xref: /openbmc/qemu/target/mips/tcg/sysemu/tlb_helper.c (revision ac12b601)
1 /*
2  * MIPS TLB (Translation lookaside buffer) helpers.
3  *
4  *  Copyright (c) 2004-2005 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 
21 #include "cpu.h"
22 #include "internal.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
25 #include "exec/log.h"
26 #include "hw/mips/cpudevs.h"
27 #include "exec/helper-proto.h"
28 
29 /* TLB management */
30 static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
31 {
32     /* Discard entries from env->tlb[first] onwards.  */
33     while (env->tlb->tlb_in_use > first) {
34         r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
35     }
36 }
37 
38 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
39 {
40 #if defined(TARGET_MIPS64)
41     return extract64(entrylo, 6, 54);
42 #else
43     return extract64(entrylo, 6, 24) | /* PFN */
44            (extract64(entrylo, 32, 32) << 24); /* PFNX */
45 #endif
46 }
47 
48 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
49 {
50     r4k_tlb_t *tlb;
51     uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
52 
53     /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
54     tlb = &env->tlb->mmu.r4k.tlb[idx];
55     if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
56         tlb->EHINV = 1;
57         return;
58     }
59     tlb->EHINV = 0;
60     tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
61 #if defined(TARGET_MIPS64)
62     tlb->VPN &= env->SEGMask;
63 #endif
64     tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
65     tlb->MMID = env->CP0_MemoryMapID;
66     tlb->PageMask = env->CP0_PageMask;
67     tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
68     tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
69     tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
70     tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
71     tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
72     tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
73     tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
74     tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
75     tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
76     tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
77     tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
78     tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
79     tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
80 }
81 
82 static void r4k_helper_tlbinv(CPUMIPSState *env)
83 {
84     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
85     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
86     uint32_t MMID = env->CP0_MemoryMapID;
87     uint32_t tlb_mmid;
88     r4k_tlb_t *tlb;
89     int idx;
90 
91     MMID = mi ? MMID : (uint32_t) ASID;
92     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
93         tlb = &env->tlb->mmu.r4k.tlb[idx];
94         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
95         if (!tlb->G && tlb_mmid == MMID) {
96             tlb->EHINV = 1;
97         }
98     }
99     cpu_mips_tlb_flush(env);
100 }
101 
102 static void r4k_helper_tlbinvf(CPUMIPSState *env)
103 {
104     int idx;
105 
106     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
107         env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
108     }
109     cpu_mips_tlb_flush(env);
110 }
111 
112 static void r4k_helper_tlbwi(CPUMIPSState *env)
113 {
114     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
115     target_ulong VPN;
116     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
117     uint32_t MMID = env->CP0_MemoryMapID;
118     uint32_t tlb_mmid;
119     bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
120     r4k_tlb_t *tlb;
121     int idx;
122 
123     MMID = mi ? MMID : (uint32_t) ASID;
124 
125     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
126     tlb = &env->tlb->mmu.r4k.tlb[idx];
127     VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
128 #if defined(TARGET_MIPS64)
129     VPN &= env->SEGMask;
130 #endif
131     EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
132     G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
133     V0 = (env->CP0_EntryLo0 & 2) != 0;
134     D0 = (env->CP0_EntryLo0 & 4) != 0;
135     XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
136     RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
137     V1 = (env->CP0_EntryLo1 & 2) != 0;
138     D1 = (env->CP0_EntryLo1 & 4) != 0;
139     XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
140     RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
141 
142     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
143     /*
144      * Discard cached TLB entries, unless tlbwi is just upgrading access
145      * permissions on the current entry.
146      */
147     if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G ||
148         (!tlb->EHINV && EHINV) ||
149         (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
150         (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
151         (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
152         (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
153         r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
154     }
155 
156     r4k_invalidate_tlb(env, idx, 0);
157     r4k_fill_tlb(env, idx);
158 }
159 
160 static void r4k_helper_tlbwr(CPUMIPSState *env)
161 {
162     int r = cpu_mips_get_random(env);
163 
164     r4k_invalidate_tlb(env, r, 1);
165     r4k_fill_tlb(env, r);
166 }
167 
168 static void r4k_helper_tlbp(CPUMIPSState *env)
169 {
170     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
171     r4k_tlb_t *tlb;
172     target_ulong mask;
173     target_ulong tag;
174     target_ulong VPN;
175     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
176     uint32_t MMID = env->CP0_MemoryMapID;
177     uint32_t tlb_mmid;
178     int i;
179 
180     MMID = mi ? MMID : (uint32_t) ASID;
181     for (i = 0; i < env->tlb->nb_tlb; i++) {
182         tlb = &env->tlb->mmu.r4k.tlb[i];
183         /* 1k pages are not supported. */
184         mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
185         tag = env->CP0_EntryHi & ~mask;
186         VPN = tlb->VPN & ~mask;
187 #if defined(TARGET_MIPS64)
188         tag &= env->SEGMask;
189 #endif
190         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
191         /* Check ASID/MMID, virtual page number & size */
192         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
193             /* TLB match */
194             env->CP0_Index = i;
195             break;
196         }
197     }
198     if (i == env->tlb->nb_tlb) {
