xref: /openbmc/qemu/target/mips/tcg/sysemu/tlb_helper.c (revision 2df1eb27)
1 /*
2  * MIPS TLB (Translation lookaside buffer) helpers.
3  *
4  *  Copyright (c) 2004-2005 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 
22 #include "cpu.h"
23 #include "internal.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/log.h"
27 #include "exec/helper-proto.h"
28 
29 /* TLB management */
30 static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
31 {
32     /* Discard entries from env->tlb[first] onwards.  */
33     while (env->tlb->tlb_in_use > first) {
34         r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
35     }
36 }
37 
38 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
39 {
40 #if defined(TARGET_MIPS64)
41     return extract64(entrylo, 6, 54);
42 #else
43     return extract64(entrylo, 6, 24) | /* PFN */
44            (extract64(entrylo, 32, 32) << 24); /* PFNX */
45 #endif
46 }
47 
48 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
49 {
50     r4k_tlb_t *tlb;
51     uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
52 
53     /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
54     tlb = &env->tlb->mmu.r4k.tlb[idx];
55     if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
56         tlb->EHINV = 1;
57         return;
58     }
59     tlb->EHINV = 0;
60     tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
61 #if defined(TARGET_MIPS64)
62     tlb->VPN &= env->SEGMask;
63 #endif
64     tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
65     tlb->MMID = env->CP0_MemoryMapID;
66     tlb->PageMask = env->CP0_PageMask;
67     tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
68     tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
69     tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
70     tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
71     tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
72     tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
73     tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
74     tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
75     tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
76     tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
77     tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
78     tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
79     tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
80 }
81 
82 static void r4k_helper_tlbinv(CPUMIPSState *env)
83 {
84     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
85     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
86     uint32_t MMID = env->CP0_MemoryMapID;
87     uint32_t tlb_mmid;
88     r4k_tlb_t *tlb;
89     int idx;
90 
91     MMID = mi ? MMID : (uint32_t) ASID;
92     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
93         tlb = &env->tlb->mmu.r4k.tlb[idx];
94         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
95         if (!tlb->G && tlb_mmid == MMID) {
96             tlb->EHINV = 1;
97         }
98     }
99     cpu_mips_tlb_flush(env);
100 }
101 
102 static void r4k_helper_tlbinvf(CPUMIPSState *env)
103 {
104     int idx;
105 
106     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
107         env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
108     }
109     cpu_mips_tlb_flush(env);
110 }
111 
112 static void r4k_helper_tlbwi(CPUMIPSState *env)
113 {
114     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
115     target_ulong VPN;
116     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
117     uint32_t MMID = env->CP0_MemoryMapID;
118     uint32_t tlb_mmid;
119     bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
120     r4k_tlb_t *tlb;
121     int idx;
122 
123     MMID = mi ? MMID : (uint32_t) ASID;
124 
125     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
126     tlb = &env->tlb->mmu.r4k.tlb[idx];
127     VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
128 #if defined(TARGET_MIPS64)
129     VPN &= env->SEGMask;
130 #endif
131     EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
132     G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
133     V0 = (env->CP0_EntryLo0 & 2) != 0;
134     D0 = (env->CP0_EntryLo0 & 4) != 0;
135     XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
136     RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
137     V1 = (env->CP0_EntryLo1 & 2) != 0;
138     D1 = (env->CP0_EntryLo1 & 4) != 0;
139     XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
140     RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
141 
142     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
143     /*
144      * Discard cached TLB entries, unless tlbwi is just upgrading access
145      * permissions on the current entry.
146      */
147     if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G ||
148         (!tlb->EHINV && EHINV) ||
149         (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
150         (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
151         (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
152         (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
153         r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
154     }
155 
156     r4k_invalidate_tlb(env, idx, 0);
157     r4k_fill_tlb(env, idx);
158 }
159 
160 static void r4k_helper_tlbwr(CPUMIPSState *env)
161 {
162     int r = cpu_mips_get_random(env);
163 
164     r4k_invalidate_tlb(env, r, 1);
165     r4k_fill_tlb(env, r);
166 }
167 
168 static void r4k_helper_tlbp(CPUMIPSState *env)
169 {
170     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
171     r4k_tlb_t *tlb;
172     target_ulong mask;
173     target_ulong tag;
174     target_ulong VPN;
175     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
176     uint32_t MMID = env->CP0_MemoryMapID;
177     uint32_t tlb_mmid;
178     int i;
179 
180     MMID = mi ? MMID : (uint32_t) ASID;
181     for (i = 0; i < env->tlb->nb_tlb; i++) {
182         tlb = &env->tlb->mmu.r4k.tlb[i];
183         /* 1k pages are not supported. */
184         mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
185         tag = env->CP0_EntryHi & ~mask;
186         VPN = tlb->VPN & ~mask;
187 #if defined(TARGET_MIPS64)
188         tag &= env->SEGMask;
189 #endif
190         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
191         /* Check ASID/MMID, virtual page number & size */
192         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
193             /* TLB match */
194             env->CP0_Index = i;
195             break;
196         }
197     }
198     if (i == env->tlb->nb_tlb) {
199         /* No match.  Discard any shadow entries, if any of them match.  */
