xref: /openbmc/qemu/target/mips/tcg/sysemu/tlb_helper.c (revision 4e245a9e)
1 /*
2  * MIPS TLB (Translation lookaside buffer) helpers.
3  *
4  *  Copyright (c) 2004-2005 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 
22 #include "cpu.h"
23 #include "internal.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/log.h"
27 #include "hw/mips/cpudevs.h"
28 #include "exec/helper-proto.h"
29 
30 /* TLB management */
31 static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
32 {
33     /* Discard entries from env->tlb[first] onwards.  */
34     while (env->tlb->tlb_in_use > first) {
35         r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
36     }
37 }
38 
39 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
40 {
41 #if defined(TARGET_MIPS64)
42     return extract64(entrylo, 6, 54);
43 #else
44     return extract64(entrylo, 6, 24) | /* PFN */
45            (extract64(entrylo, 32, 32) << 24); /* PFNX */
46 #endif
47 }
48 
49 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
50 {
51     r4k_tlb_t *tlb;
52     uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
53 
54     /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
55     tlb = &env->tlb->mmu.r4k.tlb[idx];
56     if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
57         tlb->EHINV = 1;
58         return;
59     }
60     tlb->EHINV = 0;
61     tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
62 #if defined(TARGET_MIPS64)
63     tlb->VPN &= env->SEGMask;
64 #endif
65     tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
66     tlb->MMID = env->CP0_MemoryMapID;
67     tlb->PageMask = env->CP0_PageMask;
68     tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
69     tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
70     tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
71     tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
72     tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
73     tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
74     tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
75     tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
76     tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
77     tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
78     tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
79     tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
80     tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
81 }
82 
83 static void r4k_helper_tlbinv(CPUMIPSState *env)
84 {
85     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
86     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
87     uint32_t MMID = env->CP0_MemoryMapID;
88     uint32_t tlb_mmid;
89     r4k_tlb_t *tlb;
90     int idx;
91 
92     MMID = mi ? MMID : (uint32_t) ASID;
93     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
94         tlb = &env->tlb->mmu.r4k.tlb[idx];
95         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
96         if (!tlb->G && tlb_mmid == MMID) {
97             tlb->EHINV = 1;
98         }
99     }
100     cpu_mips_tlb_flush(env);
101 }
102 
103 static void r4k_helper_tlbinvf(CPUMIPSState *env)
104 {
105     int idx;
106 
107     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
108         env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
109     }
110     cpu_mips_tlb_flush(env);
111 }
112 
113 static void r4k_helper_tlbwi(CPUMIPSState *env)
114 {
115     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
116     target_ulong VPN;
117     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
118     uint32_t MMID = env->CP0_MemoryMapID;
119     uint32_t tlb_mmid;
120     bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
121     r4k_tlb_t *tlb;
122     int idx;
123 
124     MMID = mi ? MMID : (uint32_t) ASID;
125 
126     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
127     tlb = &env->tlb->mmu.r4k.tlb[idx];
128     VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
129 #if defined(TARGET_MIPS64)
130     VPN &= env->SEGMask;
131 #endif
132     EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
133     G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
134     V0 = (env->CP0_EntryLo0 & 2) != 0;
135     D0 = (env->CP0_EntryLo0 & 4) != 0;
136     XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
137     RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
138     V1 = (env->CP0_EntryLo1 & 2) != 0;
139     D1 = (env->CP0_EntryLo1 & 4) != 0;
140     XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
141     RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
142 
143     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
144     /*
145      * Discard cached TLB entries, unless tlbwi is just upgrading access
146      * permissions on the current entry.
147      */
148     if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G ||
149         (!tlb->EHINV && EHINV) ||
150         (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
151         (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
152         (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
153         (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
154         r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
155     }
156 
157     r4k_invalidate_tlb(env, idx, 0);
158     r4k_fill_tlb(env, idx);
159 }
160 
161 static void r4k_helper_tlbwr(CPUMIPSState *env)
162 {
163     int r = cpu_mips_get_random(env);
164 
165     r4k_invalidate_tlb(env, r, 1);
166     r4k_fill_tlb(env, r);
167 }
168 
169 static void r4k_helper_tlbp(CPUMIPSState *env)
170 {
171     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
172     r4k_tlb_t *tlb;
173     target_ulong mask;
174     target_ulong tag;
175     target_ulong VPN;
176     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
177     uint32_t MMID = env->CP0_MemoryMapID;
178     uint32_t tlb_mmid;
179     int i;
180 
181     MMID = mi ? MMID : (uint32_t) ASID;
182     for (i = 0; i < env->tlb->nb_tlb; i++) {
183         tlb = &env->tlb->mmu.r4k.tlb[i];
184         /* 1k pages are not supported. */
185         mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
186         tag = env->CP0_EntryHi & ~mask;
187         VPN = tlb->VPN & ~mask;
188 #if defined(TARGET_MIPS64)
189         tag &= env->SEGMask;
190 #endif
191         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
192         /* Check ASID/MMID, virtual page number & size */
193         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
194             /* TLB match */
195             env->CP0_Index = i;
196             break;
197         }
198     }
199     if (i == env->tlb->nb_tlb) {