199         /* No match.  Discard any shadow entries, if any of them match.  */
200         for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
201             tlb = &env->tlb->mmu.r4k.tlb[i];
202             /* 1k pages are not supported. */
203             mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
204             tag = env->CP0_EntryHi & ~mask;
205             VPN = tlb->VPN & ~mask;
206 #if defined(TARGET_MIPS64)
207             tag &= env->SEGMask;
208 #endif
209             tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
210             /* Check ASID/MMID, virtual page number & size */
211             if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) {
212                 r4k_mips_tlb_flush_extra(env, i);
213                 break;
214             }
215         }
216 
217         env->CP0_Index |= 0x80000000;
218     }
219 }
220 
221 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
222 {
223 #if defined(TARGET_MIPS64)
224     return tlb_pfn << 6;
225 #else
226     return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
227            (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
228 #endif
229 }
230 
231 static void r4k_helper_tlbr(CPUMIPSState *env)
232 {
233     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
234     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
235     uint32_t MMID = env->CP0_MemoryMapID;
236     uint32_t tlb_mmid;
237     r4k_tlb_t *tlb;
238     int idx;
239 
240     MMID = mi ? MMID : (uint32_t) ASID;
241     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
242     tlb = &env->tlb->mmu.r4k.tlb[idx];
243 
244     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
245     /* If this will change the current ASID/MMID, flush qemu's TLB.  */
246     if (MMID != tlb_mmid) {
247         cpu_mips_tlb_flush(env);
248     }
249 
250     r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
251 
252     if (tlb->EHINV) {
253         env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
254         env->CP0_PageMask = 0;
255         env->CP0_EntryLo0 = 0;
256         env->CP0_EntryLo1 = 0;
257     } else {
258         env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID;
259         env->CP0_MemoryMapID = tlb->MMID;
260         env->CP0_PageMask = tlb->PageMask;
261         env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
262                         ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
263                         ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
264                         get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
265         env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
266                         ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
267                         ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
268                         get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
269     }
270 }
271 
272 void helper_tlbwi(CPUMIPSState *env)
273 {
274     env->tlb->helper_tlbwi(env);
275 }
276 
277 void helper_tlbwr(CPUMIPSState *env)
278 {
279     env->tlb->helper_tlbwr(env);
280 }
281 
282 void helper_tlbp(CPUMIPSState *env)
283 {
284     env->tlb->helper_tlbp(env);
285 }
286 
287 void helper_tlbr(CPUMIPSState *env)
288 {
289     env->tlb->helper_tlbr(env);
290 }
291 
292 void helper_tlbinv(CPUMIPSState *env)
293 {
294     env->tlb->helper_tlbinv(env);
295 }
296 
297 void helper_tlbinvf(CPUMIPSState *env)
298 {
299     env->tlb->helper_tlbinvf(env);
300 }
301 
302 static void global_invalidate_tlb(CPUMIPSState *env,
303                            uint32_t invMsgVPN2,
304                            uint8_t invMsgR,
305                            uint32_t invMsgMMid,
306                            bool invAll,
307                            bool invVAMMid,
308                            bool invMMid,
309                            bool invVA)
310 {
311 
312     int idx;
313     r4k_tlb_t *tlb;
314     bool VAMatch;
315     bool MMidMatch;
316 
317     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
318         tlb = &env->tlb->mmu.r4k.tlb[idx];
319         VAMatch =
320             (((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask))
321 #ifdef TARGET_MIPS64
322             &&
323             (extract64(env->CP0_EntryHi, 62, 2) == invMsgR)
324 #endif
325             );
326         MMidMatch = tlb->MMID == invMsgMMid;
327         if ((invAll && (idx > env->CP0_Wired)) ||
328             (VAMatch && invVAMMid && (tlb->G || MMidMatch)) ||
329             (VAMatch && invVA) ||
330             (MMidMatch && !(tlb->G) && invMMid)) {
331             tlb->EHINV = 1;
332         }
333     }
334     cpu_mips_tlb_flush(env);
335 }
336 
337 void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type)
338 {
339     bool invAll = type == 0;
340     bool invVA = type == 1;
341     bool invMMid = type == 2;
342     bool invVAMMid = type == 3;
343     uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1);
344     uint8_t invMsgR = 0;
345     uint32_t invMsgMMid = env->CP0_MemoryMapID;
346     CPUState *other_cs = first_cpu;
347 
348 #ifdef TARGET_MIPS64
349     invMsgR = extract64(arg, 62, 2);
350 #endif
351 
352     CPU_FOREACH(other_cs) {
353         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
354         global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid,
355                               invAll, invVAMMid, invMMid, invVA);
356     }
357 }
358 
359 /* no MMU emulation */
360 static int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
361                               target_ulong address, MMUAccessType access_type)
362 {
363     *physical = address;
364     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
365     return TLBRET_MATCH;
366 }
367 
368 /* fixed mapping MMU emulation */
369 static int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical,
370                                  int *prot, target_ulong address,
371                                  MMUAccessType access_type)
372 {
373     if (address <= (int32_t)0x7FFFFFFFUL) {
374         if (!(env->CP0_Status & (1 << CP0St_ERL))) {
375             *physical = address + 0x40000000UL;
376         } else {
377             *physical = address;
378         }
379     } else if (address <= (int32_t)0xBFFFFFFFUL) {
380         *physical = address & 0x1FFFFFFF;
381     } else {
382         *physical = address;
383     }
384 
385     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
386     return TLBRET_MATCH;
387 }
388 
389 /* MIPS32/MIPS64 R4000-style MMU emulation */
390 static int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
391                            target_ulong address, MMUAccessType access_type)
