *   op    - operation (add or sub)
1598  *   nels  - number of elements (1, 2 or 4)
1599  *   tp    - type (float32 or float64)
1600  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1601  *   sfprf - set FPRF
1602  */
1603 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1604 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                          \
1605                    ppc_vsr_t *xa, ppc_vsr_t *xb)                             \
1606 {                                                                            \
1607     ppc_vsr_t t = *xt;                                                       \
1608     int i;                                                                   \
1609                                                                              \
1610     helper_reset_fpstatus(env);                                              \
1611                                                                              \
1612     for (i = 0; i < nels; i++) {                                             \
1613         float_status tstat = env->fp_status;                                 \
1614         set_float_exception_flags(0, &tstat);                                \
1615         t.fld = tp##_##op(xa->fld, xb->fld, &tstat);                         \
1616         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1617                                                                              \
1618         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1619             float_invalid_op_addsub(env, sfprf, GETPC(),                     \
1620                                     tp##_classify(xa->fld) |                 \
1621                                     tp##_classify(xb->fld));                 \
1622         }                                                                    \
1623                                                                              \
1624         if (r2sp) {                                                          \
1625             t.fld = helper_frsp(env, t.fld);                                 \
1626         }                                                                    \
1627                                                                              \
1628         if (sfprf) {                                                         \
1629             helper_compute_fprf_float64(env, t.fld);                         \
1630         }                                                                    \
1631     }                                                                        \
1632     *xt = t;                                                                 \
1633     do_float_check_status(env, GETPC());                                     \
1634 }
1635 
1636 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1637 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1638 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1639 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1640 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1641 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1642 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1643 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1644 
1645 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode,
1646                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1647 {
1648     ppc_vsr_t t = *xt;
1649     float_status tstat;
1650 
1651     helper_reset_fpstatus(env);
1652 
1653     tstat = env->fp_status;
1654     if (unlikely(Rc(opcode) != 0)) {
1655         tstat.float_rounding_mode = float_round_to_odd;
1656     }
1657 
1658     set_float_exception_flags(0, &tstat);
1659     t.f128 = float128_add(xa->f128, xb->f128, &tstat);
1660     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1661 
1662     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1663         float_invalid_op_addsub(env, 1, GETPC(),
1664                                 float128_classify(xa->f128) |
1665                                 float128_classify(xb->f128));
1666     }
1667 
1668     helper_compute_fprf_float128(env, t.f128);
1669 
1670     *xt = t;
1671     do_float_check_status(env, GETPC());
1672 }
1673 
1674 /*
1675  * VSX_MUL - VSX floating point multiply
1676  *   op    - instruction mnemonic
1677  *   nels  - number of elements (1, 2 or 4)
1678  *   tp    - type (float32 or float64)
1679  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1680  *   sfprf - set FPRF
1681  */
1682 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1683 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                            \
1684                  ppc_vsr_t *xa, ppc_vsr_t *xb)                               \
1685 {                                                                            \
1686     ppc_vsr_t t = *xt;                                                       \
1687     int i;                                                                   \
1688                                                                              \
1689     helper_reset_fpstatus(env);                                              \
1690                                                                              \
1691     for (i = 0; i < nels; i++) {                                             \
1692         float_status tstat = env->fp_status;                                 \
1693         set_float_exception_flags(0, &tstat);                                \
1694         t.fld = tp##_mul(xa->fld, xb->fld, &tstat);                          \
1695         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1696                                                                              \
1697         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1698             float_invalid_op_mul(env, sfprf, GETPC(),                        \
1699                                  tp##_classify(xa->fld) |                    \
1700                                  tp##_classify(xb->fld));                    \
1701         }                                                                    \
1702                                                                              \
1703         if (r2sp) {                                                          \
1704             t.fld = helper_frsp(env, t.fld);                                 \
1705         }                                                                    \
1706                                                                              \
1707         if (sfprf) {                                                         \
1708             helper_compute_fprf_float64(env, t.fld);                         \
1709         }                                                                    \
1710     }                                                                        \
1711                                                                              \
1712     *xt = t;                                                                 \
1713     do_float_check_status(env, GETPC());                                     \
1714 }
1715 
1716 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1717 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1718 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1719 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1720 
1721 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode,
1722                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1723 {
1724     ppc_vsr_t t = *xt;
1725     float_status tstat;
1726 
1727     helper_reset_fpstatus(env);
1728     tstat = env->fp_status;
1729     if (unlikely(Rc(opcode) != 0)) {
1730         tstat.float_rounding_mode = float_round_to_odd;
1731     }
1732 
1733     set_float_exception_flags(0, &tstat);
1734     t.f128 = float128_mul(xa->f128, xb->f128, &tstat);
1735     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1736 
1737     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1738         float_invalid_op_mul(env, 1, GETPC(),
1739                              float128_classify(xa->f128) |
1740                              float128_classify(xb->f128));
1741     }
1742     helper_compute_fprf_float128(env, t.f128);
1743 
1744     *xt = t;
1745     do_float_check_status(env, GETPC());
1746 }
1747 
1748 /*
1749  * VSX_DIV - VSX floating point divide
1750  *   op    - instruction mnemonic
1751  *   nels  - number of elements (1, 2 or 4)
1752  *   tp    - type (float32 or float64)
1753  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1754  *   sfprf - set FPRF
1755  */
1756 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1757 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
1758                  ppc_vsr_t *xa, ppc_vsr_t *xb)                                \
1759 {                                                                             \
1760     ppc_vsr_t t = *xt;                                                        \
1761     int i;                                                                    \
1762                                                                               \
1763     helper_reset_fpstatus(env);                                               \
1764                                                                               \
1765     for (i = 0; i < nels; i++) {                                              \
1766         float_status tstat = env->fp_status;                                  \
1767         set_float_exception_flags(0, &tstat);                                 \
1768         t.fld = tp##_div(xa->fld, xb->fld, &tstat);                           \
1769         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1770                                                                               \
1771         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1772             float_invalid_op_div(env, sfprf, GETPC(),                         \
1773                                  tp##_classify(xa->fld) |                     \
1774                                  tp##_classify(xb->fld));                     \
1775         }                                                                     \
1776         if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {   \
1777             float_zero_divide_excp(env, GETPC());                             \
1778         }                                                                     \
1779                                                                               \
1780         if (r2sp) {                                                           \
1781             t.fld = helper_frsp(env, t.fld);                                  \
1782         }                                                                     \
1783                                                                               \
1784         if (sfprf) {                                                          \
1785             helper_compute_fprf_float64(env, t.fld);                          \
1786         }                                                                     \
1787     }                                                                         \
1788                                                                               \
1789     *xt = t;                                                                  \
1790     do_float_check_status(env, GETPC());                                      \
1791 }
1792 
1793 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
1794 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
1795 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
1796 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
1797 
1798 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode,
1799                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
1800 {
1801     ppc_vsr_t t = *xt;
1802     float_status tstat;
1803 
1804     helper_reset_fpstatus(env);
1805     tstat = env->fp_status;
1806     if (unlikely(Rc(opcode) != 0)) {
1807         tstat.float_rounding_mode = float_round_to_odd;
1808     }
1809 
1810     set_float_exception_flags(0, &tstat);
1811     t.f128 = float128_div(xa->f128, xb->f128, &tstat);
1812     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1813 
1814     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1815         float_invalid_op_div(env, 1, GETPC(),
1816                              float128_classify(xa->f128) |
1817                              float128_classify(xb->f128));
1818     }
1819     if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