200         /* No match.  Discard any shadow entries, if any of them match.  */
201         for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
202             tlb = &env->tlb->mmu.r4k.tlb[i];
203             /* 1k pages are not supported. */
204             mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
205             tag = env->CP0_EntryHi & ~mask;
206             VPN = tlb->VPN & ~mask;
207 #if defined(TARGET_MIPS64)
208             tag &= env->SEGMask;
209 #endif
210             tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
211             /* Check ASID/MMID, virtual page number & size */
212             if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) {
213                 r4k_mips_tlb_flush_extra(env, i);
214                 break;
215             }
216         }
217 
218         env->CP0_Index |= 0x80000000;
219     }
220 }
221 
222 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
223 {
224 #if defined(TARGET_MIPS64)
225     return tlb_pfn << 6;
226 #else
227     return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
228            (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
229 #endif
230 }
231 
232 static void r4k_helper_tlbr(CPUMIPSState *env)
233 {
234     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
235     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
236     uint32_t MMID = env->CP0_MemoryMapID;
237     uint32_t tlb_mmid;
238     r4k_tlb_t *tlb;
239     int idx;
240 
241     MMID = mi ? MMID : (uint32_t) ASID;
242     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
243     tlb = &env->tlb->mmu.r4k.tlb[idx];
244 
245     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
246     /* If this will change the current ASID/MMID, flush qemu's TLB.  */
247     if (MMID != tlb_mmid) {
248         cpu_mips_tlb_flush(env);
249     }
250 
251     r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
252 
253     if (tlb->EHINV) {
254         env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
255         env->CP0_PageMask = 0;
256         env->CP0_EntryLo0 = 0;
257         env->CP0_EntryLo1 = 0;
258     } else {
259         env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID;
260         env->CP0_MemoryMapID = tlb->MMID;
261         env->CP0_PageMask = tlb->PageMask;
262         env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
263                         ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
264                         ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
265                         get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
266         env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
267                         ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
268                         ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
269                         get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
270     }
271 }
272 
273 void helper_tlbwi(CPUMIPSState *env)
274 {
275     env->tlb->helper_tlbwi(env);
276 }
277 
278 void helper_tlbwr(CPUMIPSState *env)
279 {
280     env->tlb->helper_tlbwr(env);
281 }
282 
283 void helper_tlbp(CPUMIPSState *env)
284 {
285     env->tlb->helper_tlbp(env);
286 }
287 
288 void helper_tlbr(CPUMIPSState *env)
289 {
290     env->tlb->helper_tlbr(env);
291 }
292 
293 void helper_tlbinv(CPUMIPSState *env)
294 {
295     env->tlb->helper_tlbinv(env);
296 }
297 
298 void helper_tlbinvf(CPUMIPSState *env)
299 {
300     env->tlb->helper_tlbinvf(env);
301 }
302 
303 static void global_invalidate_tlb(CPUMIPSState *env,
304                            uint32_t invMsgVPN2,
305                            uint8_t invMsgR,
306                            uint32_t invMsgMMid,
307                            bool invAll,
308                            bool invVAMMid,
309                            bool invMMid,
310                            bool invVA)
311 {
312 
313     int idx;
314     r4k_tlb_t *tlb;
315     bool VAMatch;
316     bool MMidMatch;
317 
318     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
319         tlb = &env->tlb->mmu.r4k.tlb[idx];
320         VAMatch =
321             (((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask))
322 #ifdef TARGET_MIPS64
323             &&
324             (extract64(env->CP0_EntryHi, 62, 2) == invMsgR)
325 #endif
326             );
327         MMidMatch = tlb->MMID == invMsgMMid;
328         if ((invAll && (idx > env->CP0_Wired)) ||
329             (VAMatch && invVAMMid && (tlb->G || MMidMatch)) ||
330             (VAMatch && invVA) ||
331             (MMidMatch && !(tlb->G) && invMMid)) {
332             tlb->EHINV = 1;
333         }
334     }
335     cpu_mips_tlb_flush(env);
336 }
337 
338 void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type)
339 {
340     bool invAll = type == 0;
341     bool invVA = type == 1;
342     bool invMMid = type == 2;
343     bool invVAMMid = type == 3;
344     uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1);
345     uint8_t invMsgR = 0;
346     uint32_t invMsgMMid = env->CP0_MemoryMapID;
347     CPUState *other_cs = first_cpu;
348 
349 #ifdef TARGET_MIPS64
350     invMsgR = extract64(arg, 62, 2);
351 #endif
352 
353     CPU_FOREACH(other_cs) {
354         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
355         global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid,
356                               invAll, invVAMMid, invMMid, invVA);
357     }
358 }
359 
360 /* no MMU emulation */
361 static int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
362                               target_ulong address, MMUAccessType access_type)
363 {
364     *physical = address;
365     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
366     return TLBRET_MATCH;
367 }
368 
369 /* fixed mapping MMU emulation */
370 static int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical,
371                                  int *prot, target_ulong address,
372                                  MMUAccessType access_type)
373 {
374     if (address <= (int32_t)0x7FFFFFFFUL) {
375         if (!(env->CP0_Status & (1 << CP0St_ERL))) {
376             *physical = address + 0x40000000UL;
377         } else {
378             *physical = address;
379         }
380     } else if (address <= (int32_t)0xBFFFFFFFUL) {
381         *physical = address & 0x1FFFFFFF;
382     } else {
383         *physical = address;
384     }
385 
386     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
387     return TLBRET_MATCH;
388 }
389 
390 /* MIPS32/MIPS64 R4000-style MMU emulation */
391 static int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
392                            target_ulong address, MMUAccessType access_type)