392 {
393     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
394     uint32_t MMID = env->CP0_MemoryMapID;
395     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
396     uint32_t tlb_mmid;
397     int i;
398 
399     MMID = mi ? MMID : (uint32_t) ASID;
400 
401     for (i = 0; i < env->tlb->tlb_in_use; i++) {
402         r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
403         /* 1k pages are not supported. */
404         target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
405         target_ulong tag = address & ~mask;
406         target_ulong VPN = tlb->VPN & ~mask;
407 #if defined(TARGET_MIPS64)
408         tag &= env->SEGMask;
409 #endif
410 
411         /* Check ASID/MMID, virtual page number & size */
412         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
413         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
414             /* TLB match */
415             int n = !!(address & mask & ~(mask >> 1));
416             /* Check access rights */
417             if (!(n ? tlb->V1 : tlb->V0)) {
418                 return TLBRET_INVALID;
419             }
420             if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
421                 return TLBRET_XI;
422             }
423             if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
424                 return TLBRET_RI;
425             }
426             if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
427                 *physical = tlb->PFN[n] | (address & (mask >> 1));
428                 *prot = PAGE_READ;
429                 if (n ? tlb->D1 : tlb->D0) {
430                     *prot |= PAGE_WRITE;
431                 }
432                 if (!(n ? tlb->XI1 : tlb->XI0)) {
433                     *prot |= PAGE_EXEC;
434                 }
435                 return TLBRET_MATCH;
436             }
437             return TLBRET_DIRTY;
438         }
439     }
440     return TLBRET_NOMATCH;
441 }
442 
443 static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def)
444 {
445     env->tlb->nb_tlb = 1;
446     env->tlb->map_address = &no_mmu_map_address;
447 }
448 
449 static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def)
450 {
451     env->tlb->nb_tlb = 1;
452     env->tlb->map_address = &fixed_mmu_map_address;
453 }
454 
455 static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def)
456 {
457     env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
458     env->tlb->map_address = &r4k_map_address;
459     env->tlb->helper_tlbwi = r4k_helper_tlbwi;
460     env->tlb->helper_tlbwr = r4k_helper_tlbwr;
461     env->tlb->helper_tlbp = r4k_helper_tlbp;
462     env->tlb->helper_tlbr = r4k_helper_tlbr;
463     env->tlb->helper_tlbinv = r4k_helper_tlbinv;
464     env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
465 }
466 
467 void mmu_init(CPUMIPSState *env, const mips_def_t *def)
468 {
469     env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
470 
471     switch (def->mmu_type) {
472     case MMU_TYPE_NONE:
473         no_mmu_init(env, def);
474         break;
475     case MMU_TYPE_R4000:
476         r4k_mmu_init(env, def);
477         break;
478     case MMU_TYPE_FMT:
479         fixed_mmu_init(env, def);
480         break;
481     case MMU_TYPE_R3000:
482     case MMU_TYPE_R6000:
483     case MMU_TYPE_R8000:
484     default:
485         cpu_abort(env_cpu(env), "MMU type not supported\n");
486     }
487 }
488 
489 void cpu_mips_tlb_flush(CPUMIPSState *env)
490 {
491     /* Flush qemu's TLB and discard all shadowed entries.  */
492     tlb_flush(env_cpu(env));
493     env->tlb->tlb_in_use = env->tlb->nb_tlb;
494 }
495 
496 static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
497                                 MMUAccessType access_type, int tlb_error)
498 {
499     CPUState *cs = env_cpu(env);
500     int exception = 0, error_code = 0;
501 
502     if (access_type == MMU_INST_FETCH) {
503         error_code |= EXCP_INST_NOTAVAIL;
504     }
505 
506     switch (tlb_error) {
507     default:
508     case TLBRET_BADADDR:
509         /* Reference to kernel address from user mode or supervisor mode */
510         /* Reference to supervisor address from user mode */
511         if (access_type == MMU_DATA_STORE) {
512             exception = EXCP_AdES;
513         } else {
514             exception = EXCP_AdEL;
515         }
516         break;
517     case TLBRET_NOMATCH:
518         /* No TLB match for a mapped address */
519         if (access_type == MMU_DATA_STORE) {
520             exception = EXCP_TLBS;
521         } else {
522             exception = EXCP_TLBL;
523         }
524         error_code |= EXCP_TLB_NOMATCH;
525         break;
526     case TLBRET_INVALID:
527         /* TLB match with no valid bit */
528         if (access_type == MMU_DATA_STORE) {
529             exception = EXCP_TLBS;
530         } else {
531             exception = EXCP_TLBL;
532         }
533         break;
534     case TLBRET_DIRTY:
535         /* TLB match but 'D' bit is cleared */
536         exception = EXCP_LTLBL;
537         break;
538     case TLBRET_XI:
539         /* Execute-Inhibit Exception */
540         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
541             exception = EXCP_TLBXI;
542         } else {
543             exception = EXCP_TLBL;
544         }
545         break;
546     case TLBRET_RI:
547         /* Read-Inhibit Exception */
548         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
549             exception = EXCP_TLBRI;
550         } else {
551             exception = EXCP_TLBL;
552         }
553         break;
554     }
555     /* Raise exception */
556     if (!(env->hflags & MIPS_HFLAG_DM)) {
557         env->CP0_BadVAddr = address;
558     }
559     env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
560                        ((address >> 9) & 0x007ffff0);
561     env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
562                        (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
563                        (address & (TARGET_PAGE_MASK << 1));
564 #if defined(TARGET_MIPS64)
565     env->CP0_EntryHi &= env->SEGMask;
566     env->CP0_XContext =
567         (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
568         (extract64(address, 62, 2) << (env->SEGBITS - 9)) |     /* R       */
569         (extract64(address, 13, env->SEGBITS - 13) << 4);       /* BadVPN2 */
570 #endif
571     cs->exception_index = exception;
572     env->error_code = error_code;
573 }
574 
575 #if !defined(TARGET_MIPS64)
576 
577 /*
578  * Perform hardware page table walk
579  *
580  * Memory accesses are performed using the KERNEL privilege level.
