xref: /openbmc/qemu/target/mips/tcg/sysemu/tlb_helper.c (revision 2f95279a)
1 /*
2  * MIPS TLB (Translation lookaside buffer) helpers.
3  *
4  *  Copyright (c) 2004-2005 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 
22 #include "cpu.h"
23 #include "internal.h"
24 #include "exec/exec-all.h"
25 #include "exec/page-protection.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/log.h"
28 #include "exec/helper-proto.h"
29 
30 /* TLB management */
31 static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
32 {
33     /* Discard entries from env->tlb[first] onwards.  */
34     while (env->tlb->tlb_in_use > first) {
35         r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
36     }
37 }
38 
39 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
40 {
41 #if defined(TARGET_MIPS64)
42     return extract64(entrylo, 6, 54);
43 #else
44     return extract64(entrylo, 6, 24) | /* PFN */
45            (extract64(entrylo, 32, 32) << 24); /* PFNX */
46 #endif
47 }
48 
49 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
50 {
51     r4k_tlb_t *tlb;
52     uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
53 
54     /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
55     tlb = &env->tlb->mmu.r4k.tlb[idx];
56     if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
57         tlb->EHINV = 1;
58         return;
59     }
60     tlb->EHINV = 0;
61     tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
62 #if defined(TARGET_MIPS64)
63     tlb->VPN &= env->SEGMask;
64 #endif
65     tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
66     tlb->MMID = env->CP0_MemoryMapID;
67     tlb->PageMask = env->CP0_PageMask;
68     tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
69     tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
70     tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
71     tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
72     tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
73     tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
74     tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
75     tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
76     tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
77     tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
78     tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
79     tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
80     tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
81 }
82 
83 static void r4k_helper_tlbinv(CPUMIPSState *env)
84 {
85     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
86     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
87     uint32_t MMID = env->CP0_MemoryMapID;
88     uint32_t tlb_mmid;
89     r4k_tlb_t *tlb;
90     int idx;
91 
92     MMID = mi ? MMID : (uint32_t) ASID;
93     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
94         tlb = &env->tlb->mmu.r4k.tlb[idx];
95         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
96         if (!tlb->G && tlb_mmid == MMID) {
97             tlb->EHINV = 1;
98         }
99     }
100     cpu_mips_tlb_flush(env);
101 }
102 
103 static void r4k_helper_tlbinvf(CPUMIPSState *env)
104 {
105     int idx;
106 
107     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
108         env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
109     }
110     cpu_mips_tlb_flush(env);
111 }
112 
113 static void r4k_helper_tlbwi(CPUMIPSState *env)
114 {
115     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
116     target_ulong VPN;
117     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
118     uint32_t MMID = env->CP0_MemoryMapID;
119     uint32_t tlb_mmid;
120     bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
121     r4k_tlb_t *tlb;
122     int idx;
123 
124     MMID = mi ? MMID : (uint32_t) ASID;
125 
126     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
127     tlb = &env->tlb->mmu.r4k.tlb[idx];
128     VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
129 #if defined(TARGET_MIPS64)
130     VPN &= env->SEGMask;
131 #endif
132     EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
133     G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
134     V0 = (env->CP0_EntryLo0 & 2) != 0;
135     D0 = (env->CP0_EntryLo0 & 4) != 0;
136     XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
137     RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
138     V1 = (env->CP0_EntryLo1 & 2) != 0;
139     D1 = (env->CP0_EntryLo1 & 4) != 0;
140     XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
141     RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
142 
143     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
144     /*
145      * Discard cached TLB entries, unless tlbwi is just upgrading access
146      * permissions on the current entry.
147      */
148     if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G ||
149         (!tlb->EHINV && EHINV) ||
150         (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
151         (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
152         (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
153         (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
154         r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
155     }
156 
157     r4k_invalidate_tlb(env, idx, 0);
158     r4k_fill_tlb(env, idx);
159 }
160 
161 static void r4k_helper_tlbwr(CPUMIPSState *env)
162 {
163     int r = cpu_mips_get_random(env);
164 
165     r4k_invalidate_tlb(env, r, 1);
166     r4k_fill_tlb(env, r);
167 }
168 
169 static void r4k_helper_tlbp(CPUMIPSState *env)
170 {
171     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
172     r4k_tlb_t *tlb;
173     target_ulong mask;
174     target_ulong tag;
175     target_ulong VPN;
176     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
177     uint32_t MMID = env->CP0_MemoryMapID;
178     uint32_t tlb_mmid;
179     int i;
180 
181     MMID = mi ? MMID : (uint32_t) ASID;
182     for (i = 0; i < env->tlb->nb_tlb; i++) {
183         tlb = &env->tlb->mmu.r4k.tlb[i];
184         /* 1k pages are not supported. */
185         mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
186         tag = env->CP0_EntryHi & ~mask;
187         VPN = tlb->VPN & ~mask;
188 #if defined(TARGET_MIPS64)
189         tag &= env->SEGMask;
190 #endif
191         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
192         /* Check ASID/MMID, virtual page number & size */
193         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
194             /* TLB match */
195             env->CP0_Index = i;
196             break;
197         }
198     }
199     if (i == env->tlb->nb_tlb) {