1820         float_zero_divide_excp(env, GETPC());
1821     }
1822 
1823     helper_compute_fprf_float128(env, t.f128);
1824     *xt = t;
1825     do_float_check_status(env, GETPC());
1826 }
1827 
1828 /*
1829  * VSX_RE  - VSX floating point reciprocal estimate
1830  *   op    - instruction mnemonic
1831  *   nels  - number of elements (1, 2 or 4)
1832  *   tp    - type (float32 or float64)
1833  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1834  *   sfprf - set FPRF
1835  */
1836 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
1837 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)              \
1838 {                                                                             \
1839     ppc_vsr_t t = *xt;                                                        \
1840     int i;                                                                    \
1841                                                                               \
1842     helper_reset_fpstatus(env);                                               \
1843                                                                               \
1844     for (i = 0; i < nels; i++) {                                              \
1845         if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
1846             float_invalid_op_vxsnan(env, GETPC());                            \
1847         }                                                                     \
1848         t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status);                 \
1849                                                                               \
1850         if (r2sp) {                                                           \
1851             t.fld = helper_frsp(env, t.fld);                                  \
1852         }                                                                     \
1853                                                                               \
1854         if (sfprf) {                                                          \
1855             helper_compute_fprf_float64(env, t.fld);                          \
1856         }                                                                     \
1857     }                                                                         \
1858                                                                               \
1859     *xt = t;                                                                  \
1860     do_float_check_status(env, GETPC());                                      \
1861 }
1862 
1863 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
1864 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
1865 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
1866 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
1867 
1868 /*
1869  * VSX_SQRT - VSX floating point square root
1870  *   op    - instruction mnemonic
1871  *   nels  - number of elements (1, 2 or 4)
1872  *   tp    - type (float32 or float64)
1873  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1874  *   sfprf - set FPRF
1875  */
1876 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
1877 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
1878 {                                                                            \
1879     ppc_vsr_t t = *xt;                                                       \
1880     int i;                                                                   \
1881                                                                              \
1882     helper_reset_fpstatus(env);                                              \
1883                                                                              \
1884     for (i = 0; i < nels; i++) {                                             \
1885         float_status tstat = env->fp_status;                                 \
1886         set_float_exception_flags(0, &tstat);                                \
1887         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
1888         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1889                                                                              \
1890         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1891             if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) {            \
1892                 float_invalid_op_vxsqrt(env, sfprf, GETPC());                \
1893             } else if (tp##_is_signaling_nan(xb->fld, &tstat)) {             \
1894                 float_invalid_op_vxsnan(env, GETPC());                       \
1895             }                                                                \
1896         }                                                                    \
1897                                                                              \
1898         if (r2sp) {                                                          \
1899             t.fld = helper_frsp(env, t.fld);                                 \
1900         }                                                                    \
1901                                                                              \
1902         if (sfprf) {                                                         \
1903             helper_compute_fprf_float64(env, t.fld);                         \
1904         }                                                                    \
1905     }                                                                        \
1906                                                                              \
1907     *xt = t;                                                                 \
1908     do_float_check_status(env, GETPC());                                     \
1909 }
1910 
1911 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
1912 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
1913 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
1914 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
1915 
1916 /*
1917  *VSX_RSQRTE - VSX floating point reciprocal square root estimate
1918  *   op    - instruction mnemonic
1919  *   nels  - number of elements (1, 2 or 4)
1920  *   tp    - type (float32 or float64)
1921  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1922  *   sfprf - set FPRF
1923  */
1924 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
1925 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
1926 {                                                                            \
1927     ppc_vsr_t t = *xt;                                                       \
1928     int i;                                                                   \
1929                                                                              \
1930     helper_reset_fpstatus(env);                                              \
1931                                                                              \
1932     for (i = 0; i < nels; i++) {                                             \
1933         float_status tstat = env->fp_status;                                 \
1934         set_float_exception_flags(0, &tstat);                                \
1935         t.fld = tp##_sqrt(xb->fld, &tstat);                                  \
1936         t.fld = tp##_div(tp##_one, t.fld, &tstat);                           \
1937         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1938                                                                              \
1939         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1940             if (tp##_is_neg(xb->fld) && !tp##_is_zero(xb->fld)) {            \
1941                 float_invalid_op_vxsqrt(env, sfprf, GETPC());                \
1942             } else if (tp##_is_signaling_nan(xb->fld, &tstat)) {             \
1943                 float_invalid_op_vxsnan(env, GETPC());                       \
1944             }                                                                \
1945         }                                                                    \
1946                                                                              \
1947         if (r2sp) {                                                          \
1948             t.fld = helper_frsp(env, t.fld);                                 \
1949         }                                                                    \
1950                                                                              \
1951         if (sfprf) {                                                         \
1952             helper_compute_fprf_float64(env, t.fld);                         \
1953         }                                                                    \
1954     }                                                                        \
1955                                                                              \
1956     *xt = t;                                                                 \
1957     do_float_check_status(env, GETPC());                                     \
1958 }
1959 
1960 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
1961 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
1962 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
1963 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
1964 
1965 /*
1966  * VSX_TDIV - VSX floating point test for divide
1967  *   op    - instruction mnemonic
1968  *   nels  - number of elements (1, 2 or 4)
1969  *   tp    - type (float32 or float64)
1970  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1971  *   emin  - minimum unbiased exponent
1972  *   emax  - maximum unbiased exponent
1973  *   nbits - number of fraction bits
1974  */
1975 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
1976 void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
1977                  ppc_vsr_t *xa, ppc_vsr_t *xb)                          \
1978 {                                                                       \
1979     int i;                                                              \
1980     int fe_flag = 0;                                                    \
1981     int fg_flag = 0;                                                    \
1982                                                                         \
1983     for (i = 0; i < nels; i++) {                                        \
1984         if (unlikely(tp##_is_infinity(xa->fld) ||                       \
1985                      tp##_is_infinity(xb->fld) ||                       \
1986                      tp##_is_zero(xb->fld))) {                          \
1987             fe_flag = 1;                                                \
1988             fg_flag = 1;                                                \
1989         } else {                                                        \
1990             int e_a = ppc_##tp##_get_unbiased_exp(xa->fld);             \
1991             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
1992                                                                         \
1993             if (unlikely(tp##_is_any_nan(xa->fld) ||                    \
1994                          tp##_is_any_nan(xb->fld))) {                   \
1995                 fe_flag = 1;                                            \
1996             } else if ((e_b <= emin) || (e_b >= (emax - 2))) {          \
1997                 fe_flag = 1;                                            \
1998             } else if (!tp##_is_zero(xa->fld) &&                        \
1999                        (((e_a - e_b) >= emax) ||                        \
2000                         ((e_a - e_b) <= (emin + 1)) ||                  \
2001                         (e_a <= (emin + nbits)))) {                     \
2002                 fe_flag = 1;                                            \
2003             }                                                           \
2004                                                                         \
2005             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2006                 /*                                                      \
2007                  * XB is not zero because of the above check and so     \
2008                  * must be denormalized.                                \
2009                  */                                                     \
2010                 fg_flag = 1;                                            \
2011             }                                                           \