581  * Synchronous exceptions detected on memory accesses cause a silent exit
582  * from page table walking, resulting in a TLB or XTLB Refill exception.
583  *
584  * Implementations are not required to support page table walk memory
585  * accesses from mapped memory regions. When an unsupported access is
586  * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
587  * exception.
588  *
589  * Note that if an exception is caused by AddressTranslation or LoadMemory
590  * functions, the exception is not taken, a silent exit is taken,
591  * resulting in a TLB or XTLB Refill exception.
592  */
593 
594 static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
595         uint64_t *pte)
596 {
597     if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
598         return false;
599     }
600     if (entry_size == 64) {
601         *pte = cpu_ldq_code(env, vaddr);
602     } else {
603         *pte = cpu_ldl_code(env, vaddr);
604     }
605     return true;
606 }
607 
608 static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
609         int entry_size, int ptei)
610 {
611     uint64_t result = entry;
612     uint64_t rixi;
613     if (ptei > entry_size) {
614         ptei -= 32;
615     }
616     result >>= (ptei - 2);
617     rixi = result & 3;
618     result >>= 2;
619     result |= rixi << CP0EnLo_XI;
620     return result;
621 }
622 
623 static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
624         int directory_index, bool *huge_page, bool *hgpg_directory_hit,
625         uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
626 {
627     int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
628     int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
629     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
630     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
631     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
632     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
633     int directory_shift = (ptew > 1) ? -1 :
634             (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
635     int leaf_shift = (ptew > 1) ? -1 :
636             (ptew == 1) ? native_shift + 1 : native_shift;
637     uint32_t direntry_size = 1 << (directory_shift + 3);
638     uint32_t leafentry_size = 1 << (leaf_shift + 3);
639     uint64_t entry;
640     uint64_t paddr;
641     int prot;
642     uint64_t lsb = 0;
643     uint64_t w = 0;
644 
645     if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
646                              cpu_mmu_index(env, false)) !=
647                              TLBRET_MATCH) {
648         /* wrong base address */
649         return 0;
650     }
651     if (!get_pte(env, *vaddr, direntry_size, &entry)) {
652         return 0;
653     }
654 
655     if ((entry & (1 << psn)) && hugepg) {
656         *huge_page = true;
657         *hgpg_directory_hit = true;
658         entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
659         w = directory_index - 1;
660         if (directory_index & 0x1) {
661             /* Generate adjacent page from same PTE for odd TLB page */
662             lsb = (1 << w) >> 6;
663             *pw_entrylo0 = entry & ~lsb; /* even page */
664             *pw_entrylo1 = entry | lsb; /* odd page */
665         } else if (dph) {
666             int oddpagebit = 1 << leaf_shift;
667             uint64_t vaddr2 = *vaddr ^ oddpagebit;
668             if (*vaddr & oddpagebit) {
669                 *pw_entrylo1 = entry;
670             } else {
671                 *pw_entrylo0 = entry;
672             }
673             if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
674                                      cpu_mmu_index(env, false)) !=
675                                      TLBRET_MATCH) {
676                 return 0;
677             }
678             if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
679                 return 0;
680             }
681             entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
682             if (*vaddr & oddpagebit) {
683                 *pw_entrylo0 = entry;
684             } else {
685                 *pw_entrylo1 = entry;
686             }
687         } else {
688             return 0;
689         }
690         return 1;
691     } else {
692         *vaddr = entry;
693         return 2;
694     }
695 }
696 
697 static bool page_table_walk_refill(CPUMIPSState *env, vaddr address,
698                                    int mmu_idx)
699 {
700     int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
701     int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
702     int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
703     int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
704     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
705 
706     /* Initial values */
707     bool huge_page = false;
708     bool hgpg_bdhit = false;
709     bool hgpg_gdhit = false;
710     bool hgpg_udhit = false;
711     bool hgpg_mdhit = false;
712 
713     int32_t pw_pagemask = 0;
714     target_ulong pw_entryhi = 0;
715     uint64_t pw_entrylo0 = 0;
716     uint64_t pw_entrylo1 = 0;
717 
718     /* Native pointer size */
719     /*For the 32-bit architectures, this bit is fixed to 0.*/
720     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
721 
722     /* Indices from PWField */
723     int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
724     int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
725     int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
726     int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
727     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
728 
729     /* Indices computed from faulting address */
730     int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
731     int uindex = (address >> pf_udw) & ((1 << udw) - 1);
732     int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
733     int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
734 
735     /* Other HTW configs */
736     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
737 
738     /* HTW Shift values (depend on entry size) */
739     int directory_shift = (ptew > 1) ? -1 :
740             (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
741     int leaf_shift = (ptew > 1) ? -1 :
742             (ptew == 1) ? native_shift + 1 : native_shift;
743 
744     /* Offsets into tables */
745     int goffset = gindex << directory_shift;
746     int uoffset = uindex << directory_shift;