393 {
394     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
395     uint32_t MMID = env->CP0_MemoryMapID;
396     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
397     uint32_t tlb_mmid;
398     int i;
399 
400     MMID = mi ? MMID : (uint32_t) ASID;
401 
402     for (i = 0; i < env->tlb->tlb_in_use; i++) {
403         r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
404         /* 1k pages are not supported. */
405         target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
406         target_ulong tag = address & ~mask;
407         target_ulong VPN = tlb->VPN & ~mask;
408 #if defined(TARGET_MIPS64)
409         tag &= env->SEGMask;
410 #endif
411 
412         /* Check ASID/MMID, virtual page number & size */
413         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
414         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
415             /* TLB match */
416             int n = !!(address & mask & ~(mask >> 1));
417             /* Check access rights */
418             if (!(n ? tlb->V1 : tlb->V0)) {
419                 return TLBRET_INVALID;
420             }
421             if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
422                 return TLBRET_XI;
423             }
424             if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
425                 return TLBRET_RI;
426             }
427             if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
428                 *physical = tlb->PFN[n] | (address & (mask >> 1));
429                 *prot = PAGE_READ;
430                 if (n ? tlb->D1 : tlb->D0) {
431                     *prot |= PAGE_WRITE;
432                 }
433                 if (!(n ? tlb->XI1 : tlb->XI0)) {
434                     *prot |= PAGE_EXEC;
435                 }
436                 return TLBRET_MATCH;
437             }
438             return TLBRET_DIRTY;
439         }
440     }
441     return TLBRET_NOMATCH;
442 }
443 
444 static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def)
445 {
446     env->tlb->nb_tlb = 1;
447     env->tlb->map_address = &no_mmu_map_address;
448 }
449 
450 static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def)
451 {
452     env->tlb->nb_tlb = 1;
453     env->tlb->map_address = &fixed_mmu_map_address;
454 }
455 
456 static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def)
457 {
458     env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
459     env->tlb->map_address = &r4k_map_address;
460     env->tlb->helper_tlbwi = r4k_helper_tlbwi;
461     env->tlb->helper_tlbwr = r4k_helper_tlbwr;
462     env->tlb->helper_tlbp = r4k_helper_tlbp;
463     env->tlb->helper_tlbr = r4k_helper_tlbr;
464     env->tlb->helper_tlbinv = r4k_helper_tlbinv;
465     env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
466 }
467 
468 void mmu_init(CPUMIPSState *env, const mips_def_t *def)
469 {
470     env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
471 
472     switch (def->mmu_type) {
473     case MMU_TYPE_NONE:
474         no_mmu_init(env, def);
475         break;
476     case MMU_TYPE_R4000:
477         r4k_mmu_init(env, def);
478         break;
479     case MMU_TYPE_FMT:
480         fixed_mmu_init(env, def);
481         break;
482     case MMU_TYPE_R3000:
483     case MMU_TYPE_R6000:
484     case MMU_TYPE_R8000:
485     default:
486         cpu_abort(env_cpu(env), "MMU type not supported\n");
487     }
488 }
489 
490 void cpu_mips_tlb_flush(CPUMIPSState *env)
491 {
492     /* Flush qemu's TLB and discard all shadowed entries.  */
493     tlb_flush(env_cpu(env));
494     env->tlb->tlb_in_use = env->tlb->nb_tlb;
495 }
496 
497 static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
498                                 MMUAccessType access_type, int tlb_error)
499 {
500     CPUState *cs = env_cpu(env);
501     int exception = 0, error_code = 0;
502 
503     if (access_type == MMU_INST_FETCH) {
504         error_code |= EXCP_INST_NOTAVAIL;
505     }
506 
507     switch (tlb_error) {
508     default:
509     case TLBRET_BADADDR:
510         /* Reference to kernel address from user mode or supervisor mode */
511         /* Reference to supervisor address from user mode */
512         if (access_type == MMU_DATA_STORE) {
513             exception = EXCP_AdES;
514         } else {
515             exception = EXCP_AdEL;
516         }
517         break;
518     case TLBRET_NOMATCH:
519         /* No TLB match for a mapped address */
520         if (access_type == MMU_DATA_STORE) {
521             exception = EXCP_TLBS;
522         } else {
523             exception = EXCP_TLBL;
524         }
525         error_code |= EXCP_TLB_NOMATCH;
526         break;
527     case TLBRET_INVALID:
528         /* TLB match with no valid bit */
529         if (access_type == MMU_DATA_STORE) {
530             exception = EXCP_TLBS;
531         } else {
532             exception = EXCP_TLBL;
533         }
534         break;
535     case TLBRET_DIRTY:
536         /* TLB match but 'D' bit is cleared */
537         exception = EXCP_LTLBL;
538         break;
539     case TLBRET_XI:
540         /* Execute-Inhibit Exception */
541         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
542             exception = EXCP_TLBXI;
543         } else {
544             exception = EXCP_TLBL;
545         }
546         break;
547     case TLBRET_RI:
548         /* Read-Inhibit Exception */
549         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
550             exception = EXCP_TLBRI;
551         } else {
552             exception = EXCP_TLBL;
553         }
554         break;
555     }
556     /* Raise exception */
557     if (!(env->hflags & MIPS_HFLAG_DM)) {
558         env->CP0_BadVAddr = address;
559     }
560     env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
561                        ((address >> 9) & 0x007ffff0);
562     env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
563                        (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
564                        (address & (TARGET_PAGE_MASK << 1));
565 #if defined(TARGET_MIPS64)
566     env->CP0_EntryHi &= env->SEGMask;
567     env->CP0_XContext =
568         (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
569         (extract64(address, 62, 2) << (env->SEGBITS - 9)) |     /* R       */
570         (extract64(address, 13, env->SEGBITS - 13) << 4);       /* BadVPN2 */
571 #endif
572     cs->exception_index = exception;
573     env->error_code = error_code;
574 }
575 
576 #if !defined(TARGET_MIPS64)
577 
578 /*
579  * Perform hardware page table walk
580  *
581  * Memory accesses are performed using the KERNEL privilege level.