200         /* No match.  Discard any shadow entries, if any of them match.  */
201         for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
202             tlb = &env->tlb->mmu.r4k.tlb[i];
203             /* 1k pages are not supported. */
204             mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
205             tag = env->CP0_EntryHi & ~mask;
206             VPN = tlb->VPN & ~mask;
207 #if defined(TARGET_MIPS64)
208             tag &= env->SEGMask;
209 #endif
210             tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
211             /* Check ASID/MMID, virtual page number & size */
212             if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) {
213                 r4k_mips_tlb_flush_extra(env, i);
214                 break;
215             }
216         }
217 
218         env->CP0_Index |= 0x80000000;
219     }
220 }
221 
222 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
223 {
224 #if defined(TARGET_MIPS64)
225     return tlb_pfn << 6;
226 #else
227     return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
228            (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
229 #endif
230 }
231 
232 static void r4k_helper_tlbr(CPUMIPSState *env)
233 {
234     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
235     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
236     uint32_t MMID = env->CP0_MemoryMapID;
237     uint32_t tlb_mmid;
238     r4k_tlb_t *tlb;
239     int idx;
240 
241     MMID = mi ? MMID : (uint32_t) ASID;
242     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
243     tlb = &env->tlb->mmu.r4k.tlb[idx];
244 
245     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
246     /* If this will change the current ASID/MMID, flush qemu's TLB.  */
247     if (MMID != tlb_mmid) {
248         cpu_mips_tlb_flush(env);
249     }
250 
251     r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
252 
253     if (tlb->EHINV) {
254         env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
255         env->CP0_PageMask = 0;
256         env->CP0_EntryLo0 = 0;
257         env->CP0_EntryLo1 = 0;
258     } else {
259         env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID;
260         env->CP0_MemoryMapID = tlb->MMID;
261         env->CP0_PageMask = tlb->PageMask;
262         env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
263                         ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
264                         ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
265                         get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
266         env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
267                         ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
268                         ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
269                         get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
270     }
271 }
272 
273 void helper_tlbwi(CPUMIPSState *env)
274 {
275     env->tlb->helper_tlbwi(env);
276 }
277 
278 void helper_tlbwr(CPUMIPSState *env)
279 {
280     env->tlb->helper_tlbwr(env);
281 }
282 
283 void helper_tlbp(CPUMIPSState *env)
284 {
285     env->tlb->helper_tlbp(env);
286 }
287 
288 void helper_tlbr(CPUMIPSState *env)
289 {
290     env->tlb->helper_tlbr(env);
291 }
292 
293 void helper_tlbinv(CPUMIPSState *env)
294 {
295     env->tlb->helper_tlbinv(env);
296 }
297 
298 void helper_tlbinvf(CPUMIPSState *env)
299 {
300     env->tlb->helper_tlbinvf(env);
301 }
302 
303 static void global_invalidate_tlb(CPUMIPSState *env,
304                            uint32_t invMsgVPN2,
305                            uint8_t invMsgR,
306                            uint32_t invMsgMMid,
307                            bool invAll,
308                            bool invVAMMid,
309                            bool invMMid,
310                            bool invVA)
311 {
312 
313     int idx;
314     r4k_tlb_t *tlb;
315     bool VAMatch;
316     bool MMidMatch;
317 
318     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
319         tlb = &env->tlb->mmu.r4k.tlb[idx];
320         VAMatch =
321             (((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask))
322 #ifdef TARGET_MIPS64
323             &&
324             (extract64(env->CP0_EntryHi, 62, 2) == invMsgR)
325 #endif
326             );
327         MMidMatch = tlb->MMID == invMsgMMid;
328         if ((invAll && (idx > env->CP0_Wired)) ||
329             (VAMatch && invVAMMid && (tlb->G || MMidMatch)) ||
330             (VAMatch && invVA) ||
331             (MMidMatch && !(tlb->G) && invMMid)) {
332             tlb->EHINV = 1;
333         }
334     }
335     cpu_mips_tlb_flush(env);
336 }
337 
338 void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type)
339 {
340     bool invAll = type == 0;
341     bool invVA = type == 1;
342     bool invMMid = type == 2;
343     bool invVAMMid = type == 3;
344     uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1);
345     uint8_t invMsgR = 0;
346     uint32_t invMsgMMid = env->CP0_MemoryMapID;
347     CPUState *other_cs = first_cpu;
348 
349 #ifdef TARGET_MIPS64
350     invMsgR = extract64(arg, 62, 2);
351 #endif
352 
353     CPU_FOREACH(other_cs) {
354         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
355         global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid,
356                               invAll, invVAMMid, invMMid, invVA);
357     }
358 }
359 
360 /* no MMU emulation */
361 static int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
362                               target_ulong address, MMUAccessType access_type)
363 {
364     *physical = address;
365     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
366     return TLBRET_MATCH;
367 }
368 
369 /* fixed mapping MMU emulation */
370 static int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical,
371                                  int *prot, target_ulong address,
372                                  MMUAccessType access_type)
373 {
374     if (address <= (int32_t)0x7FFFFFFFUL) {
375         if (!(env->CP0_Status & (1 << CP0St_ERL))) {
376             *physical = address + 0x40000000UL;
377         } else {
378             *physical = address;
379         }
380     } else if (address <= (int32_t)0xBFFFFFFFUL) {
381         *physical = address & 0x1FFFFFFF;
382     } else {
383         *physical = address;
384     }
385 
386     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
387     return TLBRET_MATCH;
388 }
389 
390 /* MIPS32/MIPS64 R4000-style MMU emulation */
391 static int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
392                            target_ulong address, MMUAccessType access_type)
