xref: /openbmc/qemu/target/ppc/fpu_helper.c (revision 1a7c00bb3aa4cf5501343fe041e93227ec33e66f)
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "internal.h"
24 #include "fpu/softfloat.h"
25 
26 static inline float128 float128_snan_to_qnan(float128 x)
27 {
28     float128 r;
29 
30     r.high = x.high | 0x0000800000000000;
31     r.low = x.low;
32     return r;
33 }
34 
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
38 
39 static inline bool fp_exceptions_enabled(CPUPPCState *env)
40 {
41 #ifdef CONFIG_USER_ONLY
42     return true;
43 #else
44     return (env->msr & ((1U << MSR_FE0) | (1U << MSR_FE1))) != 0;
45 #endif
46 }
47 
48 /*****************************************************************************/
49 /* Floating point operations helpers */
50 
51 /*
52  * This is the non-arithmatic conversion that happens e.g. on loads.
53  * In the Power ISA pseudocode, this is called DOUBLE.
54  */
55 uint64_t helper_todouble(uint32_t arg)
56 {
57     uint32_t abs_arg = arg & 0x7fffffff;
58     uint64_t ret;
59 
60     if (likely(abs_arg >= 0x00800000)) {
61         /* Normalized operand, or Inf, or NaN.  */
62         ret  = (uint64_t)extract32(arg, 30, 2) << 62;
63         ret |= ((extract32(arg, 30, 1) ^ 1) * (uint64_t)7) << 59;
64         ret |= (uint64_t)extract32(arg, 0, 30) << 29;
65     } else {
66         /* Zero or Denormalized operand.  */
67         ret = (uint64_t)extract32(arg, 31, 1) << 63;
68         if (unlikely(abs_arg != 0)) {
69             /* Denormalized operand.  */
70             int shift = clz32(abs_arg) - 9;
71             int exp = -126 - shift + 1023;
72             ret |= (uint64_t)exp << 52;
73             ret |= abs_arg << (shift + 29);
74         }
75     }
76     return ret;
77 }
78 
79 /*
80  * This is the non-arithmatic conversion that happens e.g. on stores.
81  * In the Power ISA pseudocode, this is called SINGLE.
82  */
83 uint32_t helper_tosingle(uint64_t arg)
84 {
85     int exp = extract64(arg, 52, 11);
86     uint32_t ret;
87 
88     if (likely(exp > 896)) {
89         /* No denormalization required (includes Inf, NaN).  */
90         ret  = extract64(arg, 62, 2) << 30;
91         ret |= extract64(arg, 29, 30);
92     } else {
93         /* Zero or Denormal result.  If the exponent is in bounds for
94          * a single-precision denormal result, extract the proper bits.
95          * If the input is not zero, and the exponent is out of bounds,
96          * then the result is undefined; this underflows to zero.
97          */
98         ret = extract64(arg, 63, 1) << 31;
99         if (unlikely(exp >= 874)) {
100             /* Denormal result.  */
101             ret |= ((1ULL << 52) | extract64(arg, 0, 52)) >> (896 + 30 - exp);
102         }
103     }
104     return ret;
105 }
106 
107 static inline int ppc_float32_get_unbiased_exp(float32 f)
108 {
109     return ((f >> 23) & 0xFF) - 127;
110 }
111 
112 static inline int ppc_float64_get_unbiased_exp(float64 f)
113 {
114     return ((f >> 52) & 0x7FF) - 1023;
115 }
116 
117 /* Classify a floating-point number.  */
118 enum {
119     is_normal   = 1,
120     is_zero     = 2,
121     is_denormal = 4,
122     is_inf      = 8,
123     is_qnan     = 16,
124     is_snan     = 32,
125     is_neg      = 64,
126 };
127 
128 #define COMPUTE_CLASS(tp)                                      \
129 static int tp##_classify(tp arg)                               \
130 {                                                              \
131     int ret = tp##_is_neg(arg) * is_neg;                       \
132     if (unlikely(tp##_is_any_nan(arg))) {                      \
133         float_status dummy = { };  /* snan_bit_is_one = 0 */   \
134         ret |= (tp##_is_signaling_nan(arg, &dummy)             \
135                 ? is_snan : is_qnan);                          \
136     } else if (unlikely(tp##_is_infinity(arg))) {              \
137         ret |= is_inf;                                         \
138     } else if (tp##_is_zero(arg)) {                            \
139         ret |= is_zero;                                        \
140     } else if (tp##_is_zero_or_denormal(arg)) {                \
141         ret |= is_denormal;                                    \
142     } else {                                                   \
143         ret |= is_normal;                                      \
144     }                                                          \
145     return ret;                                                \
146 }
147 
148 COMPUTE_CLASS(float16)
149 COMPUTE_CLASS(float32)
150 COMPUTE_CLASS(float64)
151 COMPUTE_CLASS(float128)
152 
153 static void set_fprf_from_class(CPUPPCState *env, int class)
154 {
155     static const uint8_t fprf[6][2] = {
156         { 0x04, 0x08 },  /* normalized */
157         { 0x02, 0x12 },  /* zero */
158         { 0x14, 0x18 },  /* denormalized */
159         { 0x05, 0x09 },  /* infinity */
160         { 0x11, 0x11 },  /* qnan */
161         { 0x00, 0x00 },  /* snan -- flags are undefined */
162     };
163     bool isneg = class & is_neg;
164 
165     env->fpscr &= ~(0x1F << FPSCR_FPRF);
166     env->fpscr |= fprf[ctz32(class)][isneg] << FPSCR_FPRF;
167 }
168 
169 #define COMPUTE_FPRF(tp)                                \
170 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
171 {                                                       \
172     set_fprf_from_class(env, tp##_classify(arg));       \
173 }
174 
175 COMPUTE_FPRF(float16)
176 COMPUTE_FPRF(float32)
177 COMPUTE_FPRF(float64)
178 COMPUTE_FPRF(float128)
179 
180 /* Floating-point invalid operations exception */
181 static void finish_invalid_op_excp(CPUPPCState *env, int op, uintptr_t retaddr)
182 {
183     /* Update the floating-point invalid operation summary */
184     env->fpscr |= 1 << FPSCR_VX;
185     /* Update the floating-point exception summary */
186     env->fpscr |= FP_FX;
187     if (fpscr_ve != 0) {
188         /* Update the floating-point enabled exception summary */
189         env->fpscr |= 1 << FPSCR_FEX;
190         if (fp_exceptions_enabled(env)) {
191             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
192                                    POWERPC_EXCP_FP | op, retaddr);
193         }
194     }
195 }
196 
197 static void finish_invalid_op_arith(CPUPPCState *env, int op,
198                                     bool set_fpcc, uintptr_t retaddr)
199 {
200     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
201     if (fpscr_ve == 0) {
202         if (set_fpcc) {
203             env->fpscr &= ~(0xF << FPSCR_FPCC);
204             env->fpscr |= 0x11 << FPSCR_FPCC;
205         }
206     }
207     finish_invalid_op_excp(env, op, retaddr);
208 }
209 
210 /* Signalling NaN */
211 static void float_invalid_op_vxsnan(CPUPPCState *env, uintptr_t retaddr)
212 {
213     env->fpscr |= 1 << FPSCR_VXSNAN;
214     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, retaddr);
215 }
216 
217 /* Magnitude subtraction of infinities */
218 static void float_invalid_op_vxisi(CPUPPCState *env, bool set_fpcc,
219                                    uintptr_t retaddr)
220 {
221     env->fpscr |= 1 << FPSCR_VXISI;
222     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXISI, set_fpcc, retaddr);
223 }
224 
225 /* Division of infinity by infinity */
226 static void float_invalid_op_vxidi(CPUPPCState *env, bool set_fpcc,
227                                    uintptr_t retaddr)
228 {
229     env->fpscr |= 1 << FPSCR_VXIDI;
230     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIDI, set_fpcc, retaddr);
231 }
232 
233 /* Division of zero by zero */
234 static void float_invalid_op_vxzdz(CPUPPCState *env, bool set_fpcc,
235                                    uintptr_t retaddr)
236 {
237     env->fpscr |= 1 << FPSCR_VXZDZ;
238     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXZDZ, set_fpcc, retaddr);
239 }
240 
241 /* Multiplication of zero by infinity */
242 static void float_invalid_op_vximz(CPUPPCState *env, bool set_fpcc,
243                                    uintptr_t retaddr)
244 {
245     env->fpscr |= 1 << FPSCR_VXIMZ;
246     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXIMZ, set_fpcc, retaddr);
247 }
248 
249 /* Square root of a negative number */
250 static void float_invalid_op_vxsqrt(CPUPPCState *env, bool set_fpcc,
251                                     uintptr_t retaddr)
252 {
253     env->fpscr |= 1 << FPSCR_VXSQRT;
254     finish_invalid_op_arith(env, POWERPC_EXCP_FP_VXSQRT, set_fpcc, retaddr);
255 }
256 
257 /* Ordered comparison of NaN */
258 static void float_invalid_op_vxvc(CPUPPCState *env, bool set_fpcc,
259                                   uintptr_t retaddr)
260 {
261     env->fpscr |= 1 << FPSCR_VXVC;
262     if (set_fpcc) {
263         env->fpscr &= ~(0xF << FPSCR_FPCC);
264         env->fpscr |= 0x11 << FPSCR_FPCC;
265     }
266     /* Update the floating-point invalid operation summary */
267     env->fpscr |= 1 << FPSCR_VX;
268     /* Update the floating-point exception summary */
269     env->fpscr |= FP_FX;
270     /* We must update the target FPR before raising the exception */
271     if (fpscr_ve != 0) {
272         CPUState *cs = CPU(ppc_env_get_cpu(env));
273 
274         cs->exception_index = POWERPC_EXCP_PROGRAM;
275         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
276         /* Update the floating-point enabled exception summary */
277         env->fpscr |= 1 << FPSCR_FEX;
278         /* Exception is differed */
279     }
280 }
281 
282 /* Invalid conversion */
283 static void float_invalid_op_vxcvi(CPUPPCState *env, bool set_fpcc,
284                                    uintptr_t retaddr)
285 {
286     env->fpscr |= 1 << FPSCR_VXCVI;
287     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
288     if (fpscr_ve == 0) {
289         if (set_fpcc) {
290             env->fpscr &= ~(0xF << FPSCR_FPCC);
291             env->fpscr |= 0x11 << FPSCR_FPCC;
292         }
293     }
294     finish_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, retaddr);
295 }
296 
297 static inline void float_zero_divide_excp(CPUPPCState *env, uintptr_t raddr)
298 {
299     env->fpscr |= 1 << FPSCR_ZX;
300     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
301     /* Update the floating-point exception summary */
302     env->fpscr |= FP_FX;
303     if (fpscr_ze != 0) {
304         /* Update the floating-point enabled exception summary */
305         env->fpscr |= 1 << FPSCR_FEX;
306         if (fp_exceptions_enabled(env)) {
307             raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
308                                    POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX,
309                                    raddr);
310         }
311     }
312 }
313 
314 static inline void float_overflow_excp(CPUPPCState *env)
315 {
316     CPUState *cs = CPU(ppc_env_get_cpu(env));
317 
318     env->fpscr |= 1 << FPSCR_OX;
319     /* Update the floating-point exception summary */
320     env->fpscr |= FP_FX;
321     if (fpscr_oe != 0) {
322         /* XXX: should adjust the result */
323         /* Update the floating-point enabled exception summary */
324         env->fpscr |= 1 << FPSCR_FEX;
325         /* We must update the target FPR before raising the exception */
326         cs->exception_index = POWERPC_EXCP_PROGRAM;
327         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
328     } else {
329         env->fpscr |= 1 << FPSCR_XX;
330         env->fpscr |= 1 << FPSCR_FI;
331     }
332 }
333 
334 static inline void float_underflow_excp(CPUPPCState *env)
335 {
336     CPUState *cs = CPU(ppc_env_get_cpu(env));
337 
338     env->fpscr |= 1 << FPSCR_UX;
339     /* Update the floating-point exception summary */
340     env->fpscr |= FP_FX;
341     if (fpscr_ue != 0) {
342         /* XXX: should adjust the result */
343         /* Update the floating-point enabled exception summary */
344         env->fpscr |= 1 << FPSCR_FEX;
345         /* We must update the target FPR before raising the exception */
346         cs->exception_index = POWERPC_EXCP_PROGRAM;
347         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
348     }
349 }
350 
351 static inline void float_inexact_excp(CPUPPCState *env)
352 {
353     CPUState *cs = CPU(ppc_env_get_cpu(env));
354 
355     env->fpscr |= 1 << FPSCR_FI;
356     env->fpscr |= 1 << FPSCR_XX;
357     /* Update the floating-point exception summary */
358     env->fpscr |= FP_FX;
359     if (fpscr_xe != 0) {
360         /* Update the floating-point enabled exception summary */
361         env->fpscr |= 1 << FPSCR_FEX;
362         /* We must update the target FPR before raising the exception */
363         cs->exception_index = POWERPC_EXCP_PROGRAM;
364         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
365     }
366 }
367 
368 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
369 {
370     int rnd_type;
371 
372     /* Set rounding mode */
373     switch (fpscr_rn) {
374     case 0:
375         /* Best approximation (round to nearest) */
376         rnd_type = float_round_nearest_even;
377         break;
378     case 1:
379         /* Smaller magnitude (round toward zero) */
380         rnd_type = float_round_to_zero;
381         break;
382     case 2:
383         /* Round toward +infinite */
384         rnd_type = float_round_up;
385         break;
386     default:
387     case 3:
388         /* Round toward -infinite */
389         rnd_type = float_round_down;
390         break;
391     }
392     set_float_rounding_mode(rnd_type, &env->fp_status);
393 }
394 
395 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
396 {
397     int prev;
398 
399     prev = (env->fpscr >> bit) & 1;
400     env->fpscr &= ~(1 << bit);
401     if (prev == 1) {
402         switch (bit) {
403         case FPSCR_RN1:
404         case FPSCR_RN:
405             fpscr_set_rounding_mode(env);
406             break;
407         case FPSCR_VXSNAN:
408         case FPSCR_VXISI:
409         case FPSCR_VXIDI:
410         case FPSCR_VXZDZ:
411         case FPSCR_VXIMZ:
412         case FPSCR_VXVC:
413         case FPSCR_VXSOFT:
414         case FPSCR_VXSQRT:
415         case FPSCR_VXCVI:
416             if (!fpscr_ix) {
417                 /* Set VX bit to zero */
418                 env->fpscr &= ~(1 << FPSCR_VX);
419             }
420             break;
421         case FPSCR_OX:
422         case FPSCR_UX:
423         case FPSCR_ZX:
424         case FPSCR_XX:
425         case FPSCR_VE:
426         case FPSCR_OE:
427         case FPSCR_UE:
428         case FPSCR_ZE:
429         case FPSCR_XE:
430             if (!fpscr_eex) {
431                 /* Set the FEX bit */
432                 env->fpscr &= ~(1 << FPSCR_FEX);
433             }
434             break;
435         default:
436             break;
437         }
438     }
439 }
440 
441 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
442 {
443     CPUState *cs = CPU(ppc_env_get_cpu(env));
444     int prev;
445 
446     prev = (env->fpscr >> bit) & 1;
447     env->fpscr |= 1 << bit;
448     if (prev == 0) {
449         switch (bit) {
450         case FPSCR_VX:
451             env->fpscr |= FP_FX;
452             if (fpscr_ve) {
453                 goto raise_ve;
454             }
455             break;
456         case FPSCR_OX:
457             env->fpscr |= FP_FX;
458             if (fpscr_oe) {
459                 goto raise_oe;
460             }
461             break;
462         case FPSCR_UX:
463             env->fpscr |= FP_FX;
464             if (fpscr_ue) {
465                 goto raise_ue;
466             }
467             break;
468         case FPSCR_ZX:
469             env->fpscr |= FP_FX;
470             if (fpscr_ze) {
471                 goto raise_ze;
472             }
473             break;
474         case FPSCR_XX:
475             env->fpscr |= FP_FX;
476             if (fpscr_xe) {
477                 goto raise_xe;
478             }
479             break;
480         case FPSCR_VXSNAN:
481         case FPSCR_VXISI:
482         case FPSCR_VXIDI:
483         case FPSCR_VXZDZ:
484         case FPSCR_VXIMZ:
485         case FPSCR_VXVC:
486         case FPSCR_VXSOFT:
487         case FPSCR_VXSQRT:
488         case FPSCR_VXCVI:
489             env->fpscr |= 1 << FPSCR_VX;
490             env->fpscr |= FP_FX;
491             if (fpscr_ve != 0) {
492                 goto raise_ve;
493             }
494             break;
495         case FPSCR_VE:
496             if (fpscr_vx != 0) {
497             raise_ve:
498                 env->error_code = POWERPC_EXCP_FP;
499                 if (fpscr_vxsnan) {
500                     env->error_code |= POWERPC_EXCP_FP_VXSNAN;
501                 }
502                 if (fpscr_vxisi) {
503                     env->error_code |= POWERPC_EXCP_FP_VXISI;
504                 }
505                 if (fpscr_vxidi) {
506                     env->error_code |= POWERPC_EXCP_FP_VXIDI;
507                 }
508                 if (fpscr_vxzdz) {
509                     env->error_code |= POWERPC_EXCP_FP_VXZDZ;
510                 }
511                 if (fpscr_vximz) {
512                     env->error_code |= POWERPC_EXCP_FP_VXIMZ;
513                 }
514                 if (fpscr_vxvc) {
515                     env->error_code |= POWERPC_EXCP_FP_VXVC;
516                 }
517                 if (fpscr_vxsoft) {
518                     env->error_code |= POWERPC_EXCP_FP_VXSOFT;
519                 }
520                 if (fpscr_vxsqrt) {
521                     env->error_code |= POWERPC_EXCP_FP_VXSQRT;
522                 }
523                 if (fpscr_vxcvi) {
524                     env->error_code |= POWERPC_EXCP_FP_VXCVI;
525                 }
526                 goto raise_excp;
527             }
528             break;
529         case FPSCR_OE:
530             if (fpscr_ox != 0) {
531             raise_oe:
532                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
533                 goto raise_excp;
534             }
535             break;
536         case FPSCR_UE:
537             if (fpscr_ux != 0) {
538             raise_ue:
539                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
540                 goto raise_excp;
541             }
542             break;
543         case FPSCR_ZE:
544             if (fpscr_zx != 0) {
545             raise_ze:
546                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
547                 goto raise_excp;
548             }
549             break;
550         case FPSCR_XE:
551             if (fpscr_xx != 0) {
552             raise_xe:
553                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
554                 goto raise_excp;
555             }
556             break;
557         case FPSCR_RN1:
558         case FPSCR_RN:
559             fpscr_set_rounding_mode(env);
560             break;
561         default:
562             break;
563         raise_excp:
564             /* Update the floating-point enabled exception summary */
565             env->fpscr |= 1 << FPSCR_FEX;
566             /* We have to update Rc1 before raising the exception */
567             cs->exception_index = POWERPC_EXCP_PROGRAM;
568             break;
569         }
570     }
571 }
572 
573 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
574 {
575     CPUState *cs = CPU(ppc_env_get_cpu(env));
576     target_ulong prev, new;
577     int i;
578 
579     prev = env->fpscr;
580     new = (target_ulong)arg;
581     new &= ~0x60000000LL;
582     new |= prev & 0x60000000LL;
583     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
584         if (mask & (1 << i)) {
585             env->fpscr &= ~(0xFLL << (4 * i));
586             env->fpscr |= new & (0xFLL << (4 * i));
587         }
588     }
589     /* Update VX and FEX */
590     if (fpscr_ix != 0) {
591         env->fpscr |= 1 << FPSCR_VX;
592     } else {
593         env->fpscr &= ~(1 << FPSCR_VX);
594     }
595     if ((fpscr_ex & fpscr_eex) != 0) {
596         env->fpscr |= 1 << FPSCR_FEX;
597         cs->exception_index = POWERPC_EXCP_PROGRAM;
598         /* XXX: we should compute it properly */
599         env->error_code = POWERPC_EXCP_FP;
600     } else {
601         env->fpscr &= ~(1 << FPSCR_FEX);
602     }
603     fpscr_set_rounding_mode(env);
604 }
605 
606 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
607 {
608     helper_store_fpscr(env, arg, mask);