200         for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
201             tlb = &env->tlb->mmu.r4k.tlb[i];
202             /* 1k pages are not supported. */
203             mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
204             tag = env->CP0_EntryHi & ~mask;
205             VPN = tlb->VPN & ~mask;
206 #if defined(TARGET_MIPS64)
207             tag &= env->SEGMask;
208 #endif
209             tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
210             /* Check ASID/MMID, virtual page number & size */
211             if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) {
212                 r4k_mips_tlb_flush_extra(env, i);
213                 break;
214             }
215         }
216 
217         env->CP0_Index |= 0x80000000;
218     }
219 }
220 
221 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
222 {
223 #if defined(TARGET_MIPS64)
224     return tlb_pfn << 6;
225 #else
226     return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
227            (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
228 #endif
229 }
230 
231 static void r4k_helper_tlbr(CPUMIPSState *env)
232 {
233     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
234     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
235     uint32_t MMID = env->CP0_MemoryMapID;
236     uint32_t tlb_mmid;
237     r4k_tlb_t *tlb;
238     int idx;
239 
240     MMID = mi ? MMID : (uint32_t) ASID;
241     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
242     tlb = &env->tlb->mmu.r4k.tlb[idx];
243 
244     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
245     /* If this will change the current ASID/MMID, flush qemu's TLB.  */
246     if (MMID != tlb_mmid) {
247         cpu_mips_tlb_flush(env);
248     }
249 
250     r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
251 
252     if (tlb->EHINV) {
253         env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
254         env->CP0_PageMask = 0;
255         env->CP0_EntryLo0 = 0;
256         env->CP0_EntryLo1 = 0;
257     } else {
258         env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID;
259         env->CP0_MemoryMapID = tlb->MMID;
260         env->CP0_PageMask = tlb->PageMask;
261         env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
262                         ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
263                         ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
264                         get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
265         env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
266                         ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
267                         ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
268                         get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
269     }
270 }
271 
272 void helper_tlbwi(CPUMIPSState *env)
273 {
274     env->tlb->helper_tlbwi(env);
275 }
276 
277 void helper_tlbwr(CPUMIPSState *env)
278 {
279     env->tlb->helper_tlbwr(env);
280 }
281 
282 void helper_tlbp(CPUMIPSState *env)
283 {
284     env->tlb->helper_tlbp(env);
285 }
286 
287 void helper_tlbr(CPUMIPSState *env)
288 {
289     env->tlb->helper_tlbr(env);
290 }
291 
292 void helper_tlbinv(CPUMIPSState *env)
293 {
294     env->tlb->helper_tlbinv(env);
295 }
296 
297 void helper_tlbinvf(CPUMIPSState *env)
298 {
299     env->tlb->helper_tlbinvf(env);
300 }
301 
302 static void global_invalidate_tlb(CPUMIPSState *env,
303                            uint32_t invMsgVPN2,
304                            uint8_t invMsgR,
305                            uint32_t invMsgMMid,
306                            bool invAll,
307                            bool invVAMMid,
308                            bool invMMid,
309                            bool invVA)
310 {
311 
312     int idx;
313     r4k_tlb_t *tlb;
314     bool VAMatch;
315     bool MMidMatch;
316 
317     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
318         tlb = &env->tlb->mmu.r4k.tlb[idx];
319         VAMatch =
320             (((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask))
321 #ifdef TARGET_MIPS64
322             &&
323             (extract64(env->CP0_EntryHi, 62, 2) == invMsgR)
324 #endif
325             );
326         MMidMatch = tlb->MMID == invMsgMMid;
327         if ((invAll && (idx > env->CP0_Wired)) ||
328             (VAMatch && invVAMMid && (tlb->G || MMidMatch)) ||
329             (VAMatch && invVA) ||
330             (MMidMatch && !(tlb->G) && invMMid)) {
331             tlb->EHINV = 1;
332         }
333     }
334     cpu_mips_tlb_flush(env);
335 }
336 
337 void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type)
338 {
339     bool invAll = type == 0;
340     bool invVA = type == 1;
341     bool invMMid = type == 2;
342     bool invVAMMid = type == 3;
343     uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1);
344     uint8_t invMsgR = 0;
345     uint32_t invMsgMMid = env->CP0_MemoryMapID;
346     CPUState *other_cs = first_cpu;
347 
348 #ifdef TARGET_MIPS64
349     invMsgR = extract64(arg, 62, 2);
350 #endif
351 
352     CPU_FOREACH(other_cs) {
353         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
354         global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid,
355                               invAll, invVAMMid, invMMid, invVA);
356     }
357 }
358 
359 /* no MMU emulation */
360 static int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
361                               target_ulong address, MMUAccessType access_type)
362 {
363     *physical = address;
364     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
365     return TLBRET_MATCH;
366 }
367 
368 /* fixed mapping MMU emulation */
369 static int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical,
370                                  int *prot, target_ulong address,
371                                  MMUAccessType access_type)
372 {
373     if (address <= (int32_t)0x7FFFFFFFUL) {
374         if (!(env->CP0_Status & (1 << CP0St_ERL))) {
375             *physical = address + 0x40000000UL;
376         } else {
377             *physical = address;
378         }
379     } else if (address <= (int32_t)0xBFFFFFFFUL) {
380         *physical = address & 0x1FFFFFFF;
381     } else {
382         *physical = address;
383     }
384 
385     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
386     return TLBRET_MATCH;
387 }
388 
389 /* MIPS32/MIPS64 R4000-style MMU emulation */
390 static int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
391                            target_ulong address, MMUAccessType access_type)