2012         }                                                               \
2013     }                                                                   \
2014                                                                         \
2015     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2016 }
2017 
2018 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2019 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2020 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2021 
2022 /*
2023  * VSX_TSQRT - VSX floating point test for square root
2024  *   op    - instruction mnemonic
2025  *   nels  - number of elements (1, 2 or 4)
2026  *   tp    - type (float32 or float64)
2027  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2028  *   emin  - minimum unbiased exponent
2029  *   emax  - maximum unbiased exponent
2030  *   nbits - number of fraction bits
2031  */
2032 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2033 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)      \
2034 {                                                                       \
2035     int i;                                                              \
2036     int fe_flag = 0;                                                    \
2037     int fg_flag = 0;                                                    \
2038                                                                         \
2039     for (i = 0; i < nels; i++) {                                        \
2040         if (unlikely(tp##_is_infinity(xb->fld) ||                       \
2041                      tp##_is_zero(xb->fld))) {                          \
2042             fe_flag = 1;                                                \
2043             fg_flag = 1;                                                \
2044         } else {                                                        \
2045             int e_b = ppc_##tp##_get_unbiased_exp(xb->fld);             \
2046                                                                         \
2047             if (unlikely(tp##_is_any_nan(xb->fld))) {                   \
2048                 fe_flag = 1;                                            \
2049             } else if (unlikely(tp##_is_zero(xb->fld))) {               \
2050                 fe_flag = 1;                                            \
2051             } else if (unlikely(tp##_is_neg(xb->fld))) {                \
2052                 fe_flag = 1;                                            \
2053             } else if (!tp##_is_zero(xb->fld) &&                        \
2054                        (e_b <= (emin + nbits))) {                       \
2055                 fe_flag = 1;                                            \
2056             }                                                           \
2057                                                                         \
2058             if (unlikely(tp##_is_zero_or_denormal(xb->fld))) {          \
2059                 /*                                                      \
2060                  * XB is not zero because of the above check and        \
2061                  * therefore must be denormalized.                      \
2062                  */                                                     \
2063                 fg_flag = 1;                                            \
2064             }                                                           \
2065         }                                                               \
2066     }                                                                   \
2067                                                                         \
2068     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2069 }
2070 
2071 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2072 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2073 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2074 
2075 /*
2076  * VSX_MADD - VSX floating point muliply/add variations
2077  *   op    - instruction mnemonic
2078  *   nels  - number of elements (1, 2 or 4)
2079  *   tp    - type (float32 or float64)
2080  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2081  *   maddflgs - flags for the float*muladd routine that control the
2082  *           various forms (madd, msub, nmadd, nmsub)
2083  *   sfprf - set FPRF
2084  */
2085 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfprf, r2sp)                    \
2086 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
2087                  ppc_vsr_t *xa, ppc_vsr_t *b, ppc_vsr_t *c)                   \
2088 {                                                                             \
2089     ppc_vsr_t t = *xt;                                                        \
2090     int i;                                                                    \
2091                                                                               \
2092     helper_reset_fpstatus(env);                                               \
2093                                                                               \
2094     for (i = 0; i < nels; i++) {                                              \
2095         float_status tstat = env->fp_status;                                  \
2096         set_float_exception_flags(0, &tstat);                                 \
2097         if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2098             /*                                                                \
2099              * Avoid double rounding errors by rounding the intermediate      \
2100              * result to odd.                                                 \
2101              */                                                               \
2102             set_float_rounding_mode(float_round_to_zero, &tstat);             \
2103             t.fld = tp##_muladd(xa->fld, b->fld, c->fld,                      \
2104                                 maddflgs, &tstat);                            \
2105             t.fld |= (get_float_exception_flags(&tstat) &                     \
2106                       float_flag_inexact) != 0;                               \
2107         } else {                                                              \
2108             t.fld = tp##_muladd(xa->fld, b->fld, c->fld,                      \
2109                                 maddflgs, &tstat);                            \
2110         }                                                                     \
2111         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2112                                                                               \
2113         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2114             tp##_maddsub_update_excp(env, xa->fld, b->fld,                    \
2115                                      c->fld, maddflgs, GETPC());              \
2116         }                                                                     \
2117                                                                               \
2118         if (r2sp) {                                                           \
2119             t.fld = helper_frsp(env, t.fld);                                  \
2120         }                                                                     \
2121                                                                               \
2122         if (sfprf) {                                                          \
2123             helper_compute_fprf_float64(env, t.fld);                          \
2124         }                                                                     \
2125     }                                                                         \
2126     *xt = t;                                                                  \
2127     do_float_check_status(env, GETPC());                                      \
2128 }
2129 
2130 VSX_MADD(xsmadddp, 1, float64, VsrD(0), MADD_FLGS, 1, 0)
2131 VSX_MADD(xsmsubdp, 1, float64, VsrD(0), MSUB_FLGS, 1, 0)
2132 VSX_MADD(xsnmadddp, 1, float64, VsrD(0), NMADD_FLGS, 1, 0)
2133 VSX_MADD(xsnmsubdp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 0)
2134 VSX_MADD(xsmaddsp, 1, float64, VsrD(0), MADD_FLGS, 1, 1)
2135 VSX_MADD(xsmsubsp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1)
2136 VSX_MADD(xsnmaddsp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1)
2137 VSX_MADD(xsnmsubsp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1)
2138 
2139 VSX_MADD(xvmadddp, 2, float64, VsrD(i), MADD_FLGS, 0, 0)
2140 VSX_MADD(xvmsubdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0)
2141 VSX_MADD(xvnmadddp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0)
2142 VSX_MADD(xvnmsubdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0)
2143 
2144 VSX_MADD(xvmaddsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0)
2145 VSX_MADD(xvmsubsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0)
2146 VSX_MADD(xvnmaddsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0)
2147 VSX_MADD(xvnmsubsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0)
2148 
2149 /*
2150  * VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2151  *   op    - instruction mnemonic
2152  *   cmp   - comparison operation
2153  *   exp   - expected result of comparison
2154  *   svxvc - set VXVC bit
2155  */
2156 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc)                                \
2157 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                             \
2158                  ppc_vsr_t *xa, ppc_vsr_t *xb)                                \
2159 {                                                                             \
2160     ppc_vsr_t t = *xt;                                                        \
2161     bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false;            \
2162                                                                               \
2163     if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||             \
2164         float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {             \
2165         vxsnan_flag = true;                                                   \
2166         if (fpscr_ve == 0 && svxvc) {                                         \
2167             vxvc_flag = true;                                                 \
2168         }                                                                     \
2169     } else if (svxvc) {                                                       \
2170         vxvc_flag = float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||     \
2171             float64_is_quiet_nan(xb->VsrD(0), &env->fp_status);               \
2172     }                                                                         \
2173     if (vxsnan_flag) {                                                        \
2174         float_invalid_op_vxsnan(env, GETPC());                                \
2175     }                                                                         \
2176     if (vxvc_flag) {                                                          \
2177         float_invalid_op_vxvc(env, 0, GETPC());                               \
2178     }                                                                         \
2179     vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag);                        \
2180                                                                               \
2181     if (!vex_flag) {                                                          \
2182         if (float64_##cmp(xb->VsrD(0), xa->VsrD(0),                           \
2183                           &env->fp_status) == exp) {                          \
2184             t.VsrD(0) = -1;                                                   \
2185             t.VsrD(1) = 0;                                                    \
2186         } else {                                                              \
2187             t.VsrD(0) = 0;                                                    \
2188             t.VsrD(1) = 0;                                                    \
2189         }                                                                     \
2190     }                                                                         \
2191     *xt = t;                                                                  \
2192     do_float_check_status(env, GETPC());                                      \
2193 }
2194 