609 }
610 
611 static void do_float_check_status(CPUPPCState *env, uintptr_t raddr)
612 {
613     CPUState *cs = CPU(ppc_env_get_cpu(env));
614     int status = get_float_exception_flags(&env->fp_status);
615     bool inexact_happened = false;
616 
617     if (status & float_flag_overflow) {
618         float_overflow_excp(env);
619     } else if (status & float_flag_underflow) {
620         float_underflow_excp(env);
621     } else if (status & float_flag_inexact) {
622         float_inexact_excp(env);
623         inexact_happened = true;
624     }
625 
626     /* if the inexact flag was not set */
627     if (inexact_happened == false) {
628         env->fpscr &= ~(1 << FPSCR_FI); /* clear the FPSCR[FI] bit */
629     }
630 
631     if (cs->exception_index == POWERPC_EXCP_PROGRAM &&
632         (env->error_code & POWERPC_EXCP_FP)) {
633         /* Differred floating-point exception after target FPR update */
634         if (fp_exceptions_enabled(env)) {
635             raise_exception_err_ra(env, cs->exception_index,
636                                    env->error_code, raddr);
637         }
638     }
639 }
640 
641 void helper_float_check_status(CPUPPCState *env)
642 {
643     do_float_check_status(env, GETPC());
644 }
645 
646 void helper_reset_fpstatus(CPUPPCState *env)
647 {
648     set_float_exception_flags(0, &env->fp_status);
649 }
650 
651 static void float_invalid_op_addsub(CPUPPCState *env, bool set_fpcc,
652                                     uintptr_t retaddr, int classes)
653 {
654     if ((classes & ~is_neg) == is_inf) {
655         /* Magnitude subtraction of infinities */
656         float_invalid_op_vxisi(env, set_fpcc, retaddr);
657     } else if (classes & is_snan) {
658         float_invalid_op_vxsnan(env, retaddr);
659     }
660 }
661 
662 /* fadd - fadd. */
663 float64 helper_fadd(CPUPPCState *env, float64 arg1, float64 arg2)
664 {
665     float64 ret = float64_add(arg1, arg2, &env->fp_status);
666     int status = get_float_exception_flags(&env->fp_status);
667 
668     if (unlikely(status & float_flag_invalid)) {
669         float_invalid_op_addsub(env, 1, GETPC(),
670                                 float64_classify(arg1) |
671                                 float64_classify(arg2));
672     }
673 
674     return ret;
675 }
676 
677 /* fsub - fsub. */
678 float64 helper_fsub(CPUPPCState *env, float64 arg1, float64 arg2)
679 {
680     float64 ret = float64_sub(arg1, arg2, &env->fp_status);
681     int status = get_float_exception_flags(&env->fp_status);
682 
683     if (unlikely(status & float_flag_invalid)) {
684         float_invalid_op_addsub(env, 1, GETPC(),
685                                 float64_classify(arg1) |
686                                 float64_classify(arg2));
687     }
688 
689     return ret;
690 }
691 
692 static void float_invalid_op_mul(CPUPPCState *env, bool set_fprc,
693                                  uintptr_t retaddr, int classes)
694 {
695     if ((classes & (is_zero | is_inf)) == (is_zero | is_inf)) {
696         /* Multiplication of zero by infinity */
697         float_invalid_op_vximz(env, set_fprc, retaddr);
698     } else if (classes & is_snan) {
699         float_invalid_op_vxsnan(env, retaddr);
700     }
701 }
702 
703 /* fmul - fmul. */
704 float64 helper_fmul(CPUPPCState *env, float64 arg1, float64 arg2)
705 {
706     float64 ret = float64_mul(arg1, arg2, &env->fp_status);
707     int status = get_float_exception_flags(&env->fp_status);
708 
709     if (unlikely(status & float_flag_invalid)) {
710         float_invalid_op_mul(env, 1, GETPC(),
711                              float64_classify(arg1) |
712                              float64_classify(arg2));
713     }
714 
715     return ret;
716 }
717 
718 static void float_invalid_op_div(CPUPPCState *env, bool set_fprc,
719                                  uintptr_t retaddr, int classes)
720 {
721     classes &= ~is_neg;
722     if (classes == is_inf) {
723         /* Division of infinity by infinity */
724         float_invalid_op_vxidi(env, set_fprc, retaddr);
725     } else if (classes == is_zero) {
726         /* Division of zero by zero */
727         float_invalid_op_vxzdz(env, set_fprc, retaddr);
728     } else if (classes & is_snan) {
729         float_invalid_op_vxsnan(env, retaddr);
730     }
731 }
732 
733 /* fdiv - fdiv. */
734 float64 helper_fdiv(CPUPPCState *env, float64 arg1, float64 arg2)
735 {
736     float64 ret = float64_div(arg1, arg2, &env->fp_status);
737     int status = get_float_exception_flags(&env->fp_status);
738 
739     if (unlikely(status)) {
740         if (status & float_flag_invalid) {
741             float_invalid_op_div(env, 1, GETPC(),
742                                  float64_classify(arg1) |
743                                  float64_classify(arg2));
744         }
745         if (status & float_flag_divbyzero) {
746             float_zero_divide_excp(env, GETPC());
747         }
748     }
749 
750     return ret;
751 }
752 
753 static void float_invalid_cvt(CPUPPCState *env, bool set_fprc,
754                               uintptr_t retaddr, int class1)
755 {
756     float_invalid_op_vxcvi(env, set_fprc, retaddr);
757     if (class1 & is_snan) {
758         float_invalid_op_vxsnan(env, retaddr);
759     }
760 }
761 
762 #define FPU_FCTI(op, cvt, nanval)                                      \
763 uint64_t helper_##op(CPUPPCState *env, float64 arg)                    \
764 {                                                                      \
765     uint64_t ret = float64_to_##cvt(arg, &env->fp_status);             \
766     int status = get_float_exception_flags(&env->fp_status);           \
767                                                                        \
768     if (unlikely(status)) {                                            \
769         if (status & float_flag_invalid) {                             \
770             float_invalid_cvt(env, 1, GETPC(), float64_classify(arg)); \
771             ret = nanval;                                              \
772         }                                                              \
773         do_float_check_status(env, GETPC());                           \
774     }                                                                  \
775     return ret;                                                        \
776 }
777 
778 FPU_FCTI(fctiw, int32, 0x80000000U)
779 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000U)
780 FPU_FCTI(fctiwu, uint32, 0x00000000U)
781 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000U)
782 FPU_FCTI(fctid, int64, 0x8000000000000000ULL)
783 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000ULL)
784 FPU_FCTI(fctidu, uint64, 0x0000000000000000ULL)
785 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000ULL)
786 
787 #define FPU_FCFI(op, cvtr, is_single)                      \
788 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
789 {                                                          \
790     CPU_DoubleU farg;                                      \
791                                                            \
792     if (is_single) {                                       \
793         float32 tmp = cvtr(arg, &env->fp_status);          \
794         farg.d = float32_to_float64(tmp, &env->fp_status); \
795     } else {                                               \
796         farg.d = cvtr(arg, &env->fp_status);               \
797     }                                                      \
798     do_float_check_status(env, GETPC());                   \
799     return farg.ll;                                        \
800 }
801 
802 FPU_FCFI(fcfid, int64_to_float64, 0)
803 FPU_FCFI(fcfids, int64_to_float32, 1)
804 FPU_FCFI(fcfidu, uint64_to_float64, 0)
805 FPU_FCFI(fcfidus, uint64_to_float32, 1)
806 
807 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
808                               int rounding_mode)
809 {
810     CPU_DoubleU farg;
811 
812     farg.ll = arg;
813 
814     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
815         /* sNaN round */
816         float_invalid_op_vxsnan(env, GETPC());
817         farg.ll = arg | 0x0008000000000000ULL;
818     } else {
819         int inexact = get_float_exception_flags(&env->fp_status) &
820                       float_flag_inexact;
821         set_float_rounding_mode(rounding_mode, &env->fp_status);
822         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
823         /* Restore rounding mode from FPSCR */
824         fpscr_set_rounding_mode(env);
825 
826         /* fri* does not set FPSCR[XX] */
827         if (!inexact) {
828             env->fp_status.float_exception_flags &= ~float_flag_inexact;
829         }
830     }
831     do_float_check_status(env, GETPC());
832     return farg.ll;
833 }
834 
835 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
836 {
837     return do_fri(env, arg, float_round_ties_away);
838 }
839 
840 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
841 {
842     return do_fri(env, arg, float_round_to_zero);
843 }
844 
845 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
846 {
847     return do_fri(env, arg, float_round_up);
848 }
849 
850 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
851 {
852     return do_fri(env, arg, float_round_down);
853 }
854 
855 #define FPU_MADDSUB_UPDATE(NAME, TP)                                    \
856 static void NAME(CPUPPCState *env, TP arg1, TP arg2, TP arg3,           \
857                  unsigned int madd_flags, uintptr_t retaddr)            \
858 {                                                                       \
859     if (TP##_is_signaling_nan(arg1, &env->fp_status) ||                 \
860         TP##_is_signaling_nan(arg2, &env->fp_status) ||                 \
861         TP##_is_signaling_nan(arg3, &env->fp_status)) {                 \
862         /* sNaN operation */                                            \
863         float_invalid_op_vxsnan(env, retaddr);                          \
864     }                                                                   \
865     if ((TP##_is_infinity(arg1) && TP##_is_zero(arg2)) ||               \
866         (TP##_is_zero(arg1) && TP##_is_infinity(arg2))) {               \
867         /* Multiplication of zero by infinity */                        \
868         float_invalid_op_vximz(env, 1, retaddr);                        \
869     }                                                                   \
870     if ((TP##_is_infinity(arg1) || TP##_is_infinity(arg2)) &&           \
871         TP##_is_infinity(arg3)) {                                       \
872         uint8_t aSign, bSign, cSign;                                    \
873                                                                         \
874         aSign = TP##_is_neg(arg1);                                      \
875         bSign = TP##_is_neg(arg2);                                      \
876         cSign = TP##_is_neg(arg3);                                      \
877         if (madd_flags & float_muladd_negate_c) {                       \
878             cSign ^= 1;                                                 \
879         }                                                               \
880         if (aSign ^ bSign ^ cSign) {                                    \
881             float_invalid_op_vxisi(env, 1, retaddr);                    \
882         }                                                               \
883     }                                                                   \
884 }
885 FPU_MADDSUB_UPDATE(float32_maddsub_update_excp, float32)
886 FPU_MADDSUB_UPDATE(float64_maddsub_update_excp, float64)
887 
888 #define FPU_FMADD(op, madd_flags)                                       \
889 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1,                   \
890                      uint64_t arg2, uint64_t arg3)                      \
891 {                                                                       \
892     uint32_t flags;                                                     \
893     float64 ret = float64_muladd(arg1, arg2, arg3, madd_flags,          \
894                                  &env->fp_status);                      \
895     flags = get_float_exception_flags(&env->fp_status);                 \
896     if (flags) {                                                        \
897         if (flags & float_flag_invalid) {                               \
898             float64_maddsub_update_excp(env, arg1, arg2, arg3,          \
899                                         madd_flags, GETPC());           \
900         }                                                               \
901         do_float_check_status(env, GETPC());                            \
902     }                                                                   \
903     return ret;                                                         \
904 }
905 
906 #define MADD_FLGS 0
907 #define MSUB_FLGS float_muladd_negate_c
908 #define NMADD_FLGS float_muladd_negate_result
909 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
910 
911 FPU_FMADD(fmadd, MADD_FLGS)
912 FPU_FMADD(fnmadd, NMADD_FLGS)
913 FPU_FMADD(fmsub, MSUB_FLGS)
914 FPU_FMADD(fnmsub, NMSUB_FLGS)
915 
916 /* frsp - frsp. */
917 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
918 {
919     CPU_DoubleU farg;
920     float32 f32;
921 
922     farg.ll = arg;
923 
924     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
925         float_invalid_op_vxsnan(env, GETPC());
926     }
927     f32 = float64_to_float32(farg.d, &env->fp_status);
928     farg.d = float32_to_float64(f32, &env->fp_status);
929 
930     return farg.ll;
931 }
932 
933 /* fsqrt - fsqrt. */
934 float64 helper_fsqrt(CPUPPCState *env, float64 arg)
935 {
936     float64 ret = float64_sqrt(arg, &env->fp_status);
937     int status = get_float_exception_flags(&env->fp_status);
938 
939     if (unlikely(status & float_flag_invalid)) {
940         if (unlikely(float64_is_any_nan(arg))) {
941             if (unlikely(float64_is_signaling_nan(arg, &env->fp_status))) {
942                 /* sNaN square root */
943                 float_invalid_op_vxsnan(env, GETPC());
944             }
945         } else {
946             /* Square root of a negative nonzero number */
947             float_invalid_op_vxsqrt(env, 1, GETPC());
948         }
949     }
950 
951     return ret;
952 }
953 
954 /* fre - fre. */
955 float64 helper_fre(CPUPPCState *env, float64 arg)
956 {
957     /* "Estimate" the reciprocal with actual division.  */
958     float64 ret = float64_div(float64_one, arg, &env->fp_status);
959     int status = get_float_exception_flags(&env->fp_status);
960 
961     if (unlikely(status)) {
962         if (status & float_flag_invalid) {
963             if (float64_is_signaling_nan(arg, &env->fp_status)) {
964                 /* sNaN reciprocal */
965                 float_invalid_op_vxsnan(env, GETPC());
966             }
967         }
968         if (status & float_flag_divbyzero) {
969             float_zero_divide_excp(env, GETPC());
970             /* For FPSCR.ZE == 0, the result is 1/2.  */
971             ret = float64_set_sign(float64_half, float64_is_neg(arg));
972         }
973     }
974 
975     return ret;
976 }
977 
978 /* fres - fres. */
979 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
980 {
981     CPU_DoubleU farg;
982     float32 f32;
983 
984     farg.ll = arg;
985 
986     if (unlikely(float64_is_signaling_nan(farg.d, &env->fp_status))) {
987         /* sNaN reciprocal */
988         float_invalid_op_vxsnan(env, GETPC());
989     }
990     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
991     f32 = float64_to_float32(farg.d, &env->fp_status);
992     farg.d = float32_to_float64(f32, &env->fp_status);
993 
994     return farg.ll;
995 }
996 
997 /* frsqrte  - frsqrte. */
998 float64 helper_frsqrte(CPUPPCState *env, float64 arg)
999 {
1000     /* "Estimate" the reciprocal with actual division.  */
1001     float64 rets = float64_sqrt(arg, &env->fp_status);
1002     float64 retd = float64_div(float64_one, rets, &env->fp_status);
1003     int status = get_float_exception_flags(&env->fp_status);
1004 
1005     if (unlikely(status)) {
1006         if (status & float_flag_invalid) {
1007             if (float64_is_signaling_nan(arg, &env->fp_status)) {
1008                 /* sNaN reciprocal */
1009                 float_invalid_op_vxsnan(env, GETPC());
1010             } else {
1011                 /* Square root of a negative nonzero number */
1012                 float_invalid_op_vxsqrt(env, 1, GETPC());
1013             }
1014         }
1015         if (status & float_flag_divbyzero) {
1016             /* Reciprocal of (square root of) zero.  */
1017             float_zero_divide_excp(env, GETPC());
1018         }
1019     }
1020 
1021     return retd;
1022 }
1023 
1024 /* fsel - fsel. */
1025 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1026                      uint64_t arg3)
1027 {
1028     CPU_DoubleU farg1;
1029 
1030     farg1.ll = arg1;
1031 
1032     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1033         !float64_is_any_nan(farg1.d)) {
1034         return arg2;
1035     } else {
1036         return arg3;
1037     }
1038 }
1039 
1040 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1041 {
1042     int fe_flag = 0;
1043     int fg_flag = 0;
1044 
1045     if (unlikely(float64_is_infinity(fra) ||
1046                  float64_is_infinity(frb) ||
1047                  float64_is_zero(frb))) {
1048         fe_flag = 1;
1049         fg_flag = 1;
1050     } else {
1051         int e_a = ppc_float64_get_unbiased_exp(fra);
1052         int e_b = ppc_float64_get_unbiased_exp(frb);
1053 
1054         if (unlikely(float64_is_any_nan(fra) ||
1055                      float64_is_any_nan(frb))) {
1056             fe_flag = 1;
1057         } else if ((e_b <= -1022) || (e_b >= 1021)) {
1058             fe_flag = 1;
1059         } else if (!float64_is_zero(fra) &&
1060                    (((e_a - e_b) >= 1023) ||
1061                     ((e_a - e_b) <= -1021) ||
1062                     (e_a <= -970))) {
1063             fe_flag = 1;
1064         }
1065 
1066         if (unlikely(float64_is_zero_or_denormal(frb))) {
1067             /* XB is not zero because of the above check and */
1068             /* so must be denormalized.                      */
1069             fg_flag = 1;
1070         }
1071     }
1072 
1073     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1074 }
1075 
1076 uint32_t helper_ftsqrt(uint64_t frb)
1077 {
1078     int fe_flag = 0;
1079     int fg_flag = 0;
1080 
1081     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1082         fe_flag = 1;
1083         fg_flag = 1;
1084     } else {
1085         int e_b = ppc_float64_get_unbiased_exp(frb);
1086 
1087         if (unlikely(float64_is_any_nan(frb))) {
1088             fe_flag = 1;
1089         } else if (unlikely(float64_is_zero(frb))) {
1090             fe_flag = 1;
1091         } else if (unlikely(float64_is_neg(frb))) {
1092             fe_flag = 1;
1093         } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1094             fe_flag = 1;
1095         }
1096 
1097         if (unlikely(float64_is_zero_or_denormal(frb))) {
1098             /* XB is not zero because of the above check and */
1099             /* therefore must be denormalized.               */
1100             fg_flag = 1;
1101         }
1102     }
1103 
1104     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1105 }
1106 
1107 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1108                   uint32_t crfD)
1109 {
1110     CPU_DoubleU farg1, farg2;
1111     uint32_t ret = 0;
1112 
1113     farg1.ll = arg1;
1114     farg2.ll = arg2;
1115 
1116     if (unlikely(float64_is_any_nan(farg1.d) ||
1117                  float64_is_any_nan(farg2.d))) {
1118         ret = 0x01UL;
1119     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1120         ret = 0x08UL;
1121     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1122         ret = 0x04UL;
1123     } else {
1124         ret = 0x02UL;
1125     }
1126 
1127     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1128     env->fpscr |= ret << FPSCR_FPRF;
1129     env->crf[crfD] = ret;
1130     if (unlikely(ret == 0x01UL