392 {
393     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
394     uint32_t MMID = env->CP0_MemoryMapID;
395     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
396     uint32_t tlb_mmid;
397     int i;
398 
399     MMID = mi ? MMID : (uint32_t) ASID;
400 
401     for (i = 0; i < env->tlb->tlb_in_use; i++) {
402         r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
403         /* 1k pages are not supported. */
404         target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
405         target_ulong tag = address & ~mask;
406         target_ulong VPN = tlb->VPN & ~mask;
407 #if defined(TARGET_MIPS64)
408         tag &= env->SEGMask;
409 #endif
410 
411         /* Check ASID/MMID, virtual page number & size */
412         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
413         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
414             /* TLB match */
415             int n = !!(address & mask & ~(mask >> 1));
416             /* Check access rights */
417             if (!(n ? tlb->V1 : tlb->V0)) {
418                 return TLBRET_INVALID;
419             }
420             if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
421                 return TLBRET_XI;
422             }
423             if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
424                 return TLBRET_RI;
425             }
426             if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
427                 *physical = tlb->PFN[n] | (address & (mask >> 1));
428                 *prot = PAGE_READ;
429                 if (n ? tlb->D1 : tlb->D0) {
430                     *prot |= PAGE_WRITE;
431                 }
432                 if (!(n ? tlb->XI1 : tlb->XI0)) {
433                     *prot |= PAGE_EXEC;
434                 }
435                 return TLBRET_MATCH;
436             }
437             return TLBRET_DIRTY;
438         }
439     }
440     return TLBRET_NOMATCH;
441 }
442 
443 static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def)
444 {
445     env->tlb->nb_tlb = 1;
446     env->tlb->map_address = &no_mmu_map_address;
447 }
448 
449 static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def)
450 {
451     env->tlb->nb_tlb = 1;
452     env->tlb->map_address = &fixed_mmu_map_address;
453 }
454 
455 static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def)
456 {
457     env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
458     env->tlb->map_address = &r4k_map_address;
459     env->tlb->helper_tlbwi = r4k_helper_tlbwi;
460     env->tlb->helper_tlbwr = r4k_helper_tlbwr;
461     env->tlb->helper_tlbp = r4k_helper_tlbp;
462     env->tlb->helper_tlbr = r4k_helper_tlbr;
463     env->tlb->helper_tlbinv = r4k_helper_tlbinv;
464     env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
465 }
466 
467 void mmu_init(CPUMIPSState *env, const mips_def_t *def)
468 {
469     env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
470 
471     switch (def->mmu_type) {
472     case MMU_TYPE_NONE:
473         no_mmu_init(env, def);
474         break;
475     case MMU_TYPE_R4000:
476         r4k_mmu_init(env, def);
477         break;
478     case MMU_TYPE_FMT:
479         fixed_mmu_init(env, def);
480         break;
481     case MMU_TYPE_R3000:
482     case MMU_TYPE_R6000:
483     case MMU_TYPE_R8000:
484     default:
485         cpu_abort(env_cpu(env), "MMU type not supported\n");
486     }
487 }
488 
489 void cpu_mips_tlb_flush(CPUMIPSState *env)
490 {
491     /* Flush qemu's TLB and discard all shadowed entries.  */
492     tlb_flush(env_cpu(env));
493     env->tlb->tlb_in_use = env->tlb->nb_tlb;
494 }
495 
496 static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
497                                 MMUAccessType access_type, int tlb_error)
498 {
499     CPUState *cs = env_cpu(env);
500     int exception = 0, error_code = 0;
501 
502     if (access_type == MMU_INST_FETCH) {
503         error_code |= EXCP_INST_NOTAVAIL;
504     }
505 
506     switch (tlb_error) {
507     default:
508     case TLBRET_BADADDR:
509         /* Reference to kernel address from user mode or supervisor mode */
510         /* Reference to supervisor address from user mode */
511         if (access_type == MMU_DATA_STORE) {
512             exception = EXCP_AdES;
513         } else {
514             exception = EXCP_AdEL;
515         }
516         break;
517     case TLBRET_NOMATCH:
518         /* No TLB match for a mapped address */
519         if (access_type == MMU_DATA_STORE) {
520             exception = EXCP_TLBS;
521         } else {
522             exception = EXCP_TLBL;
523         }
524         error_code |= EXCP_TLB_NOMATCH;
525         break;
526     case TLBRET_INVALID:
527         /* TLB match with no valid bit */
528         if (access_type == MMU_DATA_STORE) {
529             exception = EXCP_TLBS;
530         } else {
531             exception = EXCP_TLBL;
532         }
533         break;
534     case TLBRET_DIRTY:
535         /* TLB match but 'D' bit is cleared */
536         exception = EXCP_LTLBL;
537         break;
538     case TLBRET_XI:
539         /* Execute-Inhibit Exception */
540         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
541             exception = EXCP_TLBXI;
542         } else {
543             exception = EXCP_TLBL;
544         }
545         break;
546     case TLBRET_RI:
547         /* Read-Inhibit Exception */
548         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
549             exception = EXCP_TLBRI;
550         } else {
551             exception = EXCP_TLBL;
552         }
553         break;
554     }
555     /* Raise exception */
556     if (!(env->hflags & MIPS_HFLAG_DM)) {
557         env->CP0_BadVAddr = address;
558     }
559     env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
560                        ((address >> 9) & 0x007ffff0);
561     env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
562                        (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
563                        (address & (TARGET_PAGE_MASK << 1));
564 #if defined(TARGET_MIPS64)
565     env->CP0_EntryHi &= env->SEGMask;
566     env->CP0_XContext =
567         (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
568         (extract64(address, 62, 2) << (env->SEGBITS - 9)) |     /* R       */
569         (extract64(address, 13, env->SEGBITS - 13) << 4);       /* BadVPN2 */
570 #endif
571     cs->exception_index = exception;
572     env->error_code = error_code;
573 }
574 
575 #if !defined(TARGET_MIPS64)
576 
577 /*
578  * Perform hardware page table walk
579  *
580  * Memory accesses are performed using the KERNEL privilege level.