393 {
394     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
395     uint32_t MMID = env->CP0_MemoryMapID;
396     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
397     uint32_t tlb_mmid;
398     int i;
399 
400     MMID = mi ? MMID : (uint32_t) ASID;
401 
402     for (i = 0; i < env->tlb->tlb_in_use; i++) {
403         r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
404         /* 1k pages are not supported. */
405         target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
406         target_ulong tag = address & ~mask;
407         target_ulong VPN = tlb->VPN & ~mask;
408 #if defined(TARGET_MIPS64)
409         tag &= env->SEGMask;
410 #endif
411 
412         /* Check ASID/MMID, virtual page number & size */
413         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
414         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
415             /* TLB match */
416             int n = !!(address & mask & ~(mask >> 1));
417             /* Check access rights */
418             if (!(n ? tlb->V1 : tlb->V0)) {
419                 return TLBRET_INVALID;
420             }
421             if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
422                 return TLBRET_XI;
423             }
424             if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
425                 return TLBRET_RI;
426             }
427             if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
428                 *physical = tlb->PFN[n] | (address & (mask >> 1));
429                 *prot = PAGE_READ;
430                 if (n ? tlb->D1 : tlb->D0) {
431                     *prot |= PAGE_WRITE;
432                 }
433                 if (!(n ? tlb->XI1 : tlb->XI0)) {
434                     *prot |= PAGE_EXEC;
435                 }
436                 return TLBRET_MATCH;
437             }
438             return TLBRET_DIRTY;
439         }
440     }
441     return TLBRET_NOMATCH;
442 }
443 
444 static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def)
445 {
446     env->tlb->nb_tlb = 1;
447     env->tlb->map_address = &no_mmu_map_address;
448 }
449 
450 static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def)
451 {
452     env->tlb->nb_tlb = 1;
453     env->tlb->map_address = &fixed_mmu_map_address;
454 }
455 
456 static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def)
457 {
458     env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
459     env->tlb->map_address = &r4k_map_address;
460     env->tlb->helper_tlbwi = r4k_helper_tlbwi;
461     env->tlb->helper_tlbwr = r4k_helper_tlbwr;
462     env->tlb->helper_tlbp = r4k_helper_tlbp;
463     env->tlb->helper_tlbr = r4k_helper_tlbr;
464     env->tlb->helper_tlbinv = r4k_helper_tlbinv;
465     env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
466 }
467 
468 void mmu_init(CPUMIPSState *env, const mips_def_t *def)
469 {
470     env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
471 
472     switch (def->mmu_type) {
473     case MMU_TYPE_NONE:
474         no_mmu_init(env, def);
475         break;
476     case MMU_TYPE_R4000:
477         r4k_mmu_init(env, def);
478         break;
479     case MMU_TYPE_FMT:
480         fixed_mmu_init(env, def);
481         break;
482     case MMU_TYPE_R3000:
483     case MMU_TYPE_R6000:
484     case MMU_TYPE_R8000:
485     default:
486         cpu_abort(env_cpu(env), "MMU type not supported\n");
487     }
488 }
489 
490 void cpu_mips_tlb_flush(CPUMIPSState *env)
491 {
492     /* Flush qemu's TLB and discard all shadowed entries.  */
493     tlb_flush(env_cpu(env));
494     env->tlb->tlb_in_use = env->tlb->nb_tlb;
495 }
496 
497 static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
498                                 MMUAccessType access_type, int tlb_error)
499 {
500     CPUState *cs = env_cpu(env);
501     int exception = 0, error_code = 0;
502 
503     if (access_type == MMU_INST_FETCH) {
504         error_code |= EXCP_INST_NOTAVAIL;
505     }
506 
507     switch (tlb_error) {
508     default:
509     case TLBRET_BADADDR:
510         /* Reference to kernel address from user mode or supervisor mode */
511         /* Reference to supervisor address from user mode */
512         if (access_type == MMU_DATA_STORE) {
513             exception = EXCP_AdES;
514         } else {
515             exception = EXCP_AdEL;
516         }
517         break;
518     case TLBRET_NOMATCH:
519         /* No TLB match for a mapped address */
520         if (access_type == MMU_DATA_STORE) {
521             exception = EXCP_TLBS;
522         } else {
523             exception = EXCP_TLBL;
524         }
525         error_code |= EXCP_TLB_NOMATCH;
526         break;
527     case TLBRET_INVALID:
528         /* TLB match with no valid bit */
529         if (access_type == MMU_DATA_STORE) {
530             exception = EXCP_TLBS;
531         } else {
532             exception = EXCP_TLBL;
533         }
534         break;
535     case TLBRET_DIRTY:
536         /* TLB match but 'D' bit is cleared */
537         exception = EXCP_LTLBL;
538         break;
539     case TLBRET_XI:
540         /* Execute-Inhibit Exception */
541         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
542             exception = EXCP_TLBXI;
543         } else {
544             exception = EXCP_TLBL;
545         }
546         break;
547     case TLBRET_RI:
548         /* Read-Inhibit Exception */
549         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
550             exception = EXCP_TLBRI;
551         } else {
552             exception = EXCP_TLBL;
553         }
554         break;
555     }
556     /* Raise exception */
557     if (!(env->hflags & MIPS_HFLAG_DM)) {
558         env->CP0_BadVAddr = address;
559     }
560     env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
561                        ((address >> 9) & 0x007ffff0);
562     env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
563                        (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
564                        (address & (TARGET_PAGE_MASK << 1));
565 #if defined(TARGET_MIPS64)
566     env->CP0_EntryHi &= env->SEGMask;
567     env->CP0_XContext =
568         (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
569         (extract64(address, 62, 2) << (env->SEGBITS - 9)) |     /* R       */
570         (extract64(address, 13, env->SEGBITS - 13) << 4);       /* BadVPN2 */
571 #endif
572     cs->exception_index = exception;
573     env->error_code = error_code;
574 }
575 
576 #if !defined(TARGET_MIPS64)
577 
578 /*
579  * Perform hardware page table walk
580  *
581  * Memory accesses are performed using the KERNEL privilege level.