1131                  && (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1132                      float64_is_signaling_nan(farg2.d, &env->fp_status)))) {
1133         /* sNaN comparison */
1134         float_invalid_op_vxsnan(env, GETPC());
1135     }
1136 }
1137 
1138 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1139                   uint32_t crfD)
1140 {
1141     CPU_DoubleU farg1, farg2;
1142     uint32_t ret = 0;
1143 
1144     farg1.ll = arg1;
1145     farg2.ll = arg2;
1146 
1147     if (unlikely(float64_is_any_nan(farg1.d) ||
1148                  float64_is_any_nan(farg2.d))) {
1149         ret = 0x01UL;
1150     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1151         ret = 0x08UL;
1152     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1153         ret = 0x04UL;
1154     } else {
1155         ret = 0x02UL;
1156     }
1157 
1158     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1159     env->fpscr |= ret << FPSCR_FPRF;
1160     env->crf[crfD] = ret;
1161     if (unlikely(ret == 0x01UL)) {
1162         float_invalid_op_vxvc(env, 1, GETPC());
1163         if (float64_is_signaling_nan(farg1.d, &env->fp_status) ||
1164             float64_is_signaling_nan(farg2.d, &env->fp_status)) {
1165             /* sNaN comparison */
1166             float_invalid_op_vxsnan(env, GETPC());
1167         }
1168     }
1169 }
1170 
1171 /* Single-precision floating-point conversions */
1172 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1173 {
1174     CPU_FloatU u;
1175 
1176     u.f = int32_to_float32(val, &env->vec_status);
1177 
1178     return u.l;
1179 }
1180 
1181 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1182 {
1183     CPU_FloatU u;
1184 
1185     u.f = uint32_to_float32(val, &env->vec_status);
1186 
1187     return u.l;
1188 }
1189 
1190 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1191 {
1192     CPU_FloatU u;
1193 
1194     u.l = val;
1195     /* NaN are not treated the same way IEEE 754 does */
1196     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1197         return 0;
1198     }
1199 
1200     return float32_to_int32(u.f, &env->vec_status);
1201 }
1202 
1203 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1204 {
1205     CPU_FloatU u;
1206 
1207     u.l = val;
1208     /* NaN are not treated the same way IEEE 754 does */
1209     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1210         return 0;
1211     }
1212 
1213     return float32_to_uint32(u.f, &env->vec_status);
1214 }
1215 
1216 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1217 {
1218     CPU_FloatU u;
1219 
1220     u.l = val;
1221     /* NaN are not treated the same way IEEE 754 does */
1222     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1223         return 0;
1224     }
1225 
1226     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1227 }
1228 
1229 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1230 {
1231     CPU_FloatU u;
1232 
1233     u.l = val;
1234     /* NaN are not treated the same way IEEE 754 does */
1235     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1236         return 0;
1237     }
1238 
1239     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1240 }
1241 
1242 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1243 {
1244     CPU_FloatU u;
1245     float32 tmp;
1246 
1247     u.f = int32_to_float32(val, &env->vec_status);
1248     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1249     u.f = float32_div(u.f, tmp, &env->vec_status);
1250 
1251     return u.l;
1252 }
1253 
1254 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1255 {
1256     CPU_FloatU u;
1257     float32 tmp;
1258 
1259     u.f = uint32_to_float32(val, &env->vec_status);
1260     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1261     u.f = float32_div(u.f, tmp, &env->vec_status);
1262 
1263     return u.l;
1264 }
1265 
1266 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1267 {
1268     CPU_FloatU u;
1269     float32 tmp;
1270 
1271     u.l = val;
1272     /* NaN are not treated the same way IEEE 754 does */
1273     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1274         return 0;
1275     }
1276     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1277     u.f = float32_mul(u.f, tmp, &env->vec_status);
1278 
1279     return float32_to_int32(u.f, &env->vec_status);
1280 }
1281 
1282 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1283 {
1284     CPU_FloatU u;
1285     float32 tmp;
1286 
1287     u.l = val;
1288     /* NaN are not treated the same way IEEE 754 does */
1289     if (unlikely(float32_is_quiet_nan(u.f, &env->vec_status))) {
1290         return 0;
1291     }
1292     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1293     u.f = float32_mul(u.f, tmp, &env->vec_status);
1294 
1295     return float32_to_uint32(u.f, &env->vec_status);
1296 }
1297 
1298 #define HELPER_SPE_SINGLE_CONV(name)                              \
1299     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1300     {                                                             \
1301         return e##name(env, val);                                 \
1302     }
1303 /* efscfsi */
1304 HELPER_SPE_SINGLE_CONV(fscfsi);
1305 /* efscfui */
1306 HELPER_SPE_SINGLE_CONV(fscfui);
1307 /* efscfuf */
1308 HELPER_SPE_SINGLE_CONV(fscfuf);
1309 /* efscfsf */
1310 HELPER_SPE_SINGLE_CONV(fscfsf);
1311 /* efsctsi */
1312 HELPER_SPE_SINGLE_CONV(fsctsi);
1313 /* efsctui */
1314 HELPER_SPE_SINGLE_CONV(fsctui);
1315 /* efsctsiz */
1316 HELPER_SPE_SINGLE_CONV(fsctsiz);
1317 /* efsctuiz */
1318 HELPER_SPE_SINGLE_CONV(fsctuiz);
1319 /* efsctsf */
1320 HELPER_SPE_SINGLE_CONV(fsctsf);
1321 /* efsctuf */
1322 HELPER_SPE_SINGLE_CONV(fsctuf);
1323 
1324 #define HELPER_SPE_VECTOR_CONV(name)                            \
1325     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1326     {                                                           \
1327         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1328             (uint64_t)e##name(env, val);                        \
1329     }
1330 /* evfscfsi */
1331 HELPER_SPE_VECTOR_CONV(fscfsi);
1332 /* evfscfui */
1333 HELPER_SPE_VECTOR_CONV(fscfui);
1334 /* evfscfuf */
1335 HELPER_SPE_VECTOR_CONV(fscfuf);
1336 /* evfscfsf */
1337 HELPER_SPE_VECTOR_CONV(fscfsf);
1338 /* evfsctsi */
1339 HELPER_SPE_VECTOR_CONV(fsctsi);
1340 /* evfsctui */
1341 HELPER_SPE_VECTOR_CONV(fsctui);
1342 /* evfsctsiz */
1343 HELPER_SPE_VECTOR_CONV(fsctsiz);
1344 /* evfsctuiz */
1345 HELPER_SPE_VECTOR_CONV(fsctuiz);
1346 /* evfsctsf */
1347 HELPER_SPE_VECTOR_CONV(fsctsf);
1348 /* evfsctuf */
1349 HELPER_SPE_VECTOR_CONV(fsctuf);
1350 
1351 /* Single-precision floating-point arithmetic */
1352 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1353 {
1354     CPU_FloatU u1, u2;
1355 
1356     u1.l = op1;
1357     u2.l = op2;
1358     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1359     return u1.l;
1360 }
1361 
1362 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1363 {
1364     CPU_FloatU u1, u2;
1365 
1366     u1.l = op1;
1367     u2.l = op2;
1368     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1369     return u1.l;
1370 }
1371 
1372 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1373 {
1374     CPU_FloatU u1, u2;
1375 
1376     u1.l = op1;
1377     u2.l = op2;
1378     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1379     return u1.l;
1380 }
1381 
1382 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1383 {
1384     CPU_FloatU u1, u2;
1385 
1386     u1.l = op1;
1387     u2.l = op2;
1388     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1389     return u1.l;
1390 }
1391 
1392 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1393     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1394     {                                                                   \
1395         return e##name(env, op1, op2);                                  \
1396     }
1397 /* efsadd */
1398 HELPER_SPE_SINGLE_ARITH(fsadd);
1399 /* efssub */
1400 HELPER_SPE_SINGLE_ARITH(fssub);
1401 /* efsmul */
1402 HELPER_SPE_SINGLE_ARITH(fsmul);
1403 /* efsdiv */
1404 HELPER_SPE_SINGLE_ARITH(fsdiv);
1405 
1406 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1407     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1408     {                                                                   \
1409         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1410             (uint64_t)e##name(env, op1, op2);                           \
1411     }
1412 /* evfsadd */
1413 HELPER_SPE_VECTOR_ARITH(fsadd);
1414 /* evfssub */
1415 HELPER_SPE_VECTOR_ARITH(fssub);
1416 /* evfsmul */
1417 HELPER_SPE_VECTOR_ARITH(fsmul);
1418 /* evfsdiv */
1419 HELPER_SPE_VECTOR_ARITH(fsdiv);
1420 
1421 /* Single-precision floating-point comparisons */
1422 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1423 {
1424     CPU_FloatU u1, u2;
1425 
1426     u1.l = op1;
1427     u2.l = op2;
1428     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1429 }
1430 
1431 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1432 {
1433     CPU_FloatU u1, u2;
1434 
1435     u1.l = op1;
1436     u2.l = op2;
1437     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1438 }
1439 
1440 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1441 {
1442     CPU_FloatU u1, u2;
1443 
1444     u1.l = op1;
1445     u2.l = op2;
1446     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1447 }
1448 
1449 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1450 {
1451     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1452     return efscmplt(env, op1, op2);
1453 }
1454 
1455 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1456 {
1457     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1458     return efscmpgt(env, op1, op2);
1459 }
1460 
1461 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1462 {
1463     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1464     return efscmpeq(env, op1, op2);
1465 }
1466 
1467 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1468     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1469     {                                                                   \
1470         return e##name(env, op1, op2);                                  \
1471     }
1472 /* efststlt */
1473 HELPER_SINGLE_SPE_CMP(fststlt);
1474 /* efststgt */
1475 HELPER_SINGLE_SPE_CMP(fststgt);
1476 /* efststeq */
1477 HELPER_SINGLE_SPE_CMP(fststeq);
1478 /* efscmplt */
1479 HELPER_SINGLE_SPE_CMP(fscmplt);
1480 /* efscmpgt */
1481 HELPER_SINGLE_SPE_CMP(fscmpgt);
1482 /* efscmpeq */
1483 HELPER_SINGLE_SPE_CMP(fscmpeq);
1484 
1485 static inline uint32_t evcmp_merge(int t0, int t1)
1486 {
1487     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1488 }
1489 
1490 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1491     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1492     {                                                                   \
1493         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1494                            e##name(env, op1, op2));                     \
1495     }
1496 /* evfststlt */
1497 HELPER_VECTOR_SPE_CMP(fststlt);
1498 /* evfststgt */
1499 HELPER_VECTOR_SPE_CMP(fststgt);
1500 /* evfststeq */
1501 HELPER_VECTOR_SPE_CMP(fststeq);
1502 /* evfscmplt */
1503 HELPER_VECTOR_SPE_CMP(fscmplt);
1504 /* evfscmpgt */
1505 HELPER_VECTOR_SPE_CMP(fscmpgt);
1506 /* evfscmpeq */
1507 HELPER_VECTOR_SPE_CMP(fscmpeq);
1508 
1509 /* Double-precision floating-point conversion */
1510 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1511 {
1512     CPU_DoubleU u;
1513 
1514     u.d = int32_to_float64(val, &env->vec_status);
1515 
1516     return u.ll;
1517 }
1518 
1519 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1520 {
1521     CPU_DoubleU u;
1522 
1523     u.d = int64_to_float64(val, &env->vec_status);
1524 
1525     return u.ll;
1526 }
1527 
1528 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1529 {
1530     CPU_DoubleU u;
1531 
1532     u.d = uint32_to_float64(val, &env->vec_status);
1533 
1534     return u.ll;
1535 }
1536 
1537 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1538 {
1539     CPU_DoubleU u;
1540 
1541     u.d = uint64_to_float64(val, &env->vec_status);
1542 
1543     return u.ll;
1544 }
1545 
1546 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1547 {
1548     CPU_DoubleU u;
1549 
1550     u.ll = val;
1551     /* NaN are not treated the same way IEEE 754 does */
1552     if (unlikely(float64_is_any_nan(u.d))) {
1553         return 0;
1554     }
1555 
1556     return float64_to_int32(u.d, &env->vec_status);
1557 }
1558 
1559 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1560 {
1561     CPU_DoubleU u;
1562 
1563     u.ll = val;
1564     /* NaN are not treated the same way IEEE 754 does */
1565     if (unlikely(float64_is_any_nan(u.d))) {
1566         return 0;
1567     }
1568 
1569     return float64_to_uint32(u.d, &env->vec_status);
1570 }
1571 
1572 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1573 {
1574     CPU_DoubleU u;
1575 
1576     u.ll = val;
1577     /* NaN are not treated the same way IEEE 754 does */
1578     if (unlikely(float64_is_any_nan(u.d))) {
1579         return 0;
1580     }
1581 
1582     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1583 }
1584 
1585 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1586 {
1587     CPU_DoubleU u;
1588 
1589     u.ll = val;
1590     /* NaN are not treated the same way IEEE 754 does */
1591     if (unlikely(float64_is_any_nan(u.d))) {
1592         return 0;
1593     }
1594 
1595     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1596 }
1597 
1598 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1599 {
1600     CPU_DoubleU u;
1601 
1602     u.ll = val;
1603     /* NaN are not treated the same way IEEE 754 does */
1604     if (unlikely(float64_is_any_nan(u.d))) {
1605         return 0;
1606     }
1607 
1608     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1609 }
1610 
1611 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1612 {
1613     CPU_DoubleU u;
1614 
1615     u.ll = val;
1616     /* NaN are not treated the same way IEEE 754 does */
1617     if (unlikely(float64_is_any_nan(u.d))) {
1618         return 0;
1619     }
1620 
1621     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1622 }
1623 
1624 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1625 {
1626     CPU_DoubleU u;
1627     float64 tmp;
1628 
1629     u.d = int32_to_float64(val, &env->vec_status);
1630     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1631     u.d = float64_div(u.d, tmp, &env->vec_status);
1632 
1633     return u.ll;
1634 }
1635 
1636 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1637 {
1638     CPU_DoubleU u;
1639     float64 tmp;
1640 
1641     u.d = uint32_to_float64(val, &env->vec_status);
1642     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1643     u.d = float64_div(u.d, tmp, &env->vec_status);
1644 
1645     return u.ll;
1646 }
1647 
1648 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1649 {
1650     CPU_DoubleU u;
1651     float64 tmp;
1652 
1653     u.ll = val;
1654     /* NaN are not treated the same way IEEE 754 does */
1655     if (unlikely(float64_is_any_nan(u.d))) {
1656         return 0;
1657     }
1658     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1659     u.d = float64_mul(u.d, tmp, &env->vec_status);
1660 
1661     return float64_to_int32(u.d, &env->vec_status);
1662 }
1663 
1664 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1665 {
1666     CPU_DoubleU u;
1667     float64 tmp;
1668 
1669     u.ll = val;
1670     /* NaN are not treated the same way IEEE 754 does */
1671     if (unlikely(float64_is_any_nan(u.d))) {
1672         return 0;
1673     }
1674     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1675     u.d = float64_mul(u.d, tmp, &env->vec_status);
1676 
1677     return float64_to_uint32(u.d, &env->vec_status);
1678 }
1679 
1680 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1681 {
1682     CPU_DoubleU u1;
1683     CPU_FloatU u2;
1684 
1685     u1.ll = val;
1686     u2.f = float64_to_float32(u1.d, &env->vec_status);
1687 
1688     return u2.l;
1689 }
1690 
1691 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1692 {
1693     CPU_DoubleU u2;
1694     CPU_FloatU u1;
1695 
1696     u1.l = val;
1697     u2.d = float32_to_float64(u1.f, &env->vec_status);
1698 
1699     return u2.ll;
1700 }
1701 
1702 /* Double precision fixed-point arithmetic */
1703 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1704 {
1705     CPU_DoubleU u1, u2;
1706 
1707     u1.ll = op1;
1708     u2.ll = op2;
1709     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1710     return u1.ll;
1711 }
1712 
1713 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1714 {
1715     CPU_DoubleU u1, u2;
1716 
1717     u1.ll = op1;
1718     u2.ll = op2;
1719     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1720     return u1.ll;
1721 }
1722 
1723 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1724 {
1725     CPU_DoubleU u1, u2;
1726 
1727     u1.ll = op1;
1728     u2.ll = op2;
1729     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1730     return u1.ll;
1731 }
1732 
1733 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1734 {
1735     CPU_DoubleU u1, u2;
1736 
1737     u1.ll = op1;
1738     u2.ll = op2;
1739     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1740     return u1.ll;
1741 }
1742 
1743 /* Double precision floating point helpers */
1744 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1745 {
1746     CPU_DoubleU u1, u2;
1747 
1748     u1.ll = op1;
1749     u2.ll = op2;
1750     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1751 }
1752 
1753 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1754 {
1755     CPU_DoubleU u1, u2;
1756 
1757     u1.ll = op1;
1758     u2.ll = op2;
1759     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1760 }
1761 
1762 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1763 {
1764     CPU_DoubleU u1, u2;
1765 
1766     u1.ll = op1;
1767     u2.ll = op2;
1768     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1769 }
1770 
1771 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1772 {
1773     /* XXX: TODO: test special values (NaN, infinites, ...) */
1774     return helper_efdtstlt(env, op1, op2);
1775 }
1776 
1777 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1778 {
1779     /* XXX: TODO: test special values (NaN, infinites, ...) */
1780     return helper_efdtstgt(env, op1, op2);
1781 }
1782 
1783 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1784 {
1785     /* XXX: TODO: test special values (NaN, infinites, ...) */
1786     return helper_efdtsteq(env, op1, op2);
1787 }
1788 
1789 #define float64_to_float64(x, env) x
1790 
1791 
1792 /* VSX_ADD_SUB - VSX floating point add/subract
1793  *   name  - instruction mnemonic
1794  *   op    - operation (add or sub)
1795  *   nels  - number of elements (1, 2 or 4)
1796  *   tp    - type (float32 or float64)
1797  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1798  *   sfprf - set FPRF
1799  */
1800 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1801 void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
1802 {                                                                            \
1803     ppc_vsr_t xt, xa, xb;                                                    \
1804     int i;                                                                   \
1805                                                                              \
1806     getVSR(xA(opcode), &xa, env);                                            \
1807     getVSR(xB(opcode), &xb, env);                                            \
1808     getVSR(xT(opcode), &xt, env);                                            \
1809     helper_reset_fpstatus(env);                                              \
1810                                                                              \
1811     for (i = 0; i < nels; i++) {                                             \
1812         float_status tstat = env->fp_status;                                 \
1813         set_float_exception_flags(0, &tstat);                                \
1814         xt.fld = tp##_##op(xa.fld, xb.fld, &tstat);                          \
1815         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1816                                                                              \