582  * Synchronous exceptions detected on memory accesses cause a silent exit
583  * from page table walking, resulting in a TLB or XTLB Refill exception.
584  *
585  * Implementations are not required to support page table walk memory
586  * accesses from mapped memory regions. When an unsupported access is
587  * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
588  * exception.
589  *
590  * Note that if an exception is caused by AddressTranslation or LoadMemory
591  * functions, the exception is not taken, a silent exit is taken,
592  * resulting in a TLB or XTLB Refill exception.
593  */
594 
595 static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
596         uint64_t *pte)
597 {
598     if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
599         return false;
600     }
601     if (entry_size == 64) {
602         *pte = cpu_ldq_code(env, vaddr);
603     } else {
604         *pte = cpu_ldl_code(env, vaddr);
605     }
606     return true;
607 }
608 
609 static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
610         int entry_size, int ptei)
611 {
612     uint64_t result = entry;
613     uint64_t rixi;
614     if (ptei > entry_size) {
615         ptei -= 32;
616     }
617     result >>= (ptei - 2);
618     rixi = result & 3;
619     result >>= 2;
620     result |= rixi << CP0EnLo_XI;
621     return result;
622 }
623 
624 static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
625         int directory_index, bool *huge_page, bool *hgpg_directory_hit,
626         uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
627 {
628     int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
629     int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
630     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
631     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
632     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
633     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
634     int directory_shift = (ptew > 1) ? -1 :
635             (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
636     int leaf_shift = (ptew > 1) ? -1 :
637             (ptew == 1) ? native_shift + 1 : native_shift;
638     uint32_t direntry_size = 1 << (directory_shift + 3);
639     uint32_t leafentry_size = 1 << (leaf_shift + 3);
640     uint64_t entry;
641     uint64_t paddr;
642     int prot;
643     uint64_t lsb = 0;
644     uint64_t w = 0;
645 
646     if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
647                              cpu_mmu_index(env, false)) !=
648                              TLBRET_MATCH) {
649         /* wrong base address */
650         return 0;
651     }
652     if (!get_pte(env, *vaddr, direntry_size, &entry)) {
653         return 0;
654     }
655 
656     if ((entry & (1 << psn)) && hugepg) {
657         *huge_page = true;
658         *hgpg_directory_hit = true;
659         entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
660         w = directory_index - 1;
661         if (directory_index & 0x1) {
662             /* Generate adjacent page from same PTE for odd TLB page */
663             lsb = BIT_ULL(w) >> 6;
664             *pw_entrylo0 = entry & ~lsb; /* even page */
665             *pw_entrylo1 = entry | lsb; /* odd page */
666         } else if (dph) {
667             int oddpagebit = 1 << leaf_shift;
668             uint64_t vaddr2 = *vaddr ^ oddpagebit;
669             if (*vaddr & oddpagebit) {
670                 *pw_entrylo1 = entry;
671             } else {
672                 *pw_entrylo0 = entry;
673             }
674             if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
675                                      cpu_mmu_index(env, false)) !=
676                                      TLBRET_MATCH) {
677                 return 0;
678             }
679             if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
680                 return 0;
681             }
682             entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
683             if (*vaddr & oddpagebit) {
684                 *pw_entrylo0 = entry;
685             } else {
686                 *pw_entrylo1 = entry;
687             }
688         } else {
689             return 0;
690         }
691         return 1;
692     } else {
693         *vaddr = entry;
694         return 2;
695     }
696 }
697 
698 static bool page_table_walk_refill(CPUMIPSState *env, vaddr address,
699                                    int mmu_idx)
700 {
701     int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
702     int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
703     int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
704     int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
705     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
706 
707     /* Initial values */
708     bool huge_page = false;
709     bool hgpg_bdhit = false;
710     bool hgpg_gdhit = false;
711     bool hgpg_udhit = false;
712     bool hgpg_mdhit = false;
713 
714     int32_t pw_pagemask = 0;
715     target_ulong pw_entryhi = 0;
716     uint64_t pw_entrylo0 = 0;
717     uint64_t pw_entrylo1 = 0;
718 
719     /* Native pointer size */
720     /*For the 32-bit architectures, this bit is fixed to 0.*/
721     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
722 
723     /* Indices from PWField */
724     int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
725     int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
726     int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
727     int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
728     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
729 
730     /* Indices computed from faulting address */
731     int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
732     int uindex = (address >> pf_udw) & ((1 << udw) - 1);
733     int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
734     int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
735 
736     /* Other HTW configs */
737     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
738 
739     /* HTW Shift values (depend on entry size) */
740     int directory_shift = (ptew > 1) ? -1 :
741             (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
742     int leaf_shift = (ptew > 1) ? -1 :
743             (ptew == 1) ? native_shift + 1 : native_shift;
744 
745     /* Offsets into tables */
746     int goffset = gindex << directory_shift;
747     int uoffset = uindex << directory_shift;