582  * Synchronous exceptions detected on memory accesses cause a silent exit
583  * from page table walking, resulting in a TLB or XTLB Refill exception.
584  *
585  * Implementations are not required to support page table walk memory
586  * accesses from mapped memory regions. When an unsupported access is
587  * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
588  * exception.
589  *
590  * Note that if an exception is caused by AddressTranslation or LoadMemory
591  * functions, the exception is not taken, a silent exit is taken,
592  * resulting in a TLB or XTLB Refill exception.
593  */
594 
595 static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
596         uint64_t *pte)
597 {
598     if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
599         return false;
600     }
601     if (entry_size == 64) {
602         *pte = cpu_ldq_code(env, vaddr);
603     } else {
604         *pte = cpu_ldl_code(env, vaddr);
605     }
606     return true;
607 }
608 
609 static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
610         int entry_size, int ptei)
611 {
612     uint64_t result = entry;
613     uint64_t rixi;
614     if (ptei > entry_size) {
615         ptei -= 32;
616     }
617     result >>= (ptei - 2);
618     rixi = result & 3;
619     result >>= 2;
620     result |= rixi << CP0EnLo_XI;
621     return result;
622 }
623 
624 static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
625         int directory_index, bool *huge_page, bool *hgpg_directory_hit,
626         uint64_t *pw_entrylo0, uint64_t *pw_entrylo1,
627         unsigned directory_shift, unsigned leaf_shift, int ptw_mmu_idx)
628 {
629     int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
630     int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
631     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
632     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
633     uint32_t direntry_size = 1 << (directory_shift + 3);
634     uint32_t leafentry_size = 1 << (leaf_shift + 3);
635     uint64_t entry;
636     uint64_t paddr;
637     int prot;
638     uint64_t lsb = 0;
639     uint64_t w = 0;
640 
641     if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
642                              ptw_mmu_idx) != TLBRET_MATCH) {
643         /* wrong base address */
644         return 0;
645     }
646     if (!get_pte(env, *vaddr, direntry_size, &entry)) {
647         return 0;
648     }
649 
650     if ((entry & (1 << psn)) && hugepg) {
651         *huge_page = true;
652         *hgpg_directory_hit = true;
653         entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
654         w = directory_index - 1;
655         if (directory_index & 0x1) {
656             /* Generate adjacent page from same PTE for odd TLB page */
657             lsb = BIT_ULL(w) >> 6;
658             *pw_entrylo0 = entry & ~lsb; /* even page */
659             *pw_entrylo1 = entry | lsb; /* odd page */
660         } else if (dph) {
661             int oddpagebit = 1 << leaf_shift;
662             uint64_t vaddr2 = *vaddr ^ oddpagebit;
663             if (*vaddr & oddpagebit) {
664                 *pw_entrylo1 = entry;
665             } else {
666                 *pw_entrylo0 = entry;
667             }
668             if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
669                                      ptw_mmu_idx) != TLBRET_MATCH) {
670                 return 0;
671             }
672             if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
673                 return 0;
674             }
675             entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
676             if (*vaddr & oddpagebit) {
677                 *pw_entrylo0 = entry;
678             } else {
679                 *pw_entrylo1 = entry;
680             }
681         } else {
682             return 0;
683         }
684         return 1;
685     } else {
686         *vaddr = entry;
687         return 2;
688     }
689 }
690 
691 static bool page_table_walk_refill(CPUMIPSState *env, vaddr address,
692                                    int ptw_mmu_idx)
693 {
694     int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
695     int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
696     int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
697     int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
698     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
699 
700     /* Initial values */
701     bool huge_page = false;
702     bool hgpg_bdhit = false;
703     bool hgpg_gdhit = false;
704     bool hgpg_udhit = false;
705     bool hgpg_mdhit = false;
706 
707     int32_t pw_pagemask = 0;
708     target_ulong pw_entryhi = 0;
709     uint64_t pw_entrylo0 = 0;
710     uint64_t pw_entrylo1 = 0;
711 
712     /* Native pointer size */
713     /*For the 32-bit architectures, this bit is fixed to 0.*/
714     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
715 
716     /* Indices from PWField */
717     int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
718     int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
719     int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
720     int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
721     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
722 
723     /* Indices computed from faulting address */
724     int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
725     int uindex = (address >> pf_udw) & ((1 << udw) - 1);
726     int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
727     int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
728 
729     /* Other HTW configs */
730     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
731     unsigned directory_shift, leaf_shift;
732 
733     /* Offsets into tables */
734     unsigned goffset, uoffset, moffset, ptoffset0, ptoffset1;
735     uint32_t leafentry_size;
736 
737     /* Starting address - Page Table Base */
738     uint64_t vaddr = env->CP0_PWBase;
739 
740     uint64_t dir_entry;
741     uint64_t paddr;
742     int prot;
743     int m;
744 
745     if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
746         /* walker is unimplemented */
747         return false;
748     }
749     if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
750         /* walker is disabled */
751         return false;
752     }
753     if (!(gdw > 0 || udw > 0 || mdw > 0)) {