581  * Synchronous exceptions detected on memory accesses cause a silent exit
582  * from page table walking, resulting in a TLB or XTLB Refill exception.
583  *
584  * Implementations are not required to support page table walk memory
585  * accesses from mapped memory regions. When an unsupported access is
586  * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
587  * exception.
588  *
589  * Note that if an exception is caused by AddressTranslation or LoadMemory
590  * functions, the exception is not taken, a silent exit is taken,
591  * resulting in a TLB or XTLB Refill exception.
592  */
593 
594 static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
595         uint64_t *pte)
596 {
597     if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
598         return false;
599     }
600     if (entry_size == 64) {
601         *pte = cpu_ldq_code(env, vaddr);
602     } else {
603         *pte = cpu_ldl_code(env, vaddr);
604     }
605     return true;
606 }
607 
608 static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
609         int entry_size, int ptei)
610 {
611     uint64_t result = entry;
612     uint64_t rixi;
613     if (ptei > entry_size) {
614         ptei -= 32;
615     }
616     result >>= (ptei - 2);
617     rixi = result & 3;
618     result >>= 2;
619     result |= rixi << CP0EnLo_XI;
620     return result;
621 }
622 
623 static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
624         int directory_index, bool *huge_page, bool *hgpg_directory_hit,
625         uint64_t *pw_entrylo0, uint64_t *pw_entrylo1,
626         unsigned directory_shift, unsigned leaf_shift, int ptw_mmu_idx)
627 {
628     int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
629     int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
630     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
631     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
632     uint32_t direntry_size = 1 << (directory_shift + 3);
633     uint32_t leafentry_size = 1 << (leaf_shift + 3);
634     uint64_t entry;
635     uint64_t paddr;
636     int prot;
637     uint64_t lsb = 0;
638     uint64_t w = 0;
639 
640     if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
641                              ptw_mmu_idx) != TLBRET_MATCH) {
642         /* wrong base address */
643         return 0;
644     }
645     if (!get_pte(env, *vaddr, direntry_size, &entry)) {
646         return 0;
647     }
648 
649     if ((entry & (1 << psn)) && hugepg) {
650         *huge_page = true;
651         *hgpg_directory_hit = true;
652         entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
653         w = directory_index - 1;
654         if (directory_index & 0x1) {
655             /* Generate adjacent page from same PTE for odd TLB page */
656             lsb = BIT_ULL(w) >> 6;
657             *pw_entrylo0 = entry & ~lsb; /* even page */
658             *pw_entrylo1 = entry | lsb; /* odd page */
659         } else if (dph) {
660             int oddpagebit = 1 << leaf_shift;
661             uint64_t vaddr2 = *vaddr ^ oddpagebit;
662             if (*vaddr & oddpagebit) {
663                 *pw_entrylo1 = entry;
664             } else {
665                 *pw_entrylo0 = entry;
666             }
667             if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
668                                      ptw_mmu_idx) != TLBRET_MATCH) {
669                 return 0;
670             }
671             if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
672                 return 0;
673             }
674             entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
675             if (*vaddr & oddpagebit) {
676                 *pw_entrylo0 = entry;
677             } else {
678                 *pw_entrylo1 = entry;
679             }
680         } else {
681             return 0;
682         }
683         return 1;
684     } else {
685         *vaddr = entry;
686         return 2;
687     }
688 }
689 
690 static bool page_table_walk_refill(CPUMIPSState *env, vaddr address,
691                                    int ptw_mmu_idx)
692 {
693     int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
694     int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
695     int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
696     int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
697     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
698 
699     /* Initial values */
700     bool huge_page = false;
701     bool hgpg_bdhit = false;
702     bool hgpg_gdhit = false;
703     bool hgpg_udhit = false;
704     bool hgpg_mdhit = false;
705 
706     int32_t pw_pagemask = 0;
707     target_ulong pw_entryhi = 0;
708     uint64_t pw_entrylo0 = 0;
709     uint64_t pw_entrylo1 = 0;
710 
711     /* Native pointer size */
712     /*For the 32-bit architectures, this bit is fixed to 0.*/
713     int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
714 
715     /* Indices from PWField */
716     int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
717     int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
718     int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
719     int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
720     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
721 
722     /* Indices computed from faulting address */
723     int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
724     int uindex = (address >> pf_udw) & ((1 << udw) - 1);
725     int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
726     int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
727 
728     /* Other HTW configs */
729     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
730     unsigned directory_shift, leaf_shift;
731 
732     /* Offsets into tables */
733     unsigned goffset, uoffset, moffset, ptoffset0, ptoffset1;
734     uint32_t leafentry_size;
735 
736     /* Starting address - Page Table Base */
737     uint64_t vaddr = env->CP0_PWBase;
738 
739     uint64_t dir_entry;
740     uint64_t paddr;
741     int prot;
742     int m;
743 
744     if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
745         /* walker is unimplemented */
746         return false;
747     }
748     if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
749         /* walker is disabled */
750         return false;
751     }
752     if (!(gdw > 0 || udw > 0 || mdw > 0)) {