2195 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2196 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2197 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2198 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2199 
2200 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode,
2201                        ppc_vsr_t *xa, ppc_vsr_t *xb)
2202 {
2203     int64_t exp_a, exp_b;
2204     uint32_t cc;
2205 
2206     exp_a = extract64(xa->VsrD(0), 52, 11);
2207     exp_b = extract64(xb->VsrD(0), 52, 11);
2208 
2209     if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||
2210                  float64_is_any_nan(xb->VsrD(0)))) {
2211         cc = CRF_SO;
2212     } else {
2213         if (exp_a < exp_b) {
2214             cc = CRF_LT;
2215         } else if (exp_a > exp_b) {
2216             cc = CRF_GT;
2217         } else {
2218             cc = CRF_EQ;
2219         }
2220     }
2221 
2222     env->fpscr &= ~FP_FPCC;
2223     env->fpscr |= cc << FPSCR_FPCC;
2224     env->crf[BF(opcode)] = cc;
2225 
2226     do_float_check_status(env, GETPC());
2227 }
2228 
2229 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode,
2230                        ppc_vsr_t *xa, ppc_vsr_t *xb)
2231 {
2232     int64_t exp_a, exp_b;
2233     uint32_t cc;
2234 
2235     exp_a = extract64(xa->VsrD(0), 48, 15);
2236     exp_b = extract64(xb->VsrD(0), 48, 15);
2237 
2238     if (unlikely(float128_is_any_nan(xa->f128) ||
2239                  float128_is_any_nan(xb->f128))) {
2240         cc = CRF_SO;
2241     } else {
2242         if (exp_a < exp_b) {
2243             cc = CRF_LT;
2244         } else if (exp_a > exp_b) {
2245             cc = CRF_GT;
2246         } else {
2247             cc = CRF_EQ;
2248         }
2249     }
2250 
2251     env->fpscr &= ~FP_FPCC;
2252     env->fpscr |= cc << FPSCR_FPCC;
2253     env->crf[BF(opcode)] = cc;
2254 
2255     do_float_check_status(env, GETPC());
2256 }
2257 
2258 static inline void do_scalar_cmp(CPUPPCState *env, ppc_vsr_t *xa, ppc_vsr_t *xb,
2259                                  int crf_idx, bool ordered)
2260 {
2261     uint32_t cc;
2262     bool vxsnan_flag = false, vxvc_flag = false;
2263 
2264     helper_reset_fpstatus(env);
2265 
2266     switch (float64_compare(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) {
2267     case float_relation_less:
2268         cc = CRF_LT;
2269         break;
2270     case float_relation_equal:
2271         cc = CRF_EQ;
2272         break;
2273     case float_relation_greater:
2274         cc = CRF_GT;
2275         break;
2276     case float_relation_unordered:
2277         cc = CRF_SO;
2278 
2279         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||
2280             float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {
2281             vxsnan_flag = true;
2282             if (fpscr_ve == 0 && ordered) {
2283                 vxvc_flag = true;
2284             }
2285         } else if (float64_is_quiet_nan(xa->VsrD(0), &env->fp_status) ||
2286                    float64_is_quiet_nan(xb->VsrD(0), &env->fp_status)) {
2287             if (ordered) {
2288                 vxvc_flag = true;
2289             }
2290         }
2291 
2292         break;
2293     default:
2294         g_assert_not_reached();
2295     }
2296 
2297     env->fpscr &= ~FP_FPCC;
2298     env->fpscr |= cc << FPSCR_FPCC;
2299     env->crf[crf_idx] = cc;
2300 
2301     if (vxsnan_flag) {
2302         float_invalid_op_vxsnan(env, GETPC());
2303     }
2304     if (vxvc_flag) {
2305         float_invalid_op_vxvc(env, 0, GETPC());
2306     }
2307 
2308     do_float_check_status(env, GETPC());
2309 }
2310 
2311 void helper_xscmpodp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2312                      ppc_vsr_t *xb)
2313 {
2314     do_scalar_cmp(env, xa, xb, BF(opcode), true);
2315 }
2316 
2317 void helper_xscmpudp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2318                      ppc_vsr_t *xb)
2319 {
2320     do_scalar_cmp(env, xa, xb, BF(opcode), false);
2321 }
2322 
2323 static inline void do_scalar_cmpq(CPUPPCState *env, ppc_vsr_t *xa,
2324                                   ppc_vsr_t *xb, int crf_idx, bool ordered)
2325 {
2326     uint32_t cc;
2327     bool vxsnan_flag = false, vxvc_flag = false;
2328 
2329     helper_reset_fpstatus(env);
2330 
2331     switch (float128_compare(xa->f128, xb->f128, &env->fp_status)) {
2332     case float_relation_less:
2333         cc = CRF_LT;
2334         break;
2335     case float_relation_equal:
2336         cc = CRF_EQ;
2337         break;
2338     case float_relation_greater:
2339         cc = CRF_GT;
2340         break;
2341     case float_relation_unordered:
2342         cc = CRF_SO;
2343 
2344         if (float128_is_signaling_nan(xa->f128, &env->fp_status) ||
2345             float128_is_signaling_nan(xb->f128, &env->fp_status)) {
2346             vxsnan_flag = true;
2347             if (fpscr_ve == 0 && ordered) {
2348                 vxvc_flag = true;
2349             }
2350         } else if (float128_is_quiet_nan(xa->f128, &env->fp_status) ||
2351                    float128_is_quiet_nan(xb->f128, &env->fp_status)) {
2352             if (ordered) {
2353                 vxvc_flag = true;
2354             }
2355         }
2356 
2357         break;
2358     default:
2359         g_assert_not_reached();
2360     }
2361 
2362     env->fpscr &= ~FP_FPCC;
2363     env->fpscr |= cc << FPSCR_FPCC;
2364     env->crf[crf_idx] = cc;
2365 
2366     if (vxsnan_flag) {
2367         float_invalid_op_vxsnan(env, GETPC());
2368     }
2369     if (vxvc_flag) {
2370         float_invalid_op_vxvc(env, 0, GETPC());
2371     }
2372 
2373     do_float_check_status(env, GETPC());
2374 }
2375 
2376 void helper_xscmpoqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2377                      ppc_vsr_t *xb)
2378 {
2379     do_scalar_cmpq(env, xa, xb, BF(opcode), true);
2380 }
2381 
2382 void helper_xscmpuqp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xa,
2383                      ppc_vsr_t *xb)
2384 {
2385     do_scalar_cmpq(env, xa, xb, BF(opcode), false);
2386 }
2387 
2388 /*
2389  * VSX_MAX_MIN - VSX floating point maximum/minimum
2390  *   name  - instruction mnemonic
2391  *   op    - operation (max or min)
2392  *   nels  - number of elements (1, 2 or 4)
2393  *   tp    - type (float32 or float64)
2394  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2395  */
2396 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2397 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt,                           \
2398                    ppc_vsr_t *xa, ppc_vsr_t *xb)                              \
2399 {                                                                             \
2400     ppc_vsr_t t = *xt;                                                        \
2401     int i;                                                                    \
2402                                                                               \
2403     for (i = 0; i < nels; i++) {                                              \
2404         t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status);                 \
2405         if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) ||       \
2406                      tp##_is_signaling_nan(xb->fld, &env->fp_status))) {      \
2407             float_invalid_op_vxsnan(env, GETPC());                            \
2408         }                                                                     \
2409     }                                                                         \
2410                                                                               \
2411     *xt = t;                                                                  \
2412     do_float_check_status(env, GETPC());                                      \
2413 }
2414 
2415 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2416 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2417 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2418 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2419 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2420 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2421 
2422 #define VSX_MAX_MINC(name, max)                                               \
2423 void helper_##name(CPUPPCState *env, uint32_t opcode,                         \
2424                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2425 {                                                                             \
2426     ppc_vsr_t t = *xt;                                                        \
2427     bool vxsnan_flag = false, vex_flag = false;                               \
2428                                                                               \
2429     if (unlikely(float64_is_any_nan(xa->VsrD(0)) ||                           \
2430                  float64_is_any_nan(xb->VsrD(0)))) {                          \
2431         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status) ||         \
2432             float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {         \
2433             vxsnan_flag = true;                                               \
2434         }                                                                     \
2435         t.VsrD(0) = xb->VsrD(0);                                              \
2436     } else if ((max &&                                                        \
2437                !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) ||     \
2438                (!max &&                                                       \
2439                float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) {      \
2440         t.VsrD(0) = xa->VsrD(0);                                              \
2441     } else {                                                                  \
2442         t.VsrD(0) = xb->VsrD(0);                                              \
2443     }                                                                         \
2444                                                                               \
2445     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2446     if (vxsnan_flag) {                                                        \
2447         float_invalid_op_vxsnan(env, GETPC());                                \
2448     }                                                                         \
2449     if (!vex_flag) {                                                          \
2450         *xt = t;                                                              \
2451     }                                                                         \
2452 }                                                                             \
2453 
2454 VSX_MAX_MINC(xsmaxcdp, 1);
2455 VSX_MAX_MINC(xsmincdp, 0);
2456 
2457 #define VSX_MAX_MINJ(name, max)                                               \
2458 void helper_##name(CPUPPCState *env, uint32_t opcode,                         \
2459                    ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)               \
2460 {                                                                             \
2461     ppc_vsr_t t = *xt;                                                        \
2462     bool vxsnan_flag = false, vex_flag = false;                               \
2463                                                                               \
2464     if (unlikely(float64_is_any_nan(xa->VsrD(0)))) {                          \
2465         if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) {         \
2466             vxsnan_flag = true;                                               \
2467         }                                                                     \
2468         t.VsrD(0) = xa->VsrD(0);                                              \
2469     } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) {                   \
2470         if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) {         \
2471             vxsnan_flag = true;                                               \
2472         }                                                                     \
2473         t.VsrD(0) = xb->VsrD(0);                                              \
2474     } else if (float64_is_zero(xa->VsrD(0)) &&                                \
2475                float64_is_zero(xb->VsrD(0))) {                                \
2476         if (max) {                                                            \
2477             if (!float64_is_neg(xa->VsrD(0)) ||                               \
2478                 !float64_is_neg(xb->VsrD(0))) {                               \