754         /* no structure to walk */
755         return false;
756     }
757     if (ptew > 1) {
758         return false;
759     }
760 
761     /* HTW Shift values (depend on entry size) */
762     directory_shift = (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
763     leaf_shift = (ptew == 1) ? native_shift + 1 : native_shift;
764 
765     goffset = gindex << directory_shift;
766     uoffset = uindex << directory_shift;
767     moffset = mindex << directory_shift;
768     ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
769     ptoffset1 = ptoffset0 | (1 << (leaf_shift));
770 
771     leafentry_size = 1 << (leaf_shift + 3);
772 
773     /* Global Directory */
774     if (gdw > 0) {
775         vaddr |= goffset;
776         switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
777                                &pw_entrylo0, &pw_entrylo1,
778                                directory_shift, leaf_shift, ptw_mmu_idx))
779         {
780         case 0:
781             return false;
782         case 1:
783             goto refill;
784         case 2:
785         default:
786             break;
787         }
788     }
789 
790     /* Upper directory */
791     if (udw > 0) {
792         vaddr |= uoffset;
793         switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
794                                &pw_entrylo0, &pw_entrylo1,
795                                directory_shift, leaf_shift, ptw_mmu_idx))
796         {
797         case 0:
798             return false;
799         case 1:
800             goto refill;
801         case 2:
802         default:
803             break;
804         }
805     }
806 
807     /* Middle directory */
808     if (mdw > 0) {
809         vaddr |= moffset;
810         switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
811                                &pw_entrylo0, &pw_entrylo1,
812                                directory_shift, leaf_shift, ptw_mmu_idx))
813         {
814         case 0:
815             return false;
816         case 1:
817             goto refill;
818         case 2:
819         default:
820             break;
821         }
822     }
823 
824     /* Leaf Level Page Table - First half of PTE pair */
825     vaddr |= ptoffset0;
826     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
827                              ptw_mmu_idx) != TLBRET_MATCH) {
828         return false;
829     }
830     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
831         return false;
832     }
833     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
834     pw_entrylo0 = dir_entry;
835 
836     /* Leaf Level Page Table - Second half of PTE pair */
837     vaddr |= ptoffset1;
838     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
839                              ptw_mmu_idx) != TLBRET_MATCH) {
840         return false;
841     }
842     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
843         return false;
844     }
845     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
846     pw_entrylo1 = dir_entry;
847 
848 refill:
849 
850     m = (1 << pf_ptw) - 1;
851 
852     if (huge_page) {
853         switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
854                 hgpg_mdhit)
855         {
856         case 4:
857             m = (1 << pf_gdw) - 1;
858             if (pf_gdw & 1) {
859                 m >>= 1;
860             }
861             break;
862         case 2:
863             m = (1 << pf_udw) - 1;
864             if (pf_udw & 1) {
865                 m >>= 1;
866             }
867             break;
868         case 1:
869             m = (1 << pf_mdw) - 1;
870             if (pf_mdw & 1) {
871                 m >>= 1;
872             }
873             break;
874         }
875     }
876     pw_pagemask = m >> TARGET_PAGE_BITS_MIN;
877     update_pagemask(env, pw_pagemask << CP0PM_MASK, &pw_pagemask);
878     pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
879     {
880         target_ulong tmp_entryhi = env->CP0_EntryHi;
881         int32_t tmp_pagemask = env->CP0_PageMask;
882         uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
883         uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
884 
885         env->CP0_EntryHi = pw_entryhi;
886         env->CP0_PageMask = pw_pagemask;
887         env->CP0_EntryLo0 = pw_entrylo0;
888         env->CP0_EntryLo1 = pw_entrylo1;
889 
890         /*
891          * The hardware page walker inserts a page into the TLB in a manner
892          * identical to a TLBWR instruction as executed by the software refill
893          * handler.
894          */
895         r4k_helper_tlbwr(env);
896 
897         env->CP0_EntryHi = tmp_entryhi;
898         env->CP0_PageMask = tmp_pagemask;
899         env->CP0_EntryLo0 = tmp_entrylo0;
900         env->CP0_EntryLo1 = tmp_entrylo1;
901     }
902     return true;
903 }
904 #endif
905 
906 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
907                        MMUAccessType access_type, int mmu_idx,
908                        bool probe, uintptr_t retaddr)
909 {
910     CPUMIPSState *env = cpu_env(cs);
911     hwaddr physical;
912     int prot;
913     int ret = TLBRET_BADADDR;
914 
915     /* data access */
916     /* XXX: put correct access by using cpu_restore_state() correctly */
917     ret = get_physical_address(env, &physical, &prot, address,
918                                access_type, mmu_idx);
919     switch (ret) {
920     case TLBRET_MATCH:
921         qemu_log_mask(CPU_LOG_MMU,
922                       "%s address=%" VADDR_PRIx " physical " HWADDR_FMT_plx
923                       " prot %d\n", __func__, address, physical, prot);
924         break;
925     default:
926         qemu_log_mask(CPU_LOG_MMU,
927                       "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
928                       ret);
929         break;
930     }
931     if (ret == TLBRET_MATCH) {
932         tlb_set_page(cs, address & TARGET_PAGE_MASK,
933                      physical & TARGET_PAGE_MASK, prot,
934                      mmu_idx, TARGET_PAGE_SIZE);
935         return true;
936     }
937 #if !defined(TARGET_MIPS64)
938     if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
939         /*
940          * Memory reads during hardware page table walking are performed
941          * as if they were kernel-mode load instructions.