753         /* no structure to walk */
754         return false;
755     }
756     if (ptew > 1) {
757         return false;
758     }
759 
760     /* HTW Shift values (depend on entry size) */
761     directory_shift = (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
762     leaf_shift = (ptew == 1) ? native_shift + 1 : native_shift;
763 
764     goffset = gindex << directory_shift;
765     uoffset = uindex << directory_shift;
766     moffset = mindex << directory_shift;
767     ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
768     ptoffset1 = ptoffset0 | (1 << (leaf_shift));
769 
770     leafentry_size = 1 << (leaf_shift + 3);
771 
772     /* Global Directory */
773     if (gdw > 0) {
774         vaddr |= goffset;
775         switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
776                                &pw_entrylo0, &pw_entrylo1,
777                                directory_shift, leaf_shift, ptw_mmu_idx))
778         {
779         case 0:
780             return false;
781         case 1:
782             goto refill;
783         case 2:
784         default:
785             break;
786         }
787     }
788 
789     /* Upper directory */
790     if (udw > 0) {
791         vaddr |= uoffset;
792         switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
793                                &pw_entrylo0, &pw_entrylo1,
794                                directory_shift, leaf_shift, ptw_mmu_idx))
795         {
796         case 0:
797             return false;
798         case 1:
799             goto refill;
800         case 2:
801         default:
802             break;
803         }
804     }
805 
806     /* Middle directory */
807     if (mdw > 0) {
808         vaddr |= moffset;
809         switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
810                                &pw_entrylo0, &pw_entrylo1,
811                                directory_shift, leaf_shift, ptw_mmu_idx))
812         {
813         case 0:
814             return false;
815         case 1:
816             goto refill;
817         case 2:
818         default:
819             break;
820         }
821     }
822 
823     /* Leaf Level Page Table - First half of PTE pair */
824     vaddr |= ptoffset0;
825     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
826                              ptw_mmu_idx) != TLBRET_MATCH) {
827         return false;
828     }
829     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
830         return false;
831     }
832     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
833     pw_entrylo0 = dir_entry;
834 
835     /* Leaf Level Page Table - Second half of PTE pair */
836     vaddr |= ptoffset1;
837     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
838                              ptw_mmu_idx) != TLBRET_MATCH) {
839         return false;
840     }
841     if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
842         return false;
843     }
844     dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
845     pw_entrylo1 = dir_entry;
846 
847 refill:
848 
849     m = (1 << pf_ptw) - 1;
850 
851     if (huge_page) {
852         switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
853                 hgpg_mdhit)
854         {
855         case 4:
856             m = (1 << pf_gdw) - 1;
857             if (pf_gdw & 1) {
858                 m >>= 1;
859             }
860             break;
861         case 2:
862             m = (1 << pf_udw) - 1;
863             if (pf_udw & 1) {
864                 m >>= 1;
865             }
866             break;
867         case 1:
868             m = (1 << pf_mdw) - 1;
869             if (pf_mdw & 1) {
870                 m >>= 1;
871             }
872             break;
873         }
874     }
875     pw_pagemask = m >> TARGET_PAGE_BITS_MIN;
876     update_pagemask(env, pw_pagemask << CP0PM_MASK, &pw_pagemask);
877     pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
878     {
879         target_ulong tmp_entryhi = env->CP0_EntryHi;
880         int32_t tmp_pagemask = env->CP0_PageMask;
881         uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
882         uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
883 
884         env->CP0_EntryHi = pw_entryhi;
885         env->CP0_PageMask = pw_pagemask;
886         env->CP0_EntryLo0 = pw_entrylo0;
887         env->CP0_EntryLo1 = pw_entrylo1;
888 
889         /*
890          * The hardware page walker inserts a page into the TLB in a manner
891          * identical to a TLBWR instruction as executed by the software refill
892          * handler.
893          */
894         r4k_helper_tlbwr(env);
895 
896         env->CP0_EntryHi = tmp_entryhi;
897         env->CP0_PageMask = tmp_pagemask;
898         env->CP0_EntryLo0 = tmp_entrylo0;
899         env->CP0_EntryLo1 = tmp_entrylo1;
900     }
901     return true;
902 }
903 #endif
904 
905 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
906                        MMUAccessType access_type, int mmu_idx,
907                        bool probe, uintptr_t retaddr)
908 {
909     MIPSCPU *cpu = MIPS_CPU(cs);
910     CPUMIPSState *env = &cpu->env;
911     hwaddr physical;
912     int prot;
913     int ret = TLBRET_BADADDR;
914 
915     /* data access */
916     /* XXX: put correct access by using cpu_restore_state() correctly */
917     ret = get_physical_address(env, &physical, &prot, address,
918                                access_type, mmu_idx);
919     switch (ret) {
920     case TLBRET_MATCH:
921         qemu_log_mask(CPU_LOG_MMU,
922                       "%s address=%" VADDR_PRIx " physical " HWADDR_FMT_plx
923                       " prot %d\n", __func__, address, physical, prot);
924         break;
925     default:
926         qemu_log_mask(CPU_LOG_MMU,
927                       "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
928                       ret);
929         break;
930     }
931     if (ret == TLBRET_MATCH) {
932         tlb_set_page(cs, address & TARGET_PAGE_MASK,
933                      physical & TARGET_PAGE_MASK, prot,
934                      mmu_idx, TARGET_PAGE_SIZE);
935         return true;
936     }
937 #if !defined(TARGET_MIPS64)
938     if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
939         /*
940          * Memory reads during hardware page table walking are performed
941          * as if they were kernel-mode load instructions.