1817         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1818             float_invalid_op_addsub(env, sfprf, GETPC(),                     \
1819                                     tp##_classify(xa.fld) |                  \
1820                                     tp##_classify(xb.fld));                  \
1821         }                                                                    \
1822                                                                              \
1823         if (r2sp) {                                                          \
1824             xt.fld = helper_frsp(env, xt.fld);                               \
1825         }                                                                    \
1826                                                                              \
1827         if (sfprf) {                                                         \
1828             helper_compute_fprf_float64(env, xt.fld);                        \
1829         }                                                                    \
1830     }                                                                        \
1831     putVSR(xT(opcode), &xt, env);                                            \
1832     do_float_check_status(env, GETPC());                                     \
1833 }
1834 
1835 VSX_ADD_SUB(xsadddp, add, 1, float64, VsrD(0), 1, 0)
1836 VSX_ADD_SUB(xsaddsp, add, 1, float64, VsrD(0), 1, 1)
1837 VSX_ADD_SUB(xvadddp, add, 2, float64, VsrD(i), 0, 0)
1838 VSX_ADD_SUB(xvaddsp, add, 4, float32, VsrW(i), 0, 0)
1839 VSX_ADD_SUB(xssubdp, sub, 1, float64, VsrD(0), 1, 0)
1840 VSX_ADD_SUB(xssubsp, sub, 1, float64, VsrD(0), 1, 1)
1841 VSX_ADD_SUB(xvsubdp, sub, 2, float64, VsrD(i), 0, 0)
1842 VSX_ADD_SUB(xvsubsp, sub, 4, float32, VsrW(i), 0, 0)
1843 
1844 void helper_xsaddqp(CPUPPCState *env, uint32_t opcode)
1845 {
1846     ppc_vsr_t xt, xa, xb;
1847     float_status tstat;
1848 
1849     getVSR(rA(opcode) + 32, &xa, env);
1850     getVSR(rB(opcode) + 32, &xb, env);
1851     getVSR(rD(opcode) + 32, &xt, env);
1852     helper_reset_fpstatus(env);
1853 
1854     tstat = env->fp_status;
1855     if (unlikely(Rc(opcode) != 0)) {
1856         tstat.float_rounding_mode = float_round_to_odd;
1857     }
1858 
1859     set_float_exception_flags(0, &tstat);
1860     xt.f128 = float128_add(xa.f128, xb.f128, &tstat);
1861     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1862 
1863     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1864         float_invalid_op_addsub(env, 1, GETPC(),
1865                                 float128_classify(xa.f128) |
1866                                 float128_classify(xb.f128));
1867     }
1868 
1869     helper_compute_fprf_float128(env, xt.f128);
1870 
1871     putVSR(rD(opcode) + 32, &xt, env);
1872     do_float_check_status(env, GETPC());
1873 }
1874 
1875 /* VSX_MUL - VSX floating point multiply
1876  *   op    - instruction mnemonic
1877  *   nels  - number of elements (1, 2 or 4)
1878  *   tp    - type (float32 or float64)
1879  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1880  *   sfprf - set FPRF
1881  */
1882 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1883 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1884 {                                                                            \
1885     ppc_vsr_t xt, xa, xb;                                                    \
1886     int i;                                                                   \
1887                                                                              \
1888     getVSR(xA(opcode), &xa, env);                                            \
1889     getVSR(xB(opcode), &xb, env);                                            \
1890     getVSR(xT(opcode), &xt, env);                                            \
1891     helper_reset_fpstatus(env);                                              \
1892                                                                              \
1893     for (i = 0; i < nels; i++) {                                             \
1894         float_status tstat = env->fp_status;                                 \
1895         set_float_exception_flags(0, &tstat);                                \
1896         xt.fld = tp##_mul(xa.fld, xb.fld, &tstat);                           \
1897         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1898                                                                              \
1899         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1900             float_invalid_op_mul(env, sfprf, GETPC(),                        \
1901                                  tp##_classify(xa.fld) |                     \
1902                                  tp##_classify(xb.fld));                     \
1903         }                                                                    \
1904                                                                              \
1905         if (r2sp) {                                                          \
1906             xt.fld = helper_frsp(env, xt.fld);                               \
1907         }                                                                    \
1908                                                                              \
1909         if (sfprf) {                                                         \
1910             helper_compute_fprf_float64(env, xt.fld);                        \
1911         }                                                                    \
1912     }                                                                        \
1913                                                                              \
1914     putVSR(xT(opcode), &xt, env);                                            \
1915     do_float_check_status(env, GETPC());                                     \
1916 }
1917 
1918 VSX_MUL(xsmuldp, 1, float64, VsrD(0), 1, 0)
1919 VSX_MUL(xsmulsp, 1, float64, VsrD(0), 1, 1)
1920 VSX_MUL(xvmuldp, 2, float64, VsrD(i), 0, 0)
1921 VSX_MUL(xvmulsp, 4, float32, VsrW(i), 0, 0)
1922 
1923 void helper_xsmulqp(CPUPPCState *env, uint32_t opcode)
1924 {
1925     ppc_vsr_t xt, xa, xb;
1926     float_status tstat;
1927 
1928     getVSR(rA(opcode) + 32, &xa, env);
1929     getVSR(rB(opcode) + 32, &xb, env);
1930     getVSR(rD(opcode) + 32, &xt, env);
1931 
1932     helper_reset_fpstatus(env);
1933     tstat = env->fp_status;
1934     if (unlikely(Rc(opcode) != 0)) {
1935         tstat.float_rounding_mode = float_round_to_odd;
1936     }
1937 
1938     set_float_exception_flags(0, &tstat);
1939     xt.f128 = float128_mul(xa.f128, xb.f128, &tstat);
1940     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
1941 
1942     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
1943         float_invalid_op_mul(env, 1, GETPC(),
1944                              float128_classify(xa.f128) |
1945                              float128_classify(xb.f128));
1946     }
1947     helper_compute_fprf_float128(env, xt.f128);
1948 
1949     putVSR(rD(opcode) + 32, &xt, env);
1950     do_float_check_status(env, GETPC());
1951 }
1952 
1953 /* VSX_DIV - VSX floating point divide
1954  *   op    - instruction mnemonic
1955  *   nels  - number of elements (1, 2 or 4)
1956  *   tp    - type (float32 or float64)
1957  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
1958  *   sfprf - set FPRF
1959  */
1960 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1961 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1962 {                                                                             \
1963     ppc_vsr_t xt, xa, xb;                                                     \
1964     int i;                                                                    \
1965                                                                               \
1966     getVSR(xA(opcode), &xa, env);                                             \
1967     getVSR(xB(opcode), &xb, env);                                             \
1968     getVSR(xT(opcode), &xt, env);                                             \
1969     helper_reset_fpstatus(env);                                               \
1970                                                                               \
1971     for (i = 0; i < nels; i++) {                                              \
1972         float_status tstat = env->fp_status;                                  \
1973         set_float_exception_flags(0, &tstat);                                 \
1974         xt.fld = tp##_div(xa.fld, xb.fld, &tstat);                            \
1975         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1976                                                                               \
1977         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1978             float_invalid_op_div(env, sfprf, GETPC(),                         \
1979                                  tp##_classify(xa.fld) |                      \
1980                                  tp##_classify(xb.fld));                      \
1981         }                                                                     \
1982         if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {   \
1983             float_zero_divide_excp(env, GETPC());                             \
1984         }                                                                     \
1985                                                                               \
1986         if (r2sp) {                                                           \
1987             xt.fld = helper_frsp(env, xt.fld);                                \
1988         }                                                                     \
1989                                                                               \
1990         if (sfprf) {                                                          \
1991             helper_compute_fprf_float64(env, xt.fld);                         \
1992         }                                                                     \
1993     }                                                                         \
1994                                                                               \
1995     putVSR(xT(opcode), &xt, env);                                             \
1996     do_float_check_status(env, GETPC());                                      \
1997 }
1998 
1999 VSX_DIV(xsdivdp, 1, float64, VsrD(0), 1, 0)
2000 VSX_DIV(xsdivsp, 1, float64, VsrD(0), 1, 1)
2001 VSX_DIV(xvdivdp, 2, float64, VsrD(i), 0, 0)
2002 VSX_DIV(xvdivsp, 4, float32, VsrW(i), 0, 0)
2003 
2004 void helper_xsdivqp(CPUPPCState *env, uint32_t opcode)
2005 {
2006     ppc_vsr_t xt, xa, xb;
2007     float_status tstat;
2008 
2009     getVSR(rA(opcode) + 32, &xa, env);
2010     getVSR(rB(opcode) + 32, &xb, env);
2011     getVSR(rD(opcode) + 32, &xt, env);
2012 
2013     helper_reset_fpstatus(env);
2014     tstat = env->fp_status;
2015     if (unlikely(Rc(opcode) != 0)) {
2016         tstat.float_rounding_mode = float_round_to_odd;
2017     }
2018 
2019     set_float_exception_flags(0, &tstat);
2020     xt.f128 = float128_div(xa.f128, xb.f128, &tstat);
2021     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2022 
2023     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
2024         float_invalid_op_div(env, 1, GETPC(),
2025                              float128_classify(xa.f128) |
2026                              float128_classify(xb.f128));
2027     }
2028     if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) {
2029         float_zero_divide_excp(env, GETPC());
2030     }
2031 
2032     helper_compute_fprf_float128(env, xt.f128);
2033     putVSR(rD(opcode) + 32, &xt, env);
2034     do_float_check_status(env, GETPC());
2035 }
2036 
2037 /* VSX_RE  - VSX floating point reciprocal estimate
2038  *   op    - instruction mnemonic
2039  *   nels  - number of elements (1, 2 or 4)
2040  *   tp    - type (float32 or float64)
2041  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2042  *   sfprf - set FPRF
2043  */
2044 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
2045 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2046 {                                                                             \
2047     ppc_vsr_t xt, xb;                                                         \
2048     int i;                                                                    \
2049                                                                               \
2050     getVSR(xB(opcode), &xb, env);                                             \
2051     getVSR(xT(opcode), &xt, env);                                             \
2052     helper_reset_fpstatus(env);                                               \
2053                                                                               \
2054     for (i = 0; i < nels; i++) {                                              \
2055         if (unlikely(tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
2056             float_invalid_op_vxsnan(env, GETPC());                            \
2057         }                                                                     \
2058         xt.fld = tp##_div(tp##_one, xb.fld, &env->fp_status);                 \
2059                                                                               \
2060         if (r2sp) {                                                           \
2061             xt.fld = helper_frsp(env, xt.fld);                                \
2062         }                                                                     \
2063                                                                               \
2064         if (sfprf) {                                                          \
2065             helper_compute_fprf_float64(env, xt.fld);                         \
2066         }                                                                     \
2067     }                                                                         \
2068                                                                               \
2069     putVSR(xT(opcode), &xt, env);                                             \
2070     do_float_check_status(env, GETPC());                                      \
2071 }
2072 
2073 VSX_RE(xsredp, 1, float64, VsrD(0), 1, 0)
2074 VSX_RE(xsresp, 1, float64, VsrD(0), 1, 1)
2075 VSX_RE(xvredp, 2, float64, VsrD(i), 0, 0)
2076 VSX_RE(xvresp, 4, float32, VsrW(i), 0, 0)
2077 
2078 /* VSX_SQRT - VSX floating point square root
2079  *   op    - instruction mnemonic
2080  *   nels  - number of elements (1, 2 or 4)
2081  *   tp    - type (float32 or float64)
2082  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2083  *   sfprf - set FPRF
2084  */
2085 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
2086 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2087 {                                                                            \
2088     ppc_vsr_t xt, xb;                                                        \
2089     int i;                                                                   \
2090                                                                              \
2091     getVSR(xB(opcode), &xb, env);                                            \
2092     getVSR(xT(opcode), &xt, env);                                            \
2093     helper_reset_fpstatus(env);                                              \
2094                                                                              \
2095     for (i = 0; i < nels; i++) {                                             \
2096         float_status tstat = env->fp_status;                                 \
2097         set_float_exception_flags(0, &tstat);                                \
2098         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2099         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2100                                                                              \
2101         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2102             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2103                 float_invalid_op_vxsqrt(env, sfprf, GETPC());                \
2104             } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
2105                 float_invalid_op_vxsnan(env, GETPC());                       \
2106             }                                                                \
2107         }                                                                    \
2108                                                                              \
2109         if (r2sp) {                                                          \
2110             xt.fld = helper_frsp(env, xt.fld);                               \
2111         }                                                                    \
2112                                                                              \
2113         if (sfprf) {                                                         \
2114             helper_compute_fprf_float64(env, xt.fld);                        \
2115         }                                                                    \
2116     }                                                                        \
2117                                                                              \
2118     putVSR(xT(opcode), &xt, env);                                            \
2119     do_float_check_status(env, GETPC());                                     \
2120 }
2121 
2122 VSX_SQRT(xssqrtdp, 1, float64, VsrD(0), 1, 0)
2123 VSX_SQRT(xssqrtsp, 1, float64, VsrD(0), 1, 1)
2124 VSX_SQRT(xvsqrtdp, 2, float64, VsrD(i), 0, 0)
2125 VSX_SQRT(xvsqrtsp, 4, float32, VsrW(i), 0, 0)
2126 
2127 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2128  *   op    - instruction mnemonic
2129  *   nels  - number of elements (1, 2 or 4)
2130  *   tp    - type (float32 or float64)
2131  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2132  *   sfprf - set FPRF
2133  */
2134 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2135 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2136 {                                                                            \
2137     ppc_vsr_t xt, xb;                                                        \
2138     int i;                                                                   \
2139                                                                              \
2140     getVSR(xB(opcode), &xb, env);                                            \
2141     getVSR(xT(opcode), &xt, env);                                            \
2142     helper_reset_fpstatus(env);                                              \
2143                                                                              \
2144     for (i = 0; i < nels; i++) {                                             \
2145         float_status tstat = env->fp_status;                                 \
2146         set_float_exception_flags(0, &tstat);                                \
2147         xt.fld = tp##_sqrt(xb.fld, &tstat);                                  \
2148         xt.fld = tp##_div(tp##_one, xt.fld, &tstat);                         \
2149         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2150                                                                              \
2151         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2152             if (tp##_is_neg(xb.fld) && !tp##_is_zero(xb.fld)) {              \
2153                 float_invalid_op_vxsqrt(env, sfprf, GETPC());                \
2154             } else if (tp##_is_signaling_nan(xb.fld, &tstat)) {              \
2155                 float_invalid_op_vxsnan(env, GETPC());                       \
2156             }                                                                \
2157         }                                                                    \
2158                                                                              \
2159         if (r2sp) {                                                          \
2160             xt.fld = helper_frsp(env, xt.fld);                               \