942          */
943         int ptw_mmu_idx = (env->hflags & MIPS_HFLAG_ERL ?
944                            MMU_ERL_IDX : MMU_KERNEL_IDX);
945 
946         if (page_table_walk_refill(env, address, ptw_mmu_idx)) {
947             ret = get_physical_address(env, &physical, &prot, address,
948                                        access_type, mmu_idx);
949             if (ret == TLBRET_MATCH) {
950                 tlb_set_page(cs, address & TARGET_PAGE_MASK,
951                              physical & TARGET_PAGE_MASK, prot,
952                              mmu_idx, TARGET_PAGE_SIZE);
953                 return true;
954             }
955         }
956     }
957 #endif
958     if (probe) {
959         return false;
960     }
961 
962     raise_mmu_exception(env, address, access_type, ret);
963     do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
964 }
965 
966 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
967                                   MMUAccessType access_type, uintptr_t retaddr)
968 {
969     hwaddr physical;
970     int prot;
971     int ret = 0;
972     CPUState *cs = env_cpu(env);
973 
974     /* data access */
975     ret = get_physical_address(env, &physical, &prot, address, access_type,
976                                mips_env_mmu_index(env));
977     if (ret == TLBRET_MATCH) {
978         return physical;
979     }
980 
981     raise_mmu_exception(env, address, access_type, ret);
982     cpu_loop_exit_restore(cs, retaddr);
983 }
984 
985 static void set_hflags_for_handler(CPUMIPSState *env)
986 {
987     /* Exception handlers are entered in 32-bit mode.  */
988     env->hflags &= ~(MIPS_HFLAG_M16);
989     /* ...except that microMIPS lets you choose.  */
990     if (env->insn_flags & ASE_MICROMIPS) {
991         env->hflags |= (!!(env->CP0_Config3 &
992                            (1 << CP0C3_ISA_ON_EXC))
993                         << MIPS_HFLAG_M16_SHIFT);
994     }
995 }
996 
997 static inline void set_badinstr_registers(CPUMIPSState *env)
998 {
999     if (env->insn_flags & ISA_NANOMIPS32) {
1000         if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1001             uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1002             if ((instr & 0x10000000) == 0) {
1003                 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1004             }
1005             env->CP0_BadInstr = instr;
1006 
1007             if ((instr & 0xFC000000) == 0x60000000) {
1008                 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1009                 env->CP0_BadInstrX = instr;
1010             }
1011         }
1012         return;
1013     }
1014 
1015     if (env->hflags & MIPS_HFLAG_M16) {
1016         /* TODO: add BadInstr support for microMIPS */
1017         return;
1018     }
1019     if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1020         env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1021     }
1022     if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1023         (env->hflags & MIPS_HFLAG_BMASK)) {
1024         env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1025     }
1026 }
1027 
1028 void mips_cpu_do_interrupt(CPUState *cs)
1029 {
1030     MIPSCPU *cpu = MIPS_CPU(cs);
1031     CPUMIPSState *env = &cpu->env;
1032     bool update_badinstr = 0;
1033     target_ulong offset;
1034     int cause = -1;
1035 
1036     if (qemu_loglevel_mask(CPU_LOG_INT)
1037         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1038         qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1039                  " %s exception\n",
1040                  __func__, env->active_tc.PC, env->CP0_EPC,
1041                  mips_exception_name(cs->exception_index));
1042     }
1043     if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1044         (env->hflags & MIPS_HFLAG_DM)) {
1045         cs->exception_index = EXCP_DINT;
1046     }
1047     offset = 0x180;
1048     switch (cs->exception_index) {
1049     case EXCP_SEMIHOST:
1050         cs->exception_index = EXCP_NONE;
1051         mips_semihosting(env);
1052         env->active_tc.PC += env->error_code;
1053         return;
1054     case EXCP_DSS:
1055         env->CP0_Debug |= 1 << CP0DB_DSS;
1056         /*
1057          * Debug single step cannot be raised inside a delay slot and
1058          * resume will always occur on the next instruction
1059          * (but we assume the pc has always been updated during
1060          * code translation).