942          */
943         int ptw_mmu_idx = (env->hflags & MIPS_HFLAG_ERL ?
944                            MMU_ERL_IDX : MMU_KERNEL_IDX);
945 
946         if (page_table_walk_refill(env, address, ptw_mmu_idx)) {
947             ret = get_physical_address(env, &physical, &prot, address,
948                                        access_type, mmu_idx);
949             if (ret == TLBRET_MATCH) {
950                 tlb_set_page(cs, address & TARGET_PAGE_MASK,
951                              physical & TARGET_PAGE_MASK, prot,
952                              mmu_idx, TARGET_PAGE_SIZE);
953                 return true;
954             }
955         }
956     }
957 #endif
958     if (probe) {
959         return false;
960     }
961 
962     raise_mmu_exception(env, address, access_type, ret);
963     do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
964 }
965 
966 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
967                                   MMUAccessType access_type, uintptr_t retaddr)
968 {
969     hwaddr physical;
970     int prot;
971     int ret = 0;
972     CPUState *cs = env_cpu(env);
973 
974     /* data access */
975     ret = get_physical_address(env, &physical, &prot, address, access_type,
976                                mips_env_mmu_index(env));
977     if (ret == TLBRET_MATCH) {
978         return physical;
979     }
980 
981     raise_mmu_exception(env, address, access_type, ret);
982     cpu_loop_exit_restore(cs, retaddr);
983 }
984 
985 static void set_hflags_for_handler(CPUMIPSState *env)
986 {
987     /* Exception handlers are entered in 32-bit mode.  */
988     env->hflags &= ~(MIPS_HFLAG_M16);
989     /* ...except that microMIPS lets you choose.  */
990     if (env->insn_flags & ASE_MICROMIPS) {
991         env->hflags |= (!!(env->CP0_Config3 &
992                            (1 << CP0C3_ISA_ON_EXC))
993                         << MIPS_HFLAG_M16_SHIFT);
994     }
995 }
996 
997 static inline void set_badinstr_registers(CPUMIPSState *env)
998 {
999     if (env->insn_flags & ISA_NANOMIPS32) {
1000         if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1001             uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1002             if ((instr & 0x10000000) == 0) {
1003                 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1004             }
1005             env->CP0_BadInstr = instr;
1006 
1007             if ((instr & 0xFC000000) == 0x60000000) {
1008                 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1009                 env->CP0_BadInstrX = instr;
1010             }
1011         }
1012         return;
1013     }
1014 
1015     if (env->hflags & MIPS_HFLAG_M16) {
1016         /* TODO: add BadInstr support for microMIPS */
1017         return;
1018     }
1019     if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1020         env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1021     }
1022     if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1023         (env->hflags & MIPS_HFLAG_BMASK)) {
1024         env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1025     }
1026 }
1027 
1028 void mips_cpu_do_interrupt(CPUState *cs)
1029 {
1030     MIPSCPU *cpu = MIPS_CPU(cs);
1031     CPUMIPSState *env = &cpu->env;
1032     bool update_badinstr = 0;
1033     target_ulong offset;
1034     int cause = -1;
1035 
1036     if (qemu_loglevel_mask(CPU_LOG_INT)
1037         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1038         qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1039                  " %s exception\n",
1040                  __func__, env->active_tc.PC, env->CP0_EPC,
1041                  mips_exception_name(cs->exception_index));
1042     }
1043     if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1044         (env->hflags & MIPS_HFLAG_DM)) {
1045         cs->exception_index = EXCP_DINT;
1046     }
1047     offset = 0x180;
1048     switch (cs->exception_index) {
1049     case EXCP_SEMIHOST:
1050         cs->exception_index = EXCP_NONE;
1051         mips_semihosting(env);
1052         env->active_tc.PC += env->error_code;
1053         return;
1054     case EXCP_DSS:
1055         env->CP0_Debug |= 1 << CP0DB_DSS;
1056         /*
1057          * Debug single step cannot be raised inside a delay slot and
1058          * resume will always occur on the next instruction
1059          * (but we assume the pc has always been updated during
1060          * code translation).