2161         }                                                                    \
2162                                                                              \
2163         if (sfprf) {                                                         \
2164             helper_compute_fprf_float64(env, xt.fld);                        \
2165         }                                                                    \
2166     }                                                                        \
2167                                                                              \
2168     putVSR(xT(opcode), &xt, env);                                            \
2169     do_float_check_status(env, GETPC());                                     \
2170 }
2171 
2172 VSX_RSQRTE(xsrsqrtedp, 1, float64, VsrD(0), 1, 0)
2173 VSX_RSQRTE(xsrsqrtesp, 1, float64, VsrD(0), 1, 1)
2174 VSX_RSQRTE(xvrsqrtedp, 2, float64, VsrD(i), 0, 0)
2175 VSX_RSQRTE(xvrsqrtesp, 4, float32, VsrW(i), 0, 0)
2176 
2177 /* VSX_TDIV - VSX floating point test for divide
2178  *   op    - instruction mnemonic
2179  *   nels  - number of elements (1, 2 or 4)
2180  *   tp    - type (float32 or float64)
2181  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2182  *   emin  - minimum unbiased exponent
2183  *   emax  - maximum unbiased exponent
2184  *   nbits - number of fraction bits
2185  */
2186 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2187 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2188 {                                                                       \
2189     ppc_vsr_t xa, xb;                                                   \
2190     int i;                                                              \
2191     int fe_flag = 0;                                                    \
2192     int fg_flag = 0;                                                    \
2193                                                                         \
2194     getVSR(xA(opcode), &xa, env);                                       \
2195     getVSR(xB(opcode), &xb, env);                                       \
2196                                                                         \
2197     for (i = 0; i < nels; i++) {                                        \
2198         if (unlikely(tp##_is_infinity(xa.fld) ||                        \
2199                      tp##_is_infinity(xb.fld) ||                        \
2200                      tp##_is_zero(xb.fld))) {                           \
2201             fe_flag = 1;                                                \
2202             fg_flag = 1;                                                \
2203         } else {                                                        \
2204             int e_a = ppc_##tp##_get_unbiased_exp(xa.fld);              \
2205             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2206                                                                         \
2207             if (unlikely(tp##_is_any_nan(xa.fld) ||                     \
2208                          tp##_is_any_nan(xb.fld))) {                    \
2209                 fe_flag = 1;                                            \
2210             } else if ((e_b <= emin) || (e_b >= (emax-2))) {            \
2211                 fe_flag = 1;                                            \
2212             } else if (!tp##_is_zero(xa.fld) &&                         \
2213                        (((e_a - e_b) >= emax) ||                        \
2214                         ((e_a - e_b) <= (emin+1)) ||                    \
2215                          (e_a <= (emin+nbits)))) {                      \
2216                 fe_flag = 1;                                            \
2217             }                                                           \
2218                                                                         \
2219             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2220                 /* XB is not zero because of the above check and */     \
2221                 /* so must be denormalized.                      */     \
2222                 fg_flag = 1;                                            \
2223             }                                                           \
2224         }                                                               \
2225     }                                                                   \
2226                                                                         \
2227     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2228 }
2229 
2230 VSX_TDIV(xstdivdp, 1, float64, VsrD(0), -1022, 1023, 52)
2231 VSX_TDIV(xvtdivdp, 2, float64, VsrD(i), -1022, 1023, 52)
2232 VSX_TDIV(xvtdivsp, 4, float32, VsrW(i), -126, 127, 23)
2233 
2234 /* VSX_TSQRT - VSX floating point test for square root
2235  *   op    - instruction mnemonic
2236  *   nels  - number of elements (1, 2 or 4)
2237  *   tp    - type (float32 or float64)
2238  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2239  *   emin  - minimum unbiased exponent
2240  *   emax  - maximum unbiased exponent
2241  *   nbits - number of fraction bits
2242  */
2243 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2244 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2245 {                                                                       \
2246     ppc_vsr_t xa, xb;                                                   \
2247     int i;                                                              \
2248     int fe_flag = 0;                                                    \
2249     int fg_flag = 0;                                                    \
2250                                                                         \
2251     getVSR(xA(opcode), &xa, env);                                       \
2252     getVSR(xB(opcode), &xb, env);                                       \
2253                                                                         \
2254     for (i = 0; i < nels; i++) {                                        \
2255         if (unlikely(tp##_is_infinity(xb.fld) ||                        \
2256                      tp##_is_zero(xb.fld))) {                           \
2257             fe_flag = 1;                                                \
2258             fg_flag = 1;                                                \
2259         } else {                                                        \
2260             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld);              \
2261                                                                         \
2262             if (unlikely(tp##_is_any_nan(xb.fld))) {                    \
2263                 fe_flag = 1;                                            \
2264             } else if (unlikely(tp##_is_zero(xb.fld))) {                \
2265                 fe_flag = 1;                                            \
2266             } else if (unlikely(tp##_is_neg(xb.fld))) {                 \
2267                 fe_flag = 1;                                            \
2268             } else if (!tp##_is_zero(xb.fld) &&                         \
2269                       (e_b <= (emin+nbits))) {                          \
2270                 fe_flag = 1;                                            \
2271             }                                                           \
2272                                                                         \
2273             if (unlikely(tp##_is_zero_or_denormal(xb.fld))) {           \
2274                 /* XB is not zero because of the above check and */     \
2275                 /* therefore must be denormalized.               */     \
2276                 fg_flag = 1;                                            \
2277             }                                                           \
2278         }                                                               \
2279     }                                                                   \
2280                                                                         \
2281     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2282 }
2283 
2284 VSX_TSQRT(xstsqrtdp, 1, float64, VsrD(0), -1022, 52)
2285 VSX_TSQRT(xvtsqrtdp, 2, float64, VsrD(i), -1022, 52)
2286 VSX_TSQRT(xvtsqrtsp, 4, float32, VsrW(i), -126, 23)
2287 
2288 /* VSX_MADD - VSX floating point muliply/add variations
2289  *   op    - instruction mnemonic
2290  *   nels  - number of elements (1, 2 or 4)
2291  *   tp    - type (float32 or float64)
2292  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2293  *   maddflgs - flags for the float*muladd routine that control the
2294  *           various forms (madd, msub, nmadd, nmsub)
2295  *   afrm  - A form (1=A, 0=M)
2296  *   sfprf - set FPRF
2297  */
2298 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \
2299 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2300 {                                                                             \
2301     ppc_vsr_t xt_in, xa, xb, xt_out;                                          \
2302     ppc_vsr_t *b, *c;                                                         \
2303     int i;                                                                    \
2304                                                                               \
2305     if (afrm) { /* AxB + T */                                                 \
2306         b = &xb;                                                              \
2307         c = &xt_in;                                                           \
2308     } else { /* AxT + B */                                                    \
2309         b = &xt_in;                                                           \
2310         c = &xb;                                                              \
2311     }                                                                         \
2312                                                                               \
2313     getVSR(xA(opcode), &xa, env);                                             \
2314     getVSR(xB(opcode), &xb, env);                                             \
2315     getVSR(xT(opcode), &xt_in, env);                                          \
2316                                                                               \
2317     xt_out = xt_in;                                                           \
2318                                                                               \
2319     helper_reset_fpstatus(env);                                               \
2320                                                                               \
2321     for (i = 0; i < nels; i++) {                                              \
2322         float_status tstat = env->fp_status;                                  \
2323         set_float_exception_flags(0, &tstat);                                 \
2324         if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2325             /* Avoid double rounding errors by rounding the intermediate */   \
2326             /* result to odd.                                            */   \
2327             set_float_rounding_mode(float_round_to_zero, &tstat);             \
2328             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2329                                        maddflgs, &tstat);                     \
2330             xt_out.fld |= (get_float_exception_flags(&tstat) &                \
2331                               float_flag_inexact) != 0;                       \
2332         } else {                                                              \
2333             xt_out.fld = tp##_muladd(xa.fld, b->fld, c->fld,                  \
2334                                         maddflgs, &tstat);                    \
2335         }                                                                     \
2336         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2337                                                                               \
2338         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2339             tp##_maddsub_update_excp(env, xa.fld, b->fld,                     \
2340                                      c->fld, maddflgs, GETPC());              \
2341         }                                                                     \
2342                                                                               \
2343         if (r2sp) {                                                           \
2344             xt_out.fld = helper_frsp(env, xt_out.fld);                        \
2345         }                                                                     \
2346                                                                               \
2347         if (sfprf) {                                                          \
2348             helper_compute_fprf_float64(env, xt_out.fld);                     \
2349         }                                                                     \
2350     }                                                                         \
2351     putVSR(xT(opcode), &xt_out, env);                                         \
2352     do_float_check_status(env, GETPC());                                      \
2353 }
2354 
2355 VSX_MADD(xsmaddadp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 0)
2356 VSX_MADD(xsmaddmdp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 0)
2357 VSX_MADD(xsmsubadp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 0)
2358 VSX_MADD(xsmsubmdp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 0)
2359 VSX_MADD(xsnmaddadp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 0)
2360 VSX_MADD(xsnmaddmdp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 0)
2361 VSX_MADD(xsnmsubadp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 0)
2362 VSX_MADD(xsnmsubmdp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 0)
2363 
2364 VSX_MADD(xsmaddasp, 1, float64, VsrD(0), MADD_FLGS, 1, 1, 1)
2365 VSX_MADD(xsmaddmsp, 1, float64, VsrD(0), MADD_FLGS, 0, 1, 1)
2366 VSX_MADD(xsmsubasp, 1, float64, VsrD(0), MSUB_FLGS, 1, 1, 1)
2367 VSX_MADD(xsmsubmsp, 1, float64, VsrD(0), MSUB_FLGS, 0, 1, 1)
2368 VSX_MADD(xsnmaddasp, 1, float64, VsrD(0), NMADD_FLGS, 1, 1, 1)
2369 VSX_MADD(xsnmaddmsp, 1, float64, VsrD(0), NMADD_FLGS, 0, 1, 1)
2370 VSX_MADD(xsnmsubasp, 1, float64, VsrD(0), NMSUB_FLGS, 1, 1, 1)
2371 VSX_MADD(xsnmsubmsp, 1, float64, VsrD(0), NMSUB_FLGS, 0, 1, 1)
2372 
2373 VSX_MADD(xvmaddadp, 2, float64, VsrD(i), MADD_FLGS, 1, 0, 0)
2374 VSX_MADD(xvmaddmdp, 2, float64, VsrD(i), MADD_FLGS, 0, 0, 0)
2375 VSX_MADD(xvmsubadp, 2, float64, VsrD(i), MSUB_FLGS, 1, 0, 0)
2376 VSX_MADD(xvmsubmdp, 2, float64, VsrD(i), MSUB_FLGS, 0, 0, 0)
2377 VSX_MADD(xvnmaddadp, 2, float64, VsrD(i), NMADD_FLGS, 1, 0, 0)
2378 VSX_MADD(xvnmaddmdp, 2, float64, VsrD(i), NMADD_FLGS, 0, 0, 0)
2379 VSX_MADD(xvnmsubadp, 2, float64, VsrD(i), NMSUB_FLGS, 1, 0, 0)
2380 VSX_MADD(xvnmsubmdp, 2, float64, VsrD(i), NMSUB_FLGS, 0, 0, 0)
2381 
2382 VSX_MADD(xvmaddasp, 4, float32, VsrW(i), MADD_FLGS, 1, 0, 0)
2383 VSX_MADD(xvmaddmsp, 4, float32, VsrW(i), MADD_FLGS, 0, 0, 0)
2384 VSX_MADD(xvmsubasp, 4, float32, VsrW(i), MSUB_FLGS, 1, 0, 0)
2385 VSX_MADD(xvmsubmsp, 4, float32, VsrW(i), MSUB_FLGS, 0, 0, 0)
2386 VSX_MADD(xvnmaddasp, 4, float32, VsrW(i), NMADD_FLGS, 1, 0, 0)
2387 VSX_MADD(xvnmaddmsp, 4, float32, VsrW(i), NMADD_FLGS, 0, 0, 0)
2388 VSX_MADD(xvnmsubasp, 4, float32, VsrW(i), NMSUB_FLGS, 1, 0, 0)
2389 VSX_MADD(xvnmsubmsp, 4, float32, VsrW(i), NMSUB_FLGS, 0, 0, 0)
2390 
2391 /* VSX_SCALAR_CMP_DP - VSX scalar floating point compare double precision
2392  *   op    - instruction mnemonic
2393  *   cmp   - comparison operation
2394  *   exp   - expected result of comparison
2395  *   svxvc - set VXVC bit
2396  */
2397 #define VSX_SCALAR_CMP_DP(op, cmp, exp, svxvc)                                \
2398 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2399 {                                                                             \
2400     ppc_vsr_t xt, xa, xb;                                                     \
2401     bool vxsnan_flag = false, vxvc_flag = false, vex_flag = false;            \
2402                                                                               \
2403     getVSR(xA(opcode), &xa, env);                                             \
2404     getVSR(xB(opcode), &xb, env);                                             \
2405     getVSR(xT(opcode), &xt, env);                                             \
2406                                                                               \
2407     if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||              \
2408         float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {              \
2409         vxsnan_flag = true;                                                   \
2410         if (fpscr_ve == 0 && svxvc) {                                         \
2411             vxvc_flag = true;                                                 \
2412         }                                                                     \
2413     } else if (svxvc) {                                                       \
2414         vxvc_flag = float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) ||      \
2415             float64_is_quiet_nan(xb.VsrD(0), &env->fp_status);                \
2416     }                                                                         \
2417     if (vxsnan_flag) {                                                        \
2418         float_invalid_op_vxsnan(env, GETPC());                                \
2419     }                                                                         \
2420     if (vxvc_flag) {                                                          \
2421         float_invalid_op_vxvc(env, 0, GETPC());                               \
2422     }                                                                         \
2423     vex_flag = fpscr_ve && (vxvc_flag || vxsnan_flag);                        \
2424                                                                               \
2425     if (!vex_flag) {                                                          \
2426         if (float64_##cmp(xb.VsrD(0), xa.VsrD(0), &env->fp_status) == exp) {  \
2427             xt.VsrD(0) = -1;                                                  \
2428             xt.VsrD(1) = 0;                                                   \
2429         } else {                                                              \
2430             xt.VsrD(0) = 0;                                                   \
2431             xt.VsrD(1) = 0;                                                   \
2432         }                                                                     \
2433     }                                                                         \
2434     putVSR(xT(opcode), &xt, env);                                             \
2435     do_float_check_status(env, GETPC());                                      \
2436 }
2437 
2438 VSX_SCALAR_CMP_DP(xscmpeqdp, eq, 1, 0)
2439 VSX_SCALAR_CMP_DP(xscmpgedp, le, 1, 1)
2440 VSX_SCALAR_CMP_DP(xscmpgtdp, lt, 1, 1)
2441 VSX_SCALAR_CMP_DP(xscmpnedp, eq, 0, 0)
2442 
2443 void helper_xscmpexpdp(CPUPPCState *env, uint32_t opcode)
2444 {
2445     ppc_vsr_t xa, xb;
2446     int64_t exp_a, exp_b;
2447     uint32_t cc;
2448 
2449     getVSR(xA(opcode), &xa, env);
2450     getVSR(xB(opcode), &xb, env);
2451 
2452     exp_a = extract64(xa.VsrD(0), 52, 11);
2453     exp_b = extract64(xb.VsrD(0), 52, 11);
2454 
2455     if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||
2456                  float64_is_any_nan(xb.VsrD(0)))) {
2457         cc = CRF_SO;
2458     } else {
2459         if (exp_a < exp_b) {
2460             cc = CRF_LT;
2461         } else if (exp_a > exp_b) {
2462             cc = CRF_GT;
2463         } else {
2464             cc = CRF_EQ;
2465         }
2466     }
2467 
2468     env->fpscr &= ~(0x0F << FPSCR_FPRF);
2469     env->fpscr |= cc << FPSCR_FPRF;
2470     env->crf[BF(opcode)] = cc;
2471 
2472     do_float_check_status(env, GETPC());
2473 }
2474 