747     int moffset = mindex << directory_shift;
748     int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
749     int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
750 
751     uint32_t leafentry_size = 1 << (leaf_shift + 3);
752 
753     /* Starting address - Page Table Base */
754     uint64_t vaddr = env->CP0_PWBase;
755 
756     uint64_t dir_entry;
757     uint64_t paddr;
758     int prot;
759     int m;
760 
761     if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
762         /* walker is unimplemented */
763         return false;
764     }
765     if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
766         /* walker is disabled */
767         return false;
768     }
769     if (!(gdw > 0 || udw > 0 || mdw > 0)) {
770         /* no structure to walk */
771         return false;
772     }
773     if ((directory_shift == -1) || (leaf_shift == -1)) {
774         return false;
775     }
776 
777     /* Global Directory */
778     if (gdw > 0) {
779         vaddr |= goffset;
780         switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
781                                &pw_entrylo0, &pw_entrylo1))
782         {
783         case 0:
784             return false;
785         case 1:
786             goto refill;
787         case 2:
788         default:
789             break;
790         }
791     }
792 
793     /* Upper directory */
794     if (udw > 0) {
795         vaddr |= uoffset;
796         switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
797                                &pw_entrylo0, &pw_entrylo1))
798         {
799         case 0:
800             return false;
801         case 1:
802             goto refill;
803         case 2:
804         default:
805             break;
806         }
807     }
808 
809     /* Middle directory */
810     if (mdw > 0) {
811         vaddr |= moffset;
812         switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
813                                &pw_entrylo0, &pw_entrylo1))
814         {
815         case 0:
816             return false;
817         case 1:
818             goto refill;
819         case 2:
820         default:
821             break;
822         }
823     }
824 
825     /* Leaf Level Page Table - First half of PTE pair */
826     vaddr |= ptoffset0;
827     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
828                              cpu_mmu_index(env, false)) !=
829                              TLBRET_MATCH) {
830         return false;
831     }
832     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
833         return false;
834     }
835     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
836     pw_entrylo0 = dir_entry;
837 
838     /* Leaf Level Page Table - Second half of PTE pair */
839     vaddr |= ptoffset1;
840     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
841                              cpu_mmu_index(env, false)) !=
842                              TLBRET_MATCH) {
843         return false;
844     }
845     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
846         return false;
847     }
848     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
849     pw_entrylo1 = dir_entry;
850 
851 refill:
852 
853     m = (1 << pf_ptw) - 1;
854 
855     if (huge_page) {
856         switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
857                 hgpg_mdhit)
858         {
859         case 4:
860             m = (1 << pf_gdw) - 1;
861             if (pf_gdw & 1) {
862                 m >>= 1;
863             }
864             break;
865         case 2:
866             m = (1 << pf_udw) - 1;
867             if (pf_udw & 1) {
868                 m >>= 1;
869             }
870             break;
871         case 1:
872             m = (1 << pf_mdw) - 1;
873             if (pf_mdw & 1) {
874                 m >>= 1;
875             }
876             break;
877         }
878     }
879     pw_pagemask = m >> TARGET_PAGE_BITS_MIN;
880     update_pagemask(env, pw_pagemask << CP0PM_MASK, &pw_pagemask);
881     pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
882     {
883         target_ulong tmp_entryhi = env->CP0_EntryHi;
884         int32_t tmp_pagemask = env->CP0_PageMask;
885         uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
886         uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
887 
888         env->CP0_EntryHi = pw_entryhi;
889         env->CP0_PageMask = pw_pagemask;
890         env->CP0_EntryLo0 = pw_entrylo0;
891         env->CP0_EntryLo1 = pw_entrylo1;
892 
893         /*
894          * The hardware page walker inserts a page into the TLB in a manner
895          * identical to a TLBWR instruction as executed by the software refill
896          * handler.
897          */
898         r4k_helper_tlbwr(env);
899 
900         env->CP0_EntryHi = tmp_entryhi;
901         env->CP0_PageMask = tmp_pagemask;
902         env->CP0_EntryLo0 = tmp_entrylo0;
903         env->CP0_EntryLo1 = tmp_entrylo1;
904     }
905     return true;
906 }
907 #endif
908 
909 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
910                        MMUAccessType access_type, int mmu_idx,
911                        bool probe, uintptr_t retaddr)
912 {
913     MIPSCPU *cpu = MIPS_CPU(cs);
914     CPUMIPSState *env = &cpu->env;
915     hwaddr physical;
916     int prot;
917     int ret = TLBRET_BADADDR;
918 
919     /* data access */
920     /* XXX: put correct access by using cpu_restore_state() correctly */
921     ret = get_physical_address(env, &physical, &prot, address,
922                                access_type, mmu_idx);
923     switch (ret) {
924     case TLBRET_MATCH:
925         qemu_log_mask(CPU_LOG_MMU,
926                       "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
927                       " prot %d\n", __func__, address, physical, prot);
928         break;
929     default:
930         qemu_log_mask(CPU_LOG_MMU,
931                       "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
932                       ret);
933         break;
934     }
935     if (ret == TLBRET_MATCH) {
936         tlb_set_page(cs, address & TARGET_PAGE_MASK,
937                      physical & TARGET_PAGE_MASK, prot,
938                      mmu_idx, TARGET_PAGE_SIZE);
939         return true;
940     }
941 #if !defined(TARGET_MIPS64)
942     if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
943         /*
944          * Memory reads during hardware page table walking are performed
945          * as if they were kernel-mode load instructions.