2479                 t.VsrD(0) = 0ULL;                                             \
2480             } else {                                                          \
2481                 t.VsrD(0) = 0x8000000000000000ULL;                            \
2482             }                                                                 \
2483         } else {                                                              \
2484             if (float64_is_neg(xa->VsrD(0)) ||                                \
2485                 float64_is_neg(xb->VsrD(0))) {                                \
2486                 t.VsrD(0) = 0x8000000000000000ULL;                            \
2487             } else {                                                          \
2488                 t.VsrD(0) = 0ULL;                                             \
2489             }                                                                 \
2490         }                                                                     \
2491     } else if ((max &&                                                        \
2492                !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) ||     \
2493                (!max &&                                                       \
2494                float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) {      \
2495         t.VsrD(0) = xa->VsrD(0);                                              \
2496     } else {                                                                  \
2497         t.VsrD(0) = xb->VsrD(0);                                              \
2498     }                                                                         \
2499                                                                               \
2500     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2501     if (vxsnan_flag) {                                                        \
2502         float_invalid_op_vxsnan(env, GETPC());                                \
2503     }                                                                         \
2504     if (!vex_flag) {                                                          \
2505         *xt = t;                                                              \
2506     }                                                                         \
2507 }                                                                             \
2508 
2509 VSX_MAX_MINJ(xsmaxjdp, 1);
2510 VSX_MAX_MINJ(xsminjdp, 0);
2511 
2512 /*
2513  * VSX_CMP - VSX floating point compare
2514  *   op    - instruction mnemonic
2515  *   nels  - number of elements (1, 2 or 4)
2516  *   tp    - type (float32 or float64)
2517  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2518  *   cmp   - comparison operation
2519  *   svxvc - set VXVC bit
2520  *   exp   - expected result of comparison
2521  */
2522 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2523 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2524                      ppc_vsr_t *xa, ppc_vsr_t *xb)                        \
2525 {                                                                         \
2526     ppc_vsr_t t = *xt;                                                    \
2527     uint32_t crf6 = 0;                                                    \
2528     int i;                                                                \
2529     int all_true = 1;                                                     \
2530     int all_false = 1;                                                    \
2531                                                                           \
2532     for (i = 0; i < nels; i++) {                                          \
2533         if (unlikely(tp##_is_any_nan(xa->fld) ||                          \
2534                      tp##_is_any_nan(xb->fld))) {                         \
2535             if (tp##_is_signaling_nan(xa->fld, &env->fp_status) ||        \
2536                 tp##_is_signaling_nan(xb->fld, &env->fp_status)) {        \
2537                 float_invalid_op_vxsnan(env, GETPC());                    \
2538             }                                                             \
2539             if (svxvc) {                                                  \
2540                 float_invalid_op_vxvc(env, 0, GETPC());                   \
2541             }                                                             \
2542             t.fld = 0;                                                    \
2543             all_true = 0;                                                 \
2544         } else {                                                          \
2545             if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) {   \
2546                 t.fld = -1;                                               \
2547                 all_false = 0;                                            \
2548             } else {                                                      \
2549                 t.fld = 0;                                                \
2550                 all_true = 0;                                             \
2551             }                                                             \
2552         }                                                                 \
2553     }                                                                     \
2554                                                                           \
2555     *xt = t;                                                              \
2556     crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);                  \
2557     return crf6;                                                          \
2558 }
2559 
2560 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2561 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2562 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2563 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2564 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2565 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2566 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2567 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2568 
2569 /*
2570  * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2571  *   op    - instruction mnemonic
2572  *   nels  - number of elements (1, 2 or 4)
2573  *   stp   - source type (float32 or float64)
2574  *   ttp   - target type (float32 or float64)
2575  *   sfld  - source vsr_t field
2576  *   tfld  - target vsr_t field (f32 or f64)
2577  *   sfprf - set FPRF
2578  */
2579 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2580 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2581 {                                                                  \
2582     ppc_vsr_t t = *xt;                                             \
2583     int i;                                                         \
2584                                                                    \
2585     for (i = 0; i < nels; i++) {                                   \
2586         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);        \
2587         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2588                                             &env->fp_status))) {   \
2589             float_invalid_op_vxsnan(env, GETPC());                 \
2590             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2591         }                                                          \
2592         if (sfprf) {                                               \
2593             helper_compute_fprf_##ttp(env, t.tfld);                \
2594         }                                                          \
2595     }                                                              \
2596                                                                    \
2597     *xt = t;                                                       \
2598     do_float_check_status(env, GETPC());                           \
2599 }
2600 
2601 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2602 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2603 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2 * i), 0)
2604 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2 * i), VsrD(i), 0)
2605 
2606 /*
2607  * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2608  *   op    - instruction mnemonic
2609  *   nels  - number of elements (1, 2 or 4)
2610  *   stp   - source type (float32 or float64)
2611  *   ttp   - target type (float32 or float64)
2612  *   sfld  - source vsr_t field
2613  *   tfld  - target vsr_t field (f32 or f64)
2614  *   sfprf - set FPRF
2615  */
2616 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2617 void helper_##op(CPUPPCState *env, uint32_t opcode,                       \
2618                  ppc_vsr_t *xt, ppc_vsr_t *xb)                            \
2619 {                                                                       \
2620     ppc_vsr_t t = *xt;                                                  \
2621     int i;                                                              \
2622                                                                         \
2623     for (i = 0; i < nels; i++) {                                        \
2624         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
2625         if (unlikely(stp##_is_signaling_nan(xb->sfld,                   \
2626                                             &env->fp_status))) {        \
2627             float_invalid_op_vxsnan(env, GETPC());                      \
2628             t.tfld = ttp##_snan_to_qnan(t.tfld);                        \
2629         }                                                               \
2630         if (sfprf) {                                                    \
2631             helper_compute_fprf_##ttp(env, t.tfld);                     \
2632         }                                                               \
2633     }                                                                   \
2634                                                                         \
2635     *xt = t;                                                            \
2636     do_float_check_status(env, GETPC());                                \
2637 }
2638 
2639 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2640 
2641 /*
2642  * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2643  *                       involving one half precision value
2644  *   op    - instruction mnemonic
2645  *   nels  - number of elements (1, 2 or 4)
2646  *   stp   - source type
2647  *   ttp   - target type
2648  *   sfld  - source vsr_t field
2649  *   tfld  - target vsr_t field
2650  *   sfprf - set FPRF
2651  */
2652 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2653 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)   \
2654 {                                                                  \
2655     ppc_vsr_t t = { };                                             \
2656     int i;                                                         \
2657                                                                    \
2658     for (i = 0; i < nels; i++) {                                   \
2659         t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status);     \
2660         if (unlikely(stp##_is_signaling_nan(xb->sfld,              \
2661                                             &env->fp_status))) {   \
2662             float_invalid_op_vxsnan(env, GETPC());                 \
2663             t.tfld = ttp##_snan_to_qnan(t.tfld);                   \
2664         }                                                          \
2665         if (sfprf) {                                               \
2666             helper_compute_fprf_##ttp(env, t.tfld);                \
2667         }                                                          \
2668     }                                                              \
2669                                                                    \
2670     *xt = t;                                                       \
2671     do_float_check_status(env, GETPC());                           \
2672 }
2673 
2674 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2675 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2676 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0)
2677 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2678 
2679 /*
2680  * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2681  * added to this later.