2475 void helper_xscmpexpqp(CPUPPCState *env, uint32_t opcode)
2476 {
2477     ppc_vsr_t xa, xb;
2478     int64_t exp_a, exp_b;
2479     uint32_t cc;
2480 
2481     getVSR(rA(opcode) + 32, &xa, env);
2482     getVSR(rB(opcode) + 32, &xb, env);
2483 
2484     exp_a = extract64(xa.VsrD(0), 48, 15);
2485     exp_b = extract64(xb.VsrD(0), 48, 15);
2486 
2487     if (unlikely(float128_is_any_nan(xa.f128) ||
2488                  float128_is_any_nan(xb.f128))) {
2489         cc = CRF_SO;
2490     } else {
2491         if (exp_a < exp_b) {
2492             cc = CRF_LT;
2493         } else if (exp_a > exp_b) {
2494             cc = CRF_GT;
2495         } else {
2496             cc = CRF_EQ;
2497         }
2498     }
2499 
2500     env->fpscr &= ~(0x0F << FPSCR_FPRF);
2501     env->fpscr |= cc << FPSCR_FPRF;
2502     env->crf[BF(opcode)] = cc;
2503 
2504     do_float_check_status(env, GETPC());
2505 }
2506 
2507 #define VSX_SCALAR_CMP(op, ordered)                                      \
2508 void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
2509 {                                                                        \
2510     ppc_vsr_t xa, xb;                                                    \
2511     uint32_t cc = 0;                                                     \
2512     bool vxsnan_flag = false, vxvc_flag = false;                         \
2513                                                                          \
2514     helper_reset_fpstatus(env);                                          \
2515     getVSR(xA(opcode), &xa, env);                                        \
2516     getVSR(xB(opcode), &xb, env);                                        \
2517                                                                          \
2518     if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||         \
2519         float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {         \
2520         vxsnan_flag = true;                                              \
2521         cc = CRF_SO;                                                     \
2522         if (fpscr_ve == 0 && ordered) {                                  \
2523             vxvc_flag = true;                                            \
2524         }                                                                \
2525     } else if (float64_is_quiet_nan(xa.VsrD(0), &env->fp_status) ||      \
2526                float64_is_quiet_nan(xb.VsrD(0), &env->fp_status)) {      \
2527         cc = CRF_SO;                                                     \
2528         if (ordered) {                                                   \
2529             vxvc_flag = true;                                            \
2530         }                                                                \
2531     }                                                                    \
2532     if (vxsnan_flag) {                                                   \
2533         float_invalid_op_vxsnan(env, GETPC());                           \
2534     }                                                                    \
2535     if (vxvc_flag) {                                                     \
2536         float_invalid_op_vxvc(env, 0, GETPC());                          \
2537     }                                                                    \
2538                                                                          \
2539     if (float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {           \
2540         cc |= CRF_LT;                                                    \
2541     } else if (!float64_le(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) {   \
2542         cc |= CRF_GT;                                                    \
2543     } else {                                                             \
2544         cc |= CRF_EQ;                                                    \
2545     }                                                                    \
2546                                                                          \
2547     env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \
2548     env->fpscr |= cc << FPSCR_FPRF;                                      \
2549     env->crf[BF(opcode)] = cc;                                           \
2550                                                                          \
2551     do_float_check_status(env, GETPC());                                 \
2552 }
2553 
2554 VSX_SCALAR_CMP(xscmpodp, 1)
2555 VSX_SCALAR_CMP(xscmpudp, 0)
2556 
2557 #define VSX_SCALAR_CMPQ(op, ordered)                                    \
2558 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2559 {                                                                       \
2560     ppc_vsr_t xa, xb;                                                   \
2561     uint32_t cc = 0;                                                    \
2562     bool vxsnan_flag = false, vxvc_flag = false;                        \
2563                                                                         \
2564     helper_reset_fpstatus(env);                                         \
2565     getVSR(rA(opcode) + 32, &xa, env);                                  \
2566     getVSR(rB(opcode) + 32, &xb, env);                                  \
2567                                                                         \
2568     if (float128_is_signaling_nan(xa.f128, &env->fp_status) ||          \
2569         float128_is_signaling_nan(xb.f128, &env->fp_status)) {          \
2570         vxsnan_flag = true;                                             \
2571         cc = CRF_SO;                                                    \
2572         if (fpscr_ve == 0 && ordered) {                                 \
2573             vxvc_flag = true;                                           \
2574         }                                                               \
2575     } else if (float128_is_quiet_nan(xa.f128, &env->fp_status) ||       \
2576                float128_is_quiet_nan(xb.f128, &env->fp_status)) {       \
2577         cc = CRF_SO;                                                    \
2578         if (ordered) {                                                  \
2579             vxvc_flag = true;                                           \
2580         }                                                               \
2581     }                                                                   \
2582     if (vxsnan_flag) {                                                  \
2583         float_invalid_op_vxsnan(env, GETPC());                          \
2584     }                                                                   \
2585     if (vxvc_flag) {                                                    \
2586         float_invalid_op_vxvc(env, 0, GETPC());                         \
2587     }                                                                   \
2588                                                                         \
2589     if (float128_lt(xa.f128, xb.f128, &env->fp_status)) {               \
2590         cc |= CRF_LT;                                                   \
2591     } else if (!float128_le(xa.f128, xb.f128, &env->fp_status)) {       \
2592         cc |= CRF_GT;                                                   \
2593     } else {                                                            \
2594         cc |= CRF_EQ;                                                   \
2595     }                                                                   \
2596                                                                         \
2597     env->fpscr &= ~(0x0F << FPSCR_FPRF);                                \
2598     env->fpscr |= cc << FPSCR_FPRF;                                     \
2599     env->crf[BF(opcode)] = cc;                                          \
2600                                                                         \
2601     do_float_check_status(env, GETPC());                                \
2602 }
2603 
2604 VSX_SCALAR_CMPQ(xscmpoqp, 1)
2605 VSX_SCALAR_CMPQ(xscmpuqp, 0)
2606 
2607 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2608  *   name  - instruction mnemonic
2609  *   op    - operation (max or min)
2610  *   nels  - number of elements (1, 2 or 4)
2611  *   tp    - type (float32 or float64)
2612  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2613  */
2614 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2615 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2616 {                                                                             \
2617     ppc_vsr_t xt, xa, xb;                                                     \
2618     int i;                                                                    \
2619                                                                               \
2620     getVSR(xA(opcode), &xa, env);                                             \
2621     getVSR(xB(opcode), &xb, env);                                             \
2622     getVSR(xT(opcode), &xt, env);                                             \
2623                                                                               \
2624     for (i = 0; i < nels; i++) {                                              \
2625         xt.fld = tp##_##op(xa.fld, xb.fld, &env->fp_status);                  \
2626         if (unlikely(tp##_is_signaling_nan(xa.fld, &env->fp_status) ||        \
2627                      tp##_is_signaling_nan(xb.fld, &env->fp_status))) {       \
2628             float_invalid_op_vxsnan(env, GETPC());                            \
2629         }                                                                     \
2630     }                                                                         \
2631                                                                               \
2632     putVSR(xT(opcode), &xt, env);                                             \
2633     do_float_check_status(env, GETPC());                                      \
2634 }
2635 
2636 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, VsrD(0))
2637 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, VsrD(i))
2638 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, VsrW(i))
2639 VSX_MAX_MIN(xsmindp, minnum, 1, float64, VsrD(0))
2640 VSX_MAX_MIN(xvmindp, minnum, 2, float64, VsrD(i))
2641 VSX_MAX_MIN(xvminsp, minnum, 4, float32, VsrW(i))
2642 
2643 #define VSX_MAX_MINC(name, max)                                               \
2644 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2645 {                                                                             \
2646     ppc_vsr_t xt, xa, xb;                                                     \
2647     bool vxsnan_flag = false, vex_flag = false;                               \
2648                                                                               \
2649     getVSR(rA(opcode) + 32, &xa, env);                                        \
2650     getVSR(rB(opcode) + 32, &xb, env);                                        \
2651     getVSR(rD(opcode) + 32, &xt, env);                                        \
2652                                                                               \
2653     if (unlikely(float64_is_any_nan(xa.VsrD(0)) ||                            \
2654                  float64_is_any_nan(xb.VsrD(0)))) {                           \
2655         if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status) ||          \
2656             float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {          \
2657             vxsnan_flag = true;                                               \
2658         }                                                                     \
2659         xt.VsrD(0) = xb.VsrD(0);                                              \
2660     } else if ((max &&                                                        \
2661                !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) ||       \
2662                (!max &&                                                       \
2663                float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) {        \
2664         xt.VsrD(0) = xa.VsrD(0);                                              \
2665     } else {                                                                  \
2666         xt.VsrD(0) = xb.VsrD(0);                                              \
2667     }                                                                         \
2668                                                                               \
2669     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2670     if (vxsnan_flag) {                                                        \
2671         float_invalid_op_vxsnan(env, GETPC());                                \
2672     }                                                                         \
2673     if (!vex_flag) {                                                          \
2674         putVSR(rD(opcode) + 32, &xt, env);                                    \
2675     }                                                                         \
2676 }                                                                             \
2677 
2678 VSX_MAX_MINC(xsmaxcdp, 1);
2679 VSX_MAX_MINC(xsmincdp, 0);
2680 
2681 #define VSX_MAX_MINJ(name, max)                                               \
2682 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2683 {                                                                             \
2684     ppc_vsr_t xt, xa, xb;                                                     \
2685     bool vxsnan_flag = false, vex_flag = false;                               \
2686                                                                               \
2687     getVSR(rA(opcode) + 32, &xa, env);                                        \
2688     getVSR(rB(opcode) + 32, &xb, env);                                        \
2689     getVSR(rD(opcode) + 32, &xt, env);                                        \
2690                                                                               \
2691     if (unlikely(float64_is_any_nan(xa.VsrD(0)))) {                           \
2692         if (float64_is_signaling_nan(xa.VsrD(0), &env->fp_status)) {          \
2693             vxsnan_flag = true;                                               \
2694         }                                                                     \
2695         xt.VsrD(0) = xa.VsrD(0);                                              \
2696     } else if (unlikely(float64_is_any_nan(xb.VsrD(0)))) {                    \
2697         if (float64_is_signaling_nan(xb.VsrD(0), &env->fp_status)) {          \
2698             vxsnan_flag = true;                                               \
2699         }                                                                     \
2700         xt.VsrD(0) = xb.VsrD(0);                                              \
2701     } else if (float64_is_zero(xa.VsrD(0)) && float64_is_zero(xb.VsrD(0))) {  \
2702         if (max) {                                                            \
2703             if (!float64_is_neg(xa.VsrD(0)) || !float64_is_neg(xb.VsrD(0))) { \
2704                 xt.VsrD(0) = 0ULL;                                            \
2705             } else {                                                          \
2706                 xt.VsrD(0) = 0x8000000000000000ULL;                           \
2707             }                                                                 \
2708         } else {                                                              \
2709             if (float64_is_neg(xa.VsrD(0)) || float64_is_neg(xb.VsrD(0))) {   \
2710                 xt.VsrD(0) = 0x8000000000000000ULL;                           \
2711             } else {                                                          \
2712                 xt.VsrD(0) = 0ULL;                                            \
2713             }                                                                 \
2714         }                                                                     \
2715     } else if ((max &&                                                        \
2716                !float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status)) ||       \
2717                (!max &&                                                       \
2718                float64_lt(xa.VsrD(0), xb.VsrD(0), &env->fp_status))) {        \
2719         xt.VsrD(0) = xa.VsrD(0);                                              \
2720     } else {                                                                  \
2721         xt.VsrD(0) = xb.VsrD(0);                                              \
2722     }                                                                         \
2723                                                                               \
2724     vex_flag = fpscr_ve & vxsnan_flag;                                        \
2725     if (vxsnan_flag) {                                                        \
2726         float_invalid_op_vxsnan(env, GETPC());                                \
2727     }                                                                         \
2728     if (!vex_flag) {                                                          \
2729         putVSR(rD(opcode) + 32, &xt, env);                                    \
2730     }                                                                         \
2731 }                                                                             \
2732 
2733 VSX_MAX_MINJ(xsmaxjdp, 1);
2734 VSX_MAX_MINJ(xsminjdp, 0);
2735 
2736 /* VSX_CMP - VSX floating point compare
2737  *   op    - instruction mnemonic
2738  *   nels  - number of elements (1, 2 or 4)
2739  *   tp    - type (float32 or float64)
2740  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
2741  *   cmp   - comparison operation
2742  *   svxvc - set VXVC bit
2743  *   exp   - expected result of comparison
2744  */
2745 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp)                       \
2746 void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2747 {                                                                         \
2748     ppc_vsr_t xt, xa, xb;                                                 \
2749     int i;                                                                \
2750     int all_true = 1;                                                     \
2751     int all_false = 1;                                                    \
2752                                                                           \
2753     getVSR(xA(opcode), &xa, env);                                         \
2754     getVSR(xB(opcode), &xb, env);                                         \
2755     getVSR(xT(opcode), &xt, env);                                         \
2756                                                                           \
2757     for (i = 0; i < nels; i++) {                                          \
2758         if (unlikely(tp##_is_any_nan(xa.fld) ||                           \
2759                      tp##_is_any_nan(xb.fld))) {                          \
2760             if (tp##_is_signaling_nan(xa.fld, &env->fp_status) ||         \
2761                 tp##_is_signaling_nan(xb.fld, &env->fp_status)) {         \
2762                 float_invalid_op_vxsnan(env, GETPC());                    \
2763             }                                                             \
2764             if (svxvc) {                                                  \
2765                 float_invalid_op_vxvc(env, 0, GETPC());                   \
2766             }                                                             \
2767             xt.fld = 0;                                                   \
2768             all_true = 0;                                                 \
2769         } else {                                                          \
2770             if (tp##_##cmp(xb.fld, xa.fld, &env->fp_status) == exp) {     \
2771                 xt.fld = -1;                                              \
2772                 all_false = 0;                                            \