946          */
947         int mode = (env->hflags & MIPS_HFLAG_KSU);
948         bool ret_walker;
949         env->hflags &= ~MIPS_HFLAG_KSU;
950         ret_walker = page_table_walk_refill(env, address, mmu_idx);
951         env->hflags |= mode;
952         if (ret_walker) {
953             ret = get_physical_address(env, &physical, &prot, address,
954                                        access_type, mmu_idx);
955             if (ret == TLBRET_MATCH) {
956                 tlb_set_page(cs, address & TARGET_PAGE_MASK,
957                              physical & TARGET_PAGE_MASK, prot,
958                              mmu_idx, TARGET_PAGE_SIZE);
959                 return true;
960             }
961         }
962     }
963 #endif
964     if (probe) {
965         return false;
966     }
967 
968     raise_mmu_exception(env, address, access_type, ret);
969     do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
970 }
971 
972 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
973                                   MMUAccessType access_type, uintptr_t retaddr)
974 {
975     hwaddr physical;
976     int prot;
977     int ret = 0;
978     CPUState *cs = env_cpu(env);
979 
980     /* data access */
981     ret = get_physical_address(env, &physical, &prot, address, access_type,
982                                cpu_mmu_index(env, false));
983     if (ret == TLBRET_MATCH) {
984         return physical;
985     }
986 
987     raise_mmu_exception(env, address, access_type, ret);
988     cpu_loop_exit_restore(cs, retaddr);
989 }
990 
991 static void set_hflags_for_handler(CPUMIPSState *env)
992 {
993     /* Exception handlers are entered in 32-bit mode.  */
994     env->hflags &= ~(MIPS_HFLAG_M16);
995     /* ...except that microMIPS lets you choose.  */
996     if (env->insn_flags & ASE_MICROMIPS) {
997         env->hflags |= (!!(env->CP0_Config3 &
998                            (1 << CP0C3_ISA_ON_EXC))
999                         << MIPS_HFLAG_M16_SHIFT);
1000     }
1001 }
1002 
1003 static inline void set_badinstr_registers(CPUMIPSState *env)
1004 {
1005     if (env->insn_flags & ISA_NANOMIPS32) {
1006         if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1007             uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1008             if ((instr & 0x10000000) == 0) {
1009                 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1010             }
1011             env->CP0_BadInstr = instr;
1012 
1013             if ((instr & 0xFC000000) == 0x60000000) {
1014                 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1015                 env->CP0_BadInstrX = instr;
1016             }
1017         }
1018         return;
1019     }
1020 
1021     if (env->hflags & MIPS_HFLAG_M16) {
1022         /* TODO: add BadInstr support for microMIPS */
1023         return;
1024     }
1025     if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1026         env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1027     }
1028     if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1029         (env->hflags & MIPS_HFLAG_BMASK)) {
1030         env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1031     }
1032 }
1033 
1034 void mips_cpu_do_interrupt(CPUState *cs)
1035 {
1036     MIPSCPU *cpu = MIPS_CPU(cs);
1037     CPUMIPSState *env = &cpu->env;
1038     bool update_badinstr = 0;
1039     target_ulong offset;
1040     int cause = -1;
1041 
1042     if (qemu_loglevel_mask(CPU_LOG_INT)
1043         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1044         qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1045                  " %s exception\n",
1046                  __func__, env->active_tc.PC, env->CP0_EPC,
1047                  mips_exception_name(cs->exception_index));
1048     }
1049     if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1050         (env->hflags & MIPS_HFLAG_DM)) {
1051         cs->exception_index = EXCP_DINT;
1052     }
1053     offset = 0x180;
1054     switch (cs->exception_index) {
1055     case EXCP_DSS:
1056         env->CP0_Debug |= 1 << CP0DB_DSS;
1057         /*
1058          * Debug single step cannot be raised inside a delay slot and
1059          * resume will always occur on the next instruction
1060          * (but we assume the pc has always been updated during
1061          * code translation).