1061          */
1062         env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1063         goto enter_debug_mode;
1064     case EXCP_DINT:
1065         env->CP0_Debug |= 1 << CP0DB_DINT;
1066         goto set_DEPC;
1067     case EXCP_DIB:
1068         env->CP0_Debug |= 1 << CP0DB_DIB;
1069         goto set_DEPC;
1070     case EXCP_DBp:
1071         env->CP0_Debug |= 1 << CP0DB_DBp;
1072         /* Setup DExcCode - SDBBP instruction */
1073         env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1074                          (9 << CP0DB_DEC);
1075         goto set_DEPC;
1076     case EXCP_DDBS:
1077         env->CP0_Debug |= 1 << CP0DB_DDBS;
1078         goto set_DEPC;
1079     case EXCP_DDBL:
1080         env->CP0_Debug |= 1 << CP0DB_DDBL;
1081     set_DEPC:
1082         env->CP0_DEPC = exception_resume_pc(env);
1083         env->hflags &= ~MIPS_HFLAG_BMASK;
1084  enter_debug_mode:
1085         if (env->insn_flags & ISA_MIPS3) {
1086             env->hflags |= MIPS_HFLAG_64;
1087             if (!(env->insn_flags & ISA_MIPS_R6) ||
1088                 env->CP0_Status & (1 << CP0St_KX)) {
1089                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1090             }
1091         }
1092         env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1093         env->hflags &= ~(MIPS_HFLAG_KSU);
1094         /* EJTAG probe trap enable is not implemented... */
1095         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1096             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1097         }
1098         env->active_tc.PC = env->exception_base + 0x480;
1099         set_hflags_for_handler(env);
1100         break;
1101     case EXCP_RESET:
1102         cpu_reset(CPU(cpu));
1103         break;
1104     case EXCP_SRESET:
1105         env->CP0_Status |= (1 << CP0St_SR);
1106         memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1107         goto set_error_EPC;
1108     case EXCP_NMI:
1109         env->CP0_Status |= (1 << CP0St_NMI);
1110  set_error_EPC:
1111         env->CP0_ErrorEPC = exception_resume_pc(env);
1112         env->hflags &= ~MIPS_HFLAG_BMASK;
1113         env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1114         if (env->insn_flags & ISA_MIPS3) {
1115             env->hflags |= MIPS_HFLAG_64;
1116             if (!(env->insn_flags & ISA_MIPS_R6) ||
1117                 env->CP0_Status & (1 << CP0St_KX)) {
1118                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1119             }
1120         }
1121         env->hflags |= MIPS_HFLAG_CP0;
1122         env->hflags &= ~(MIPS_HFLAG_KSU);
1123         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1124             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1125         }
1126         env->active_tc.PC = env->exception_base;
1127         set_hflags_for_handler(env);
1128         break;
1129     case EXCP_EXT_INTERRUPT:
1130         cause = 0;
1131         if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1132             uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1133 
1134             if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1135                 offset = 0x200;
1136             } else {
1137                 uint32_t vector = 0;
1138                 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1139 
1140                 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1141                     /*
1142                      * For VEIC mode, the external interrupt controller feeds
1143                      * the vector through the CP0Cause IP lines.
1144                      */
1145                     vector = pending;
1146                 } else {
1147                     /*
1148                      * Vectored Interrupts
1149                      * Mask with Status.IM7-IM0 to get enabled interrupts.
1150                      */
1151                     pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1152                     /* Find the highest-priority interrupt. */
1153                     while (pending >>= 1) {
1154                         vector++;
1155                     }
1156                 }
1157                 offset = 0x200 + (vector * (spacing << 5));
1158             }
1159         }
1160         goto set_EPC;
1161     case EXCP_LTLBL:
1162         cause = 1;
1163         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1164         goto set_EPC;
1165     case EXCP_TLBL:
1166         cause = 2;
1167         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1168         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1169             !(env->CP0_Status & (1 << CP0St_EXL))) {
1170 #if defined(TARGET_MIPS64)
1171             int R = env->CP0_BadVAddr >> 62;
1172             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1173             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1174 
1175             if ((R != 0 || UX) && (R != 3 || KX) &&
1176                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1177                 offset = 0x080;
1178             } else {
1179 #endif
1180                 offset = 0x000;
1181 #if defined(TARGET_MIPS64)
1182             }
1183 #endif
1184         }
1185         goto set_EPC;
1186     case EXCP_TLBS:
1187         cause = 3;
1188         update_badinstr = 1;
1189         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1190             !(env->CP0_Status & (1 << CP0St_EXL))) {
1191 #if defined(TARGET_MIPS64)
1192             int R = env->CP0_BadVAddr >> 62;
1193             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1194             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1195 
1196             if ((R != 0 || UX) && (R != 3 || KX) &&
1197                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1198                 offset = 0x080;
1199             } else {
1200 #endif
1201                 offset = 0x000;
1202 #if defined(TARGET_MIPS64)
1203             }
1204 #endif
1205         }
1206         goto set_EPC;
1207     case EXCP_AdEL:
1208         cause = 4;
1209         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1210         goto set_EPC;
1211     case EXCP_AdES:
1212         cause = 5;
1213         update_badinstr = 1;
1214         goto set_EPC;
1215     case EXCP_IBE:
1216         cause = 6;
1217         goto set_EPC;
1218     case EXCP_DBE:
1219         cause = 7;
1220         goto set_EPC;
1221     case EXCP_SYSCALL:
1222         cause = 8;
1223         update_badinstr = 1;
1224         goto set_EPC;
1225     case EXCP_BREAK:
1226         cause = 9;
1227         update_badinstr = 1;
1228         goto set_EPC;
1229     case EXCP_RI:
1230         cause = 10;
1231         update_badinstr = 1;