2773             } else {                                                      \
2774                 xt.fld = 0;                                               \
2775                 all_true = 0;                                             \
2776             }                                                             \
2777         }                                                                 \
2778     }                                                                     \
2779                                                                           \
2780     putVSR(xT(opcode), &xt, env);                                         \
2781     if ((opcode >> (31-21)) & 1) {                                        \
2782         env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \
2783     }                                                                     \
2784     do_float_check_status(env, GETPC());                                  \
2785  }
2786 
2787 VSX_CMP(xvcmpeqdp, 2, float64, VsrD(i), eq, 0, 1)
2788 VSX_CMP(xvcmpgedp, 2, float64, VsrD(i), le, 1, 1)
2789 VSX_CMP(xvcmpgtdp, 2, float64, VsrD(i), lt, 1, 1)
2790 VSX_CMP(xvcmpnedp, 2, float64, VsrD(i), eq, 0, 0)
2791 VSX_CMP(xvcmpeqsp, 4, float32, VsrW(i), eq, 0, 1)
2792 VSX_CMP(xvcmpgesp, 4, float32, VsrW(i), le, 1, 1)
2793 VSX_CMP(xvcmpgtsp, 4, float32, VsrW(i), lt, 1, 1)
2794 VSX_CMP(xvcmpnesp, 4, float32, VsrW(i), eq, 0, 0)
2795 
2796 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2797  *   op    - instruction mnemonic
2798  *   nels  - number of elements (1, 2 or 4)
2799  *   stp   - source type (float32 or float64)
2800  *   ttp   - target type (float32 or float64)
2801  *   sfld  - source vsr_t field
2802  *   tfld  - target vsr_t field (f32 or f64)
2803  *   sfprf - set FPRF
2804  */
2805 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2806 void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2807 {                                                                  \
2808     ppc_vsr_t xt, xb;                                              \
2809     int i;                                                         \
2810                                                                    \
2811     getVSR(xB(opcode), &xb, env);                                  \
2812     getVSR(xT(opcode), &xt, env);                                  \
2813                                                                    \
2814     for (i = 0; i < nels; i++) {                                   \
2815         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
2816         if (unlikely(stp##_is_signaling_nan(xb.sfld,               \
2817                                             &env->fp_status))) {   \
2818             float_invalid_op_vxsnan(env, GETPC());                 \
2819             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2820         }                                                          \
2821         if (sfprf) {                                               \
2822             helper_compute_fprf_##ttp(env, xt.tfld);               \
2823         }                                                          \
2824     }                                                              \
2825                                                                    \
2826     putVSR(xT(opcode), &xt, env);                                  \
2827     do_float_check_status(env, GETPC());                           \
2828 }
2829 
2830 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, VsrD(0), VsrW(0), 1)
2831 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, VsrW(0), VsrD(0), 1)
2832 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, VsrD(i), VsrW(2*i), 0)
2833 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, VsrW(2*i), VsrD(i), 0)
2834 
2835 /* VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2836  *   op    - instruction mnemonic
2837  *   nels  - number of elements (1, 2 or 4)
2838  *   stp   - source type (float32 or float64)
2839  *   ttp   - target type (float32 or float64)
2840  *   sfld  - source vsr_t field
2841  *   tfld  - target vsr_t field (f32 or f64)
2842  *   sfprf - set FPRF
2843  */
2844 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2845 void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2846 {                                                                       \
2847     ppc_vsr_t xt, xb;                                                   \
2848     int i;                                                              \
2849                                                                         \
2850     getVSR(rB(opcode) + 32, &xb, env);                                  \
2851     getVSR(rD(opcode) + 32, &xt, env);                                  \
2852                                                                         \
2853     for (i = 0; i < nels; i++) {                                        \
2854         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2855         if (unlikely(stp##_is_signaling_nan(xb.sfld,                    \
2856                                             &env->fp_status))) {        \
2857             float_invalid_op_vxsnan(env, GETPC());                      \
2858             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                      \
2859         }                                                               \
2860         if (sfprf) {                                                    \
2861             helper_compute_fprf_##ttp(env, xt.tfld);                    \
2862         }                                                               \
2863     }                                                                   \
2864                                                                         \
2865     putVSR(rD(opcode) + 32, &xt, env);                                  \
2866     do_float_check_status(env, GETPC());                                \
2867 }
2868 
2869 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp, 1, float64, float128, VsrD(0), f128, 1)
2870 
2871 /* VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2872  *                       involving one half precision value
2873  *   op    - instruction mnemonic
2874  *   nels  - number of elements (1, 2 or 4)
2875  *   stp   - source type
2876  *   ttp   - target type
2877  *   sfld  - source vsr_t field
2878  *   tfld  - target vsr_t field
2879  *   sfprf - set FPRF
2880  */
2881 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfprf) \
2882 void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2883 {                                                                  \
2884     ppc_vsr_t xt, xb;                                              \
2885     int i;                                                         \
2886                                                                    \
2887     getVSR(xB(opcode), &xb, env);                                  \
2888     memset(&xt, 0, sizeof(xt));                                    \
2889                                                                    \
2890     for (i = 0; i < nels; i++) {                                   \
2891         xt.tfld = stp##_to_##ttp(xb.sfld, 1, &env->fp_status);     \
2892         if (unlikely(stp##_is_signaling_nan(xb.sfld,               \
2893                                             &env->fp_status))) {   \
2894             float_invalid_op_vxsnan(env, GETPC());                 \
2895             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2896         }                                                          \
2897         if (sfprf) {                                               \
2898             helper_compute_fprf_##ttp(env, xt.tfld);               \
2899         }                                                          \
2900     }                                                              \
2901                                                                    \
2902     putVSR(xT(opcode), &xt, env);                                  \
2903     do_float_check_status(env, GETPC());                           \
2904 }
2905 
2906 VSX_CVT_FP_TO_FP_HP(xscvdphp, 1, float64, float16, VsrD(0), VsrH(3), 1)
2907 VSX_CVT_FP_TO_FP_HP(xscvhpdp, 1, float16, float64, VsrH(3), VsrD(0), 1)
2908 VSX_CVT_FP_TO_FP_HP(xvcvsphp, 4, float32, float16, VsrW(i), VsrH(2 * i  + 1), 0)
2909 VSX_CVT_FP_TO_FP_HP(xvcvhpsp, 4, float16, float32, VsrH(2 * i + 1), VsrW(i), 0)
2910 
2911 /*
2912  * xscvqpdp isn't using VSX_CVT_FP_TO_FP() because xscvqpdpo will be
2913  * added to this later.
2914  */
2915 void helper_xscvqpdp(CPUPPCState *env, uint32_t opcode)
2916 {
2917     ppc_vsr_t xt, xb;
2918     float_status tstat;
2919 
2920     getVSR(rB(opcode) + 32, &xb, env);
2921     memset(&xt, 0, sizeof(xt));
2922 
2923     tstat = env->fp_status;
2924     if (unlikely(Rc(opcode) != 0)) {
2925         tstat.float_rounding_mode = float_round_to_odd;
2926     }
2927 
2928     xt.VsrD(0) = float128_to_float64(xb.f128, &tstat);
2929     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
2930     if (unlikely(float128_is_signaling_nan(xb.f128, &tstat))) {
2931         float_invalid_op_vxsnan(env, GETPC());
2932         xt.VsrD(0) = float64_snan_to_qnan(xt.VsrD(0));
2933     }
2934     helper_compute_fprf_float64(env, xt.VsrD(0));
2935 
2936     putVSR(rD(opcode) + 32, &xt, env);
2937     do_float_check_status(env, GETPC());
2938 }
2939 
2940 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2941 {
2942     float_status tstat = env->fp_status;
2943     set_float_exception_flags(0, &tstat);
2944 
2945     return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2946 }
2947 
2948 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2949 {
2950     float_status tstat = env->fp_status;
2951     set_float_exception_flags(0, &tstat);
2952 
2953     return float32_to_float64(xb >> 32, &tstat);
2954 }
2955 
2956 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2957  *   op    - instruction mnemonic
2958  *   nels  - number of elements (1, 2 or 4)
2959  *   stp   - source type (float32 or float64)
2960  *   ttp   - target type (int32, uint32, int64 or uint64)
2961  *   sfld  - source vsr_t field
2962  *   tfld  - target vsr_t field
2963  *   rnan  - resulting NaN
2964  */
2965 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, rnan)              \
2966 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2967 {                                                                            \
2968     int all_flags = env->fp_status.float_exception_flags, flags;             \
2969     ppc_vsr_t xt, xb;                                                        \
2970     int i;                                                                   \
2971                                                                              \
2972     getVSR(xB(opcode), &xb, env);                                            \
2973     getVSR(xT(opcode), &xt, env);                                            \
2974                                                                              \
2975     for (i = 0; i < nels; i++) {                                             \
2976         env->fp_status.float_exception_flags = 0;                            \
2977         xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, &env->fp_status);  \
2978         flags = env->fp_status.float_exception_flags;                        \
2979         if (unlikely(flags & float_flag_invalid)) {                          \
2980             float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb.sfld));     \
2981             xt.tfld = rnan;                                                  \
2982         }                                                                    \
2983         all_flags |= flags;                                                  \
2984     }                                                                        \
2985                                                                              \
2986     putVSR(xT(opcode), &xt, env);                                            \
2987     env->fp_status.float_exception_flags = all_flags;                        \
2988     do_float_check_status(env, GETPC());                                     \
2989 }
2990 
2991 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, VsrD(0), VsrD(0), \
2992                   0x8000000000000000ULL)
2993 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, VsrD(0), VsrW(1), \
2994                   0x80000000U)
2995 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, VsrD(0), VsrD(0), 0ULL)
2996 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, VsrD(0), VsrW(1), 0U)
2997 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, VsrD(i), VsrD(i), \
2998                   0x8000000000000000ULL)
2999 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, VsrD(i), VsrW(2*i), \
3000                   0x80000000U)
3001 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, VsrD(i), VsrD(i), 0ULL)
3002 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, VsrD(i), VsrW(2*i), 0U)
3003 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, VsrW(2*i), VsrD(i), \
3004                   0x8000000000000000ULL)
3005 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, VsrW(i), VsrW(i), 0x80000000U)
3006 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, VsrW(2*i), VsrD(i), 0ULL)
3007 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, VsrW(i), VsrW(i), 0U)
3008 
3009 /* VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
3010  *   op    - instruction mnemonic
3011  *   stp   - source type (float32 or float64)
3012  *   ttp   - target type (int32, uint32, int64 or uint64)
3013  *   sfld  - source vsr_t field
3014  *   tfld  - target vsr_t field
3015  *   rnan  - resulting NaN
3016  */
3017 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan)             \
3018 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
3019 {                                                                            \
3020     ppc_vsr_t xt, xb;                                                        \
3021                                                                              \
3022     getVSR(rB(opcode) + 32, &xb, env);                                       \
3023     memset(&xt, 0, sizeof(xt));                                              \
3024                                                                              \
3025     xt.tfld = stp##_to_##ttp##_round_to_zero(xb.sfld, &env->fp_status);      \
3026     if (env->fp_status.float_exception_flags & float_flag_invalid) {         \
3027         float_invalid_cvt(env, 0, GETPC(), stp##_classify(xb.sfld));         \
3028         xt.tfld = rnan;                                                      \
3029     }                                                                        \
3030                                                                              \
3031     putVSR(rD(opcode) + 32, &xt, env);                                       \
3032     do_float_check_status(env, GETPC());                                     \
3033 }
3034 
3035 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz, float128, int64, f128, VsrD(0),          \
3036                   0x8000000000000000ULL)
3037 
3038 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz, float128, int32, f128, VsrD(0),          \
3039                   0xffffffff80000000ULL)
3040 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz, float128, uint64, f128, VsrD(0), 0x0ULL)
3041 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz, float128, uint32, f128, VsrD(0), 0x0ULL)
3042 
3043 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
3044  *   op    - instruction mnemonic
3045  *   nels  - number of elements (1, 2 or 4)
3046  *   stp   - source type (int32, uint32, int64 or uint64)
3047  *   ttp   - target type (float32 or float64)
3048  *   sfld  - source vsr_t field
3049  *   tfld  - target vsr_t field
3050  *   jdef  - definition of the j index (i or 2*i)
3051  *   sfprf - set FPRF
3052  */
3053 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf, r2sp)  \
3054 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
3055 {                                                                       \
3056     ppc_vsr_t xt, xb;                                                   \
3057     int i;                                                              \
3058                                                                         \
3059     getVSR(xB(opcode), &xb, env);                                       \
3060     getVSR(xT(opcode), &xt, env);                                       \
3061                                                                         \
3062     for (i = 0; i < nels; i++) {                                        \
3063         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
3064         if (r2sp) {                                                     \
3065             xt.tfld = helper_frsp(env, xt.tfld);                        \
3066         }                                                               \
3067         if (sfprf) {                                                    \
3068             helper_compute_fprf_float64(env, xt.tfld);                  \
3069         }                                                               \
3070     }                                                                   \
3071                                                                         \
3072     putVSR(xT(opcode), &xt, env);                                       \
3073     do_float_check_status(env, GETPC());                                \
3074 }
3075 
3076 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, VsrD(0), VsrD(0), 1, 0)
3077 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 0)
3078 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, VsrD(0), VsrD(0), 1, 1)
3079 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, VsrD(0), VsrD(0), 1, 1)
3080 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, VsrD(i), VsrD(i), 0, 0)
3081 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, VsrD(i), VsrD(i), 0, 0)
3082 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, VsrW(2*i), VsrD(i), 0, 0)
3083 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, VsrW(2*i), VsrD(i), 0, 0)
3084 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, VsrD(i), VsrW(2*i), 0, 0)
3085 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, VsrD(i), VsrW(2*i), 0, 0)
3086 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, VsrW(i), VsrW(i), 0, 0)
3087 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, VsrW(i), VsrW(i), 0, 0)
3088 
3089 /* VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
3090  *   op    - instruction mnemonic
3091  *   stp   - source type (int32, uint32, int64 or uint64)
3092  *   ttp   - target type (float32 or float64)
3093  *   sfld  - source vsr_t field
3094  *   tfld  - target vsr_t field
3095  */
3096 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld)              \
3097 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
3098 {                                                                       \
3099     ppc_vsr_t xt, xb;                                                   \
3100                                                                         \
3101     getVSR(rB(opcode) + 32, &xb, env);                                  \
3102     getVSR(rD(opcode) + 32, &xt, env);                                  \
3103                                                                         \
3104     xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);                 \
3105     helper_compute_fprf_##ttp(env, xt.tfld);                            \
3106                                                                         \
3107     putVSR(xT(opcode) + 32, &xt, env);                                  \
3108     do_float_check_status(env, GETPC());                                \
3109 }
3110 
3111 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp, int64, float128, VsrD(0), f128)
3112 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp, uint64, float128, VsrD(0), f128)
3113 
3114 /* For "use current rounding mode", define a value that will not be one of
3115  * the existing rounding model enums.