1062          */
1063         env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1064         goto enter_debug_mode;
1065     case EXCP_DINT:
1066         env->CP0_Debug |= 1 << CP0DB_DINT;
1067         goto set_DEPC;
1068     case EXCP_DIB:
1069         env->CP0_Debug |= 1 << CP0DB_DIB;
1070         goto set_DEPC;
1071     case EXCP_DBp:
1072         env->CP0_Debug |= 1 << CP0DB_DBp;
1073         /* Setup DExcCode - SDBBP instruction */
1074         env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1075                          (9 << CP0DB_DEC);
1076         goto set_DEPC;
1077     case EXCP_DDBS:
1078         env->CP0_Debug |= 1 << CP0DB_DDBS;
1079         goto set_DEPC;
1080     case EXCP_DDBL:
1081         env->CP0_Debug |= 1 << CP0DB_DDBL;
1082     set_DEPC:
1083         env->CP0_DEPC = exception_resume_pc(env);
1084         env->hflags &= ~MIPS_HFLAG_BMASK;
1085  enter_debug_mode:
1086         if (env->insn_flags & ISA_MIPS3) {
1087             env->hflags |= MIPS_HFLAG_64;
1088             if (!(env->insn_flags & ISA_MIPS_R6) ||
1089                 env->CP0_Status & (1 << CP0St_KX)) {
1090                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1091             }
1092         }
1093         env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1094         env->hflags &= ~(MIPS_HFLAG_KSU);
1095         /* EJTAG probe trap enable is not implemented... */
1096         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1097             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1098         }
1099         env->active_tc.PC = env->exception_base + 0x480;
1100         set_hflags_for_handler(env);
1101         break;
1102     case EXCP_RESET:
1103         cpu_reset(CPU(cpu));
1104         break;
1105     case EXCP_SRESET:
1106         env->CP0_Status |= (1 << CP0St_SR);
1107         memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1108         goto set_error_EPC;
1109     case EXCP_NMI:
1110         env->CP0_Status |= (1 << CP0St_NMI);
1111  set_error_EPC:
1112         env->CP0_ErrorEPC = exception_resume_pc(env);
1113         env->hflags &= ~MIPS_HFLAG_BMASK;
1114         env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1115         if (env->insn_flags & ISA_MIPS3) {
1116             env->hflags |= MIPS_HFLAG_64;
1117             if (!(env->insn_flags & ISA_MIPS_R6) ||
1118                 env->CP0_Status & (1 << CP0St_KX)) {
1119                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1120             }
1121         }
1122         env->hflags |= MIPS_HFLAG_CP0;
1123         env->hflags &= ~(MIPS_HFLAG_KSU);
1124         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1125             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1126         }
1127         env->active_tc.PC = env->exception_base;
1128         set_hflags_for_handler(env);
1129         break;
1130     case EXCP_EXT_INTERRUPT:
1131         cause = 0;
1132         if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1133             uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1134 
1135             if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1136                 offset = 0x200;
1137             } else {
1138                 uint32_t vector = 0;
1139                 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1140 
1141                 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1142                     /*
1143                      * For VEIC mode, the external interrupt controller feeds
1144                      * the vector through the CP0Cause IP lines.
1145                      */
1146                     vector = pending;
1147                 } else {
1148                     /*
1149                      * Vectored Interrupts
1150                      * Mask with Status.IM7-IM0 to get enabled interrupts.
1151                      */
1152                     pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1153                     /* Find the highest-priority interrupt. */
1154                     while (pending >>= 1) {
1155                         vector++;
1156                     }
1157                 }
1158                 offset = 0x200 + (vector * (spacing << 5));
1159             }
1160         }
1161         goto set_EPC;
1162     case EXCP_LTLBL:
1163         cause = 1;
1164         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1165         goto set_EPC;
1166     case EXCP_TLBL:
1167         cause = 2;
1168         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1169         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1170             !(env->CP0_Status & (1 << CP0St_EXL))) {
1171 #if defined(TARGET_MIPS64)
1172             int R = env->CP0_BadVAddr >> 62;
1173             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1174             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1175 
1176             if ((R != 0 || UX) && (R != 3 || KX) &&
1177                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1178                 offset = 0x080;
1179             } else {
1180 #endif
1181                 offset = 0x000;
1182 #if defined(TARGET_MIPS64)
1183             }
1184 #endif
1185         }
1186         goto set_EPC;
1187     case EXCP_TLBS:
1188         cause = 3;
1189         update_badinstr = 1;
1190         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1191             !(env->CP0_Status & (1 << CP0St_EXL))) {
1192 #if defined(TARGET_MIPS64)
1193             int R = env->CP0_BadVAddr >> 62;
1194             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1195             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1196 
1197             if ((R != 0 || UX) && (R != 3 || KX) &&
1198                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1199                 offset = 0x080;
1200             } else {
1201 #endif
1202                 offset = 0x000;
1203 #if defined(TARGET_MIPS64)
1204             }
1205 #endif
1206         }
1207         goto set_EPC;
1208     case EXCP_AdEL:
1209         cause = 4;
1210         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1211         goto set_EPC;
1212     case EXCP_AdES:
1213         cause = 5;
1214         update_badinstr = 1;
1215         goto set_EPC;
1216     case EXCP_IBE:
1217         cause = 6;
1218         goto set_EPC;
1219     case EXCP_DBE:
1220         cause = 7;
1221         goto set_EPC;