2682  */
2683 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode,
2684                      ppc_vsr_t *xt, ppc_vsr_t *xb)
2685 {
2686     ppc_vsr_t t = { };
2687     float_status tstat;
2688 
2689     tstat = env->fp_status;
2690     if (unlikely(Rc(opcode) != 0)) {
2691         tstat.float_rounding_mode = float_round_to_odd;
2692     }
2693 
2694     t.VsrD(0) = float128_to_float64(xb->f128, &tstat);
2695     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2696     if (unlikely(float128_is_signaling_nan(xb->f128, &tstat))) {
2697         float_invalid_op_vxsnan(env, GETPC());
2698         t.VsrD(0) = float64_snan_to_qnan(t.VsrD(0));
2699     }
2700     helper_compute_fprf_float64(env, t.VsrD(0));
2701 
2702     *xt = t;
2703     do_float_check_status(env, GETPC());
2704 }
2705 
2706 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2707 {
2708     uint64_t result, sign, exp, frac;
2709 
2710     float_status tstat = env->fp_status;
2711     set_float_exception_flags(0, &tstat);
2712 
2713     sign = extract64(xb, 63,  1);
2714     exp  = extract64(xb, 52, 11);
2715     frac = extract64(xb,  0, 52) | 0x10000000000000ULL;
2716 
2717     if (unlikely(exp == 0 && extract64(frac, 0, 52) != 0)) {
2718         /* DP denormal operand.  */
2719         /* Exponent override to DP min exp.  */
2720         exp = 1;
2721         /* Implicit bit override to 0.  */
2722         frac = deposit64(frac, 53, 1, 0);
2723     }
2724 
2725     if (unlikely(exp < 897 && frac != 0)) {
2726         /* SP tiny operand.  */
2727         if (897 - exp > 63) {
2728             frac = 0;
2729         } else {
2730             /* Denormalize until exp = SP min exp.  */
2731             frac >>= (897 - exp);
2732         }
2733         /* Exponent override to SP min exp - 1.  */
2734         exp = 896;
2735     }
2736 
2737     result = sign << 31;
2738     result |= extract64(exp, 10, 1) << 30;
2739     result |= extract64(exp, 0, 7) << 23;
2740     result |= extract64(frac, 29, 23);
2741 
2742     /* hardware replicates result to both words of the doubleword result.  */
2743     return (result << 32) | result;
2744 }
2745 
2746 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2747 {
2748     float_status tstat = env->fp_status;
2749     set_float_exception_flags(0, &tstat);
2750 
2751     return float32_to_float64(xb >> 32, &tstat);
2752 }
2753 
2754 /*
2755  * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2756  *   op    - instruction mnemonic
2757  *   nels  - number of elements (1, 2 or 4)
2758  *   stp   - source type (float32 or float64)
2759  *   ttp   - target type (int32, uint32, int64 or uint64)
2760  *   sfld  - source vsr_t field
2761  *   tfld  - target vsr_t field
2762  *   rnan  - resulting NaN
2763  */
2764 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2765 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)             \
2766 {                                                                            \
2767     int all_flags = env->fp_status.float_exception_flags, flags;             \
2768     ppc_vsr_t t = *xt;                                                       \
2769     int i;                                                                   \
2770                                                                              \
2771     for (i = 0; i < nels; i++) {                                             \
2772         env->fp_status.float_exception_flags = 0;                            \
2773         t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);  \
2774         flags = env->fp_status.float_exception_flags;                        \
2775         if (unlikely(flags & float_flag_invalid)) {                          \
2776             float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld));    \
2777             t.tfld = rnan;                                                   \
2778         }                                                                    \
2779         all_flags |= flags;                                                  \
2780     }                                                                        \
2781                                                                              \
2782     *xt = t;                                                                 \
2783     env->fp_status.float_exception_flags = all_flags;                        \
2784     do_float_check_status(env, GETPC());                                     \
2785 }
2786 
2787 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2788                   0x8000000000000000ULL)
2789 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2790                   0x80000000U)
2791 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2792 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2793 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2794                   0x8000000000000000ULL)
2795 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2 * i), \
2796                   0x80000000U)
2797 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
2798 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2 * i), 0U)
2799 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2 * i), VsrD(i), \
2800                   0x8000000000000000ULL)
2801 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
2802 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2 * i), VsrD(i), 0ULL)
2803 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
2804 
2805 /*
2806  * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2807  *   op    - instruction mnemonic
2808  *   stp   - source type (float32 or float64)
2809  *   ttp   - target type (int32, uint32, int64 or uint64)
2810  *   sfld  - source vsr_t field
2811  *   tfld  - target vsr_t field
2812  *   rnan  - resulting NaN
2813  */
2814 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \
2815 void helper_##op(CPUPPCState *env, uint32_t opcode,                          \
2816                  ppc_vsr_t *xt, ppc_vsr_t *xb)                               \
2817 {                                                                            \
2818     ppc_vsr_t t = { };                                                       \
2819                                                                              \
2820     t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status);      \
2821     if (env->fp_status.float_exception_flags & float_flag_invalid) {         \
2822         float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb->sfld));        \
2823         t.tfld = rnan;                                                       \
2824     }                                                                        \
2825                                                                              \
2826     *xt = t;                                                                 \
2827     do_float_check_status(env, GETPC());                                     \
2828 }
2829 
2830 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \
2831                   0x8000000000000000ULL)
2832 
2833 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \
2834                   0xffffffff80000000ULL)
2835 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
2836 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
2837 
2838 /*
2839  * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2840  *   op    - instruction mnemonic
2841  *   nels  - number of elements (1, 2 or 4)
2842  *   stp   - source type (int32, uint32, int64 or uint64)
2843  *   ttp   - target type (float32 or float64)
2844  *   sfld  - source vsr_t field
2845  *   tfld  - target vsr_t field
2846  *   jdef  - definition of the j index (i or 2*i)
2847  *   sfprf - set FPRF
2848  */
2849 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
2850 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)        \
2851 {                                                                       \
2852     ppc_vsr_t t = *xt;                                                  \
2853     int i;                                                              \
2854                                                                         \
2855     for (i = 0; i < nels; i++) {                                        \
2856         t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);             \
2857         if (r2sp) {                                                     \
2858             t.tfld = helper_frsp(env, t.tfld);                          \
2859         }                                                               \
2860         if (sfprf) {                                                    \
2861             helper_compute_fprf_float64(env, t.tfld);                   \
2862         }                                                               \
2863     }                                                                   \
2864                                                                         \
2865     *xt = t;                                                            \
2866     do_float_check_status(env, GETPC());                                \
2867 }
2868 
2869 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
2870 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
2871 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
2872 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
2873 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
2874 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
2875 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2 * i), VsrD(i), 0, 0)
2876 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2 * i), VsrD(i), 0, 0)
2877 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2 * i), 0, 0)
2878 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2 * i), 0, 0)
2879 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
2880 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
2881 
2882 /*
2883  * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
2884  *   op    - instruction mnemonic
2885  *   stp   - source type (int32, uint32, int64 or uint64)
2886  *   ttp   - target type (float32 or float64)
2887  *   sfld  - source vsr_t field
2888  *   tfld  - target vsr_t field
2889  */
2890 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \
2891 void helper_##op(CPUPPCState *env, uint32_t opcode,                     \
2892                  ppc_vsr_t *xt, ppc_vsr_t *xb)                          \
2893 {                                                                       \
2894     ppc_vsr_t t = *xt;                                                  \
2895                                                                         \
2896     t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status);                 \
2897     helper_compute_fprf_##ttp(env, t.tfld);                             \
2898                                                                         \
2899     *xt = t;                                                            \
2900     do_float_check_status(env, GETPC());                                \
2901 }
2902 
2903 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
2904 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
2905 
2906 /*
2907  * For "use current rounding mode", define a value that will not be
2908  * one of the existing rounding model enums.