3116  */
3117 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3118   float_round_up + float_round_to_zero)
3119 
3120 /* VSX_ROUND - VSX floating point round
3121  *   op    - instruction mnemonic
3122  *   nels  - number of elements (1, 2 or 4)
3123  *   tp    - type (float32 or float64)
3124  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3125  *   rmode - rounding mode
3126  *   sfprf - set FPRF
3127  */
3128 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
3129 void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
3130 {                                                                      \
3131     ppc_vsr_t xt, xb;                                                  \
3132     int i;                                                             \
3133     getVSR(xB(opcode), &xb, env);                                      \
3134     getVSR(xT(opcode), &xt, env);                                      \
3135                                                                        \
3136     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3137         set_float_rounding_mode(rmode, &env->fp_status);               \
3138     }                                                                  \
3139                                                                        \
3140     for (i = 0; i < nels; i++) {                                       \
3141         if (unlikely(tp##_is_signaling_nan(xb.fld,                     \
3142                                            &env->fp_status))) {        \
3143             float_invalid_op_vxsnan(env, GETPC());                     \
3144             xt.fld = tp##_snan_to_qnan(xb.fld);                        \
3145         } else {                                                       \
3146             xt.fld = tp##_round_to_int(xb.fld, &env->fp_status);       \
3147         }                                                              \
3148         if (sfprf) {                                                   \
3149             helper_compute_fprf_float64(env, xt.fld);                  \
3150         }                                                              \
3151     }                                                                  \
3152                                                                        \
3153     /* If this is not a "use current rounding mode" instruction,       \
3154      * then inhibit setting of the XX bit and restore rounding         \
3155      * mode from FPSCR */                                              \
3156     if (rmode != FLOAT_ROUND_CURRENT) {                                \
3157         fpscr_set_rounding_mode(env);                                  \
3158         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
3159     }                                                                  \
3160                                                                        \
3161     putVSR(xT(opcode), &xt, env);                                      \
3162     do_float_check_status(env, GETPC());                               \
3163 }
3164 
3165 VSX_ROUND(xsrdpi, 1, float64, VsrD(0), float_round_ties_away, 1)
3166 VSX_ROUND(xsrdpic, 1, float64, VsrD(0), FLOAT_ROUND_CURRENT, 1)
3167 VSX_ROUND(xsrdpim, 1, float64, VsrD(0), float_round_down, 1)
3168 VSX_ROUND(xsrdpip, 1, float64, VsrD(0), float_round_up, 1)
3169 VSX_ROUND(xsrdpiz, 1, float64, VsrD(0), float_round_to_zero, 1)
3170 
3171 VSX_ROUND(xvrdpi, 2, float64, VsrD(i), float_round_ties_away, 0)
3172 VSX_ROUND(xvrdpic, 2, float64, VsrD(i), FLOAT_ROUND_CURRENT, 0)
3173 VSX_ROUND(xvrdpim, 2, float64, VsrD(i), float_round_down, 0)
3174 VSX_ROUND(xvrdpip, 2, float64, VsrD(i), float_round_up, 0)
3175 VSX_ROUND(xvrdpiz, 2, float64, VsrD(i), float_round_to_zero, 0)
3176 
3177 VSX_ROUND(xvrspi, 4, float32, VsrW(i), float_round_ties_away, 0)
3178 VSX_ROUND(xvrspic, 4, float32, VsrW(i), FLOAT_ROUND_CURRENT, 0)
3179 VSX_ROUND(xvrspim, 4, float32, VsrW(i), float_round_down, 0)
3180 VSX_ROUND(xvrspip, 4, float32, VsrW(i), float_round_up, 0)
3181 VSX_ROUND(xvrspiz, 4, float32, VsrW(i), float_round_to_zero, 0)
3182 
3183 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
3184 {
3185     helper_reset_fpstatus(env);
3186 
3187     uint64_t xt = helper_frsp(env, xb);
3188 
3189     helper_compute_fprf_float64(env, xt);
3190     do_float_check_status(env, GETPC());
3191     return xt;
3192 }
3193 
3194 #define VSX_XXPERM(op, indexed)                                       \
3195 void helper_##op(CPUPPCState *env, uint32_t opcode)                   \
3196 {                                                                     \
3197     ppc_vsr_t xt, xa, pcv, xto;                                       \
3198     int i, idx;                                                       \
3199                                                                       \
3200     getVSR(xA(opcode), &xa, env);                                     \
3201     getVSR(xT(opcode), &xt, env);                                     \
3202     getVSR(xB(opcode), &pcv, env);                                    \
3203                                                                       \
3204     for (i = 0; i < 16; i++) {                                        \
3205         idx = pcv.VsrB(i) & 0x1F;                                     \
3206         if (indexed) {                                                \
3207             idx = 31 - idx;                                           \
3208         }                                                             \
3209         xto.VsrB(i) = (idx <= 15) ? xa.VsrB(idx) : xt.VsrB(idx - 16); \
3210     }                                                                 \
3211     putVSR(xT(opcode), &xto, env);                                    \
3212 }
3213 
3214 VSX_XXPERM(xxperm, 0)
3215 VSX_XXPERM(xxpermr, 1)
3216 
3217 void helper_xvxsigsp(CPUPPCState *env, uint32_t opcode)
3218 {
3219     ppc_vsr_t xt, xb;
3220     uint32_t exp, i, fraction;
3221 
3222     getVSR(xB(opcode), &xb, env);
3223     memset(&xt, 0, sizeof(xt));
3224 
3225     for (i = 0; i < 4; i++) {
3226         exp = (xb.VsrW(i) >> 23) & 0xFF;
3227         fraction = xb.VsrW(i) & 0x7FFFFF;
3228         if (exp != 0 && exp != 255) {
3229             xt.VsrW(i) = fraction | 0x00800000;
3230         } else {
3231             xt.VsrW(i) = fraction;
3232         }
3233     }
3234     putVSR(xT(opcode), &xt, env);
3235 }
3236 
3237 /* VSX_TEST_DC - VSX floating point test data class
3238  *   op    - instruction mnemonic
3239  *   nels  - number of elements (1, 2 or 4)
3240  *   xbn   - VSR register number
3241  *   tp    - type (float32 or float64)
3242  *   fld   - vsr_t field (VsrD(*) or VsrW(*))
3243  *   tfld   - target vsr_t field (VsrD(*) or VsrW(*))
3244  *   fld_max - target field max
3245  *   scrf - set result in CR and FPCC
3246  */
3247 #define VSX_TEST_DC(op, nels, xbn, tp, fld, tfld, fld_max, scrf)  \
3248 void helper_##op(CPUPPCState *env, uint32_t opcode)         \
3249 {                                                           \
3250     ppc_vsr_t xt, xb;                                       \
3251     uint32_t i, sign, dcmx;                                 \
3252     uint32_t cc, match = 0;                                 \
3253                                                             \
3254     getVSR(xbn, &xb, env);                                  \
3255     if (!scrf) {                                            \
3256         memset(&xt, 0, sizeof(xt));                         \
3257         dcmx = DCMX_XV(opcode);                             \
3258     } else {                                                \
3259         dcmx = DCMX(opcode);                                \
3260     }                                                       \
3261                                                             \
3262     for (i = 0; i < nels; i++) {                            \
3263         sign = tp##_is_neg(xb.fld);                         \
3264         if (tp##_is_any_nan(xb.fld)) {                      \
3265             match = extract32(dcmx, 6, 1);                  \
3266         } else if (tp##_is_infinity(xb.fld)) {              \
3267             match = extract32(dcmx, 4 + !sign, 1);          \
3268         } else if (tp##_is_zero(xb.fld)) {                  \
3269             match = extract32(dcmx, 2 + !sign, 1);          \
3270         } else if (tp##_is_zero_or_denormal(xb.fld)) {      \
3271             match = extract32(dcmx, 0 + !sign, 1);          \
3272         }                                                   \
3273                                                             \
3274         if (scrf) {                                         \
3275             cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT;  \
3276             env->fpscr &= ~(0x0F << FPSCR_FPRF);            \
3277             env->fpscr |= cc << FPSCR_FPRF;                 \
3278             env->crf[BF(opcode)] = cc;                      \
3279         } else {                                            \
3280             xt.tfld = match ? fld_max : 0;                  \
3281         }                                                   \
3282         match = 0;                                          \
3283     }                                                       \
3284     if (!scrf) {                                            \
3285         putVSR(xT(opcode), &xt, env);                       \
3286     }                                                       \
3287 }
3288 
3289 VSX_TEST_DC(xvtstdcdp, 2, xB(opcode), float64, VsrD(i), VsrD(i), UINT64_MAX, 0)
3290 VSX_TEST_DC(xvtstdcsp, 4, xB(opcode), float32, VsrW(i), VsrW(i), UINT32_MAX, 0)
3291 VSX_TEST_DC(xststdcdp, 1, xB(opcode), float64, VsrD(0), VsrD(0), 0, 1)
3292 VSX_TEST_DC(xststdcqp, 1, (rB(opcode) + 32), float128, f128, VsrD(0), 0, 1)
3293 
3294 void helper_xststdcsp(CPUPPCState *env, uint32_t opcode)
3295 {
3296     ppc_vsr_t xb;
3297     uint32_t dcmx, sign, exp;
3298     uint32_t cc, match = 0, not_sp = 0;
3299 
3300     getVSR(xB(opcode), &xb, env);
3301     dcmx = DCMX(opcode);
3302     exp = (xb.VsrD(0) >> 52) & 0x7FF;
3303 
3304     sign = float64_is_neg(xb.VsrD(0));
3305     if (float64_is_any_nan(xb.VsrD(0))) {
3306         match = extract32(dcmx, 6, 1);
3307     } else if (float64_is_infinity(xb.VsrD(0))) {
3308         match = extract32(dcmx, 4 + !sign, 1);
3309     } else if (float64_is_zero(xb.VsrD(0))) {
3310         match = extract32(dcmx, 2 + !sign, 1);
3311     } else if (float64_is_zero_or_denormal(xb.VsrD(0)) ||
3312                (exp > 0 && exp < 0x381)) {
3313         match = extract32(dcmx, 0 + !sign, 1);
3314     }
3315 
3316     not_sp = !float64_eq(xb.VsrD(0),
3317                          float32_to_float64(
3318                              float64_to_float32(xb.VsrD(0), &env->fp_status),
3319                              &env->fp_status), &env->fp_status);
3320 
3321     cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT | not_sp << CRF_SO_BIT;
3322     env->fpscr &= ~(0x0F << FPSCR_FPRF);
3323     env->fpscr |= cc << FPSCR_FPRF;
3324     env->crf[BF(opcode)] = cc;
3325 }
3326 
3327 void helper_xsrqpi(CPUPPCState *env, uint32_t opcode)
3328 {
3329     ppc_vsr_t xb;
3330     ppc_vsr_t xt;
3331     uint8_t r = Rrm(opcode);
3332     uint8_t ex = Rc(opcode);
3333     uint8_t rmc = RMC(opcode);
3334     uint8_t rmode = 0;
3335     float_status tstat;
3336 
3337     getVSR(rB(opcode) + 32, &xb, env);
3338     memset(&xt, 0, sizeof(xt));
3339     helper_reset_fpstatus(env);
3340 
3341     if (r == 0 && rmc == 0) {
3342         rmode = float_round_ties_away;
3343     } else if (r == 0 && rmc == 0x3) {
3344         rmode = fpscr_rn;
3345     } else if (r == 1) {
3346         switch (rmc) {
3347         case 0:
3348             rmode = float_round_nearest_even;
3349             break;
3350         case 1:
3351             rmode = float_round_to_zero;
3352             break;
3353         case 2:
3354             rmode = float_round_up;
3355             break;
3356         case 3:
3357             rmode = float_round_down;
3358             break;
3359         default:
3360             abort();
3361         }
3362     }
3363 
3364     tstat = env->fp_status;
3365     set_float_exception_flags(0, &tstat);
3366     set_float_rounding_mode(rmode, &tstat);
3367     xt.f128 = float128_round_to_int(xb.f128, &tstat);
3368     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3369 
3370     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3371         if (float128_is_signaling_nan(xb.f128, &tstat)) {
3372             float_invalid_op_vxsnan(env, GETPC());
3373             xt.f128 = float128_snan_to_qnan(xt.f128);
3374         }
3375     }
3376 
3377     if (ex == 0 && (tstat.float_exception_flags & float_flag_inexact)) {
3378         env->fp_status.float_exception_flags &= ~float_flag_inexact;
3379     }
3380 
3381     helper_compute_fprf_float128(env, xt.f128);
3382     do_float_check_status(env, GETPC());
3383     putVSR(rD(opcode) + 32, &xt, env);
3384 }
3385 
3386 void helper_xsrqpxp(CPUPPCState *env, uint32_t opcode)
3387 {
3388     ppc_vsr_t xb;
3389     ppc_vsr_t xt;
3390     uint8_t r = Rrm(opcode);
3391     uint8_t rmc = RMC(opcode);
3392     uint8_t rmode = 0;
3393     floatx80 round_res;
3394     float_status tstat;
3395 
3396     getVSR(rB(opcode) + 32, &xb, env);
3397     memset(&xt, 0, sizeof(xt));
3398     helper_reset_fpstatus(env);
3399 
3400     if (r == 0 && rmc == 0) {
3401         rmode = float_round_ties_away;
3402     } else if (r == 0 && rmc == 0x3) {
3403         rmode = fpscr_rn;
3404     } else if (r == 1) {
3405         switch (rmc) {
3406         case 0:
3407             rmode = float_round_nearest_even;
3408             break;
3409         case 1:
3410             rmode = float_round_to_zero;
3411             break;
3412         case 2:
3413             rmode = float_round_up;
3414             break;
3415         case 3:
3416             rmode = float_round_down;
3417             break;
3418         default:
3419             abort();
3420         }
3421     }
3422 
3423     tstat = env->fp_status;
3424     set_float_exception_flags(0, &tstat);
3425     set_float_rounding_mode(rmode, &tstat);
3426     round_res = float128_to_floatx80(xb.f128, &tstat);
3427     xt.f128 = floatx80_to_float128(round_res, &tstat);
3428     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3429 
3430     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3431         if (float128_is_signaling_nan(xb.f128, &tstat)) {
3432             float_invalid_op_vxsnan(env, GETPC());
3433             xt.f128 = float128_snan_to_qnan(xt.f128);
3434         }
3435     }
3436 
3437     helper_compute_fprf_float128(env, xt.f128);
3438     putVSR(rD(opcode) + 32, &xt, env);
3439     do_float_check_status(env, GETPC());
3440 }
3441 
3442 void helper_xssqrtqp(CPUPPCState *env, uint32_t opcode)
3443 {
3444     ppc_vsr_t xb;
3445     ppc_vsr_t xt;
3446     float_status tstat;
3447 
3448     getVSR(rB(opcode) + 32, &xb, env);
3449     memset(&xt, 0, sizeof(xt));
3450     helper_reset_fpstatus(env);
3451 
3452     tstat = env->fp_status;
3453     if (unlikely(Rc(opcode) != 0)) {
3454         tstat.float_rounding_mode = float_round_to_odd;
3455     }
3456 
3457     set_float_exception_flags(0, &tstat);
3458     xt.f128 = float128_sqrt(xb.f128, &tstat);
3459     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3460 
3461     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3462         if (float128_is_signaling_nan(xb.f128, &tstat)) {
3463             float_invalid_op_vxsnan(env, GETPC());
3464             xt.f128 = float128_snan_to_qnan(xb.f128);
3465         } else if  (float128_is_quiet_nan(xb.f128, &tstat)) {
3466             xt.f128 = xb.f128;
3467         } else if (float128_is_neg(xb.f128) && !float128_is_zero(xb.f128)) {
3468             float_invalid_op_vxsqrt(env, 1, GETPC());
3469             xt.f128 = float128_default_nan(&env->fp_status);
3470         }
3471     }
3472 
3473     helper_compute_fprf_float128(env, xt.f128);
3474     putVSR(rD(opcode) + 32, &xt, env);
3475     do_float_check_status(env, GETPC());
3476 }
3477 
3478 void helper_xssubqp(CPUPPCState *env, uint32_t opcode)
3479 {
3480     ppc_vsr_t xt, xa, xb;
3481     float_status tstat;
3482 
3483     getVSR(rA(opcode) + 32, &xa, env);
3484     getVSR(rB(opcode) + 32, &xb, env);
3485     getVSR(rD(opcode) + 32, &xt, env);
3486     helper_reset_fpstatus(env);
3487 
3488     tstat = env->fp_status;
3489     if (unlikely(Rc(opcode) != 0)) {
3490         tstat.float_rounding_mode = float_round_to_odd;
3491     }
3492 
3493     set_float_exception_flags(0, &tstat);
3494     xt.f128 = float128_sub(xa.f128, xb.f128, &tstat);
3495     env->fp_status.float_exception_flags |= tstat.float_exception_flags;
3496 
3497     if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {
3498         float_invalid_op_addsub(env, 1, GETPC(),
3499                                 float128_classify(xa.f128) |
3500                                 float128_classify(xb.f128));
3501     }
3502 
3503     helper_compute_fprf_float128(env, xt.f128);
3504     putVSR(rD(opcode) + 32, &xt, env);
3505     do_float_check_status(env, GETPC());
3506 }
3507