748     int moffset = mindex << directory_shift;
749     int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
750     int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
751 
752     uint32_t leafentry_size = 1 << (leaf_shift + 3);
753 
754     /* Starting address - Page Table Base */
755     uint64_t vaddr = env->CP0_PWBase;
756 
757     uint64_t dir_entry;
758     uint64_t paddr;
759     int prot;
760     int m;
761 
762     if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
763         /* walker is unimplemented */
764         return false;
765     }
766     if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
767         /* walker is disabled */
768         return false;
769     }
770     if (!(gdw > 0 || udw > 0 || mdw > 0)) {
771         /* no structure to walk */
772         return false;
773     }
774     if ((directory_shift == -1) || (leaf_shift == -1)) {
775         return false;
776     }
777 
778     /* Global Directory */
779     if (gdw > 0) {
780         vaddr |= goffset;
781         switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
782                                &pw_entrylo0, &pw_entrylo1))
783         {
784         case 0:
785             return false;
786         case 1:
787             goto refill;
788         case 2:
789         default:
790             break;
791         }
792     }
793 
794     /* Upper directory */
795     if (udw > 0) {
796         vaddr |= uoffset;
797         switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
798                                &pw_entrylo0, &pw_entrylo1))
799         {
800         case 0:
801             return false;
802         case 1:
803             goto refill;
804         case 2:
805         default:
806             break;
807         }
808     }
809 
810     /* Middle directory */
811     if (mdw > 0) {
812         vaddr |= moffset;
813         switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
814                                &pw_entrylo0, &pw_entrylo1))
815         {
816         case 0:
817             return false;
818         case 1:
819             goto refill;
820         case 2:
821         default:
822             break;
823         }
824     }
825 
826     /* Leaf Level Page Table - First half of PTE pair */
827     vaddr |= ptoffset0;
828     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
829                              cpu_mmu_index(env, false)) !=
830                              TLBRET_MATCH) {
831         return false;
832     }
833     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
834         return false;
835     }
836     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
837     pw_entrylo0 = dir_entry;
838 
839     /* Leaf Level Page Table - Second half of PTE pair */
840     vaddr |= ptoffset1;
841     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
842                              cpu_mmu_index(env, false)) !=
843                              TLBRET_MATCH) {
844         return false;
845     }
846     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
847         return false;
848     }
849     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
850     pw_entrylo1 = dir_entry;
851 
852 refill:
853 
854     m = (1 << pf_ptw) - 1;
855 
856     if (huge_page) {
857         switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
858                 hgpg_mdhit)
859         {
860         case 4:
861             m = (1 << pf_gdw) - 1;
862             if (pf_gdw & 1) {
863                 m >>= 1;
864             }
865             break;
866         case 2:
867             m = (1 << pf_udw) - 1;
868             if (pf_udw & 1) {
869                 m >>= 1;
870             }
871             break;
872         case 1:
873             m = (1 << pf_mdw) - 1;
874             if (pf_mdw & 1) {
875                 m >>= 1;
876             }
877             break;
878         }
879     }
880     pw_pagemask = m >> TARGET_PAGE_BITS_MIN;
881     update_pagemask(env, pw_pagemask << CP0PM_MASK, &pw_pagemask);
882     pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
883     {
884         target_ulong tmp_entryhi = env->CP0_EntryHi;
885         int32_t tmp_pagemask = env->CP0_PageMask;
886         uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
887         uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
888 
889         env->CP0_EntryHi = pw_entryhi;
890         env->CP0_PageMask = pw_pagemask;
891         env->CP0_EntryLo0 = pw_entrylo0;
892         env->CP0_EntryLo1 = pw_entrylo1;
893 
894         /*
895          * The hardware page walker inserts a page into the TLB in a manner
896          * identical to a TLBWR instruction as executed by the software refill
897          * handler.
898          */
899         r4k_helper_tlbwr(env);
900 
901         env->CP0_EntryHi = tmp_entryhi;
902         env->CP0_PageMask = tmp_pagemask;
903         env->CP0_EntryLo0 = tmp_entrylo0;
904         env->CP0_EntryLo1 = tmp_entrylo1;
905     }
906     return true;
907 }
908 #endif
909 
910 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
911                        MMUAccessType access_type, int mmu_idx,
912                        bool probe, uintptr_t retaddr)
913 {
914     MIPSCPU *cpu = MIPS_CPU(cs);
915     CPUMIPSState *env = &cpu->env;
916     hwaddr physical;
917     int prot;
918     int ret = TLBRET_BADADDR;
919 
920     /* data access */
921     /* XXX: put correct access by using cpu_restore_state() correctly */
922     ret = get_physical_address(env, &physical, &prot, address,
923                                access_type, mmu_idx);
924     switch (ret) {
925     case TLBRET_MATCH:
926         qemu_log_mask(CPU_LOG_MMU,
927                       "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
928                       " prot %d\n", __func__, address, physical, prot);
929         break;
930     default:
931         qemu_log_mask(CPU_LOG_MMU,
932                       "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
933                       ret);
934         break;
935     }
936     if (ret == TLBRET_MATCH) {
937         tlb_set_page(cs, address & TARGET_PAGE_MASK,
938                      physical & TARGET_PAGE_MASK, prot,
939                      mmu_idx, TARGET_PAGE_SIZE);
940         return true;
941     }
942 #if !defined(TARGET_MIPS64)
943     if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
944         /*
945          * Memory reads during hardware page table walking are performed
946          * as if they were kernel-mode load instructions.