2909  */
2910 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2911   float_round_up + float_round_to_zero)
2912 
2913 /*
2914  * VSX_ROUND - VSX floating point round
2915  *   op    - instruction mnemonic
2916  *   nels  - number of elements (1, 2 or 4)
2917  *   tp    - type (float32 or float64)
2918  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2919  *   rmode - rounding mode
2920  *   sfprf - set FPRF
2921  */
2922 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
2923 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)       \
2924 {                                                                      \
2925     ppc_vsr_t t = *xt;                                                 \
2926     int i;                                                             \
2927     FloatRoundMode curr_rounding_mode;                                 \
2928                                                                        \
2929     if (rmode != FLOAT_ROUND_CURRENT) {                                \
2930         curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
2931         set_float_rounding_mode(rmode, &env->fp_status);               \
2932     }                                                                  \
2933                                                                        \
2934     for (i = 0; i < nels; i++) {                                       \
2935         if (unlikely(tp##_is_signaling_nan(xb->fld,                    \
2936                                            &env->fp_status))) {        \
2937             float_invalid_op_vxsnan(env, GETPC());                     \
2938             t.fld = tp##_snan_to_qnan(xb->fld);                        \
2939         } else {                                                       \
2940             t.fld = tp##_round_to_int(xb->fld, &env->fp_status);       \
2941         }                                                              \
2942         if (sfprf) {                                                   \
2943             helper_compute_fprf_float64(env, t.fld);                   \
2944         }                                                              \
2945     }                                                                  \
2946                                                                        \
2947     /*                                                                 \
2948      * If this is not a "use current rounding mode" instruction,       \
2949      * then inhibit setting of the XX bit and restore rounding         \
2950      * mode from FPSCR                                                 \
2951      */                                                                \
2952     if (rmode != FLOAT_ROUND_CURRENT) {                                \
2953         set_float_rounding_mode(curr_rounding_mode, &env->fp_status);  \
2954         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
2955     }                                                                  \
2956                                                                        \
2957     *xt = t;                                                           \
2958     do_float_check_status(env, GETPC());                               \
2959 }
2960 
2961 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
2962 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
2963 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
2964 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
2965 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
2966 
2967 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
2968 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
2969 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
2970 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
2971 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
2972 
2973 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
2974 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
2975 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
2976 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
2977 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
2978 
2979 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2980 {
2981     helper_reset_fpstatus(env);
2982 
2983     uint64_t xt = helper_frsp(env, xb);
2984 
2985     helper_compute_fprf_float64(env, xt);
2986     do_float_check_status(env, GETPC());
2987     return xt;
2988 }
2989 
2990 #define VSX_XXPERM(op, indexed)                                       \
2991 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt,                     \
2992                  ppc_vsr_t *xa, ppc_vsr_t *pcv)                       \
2993 {                                                                     \
2994     ppc_vsr_t t = *xt;                                                \
2995     int i, idx;                                                       \
2996                                                                       \
2997     for (i = 0; i < 16; i++) {                                        \
2998         idx = pcv->VsrB(i) & 0x1F;                                    \
2999         if (indexed) {                                                \
3000             idx = 31 - idx;                                           \
3001         }                                                             \
3002         t.VsrB(i) = (idx <= 15) ? xa->VsrB(idx)                       \
3003                                 : xt->VsrB(idx - 16);                 \
3004     }                                                                 \
3005     *xt = t;                                                          \
3006 }
3007 
3008 VSX_XXPERM(xxperm, 0)
3009 VSX_XXPERM(xxpermr, 1)
3010 
3011 void helper_xvxsigsp(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)
3012 {
3013     ppc_vsr_t t = { };
3014     uint32_t exp, i, fraction;
3015 
3016     for (i = 0; i < 4; i++) {
3017         exp = (xb->VsrW(i) >> 23) & 0xFF;
3018         fraction = xb->VsrW(i) & 0x7FFFFF;
3019         if (exp != 0 && exp != 255) {
3020             t.VsrW(i) = fraction | 0x00800000;
3021         } else {
3022             t.VsrW(i) = fraction;
3023         }
3024     }
3025     *xt = t;
3026 }
3027 
3028 /*
3029  * VSX_TEST_DC - VSX floating point test data class
3030  *   op    - instruction mnemonic
3031  *   nels  - number of elements (1, 2 or 4)
3032  *   xbn   - VSR register number
3033  *   tp    - type (float32 or float64)
3034  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3035  *   tfld   - target vsr_t field (VsrD(*) or VsrW(*))
3036  *   fld_max - target field max
3037  *   scrf - set result in CR and FPCC
3038  */
3039 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf)  \
3040 void helper_##op(CPUPPCState *env, uint32_t opcode)         \
3041 {                                                           \
3042     ppc_vsr_t *xt = &env->vsr[xT(opcode)];                  \
3043     ppc_vsr_t *xb = &env->vsr[xbn];                         \
3044     ppc_vsr_t t = { };                                      \
3045     uint32_t i, sign, dcmx;                                 \
3046     uint32_t cc, match = 0;                                 \
3047                                                             \
3048     if (!scrf) {                                            \
3049         dcmx = DCMX_XV(opcode);                             \
3050     } else {                                                \
3051         t = *xt;                                            \
3052         dcmx = DCMX(opcode);                                \
3053     }                                                       \
3054                                                             \
3055     for (i = 0; i < nels; i++) {                            \
3056         sign = tp##_is_neg(xb->fld);                        \
3057         if (tp##_is_any_nan(xb->fld)) {                     \
3058             match = extract32(dcmx, 6, 1);                  \
3059         } else if (tp##_is_infinity(xb->fld)) {             \
3060             match = extract32(dcmx, 4 + !sign, 1);          \
3061         } else if (tp##_is_zero(xb->fld)) {                 \
3062             match = extract32(dcmx, 2 + !sign, 1);          \