1061          */
1062         env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1063         goto enter_debug_mode;
1064     case EXCP_DINT:
1065         env->CP0_Debug |= 1 << CP0DB_DINT;
1066         goto set_DEPC;
1067     case EXCP_DIB:
1068         env->CP0_Debug |= 1 << CP0DB_DIB;
1069         goto set_DEPC;
1070     case EXCP_DBp:
1071         env->CP0_Debug |= 1 << CP0DB_DBp;
1072         /* Setup DExcCode - SDBBP instruction */
1073         env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1074                          (9 << CP0DB_DEC);
1075         goto set_DEPC;
1076     case EXCP_DDBS:
1077         env->CP0_Debug |= 1 << CP0DB_DDBS;
1078         goto set_DEPC;
1079     case EXCP_DDBL:
1080         env->CP0_Debug |= 1 << CP0DB_DDBL;
1081     set_DEPC:
1082         env->CP0_DEPC = exception_resume_pc(env);
1083         env->hflags &= ~MIPS_HFLAG_BMASK;
1084  enter_debug_mode:
1085         if (env->insn_flags & ISA_MIPS3) {
1086             env->hflags |= MIPS_HFLAG_64;
1087             if (!(env->insn_flags & ISA_MIPS_R6) ||
1088                 env->CP0_Status & (1 << CP0St_KX)) {
1089                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1090             }
1091         }
1092         env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1093         env->hflags &= ~(MIPS_HFLAG_KSU);
1094         /* EJTAG probe trap enable is not implemented... */
1095         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1096             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1097         }
1098         env->active_tc.PC = env->exception_base + 0x480;
1099         set_hflags_for_handler(env);
1100         break;
1101     case EXCP_RESET:
1102         cpu_reset(CPU(cpu));
1103         break;
1104     case EXCP_SRESET:
1105         env->CP0_Status |= (1 << CP0St_SR);
1106         memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1107         goto set_error_EPC;
1108     case EXCP_NMI:
1109         env->CP0_Status |= (1 << CP0St_NMI);
1110  set_error_EPC:
1111         env->CP0_ErrorEPC = exception_resume_pc(env);
1112         env->hflags &= ~MIPS_HFLAG_BMASK;
1113         env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1114         if (env->insn_flags & ISA_MIPS3) {
1115             env->hflags |= MIPS_HFLAG_64;
1116             if (!(env->insn_flags & ISA_MIPS_R6) ||
1117                 env->CP0_Status & (1 << CP0St_KX)) {
1118                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1119             }
1120         }
1121         env->hflags |= MIPS_HFLAG_CP0;
1122         env->hflags &= ~(MIPS_HFLAG_KSU);
1123         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1124             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1125         }
1126         env->active_tc.PC = env->exception_base;
1127         set_hflags_for_handler(env);
1128         break;
1129     case EXCP_EXT_INTERRUPT:
1130         cause = 0;
1131         if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1132             uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1133 
1134             if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1135                 offset = 0x200;
1136             } else {
1137                 uint32_t vector = 0;
1138                 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1139 
1140                 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1141                     /*
1142                      * For VEIC mode, the external interrupt controller feeds
1143                      * the vector through the CP0Cause IP lines.
1144                      */
1145                     vector = pending;
1146                 } else {
1147                     /*
1148                      * Vectored Interrupts
1149                      * Mask with Status.IM7-IM0 to get enabled interrupts.
1150                      */
1151                     pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1152                     /* Find the highest-priority interrupt. */
1153                     while (pending >>= 1) {
1154                         vector++;
1155                     }
1156                 }
1157                 offset = 0x200 + (vector * (spacing << 5));
1158             }
1159         }
1160         goto set_EPC;
1161     case EXCP_LTLBL:
1162         cause = 1;
1163         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1164         goto set_EPC;
1165     case EXCP_TLBL:
1166         cause = 2;
1167         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1168         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1169             !(env->CP0_Status & (1 << CP0St_EXL))) {
1170 #if defined(TARGET_MIPS64)
1171             int R = env->CP0_BadVAddr >> 62;
1172             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1173             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1174 
1175             if ((R != 0 || UX) && (R != 3 || KX) &&
1176                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1177                 offset = 0x080;
1178             } else {
1179 #endif
1180                 offset = 0x000;
1181 #if defined(TARGET_MIPS64)
1182             }
1183 #endif
1184         }
1185         goto set_EPC;
1186     case EXCP_TLBS:
1187         cause = 3;
1188         update_badinstr = 1;
1189         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1190             !(env->CP0_Status & (1 << CP0St_EXL))) {
1191 #if defined(TARGET_MIPS64)
1192             int R = env->CP0_BadVAddr >> 62;
1193             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1194             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1195 
1196             if ((R != 0 || UX) && (R != 3 || KX) &&
1197                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1198                 offset = 0x080;
1199             } else {
1200 #endif
1201                 offset = 0x000;
1202 #if defined(TARGET_MIPS64)
1203             }
1204 #endif
1205         }
1206         goto set_EPC;
1207     case EXCP_AdEL:
1208         cause = 4;
1209         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1210         goto set_EPC;
1211     case EXCP_AdES:
1212         cause = 5;
1213         update_badinstr = 1;
1214         goto set_EPC;
1215     case EXCP_IBE:
1216         cause = 6;
1217         goto set_EPC;
1218     case EXCP_DBE:
1219         cause = 7;
1220         goto set_EPC;
1221     case EXCP_SYSCALL:
1222         cause = 8;
1223         update_badinstr = 1;
1224         goto set_EPC;
1225     case EXCP_BREAK:
1226         cause = 9;
1227         update_badinstr = 1;
1228         goto set_EPC;
1229     case EXCP_RI:
1230         cause = 10;