947          */
948         int mode = (env->hflags & MIPS_HFLAG_KSU);
949         bool ret_walker;
950         env->hflags &= ~MIPS_HFLAG_KSU;
951         ret_walker = page_table_walk_refill(env, address, mmu_idx);
952         env->hflags |= mode;
953         if (ret_walker) {
954             ret = get_physical_address(env, &physical, &prot, address,
955                                        access_type, mmu_idx);
956             if (ret == TLBRET_MATCH) {
957                 tlb_set_page(cs, address & TARGET_PAGE_MASK,
958                              physical & TARGET_PAGE_MASK, prot,
959                              mmu_idx, TARGET_PAGE_SIZE);
960                 return true;
961             }
962         }
963     }
964 #endif
965     if (probe) {
966         return false;
967     }
968 
969     raise_mmu_exception(env, address, access_type, ret);
970     do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
971 }
972 
973 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
974                                   MMUAccessType access_type, uintptr_t retaddr)
975 {
976     hwaddr physical;
977     int prot;
978     int ret = 0;
979     CPUState *cs = env_cpu(env);
980 
981     /* data access */
982     ret = get_physical_address(env, &physical, &prot, address, access_type,
983                                cpu_mmu_index(env, false));
984     if (ret == TLBRET_MATCH) {
985         return physical;
986     }
987 
988     raise_mmu_exception(env, address, access_type, ret);
989     cpu_loop_exit_restore(cs, retaddr);
990 }
991 
992 static void set_hflags_for_handler(CPUMIPSState *env)
993 {
994     /* Exception handlers are entered in 32-bit mode.  */
995     env->hflags &= ~(MIPS_HFLAG_M16);
996     /* ...except that microMIPS lets you choose.  */
997     if (env->insn_flags & ASE_MICROMIPS) {
998         env->hflags |= (!!(env->CP0_Config3 &
999                            (1 << CP0C3_ISA_ON_EXC))
1000                         << MIPS_HFLAG_M16_SHIFT);
1001     }
1002 }
1003 
1004 static inline void set_badinstr_registers(CPUMIPSState *env)
1005 {
1006     if (env->insn_flags & ISA_NANOMIPS32) {
1007         if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1008             uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1009             if ((instr & 0x10000000) == 0) {
1010                 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1011             }
1012             env->CP0_BadInstr = instr;
1013 
1014             if ((instr & 0xFC000000) == 0x60000000) {
1015                 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1016                 env->CP0_BadInstrX = instr;
1017             }
1018         }
1019         return;
1020     }
1021 
1022     if (env->hflags & MIPS_HFLAG_M16) {
1023         /* TODO: add BadInstr support for microMIPS */
1024         return;
1025     }
1026     if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1027         env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1028     }
1029     if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1030         (env->hflags & MIPS_HFLAG_BMASK)) {
1031         env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1032     }
1033 }
1034 
1035 void mips_cpu_do_interrupt(CPUState *cs)
1036 {
1037     MIPSCPU *cpu = MIPS_CPU(cs);
1038     CPUMIPSState *env = &cpu->env;
1039     bool update_badinstr = 0;
1040     target_ulong offset;
1041     int cause = -1;
1042 
1043     if (qemu_loglevel_mask(CPU_LOG_INT)
1044         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1045         qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1046                  " %s exception\n",
1047                  __func__, env->active_tc.PC, env->CP0_EPC,
1048                  mips_exception_name(cs->exception_index));
1049     }
1050     if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1051         (env->hflags & MIPS_HFLAG_DM)) {
1052         cs->exception_index = EXCP_DINT;
1053     }
1054     offset = 0x180;
1055     switch (cs->exception_index) {
1056     case EXCP_SEMIHOST:
1057         cs->exception_index = EXCP_NONE;
1058         mips_semihosting(env);
1059         return;
1060     case EXCP_DSS:
1061         env->CP0_Debug |= 1 << CP0DB_DSS;
1062         /*
1063          * Debug single step cannot be raised inside a delay slot and
1064          * resume will always occur on the next instruction
1065          * (but we assume the pc has always been updated during
1066          * code translation).