1222     case EXCP_SYSCALL:
1223         cause = 8;
1224         update_badinstr = 1;
1225         goto set_EPC;
1226     case EXCP_BREAK:
1227         cause = 9;
1228         update_badinstr = 1;
1229         goto set_EPC;
1230     case EXCP_RI:
1231         cause = 10;
1232         update_badinstr = 1;
1233         goto set_EPC;
1234     case EXCP_CpU:
1235         cause = 11;
1236         update_badinstr = 1;
1237         env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1238                          (env->error_code << CP0Ca_CE);
1239         goto set_EPC;
1240     case EXCP_OVERFLOW:
1241         cause = 12;
1242         update_badinstr = 1;
1243         goto set_EPC;
1244     case EXCP_TRAP:
1245         cause = 13;
1246         update_badinstr = 1;
1247         goto set_EPC;
1248     case EXCP_MSAFPE:
1249         cause = 14;
1250         update_badinstr = 1;
1251         goto set_EPC;
1252     case EXCP_FPE:
1253         cause = 15;
1254         update_badinstr = 1;
1255         goto set_EPC;
1256     case EXCP_C2E:
1257         cause = 18;
1258         goto set_EPC;
1259     case EXCP_TLBRI:
1260         cause = 19;
1261         update_badinstr = 1;
1262         goto set_EPC;
1263     case EXCP_TLBXI:
1264         cause = 20;
1265         goto set_EPC;
1266     case EXCP_MSADIS:
1267         cause = 21;
1268         update_badinstr = 1;
1269         goto set_EPC;
1270     case EXCP_MDMX:
1271         cause = 22;
1272         goto set_EPC;
1273     case EXCP_DWATCH:
1274         cause = 23;
1275         /* XXX: TODO: manage deferred watch exceptions */
1276         goto set_EPC;
1277     case EXCP_MCHECK:
1278         cause = 24;
1279         goto set_EPC;
1280     case EXCP_THREAD:
1281         cause = 25;
1282         goto set_EPC;
1283     case EXCP_DSPDIS:
1284         cause = 26;
1285         goto set_EPC;
1286     case EXCP_CACHE:
1287         cause = 30;
1288         offset = 0x100;
1289  set_EPC:
1290         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1291             env->CP0_EPC = exception_resume_pc(env);
1292             if (update_badinstr) {
1293                 set_badinstr_registers(env);
1294             }
1295             if (env->hflags & MIPS_HFLAG_BMASK) {
1296                 env->CP0_Cause |= (1U << CP0Ca_BD);
1297             } else {
1298                 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1299             }
1300             env->CP0_Status |= (1 << CP0St_EXL);
1301             if (env->insn_flags & ISA_MIPS3) {
1302                 env->hflags |= MIPS_HFLAG_64;
1303                 if (!(env->insn_flags & ISA_MIPS_R6) ||
1304                     env->CP0_Status & (1 << CP0St_KX)) {
1305                     env->hflags &= ~MIPS_HFLAG_AWRAP;
1306                 }
1307             }
1308             env->hflags |= MIPS_HFLAG_CP0;
1309             env->hflags &= ~(MIPS_HFLAG_KSU);
1310         }
1311         env->hflags &= ~MIPS_HFLAG_BMASK;
1312         if (env->CP0_Status & (1 << CP0St_BEV)) {
1313             env->active_tc.PC = env->exception_base + 0x200;
1314         } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1315                                     env->CP0_Config5 & (1 << CP0C5_CV))) {
1316             /* Force KSeg1 for cache errors */
1317             env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1318         } else {
1319             env->active_tc.PC = env->CP0_EBase & ~0xfff;
1320         }
1321 
1322         env->active_tc.PC += offset;
1323         set_hflags_for_handler(env);
1324         env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1325                          (cause << CP0Ca_EC);
1326         break;
1327     default:
1328         abort();
1329     }
1330     if (qemu_loglevel_mask(CPU_LOG_INT)
1331         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1332         qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1333                  "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1334                  __func__, env->active_tc.PC, env->CP0_EPC, cause,
1335                  env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1336                  env->CP0_DEPC);
1337     }
1338     cs->exception_index = EXCP_NONE;
1339 }
1340 
1341 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1342 {
1343     CPUState *cs = env_cpu(env);
1344     r4k_tlb_t *tlb;
1345     target_ulong addr;
1346     target_ulong end;
1347     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1348     uint32_t MMID = env->CP0_MemoryMapID;
1349     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
1350     uint32_t tlb_mmid;
1351     target_ulong mask;
1352 
1353     MMID = mi ? MMID : (uint32_t) ASID;
1354 
1355     tlb = &env->tlb->mmu.r4k.tlb[idx];
1356     /*
1357      * The qemu TLB is flushed when the ASID/MMID changes, so no need to
1358      * flush these entries again.
1359      */
1360     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
1361     if (tlb->G == 0 && tlb_mmid != MMID) {
1362         return;
1363     }
1364 
1365     if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1366         /*
1367          * For tlbwr, we can shadow the discarded entry into
1368          * a new (fake) TLB entry, as long as the guest can not
1369          * tell that it's there.
1370          */
1371         env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1372         env->tlb->tlb_in_use++;
1373         return;
1374     }
1375 
1376     /* 1k pages are not supported. */
1377     mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1378     if (tlb->V0) {
1379         addr = tlb->VPN & ~mask;
1380 #if defined(TARGET_MIPS64)
1381         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1382             addr |= 0x3FFFFF0000000000ULL;
1383         }
1384 #endif
1385         end = addr | (mask >> 1);
1386         while (addr < end) {
1387             tlb_flush_page(cs, addr);
1388             addr += TARGET_PAGE_SIZE;
1389         }
1390     }
1391     if (tlb->V1) {
1392         addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1393 #if defined(TARGET_MIPS64)
1394         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1395             addr |= 0x3FFFFF0000000000ULL;
1396         }
1397 #endif
1398         end = addr | mask;
1399         while (addr - 1 < end) {
1400             tlb_flush_page(cs, addr);
1401             addr += TARGET_PAGE_SIZE;
1402         }
1403     }
1404 }
1405