1232         goto set_EPC;
1233     case EXCP_CpU:
1234         cause = 11;
1235         update_badinstr = 1;
1236         env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1237                          (env->error_code << CP0Ca_CE);
1238         goto set_EPC;
1239     case EXCP_OVERFLOW:
1240         cause = 12;
1241         update_badinstr = 1;
1242         goto set_EPC;
1243     case EXCP_TRAP:
1244         cause = 13;
1245         update_badinstr = 1;
1246         goto set_EPC;
1247     case EXCP_MSAFPE:
1248         cause = 14;
1249         update_badinstr = 1;
1250         goto set_EPC;
1251     case EXCP_FPE:
1252         cause = 15;
1253         update_badinstr = 1;
1254         goto set_EPC;
1255     case EXCP_C2E:
1256         cause = 18;
1257         goto set_EPC;
1258     case EXCP_TLBRI:
1259         cause = 19;
1260         update_badinstr = 1;
1261         goto set_EPC;
1262     case EXCP_TLBXI:
1263         cause = 20;
1264         goto set_EPC;
1265     case EXCP_MSADIS:
1266         cause = 21;
1267         update_badinstr = 1;
1268         goto set_EPC;
1269     case EXCP_MDMX:
1270         cause = 22;
1271         goto set_EPC;
1272     case EXCP_DWATCH:
1273         cause = 23;
1274         /* XXX: TODO: manage deferred watch exceptions */
1275         goto set_EPC;
1276     case EXCP_MCHECK:
1277         cause = 24;
1278         goto set_EPC;
1279     case EXCP_THREAD:
1280         cause = 25;
1281         goto set_EPC;
1282     case EXCP_DSPDIS:
1283         cause = 26;
1284         goto set_EPC;
1285     case EXCP_CACHE:
1286         cause = 30;
1287         offset = 0x100;
1288  set_EPC:
1289         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1290             env->CP0_EPC = exception_resume_pc(env);
1291             if (update_badinstr) {
1292                 set_badinstr_registers(env);
1293             }
1294             if (env->hflags & MIPS_HFLAG_BMASK) {
1295                 env->CP0_Cause |= (1U << CP0Ca_BD);
1296             } else {
1297                 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1298             }
1299             env->CP0_Status |= (1 << CP0St_EXL);
1300             if (env->insn_flags & ISA_MIPS3) {
1301                 env->hflags |= MIPS_HFLAG_64;
1302                 if (!(env->insn_flags & ISA_MIPS_R6) ||
1303                     env->CP0_Status & (1 << CP0St_KX)) {
1304                     env->hflags &= ~MIPS_HFLAG_AWRAP;
1305                 }
1306             }
1307             env->hflags |= MIPS_HFLAG_CP0;
1308             env->hflags &= ~(MIPS_HFLAG_KSU);
1309         }
1310         env->hflags &= ~MIPS_HFLAG_BMASK;
1311         if (env->CP0_Status & (1 << CP0St_BEV)) {
1312             env->active_tc.PC = env->exception_base + 0x200;
1313         } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1314                                     env->CP0_Config5 & (1 << CP0C5_CV))) {
1315             /* Force KSeg1 for cache errors */
1316             env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1317         } else {
1318             env->active_tc.PC = env->CP0_EBase & ~0xfff;
1319         }
1320 
1321         env->active_tc.PC += offset;
1322         set_hflags_for_handler(env);
1323         env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1324                          (cause << CP0Ca_EC);
1325         break;
1326     default:
1327         abort();
1328     }
1329     if (qemu_loglevel_mask(CPU_LOG_INT)
1330         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1331         qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1332                  "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1333                  __func__, env->active_tc.PC, env->CP0_EPC, cause,
1334                  env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1335                  env->CP0_DEPC);
1336     }
1337     cs->exception_index = EXCP_NONE;
1338 }
1339 
1340 bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1341 {
1342     if (interrupt_request & CPU_INTERRUPT_HARD) {
1343         MIPSCPU *cpu = MIPS_CPU(cs);
1344         CPUMIPSState *env = &cpu->env;
1345 
1346         if (cpu_mips_hw_interrupts_enabled(env) &&
1347             cpu_mips_hw_interrupts_pending(env)) {
1348             /* Raise it */
1349             cs->exception_index = EXCP_EXT_INTERRUPT;
1350             env->error_code = 0;
1351             mips_cpu_do_interrupt(cs);
1352             return true;
1353         }
1354     }
1355     return false;
1356 }
1357 
1358 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1359 {
1360     CPUState *cs = env_cpu(env);
1361     r4k_tlb_t *tlb;
1362     target_ulong addr;
1363     target_ulong end;
1364     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1365     uint32_t MMID = env->CP0_MemoryMapID;
1366     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
1367     uint32_t tlb_mmid;
1368     target_ulong mask;
1369 
1370     MMID = mi ? MMID : (uint32_t) ASID;
1371 
1372     tlb = &env->tlb->mmu.r4k.tlb[idx];
1373     /*
1374      * The qemu TLB is flushed when the ASID/MMID changes, so no need to
1375      * flush these entries again.
1376      */
1377     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
1378     if (tlb->G == 0 && tlb_mmid != MMID) {
1379         return;
1380     }
1381 
1382     if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1383         /*
1384          * For tlbwr, we can shadow the discarded entry into
1385          * a new (fake) TLB entry, as long as the guest can not
1386          * tell that it's there.
1387          */
1388         env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1389         env->tlb->tlb_in_use++;
1390         return;
1391     }
1392 
1393     /* 1k pages are not supported. */
1394     mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1395     if (tlb->V0) {
1396         addr = tlb->VPN & ~mask;
1397 #if defined(TARGET_MIPS64)
1398         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1399             addr |= 0x3FFFFF0000000000ULL;
1400         }
1401 #endif
1402         end = addr | (mask >> 1);
1403         while (addr < end) {
1404             tlb_flush_page(cs, addr);
1405             addr += TARGET_PAGE_SIZE;
1406         }
1407     }
1408     if (tlb->V1) {
1409         addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1410 #if defined(TARGET_MIPS64)
1411         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1412             addr |= 0x3FFFFF0000000000ULL;
1413         }
1414 #endif
1415         end = addr | mask;
1416         while (addr - 1 < end) {
1417             tlb_flush_page(cs, addr);
1418             addr += TARGET_PAGE_SIZE;
1419         }
1420     }
1421 }
1422