1067          */
1068         env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1069         goto enter_debug_mode;
1070     case EXCP_DINT:
1071         env->CP0_Debug |= 1 << CP0DB_DINT;
1072         goto set_DEPC;
1073     case EXCP_DIB:
1074         env->CP0_Debug |= 1 << CP0DB_DIB;
1075         goto set_DEPC;
1076     case EXCP_DBp:
1077         env->CP0_Debug |= 1 << CP0DB_DBp;
1078         /* Setup DExcCode - SDBBP instruction */
1079         env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1080                          (9 << CP0DB_DEC);
1081         goto set_DEPC;
1082     case EXCP_DDBS:
1083         env->CP0_Debug |= 1 << CP0DB_DDBS;
1084         goto set_DEPC;
1085     case EXCP_DDBL:
1086         env->CP0_Debug |= 1 << CP0DB_DDBL;
1087     set_DEPC:
1088         env->CP0_DEPC = exception_resume_pc(env);
1089         env->hflags &= ~MIPS_HFLAG_BMASK;
1090  enter_debug_mode:
1091         if (env->insn_flags & ISA_MIPS3) {
1092             env->hflags |= MIPS_HFLAG_64;
1093             if (!(env->insn_flags & ISA_MIPS_R6) ||
1094                 env->CP0_Status & (1 << CP0St_KX)) {
1095                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1096             }
1097         }
1098         env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1099         env->hflags &= ~(MIPS_HFLAG_KSU);
1100         /* EJTAG probe trap enable is not implemented... */
1101         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1102             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1103         }
1104         env->active_tc.PC = env->exception_base + 0x480;
1105         set_hflags_for_handler(env);
1106         break;
1107     case EXCP_RESET:
1108         cpu_reset(CPU(cpu));
1109         break;
1110     case EXCP_SRESET:
1111         env->CP0_Status |= (1 << CP0St_SR);
1112         memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1113         goto set_error_EPC;
1114     case EXCP_NMI:
1115         env->CP0_Status |= (1 << CP0St_NMI);
1116  set_error_EPC:
1117         env->CP0_ErrorEPC = exception_resume_pc(env);
1118         env->hflags &= ~MIPS_HFLAG_BMASK;
1119         env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1120         if (env->insn_flags & ISA_MIPS3) {
1121             env->hflags |= MIPS_HFLAG_64;
1122             if (!(env->insn_flags & ISA_MIPS_R6) ||
1123                 env->CP0_Status & (1 << CP0St_KX)) {
1124                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1125             }
1126         }
1127         env->hflags |= MIPS_HFLAG_CP0;
1128         env->hflags &= ~(MIPS_HFLAG_KSU);
1129         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1130             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1131         }
1132         env->active_tc.PC = env->exception_base;
1133         set_hflags_for_handler(env);
1134         break;
1135     case EXCP_EXT_INTERRUPT:
1136         cause = 0;
1137         if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1138             uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1139 
1140             if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1141                 offset = 0x200;
1142             } else {
1143                 uint32_t vector = 0;
1144                 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1145 
1146                 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1147                     /*
1148                      * For VEIC mode, the external interrupt controller feeds
1149                      * the vector through the CP0Cause IP lines.
1150                      */
1151                     vector = pending;
1152                 } else {
1153                     /*
1154                      * Vectored Interrupts
1155                      * Mask with Status.IM7-IM0 to get enabled interrupts.
1156                      */
1157                     pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1158                     /* Find the highest-priority interrupt. */
1159                     while (pending >>= 1) {
1160                         vector++;
1161                     }
1162                 }
1163                 offset = 0x200 + (vector * (spacing << 5));
1164             }
1165         }
1166         goto set_EPC;
1167     case EXCP_LTLBL:
1168         cause = 1;
1169         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1170         goto set_EPC;
1171     case EXCP_TLBL:
1172         cause = 2;
1173         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1174         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1175             !(env->CP0_Status & (1 << CP0St_EXL))) {
1176 #if defined(TARGET_MIPS64)
1177             int R = env->CP0_BadVAddr >> 62;
1178             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1179             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1180 
1181             if ((R != 0 || UX) && (R != 3 || KX) &&
1182                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1183                 offset = 0x080;
1184             } else {
1185 #endif
1186                 offset = 0x000;
1187 #if defined(TARGET_MIPS64)
1188             }
1189 #endif
1190         }
1191         goto set_EPC;
1192     case EXCP_TLBS:
1193         cause = 3;
1194         update_badinstr = 1;
1195         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1196             !(env->CP0_Status & (1 << CP0St_EXL))) {
1197 #if defined(TARGET_MIPS64)
1198             int R = env->CP0_BadVAddr >> 62;
1199             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1200             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1201 
1202             if ((R != 0 || UX) && (R != 3 || KX) &&
1203                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1204                 offset = 0x080;
1205             } else {
1206 #endif
1207                 offset = 0x000;
1208 #if defined(TARGET_MIPS64)
1209             }
1210 #endif
1211         }
1212         goto set_EPC;
1213     case EXCP_AdEL:
1214         cause = 4;
1215         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1216         goto set_EPC;
1217     case EXCP_AdES:
1218         cause = 5;
1219         update_badinstr = 1;
1220         goto set_EPC;
1221     case EXCP_IBE:
1222         cause = 6;
1223         goto set_EPC;
1224     case EXCP_DBE:
1225         cause = 7;
1226         goto set_EPC;
1227     case EXCP_SYSCALL:
1228         cause = 8;
1229         update_badinstr = 1;
1230         goto set_EPC;
1231     case EXCP_BREAK:
1232         cause = 9;
1233         update_badinstr = 1;
1234         goto set_EPC;
1235     case EXCP_RI:
1236         cause = 10;
1237         update_badinstr = 1;