3063         } else if (tp##_is_zero_or_denormal(xb->fld)) {     \
3064             match = extract32(dcmx, 0 + !sign, 1);          \
3065         }                                                   \
3066                                                             \
3067         if (scrf) {                                         \
3068             cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;  \
3069             env->fpscr &= ~FP_FPCC;                         \
3070             env->fpscr |= cc << FPSCR_FPCC;                 \
3071             env->crf[BF(opcode)] = cc;                      \
3072         } else {                                            \
3073             t.tfld = match ? fld_max : 0;                   \
3074         }                                                   \
3075         match = 0;                                          \
3076     }                                                       \
3077     if (!scrf) {                                            \
3078         *xt = t;                                            \
3079     }                                                       \
3080 }
3081 
3082 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3083 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3084 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3085 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3086 
3087 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb)
3088 {
3089     uint32_t dcmx, sign, exp;
3090     uint32_t cc, match = 0, not_sp = 0;
3091 
3092     dcmx = DCMX(opcode);
3093     exp = (xb->VsrD(0) >> 52) & 0x7FF;
3094 
3095     sign = float64_is_neg(xb->VsrD(0));
3096     if (float64_is_any_nan(xb->VsrD(0))) {
3097         match = extract32(dcmx, 6, 1);
3098     } else if (float64_is_infinity(xb->VsrD(0))) {
3099         match = extract32(dcmx, 4 + !sign, 1);
3100     } else if (float64_is_zero(xb->VsrD(0))) {
3101         match = extract32(dcmx, 2 + !sign, 1);
3102     } else if (float64_is_zero_or_denormal(xb->VsrD(0)) ||
3103                (exp > 0 && exp < 0x381)) {
3104         match = extract32(dcmx, 0 + !sign, 1);
3105     }
3106 
3107     not_sp = !float64_eq(xb->VsrD(0),
3108                          float32_to_float64(
3109                              float64_to_float32(xb->VsrD(0), &env->fp_status),
3110                              &env->fp_status), &env->fp_status);
3111 
3112     cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3113     env->fpscr &= ~FP_FPCC;
3114     env->fpscr |= cc << FPSCR_FPCC;
3115     env->crf[BF(opcode)] = cc;
3116 }
3117 
3118 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode,
3119                    ppc_vsr_t *xt, ppc_vsr_t *xb)
3120 {
3121     ppc_vsr_t t = { };
3122     uint8_t r = Rrm(opcode);
3123     uint8_t ex = Rc(opcode);
3124     uint8_t rmc = RMC(opcode);
3125     uint8_t rmode = 0;
3126     float_status tstat;
3127 
3128     helper_reset_fpstatus(env);
3129 
3130     if (r == 0 && rmc == 0) {
3131         rmode = float_round_ties_away;
3132     } else if (r == 0 && rmc == 0x3) {
3133         rmode = fpscr_rn;
3134     } else if (r == 1) {
3135         switch (rmc) {
3136         case 0:
3137             rmode = float_round_nearest_even;
3138             break;
3139         case 1:
3140             rmode = float_round_to_zero;
3141             break;
3142         case 2:
3143             rmode = float_round_up;
3144             break;
3145         case 3:
3146             rmode = float_round_down;
3147             break;
3148         default:
3149             abort();
3150         }
3151     }
3152 
3153     tstat = env->fp_status;
3154     set_float_exception_flags(0, &tstat);
3155     set_float_rounding_mode(rmode, &tstat);
3156     t.f128 = float128_round_to_int(xb->f128, &tstat);
3157     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3158 
3159     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3160         if (float128_is_signaling_nan(xb->f128, &tstat)) {
3161             float_invalid_op_vxsnan(env, GETPC());
3162             t.f128 = float128_snan_to_qnan(t.f128);
3163         }
3164     }
3165 
3166     if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3167         env->fp_status.float_exception_flags &= ~float_flag_inexact;
3168     }
3169 
3170     helper_compute_fprf_float128(env, t.f128);
3171     do_float_check_status(env, GETPC());
3172     *xt = t;
3173 }
3174 
3175 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode,
3176                     ppc_vsr_t *xt, ppc_vsr_t *xb)
3177 {
3178     ppc_vsr_t t = { };
3179     uint8_t r = Rrm(opcode);
3180     uint8_t rmc = RMC(opcode);
3181     uint8_t rmode = 0;
3182     floatx80 round_res;
3183     float_status tstat;
3184 
3185     helper_reset_fpstatus(env);
3186 
3187     if (r == 0 && rmc == 0) {
3188         rmode = float_round_ties_away;
3189     } else if (r == 0 && rmc == 0x3) {
3190         rmode = fpscr_rn;
3191     } else if (r == 1) {
3192         switch (rmc) {
3193         case 0:
3194             rmode = float_round_nearest_even;
3195             break;
3196         case 1:
3197             rmode = float_round_to_zero;
3198             break;
3199         case 2:
3200             rmode = float_round_up;
3201             break;
3202         case 3:
3203             rmode = float_round_down;
3204             break;
3205         default:
3206             abort();
3207         }
3208     }
3209 
3210     tstat = env->fp_status;
3211     set_float_exception_flags(0, &tstat);
3212     set_float_rounding_mode(rmode, &tstat);
3213     round_res = float128_to_floatx80(xb->f128, &tstat);
3214     t.f128 = floatx80_to_float128(round_res, &tstat);
3215     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3216 
3217     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3218         if (float128_is_signaling_nan(xb->f128, &tstat)) {
3219             float_invalid_op_vxsnan(env, GETPC());
3220             t.f128 = float128_snan_to_qnan(t.f128);
3221         }
3222     }
3223 
3224     helper_compute_fprf_float128(env, t.f128);
3225     *xt = t;
3226     do_float_check_status(env, GETPC());
3227 }
3228 
3229 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode,
3230                      ppc_vsr_t *xt, ppc_vsr_t *xb)
3231 {
3232     ppc_vsr_t t = { };
3233     float_status tstat;
3234 
3235     helper_reset_fpstatus(env);
3236 
3237     tstat = env->fp_status;
3238     if (unlikely(Rc(opcode) != 0)) {
3239         tstat.float_rounding_mode = float_round_to_odd;
3240     }
3241 
3242     set_float_exception_flags(0, &tstat);
3243     t.f128 = float128_sqrt(xb->f128, &tstat);
3244     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3245 
3246     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3247         if (float128_is_signaling_nan(xb->f128, &tstat)) {
3248             float_invalid_op_vxsnan(env, GETPC());
3249             t.f128 = float128_snan_to_qnan(xb->f128);
3250         } else if (float128_is_quiet_nan(xb->f128, &tstat)) {
3251             t.f128 = xb->f128;
3252         } else if (float128_is_neg(xb->f128) && !float128_is_zero(xb->f128)) {
3253             float_invalid_op_vxsqrt(env, 1, GETPC());
3254             t.f128 = float128_default_nan(&env->fp_status);
3255         }
3256     }
3257 
3258     helper_compute_fprf_float128(env, t.f128);
3259     *xt = t;
3260     do_float_check_status(env, GETPC());
3261 }
3262 
3263 void helper_xssubqp(CPUPPCState *env, uint32_t opcode,
3264                     ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb)
3265 {
3266     ppc_vsr_t t = *xt;
3267     float_status tstat;
3268 
3269     helper_reset_fpstatus(env);
3270 
3271     tstat = env->fp_status;
3272     if (unlikely(Rc(opcode) != 0)) {
3273         tstat.float_rounding_mode = float_round_to_odd;
3274     }
3275 
3276     set_float_exception_flags(0, &tstat);
3277     t.f128 = float128_sub(xa->f128, xb->f128, &tstat);
3278     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3279 
3280     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3281         float_invalid_op_addsub(env, 1, GETPC(),
3282                                 float128_classify(xa->f128) |
3283                                 float128_classify(xb->f128));
3284     }
3285 
3286     helper_compute_fprf_float128(env, t.f128);
3287     *xt = t;
3288     do_float_check_status(env, GETPC());
3289 }
3290