1231         update_badinstr = 1;
1232         goto set_EPC;
1233     case EXCP_CpU:
1234         cause = 11;
1235         update_badinstr = 1;
1236         env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1237                          (env->error_code << CP0Ca_CE);
1238         goto set_EPC;
1239     case EXCP_OVERFLOW:
1240         cause = 12;
1241         update_badinstr = 1;
1242         goto set_EPC;
1243     case EXCP_TRAP:
1244         cause = 13;
1245         update_badinstr = 1;
1246         goto set_EPC;
1247     case EXCP_MSAFPE:
1248         cause = 14;
1249         update_badinstr = 1;
1250         goto set_EPC;
1251     case EXCP_FPE:
1252         cause = 15;
1253         update_badinstr = 1;
1254         goto set_EPC;
1255     case EXCP_C2E:
1256         cause = 18;
1257         goto set_EPC;
1258     case EXCP_TLBRI:
1259         cause = 19;
1260         update_badinstr = 1;
1261         goto set_EPC;
1262     case EXCP_TLBXI:
1263         cause = 20;
1264         goto set_EPC;
1265     case EXCP_MSADIS:
1266         cause = 21;
1267         update_badinstr = 1;
1268         goto set_EPC;
1269     case EXCP_MDMX:
1270         cause = 22;
1271         goto set_EPC;
1272     case EXCP_DWATCH:
1273         cause = 23;
1274         /* XXX: TODO: manage deferred watch exceptions */
1275         goto set_EPC;
1276     case EXCP_MCHECK:
1277         cause = 24;
1278         goto set_EPC;
1279     case EXCP_THREAD:
1280         cause = 25;
1281         goto set_EPC;
1282     case EXCP_DSPDIS:
1283         cause = 26;
1284         goto set_EPC;
1285     case EXCP_CACHE:
1286         cause = 30;
1287         offset = 0x100;
1288  set_EPC:
1289         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1290             env->CP0_EPC = exception_resume_pc(env);
1291             if (update_badinstr) {
1292                 set_badinstr_registers(env);
1293             }
1294             if (env->hflags & MIPS_HFLAG_BMASK) {
1295                 env->CP0_Cause |= (1U << CP0Ca_BD);
1296             } else {
1297                 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1298             }
1299             env->CP0_Status |= (1 << CP0St_EXL);
1300             if (env->insn_flags & ISA_MIPS3) {
1301                 env->hflags |= MIPS_HFLAG_64;
1302                 if (!(env->insn_flags & ISA_MIPS_R6) ||
1303                     env->CP0_Status & (1 << CP0St_KX)) {
1304                     env->hflags &= ~MIPS_HFLAG_AWRAP;
1305                 }
1306             }
1307             env->hflags |= MIPS_HFLAG_CP0;
1308             env->hflags &= ~(MIPS_HFLAG_KSU);
1309         }
1310         env->hflags &= ~MIPS_HFLAG_BMASK;
1311         if (env->CP0_Status & (1 << CP0St_BEV)) {
1312             env->active_tc.PC = env->exception_base + 0x200;
1313         } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1314                                     env->CP0_Config5 & (1 << CP0C5_CV))) {
1315             /* Force KSeg1 for cache errors */
1316             env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1317         } else {
1318             env->active_tc.PC = env->CP0_EBase & ~0xfff;
1319         }
1320 
1321         env->active_tc.PC += offset;
1322         set_hflags_for_handler(env);
1323         env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1324                          (cause << CP0Ca_EC);
1325         break;
1326     default:
1327         abort();
1328     }
1329     if (qemu_loglevel_mask(CPU_LOG_INT)
1330         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1331         qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1332                  "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1333                  __func__, env->active_tc.PC, env->CP0_EPC, cause,
1334                  env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1335                  env->CP0_DEPC);
1336     }
1337     cs->exception_index = EXCP_NONE;
1338 }
1339 
1340 bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1341 {
1342     if (interrupt_request & CPU_INTERRUPT_HARD) {
1343         CPUMIPSState *env = cpu_env(cs);
1344 
1345         if (cpu_mips_hw_interrupts_enabled(env) &&
1346             cpu_mips_hw_interrupts_pending(env)) {
1347             /* Raise it */
1348             cs->exception_index = EXCP_EXT_INTERRUPT;
1349             env->error_code = 0;
1350             mips_cpu_do_interrupt(cs);
1351             return true;
1352         }
1353     }
1354     return false;
1355 }
1356 
1357 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1358 {
1359     CPUState *cs = env_cpu(env);
1360     r4k_tlb_t *tlb;
1361     target_ulong addr;
1362     target_ulong end;
1363     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1364     uint32_t MMID = env->CP0_MemoryMapID;
1365     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
1366     uint32_t tlb_mmid;
1367     target_ulong mask;
1368 
1369     MMID = mi ? MMID : (uint32_t) ASID;
1370 
1371     tlb = &env->tlb->mmu.r4k.tlb[idx];
1372     /*
1373      * The qemu TLB is flushed when the ASID/MMID changes, so no need to
1374      * flush these entries again.
1375      */
1376     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
1377     if (tlb->G == 0 && tlb_mmid != MMID) {
1378         return;
1379     }
1380 
1381     if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1382         /*
1383          * For tlbwr, we can shadow the discarded entry into
1384          * a new (fake) TLB entry, as long as the guest can not
1385          * tell that it's there.
1386          */
1387         env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1388         env->tlb->tlb_in_use++;
1389         return;
1390     }
1391 
1392     /* 1k pages are not supported. */
1393     mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1394     if (tlb->V0) {
1395         addr = tlb->VPN & ~mask;
1396 #if defined(TARGET_MIPS64)
1397         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1398             addr |= 0x3FFFFF0000000000ULL;
1399         }
1400 #endif
1401         end = addr | (mask >> 1);
1402         while (addr < end) {
1403             tlb_flush_page(cs, addr);
1404             addr += TARGET_PAGE_SIZE;
1405         }
1406     }
1407     if (tlb->V1) {
1408         addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1409 #if defined(TARGET_MIPS64)
1410         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1411             addr |= 0x3FFFFF0000000000ULL;
1412         }
1413 #endif
1414         end = addr | mask;
1415         while (addr - 1 < end) {
1416             tlb_flush_page(cs, addr);
1417             addr += TARGET_PAGE_SIZE;
1418         }
1419     }
1420 }
1421