1238         goto set_EPC;
1239     case EXCP_CpU:
1240         cause = 11;
1241         update_badinstr = 1;
1242         env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1243                          (env->error_code << CP0Ca_CE);
1244         goto set_EPC;
1245     case EXCP_OVERFLOW:
1246         cause = 12;
1247         update_badinstr = 1;
1248         goto set_EPC;
1249     case EXCP_TRAP:
1250         cause = 13;
1251         update_badinstr = 1;
1252         goto set_EPC;
1253     case EXCP_MSAFPE:
1254         cause = 14;
1255         update_badinstr = 1;
1256         goto set_EPC;
1257     case EXCP_FPE:
1258         cause = 15;
1259         update_badinstr = 1;
1260         goto set_EPC;
1261     case EXCP_C2E:
1262         cause = 18;
1263         goto set_EPC;
1264     case EXCP_TLBRI:
1265         cause = 19;
1266         update_badinstr = 1;
1267         goto set_EPC;
1268     case EXCP_TLBXI:
1269         cause = 20;
1270         goto set_EPC;
1271     case EXCP_MSADIS:
1272         cause = 21;
1273         update_badinstr = 1;
1274         goto set_EPC;
1275     case EXCP_MDMX:
1276         cause = 22;
1277         goto set_EPC;
1278     case EXCP_DWATCH:
1279         cause = 23;
1280         /* XXX: TODO: manage deferred watch exceptions */
1281         goto set_EPC;
1282     case EXCP_MCHECK:
1283         cause = 24;
1284         goto set_EPC;
1285     case EXCP_THREAD:
1286         cause = 25;
1287         goto set_EPC;
1288     case EXCP_DSPDIS:
1289         cause = 26;
1290         goto set_EPC;
1291     case EXCP_CACHE:
1292         cause = 30;
1293         offset = 0x100;
1294  set_EPC:
1295         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1296             env->CP0_EPC = exception_resume_pc(env);
1297             if (update_badinstr) {
1298                 set_badinstr_registers(env);
1299             }
1300             if (env->hflags & MIPS_HFLAG_BMASK) {
1301                 env->CP0_Cause |= (1U << CP0Ca_BD);
1302             } else {
1303                 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1304             }
1305             env->CP0_Status |= (1 << CP0St_EXL);
1306             if (env->insn_flags & ISA_MIPS3) {
1307                 env->hflags |= MIPS_HFLAG_64;
1308                 if (!(env->insn_flags & ISA_MIPS_R6) ||
1309                     env->CP0_Status & (1 << CP0St_KX)) {
1310                     env->hflags &= ~MIPS_HFLAG_AWRAP;
1311                 }
1312             }
1313             env->hflags |= MIPS_HFLAG_CP0;
1314             env->hflags &= ~(MIPS_HFLAG_KSU);
1315         }
1316         env->hflags &= ~MIPS_HFLAG_BMASK;
1317         if (env->CP0_Status & (1 << CP0St_BEV)) {
1318             env->active_tc.PC = env->exception_base + 0x200;
1319         } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1320                                     env->CP0_Config5 & (1 << CP0C5_CV))) {
1321             /* Force KSeg1 for cache errors */
1322             env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1323         } else {
1324             env->active_tc.PC = env->CP0_EBase & ~0xfff;
1325         }
1326 
1327         env->active_tc.PC += offset;
1328         set_hflags_for_handler(env);
1329         env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1330                          (cause << CP0Ca_EC);
1331         break;
1332     default:
1333         abort();
1334     }
1335     if (qemu_loglevel_mask(CPU_LOG_INT)
1336         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1337         qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1338                  "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1339                  __func__, env->active_tc.PC, env->CP0_EPC, cause,
1340                  env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1341                  env->CP0_DEPC);
1342     }
1343     cs->exception_index = EXCP_NONE;
1344 }
1345 
1346 bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1347 {
1348     if (interrupt_request & CPU_INTERRUPT_HARD) {
1349         MIPSCPU *cpu = MIPS_CPU(cs);
1350         CPUMIPSState *env = &cpu->env;
1351 
1352         if (cpu_mips_hw_interrupts_enabled(env) &&
1353             cpu_mips_hw_interrupts_pending(env)) {
1354             /* Raise it */
1355             cs->exception_index = EXCP_EXT_INTERRUPT;
1356             env->error_code = 0;
1357             mips_cpu_do_interrupt(cs);
1358             return true;
1359         }
1360     }
1361     return false;
1362 }
1363 
1364 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1365 {
1366     CPUState *cs = env_cpu(env);
1367     r4k_tlb_t *tlb;
1368     target_ulong addr;
1369     target_ulong end;
1370     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1371     uint32_t MMID = env->CP0_MemoryMapID;
1372     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
1373     uint32_t tlb_mmid;
1374     target_ulong mask;
1375 
1376     MMID = mi ? MMID : (uint32_t) ASID;
1377 
1378     tlb = &env->tlb->mmu.r4k.tlb[idx];
1379     /*
1380      * The qemu TLB is flushed when the ASID/MMID changes, so no need to
1381      * flush these entries again.
1382      */
1383     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
1384     if (tlb->G == 0 && tlb_mmid != MMID) {
1385         return;
1386     }
1387 
1388     if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1389         /*
1390          * For tlbwr, we can shadow the discarded entry into
1391          * a new (fake) TLB entry, as long as the guest can not
1392          * tell that it's there.
1393          */
1394         env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1395         env->tlb->tlb_in_use++;
1396         return;
1397     }
1398 
1399     /* 1k pages are not supported. */
1400     mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1401     if (tlb->V0) {
1402         addr = tlb->VPN & ~mask;
1403 #if defined(TARGET_MIPS64)
1404         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1405             addr |= 0x3FFFFF0000000000ULL;
1406         }
1407 #endif
1408         end = addr | (mask >> 1);
1409         while (addr < end) {
1410             tlb_flush_page(cs, addr);
1411             addr += TARGET_PAGE_SIZE;
1412         }
1413     }
1414     if (tlb->V1) {
1415         addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1416 #if defined(TARGET_MIPS64)
1417         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1418             addr |= 0x3FFFFF0000000000ULL;
1419         }
1420 #endif
1421         end = addr | mask;
1422         while (addr - 1 < end) {
1423             tlb_flush_page(cs, addr);
1424             addr += TARGET_PAGE_SIZE;
1425         }
1426     }
1427 }
1428