1 /* 2 * MIPS internal definitions and helpers 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2 or later. 5 * See the COPYING file in the top-level directory. 6 */ 7 8 #ifndef MIPS_INTERNAL_H 9 #define MIPS_INTERNAL_H 10 11 #include "exec/memattrs.h" 12 13 /* 14 * MMU types, the first four entries have the same layout as the 15 * CP0C0_MT field. 16 */ 17 enum mips_mmu_types { 18 MMU_TYPE_NONE = 0, 19 MMU_TYPE_R4000 = 1, /* Standard TLB */ 20 MMU_TYPE_BAT = 2, /* Block Address Translation */ 21 MMU_TYPE_FMT = 3, /* Fixed Mapping */ 22 MMU_TYPE_DVF = 4, /* Dual VTLB and FTLB */ 23 MMU_TYPE_R3000, 24 MMU_TYPE_R6000, 25 MMU_TYPE_R8000 26 }; 27 28 struct mips_def_t { 29 const char *name; 30 int32_t CP0_PRid; 31 int32_t CP0_Config0; 32 int32_t CP0_Config1; 33 int32_t CP0_Config2; 34 int32_t CP0_Config3; 35 int32_t CP0_Config4; 36 int32_t CP0_Config4_rw_bitmask; 37 int32_t CP0_Config5; 38 int32_t CP0_Config5_rw_bitmask; 39 int32_t CP0_Config6; 40 int32_t CP0_Config6_rw_bitmask; 41 int32_t CP0_Config7; 42 int32_t CP0_Config7_rw_bitmask; 43 target_ulong CP0_LLAddr_rw_bitmask; 44 int CP0_LLAddr_shift; 45 int32_t SYNCI_Step; 46 int32_t CCRes; 47 int32_t CP0_Status_rw_bitmask; 48 int32_t CP0_TCStatus_rw_bitmask; 49 int32_t CP0_SRSCtl; 50 int32_t CP1_fcr0; 51 int32_t CP1_fcr31_rw_bitmask; 52 int32_t CP1_fcr31; 53 int32_t MSAIR; 54 int32_t SEGBITS; 55 int32_t PABITS; 56 int32_t CP0_SRSConf0_rw_bitmask; 57 int32_t CP0_SRSConf0; 58 int32_t CP0_SRSConf1_rw_bitmask; 59 int32_t CP0_SRSConf1; 60 int32_t CP0_SRSConf2_rw_bitmask; 61 int32_t CP0_SRSConf2; 62 int32_t CP0_SRSConf3_rw_bitmask; 63 int32_t CP0_SRSConf3; 64 int32_t CP0_SRSConf4_rw_bitmask; 65 int32_t CP0_SRSConf4; 66 int32_t CP0_PageGrain_rw_bitmask; 67 int32_t CP0_PageGrain; 68 target_ulong CP0_EBaseWG_rw_bitmask; 69 uint64_t insn_flags; 70 enum mips_mmu_types mmu_type; 71 int32_t SAARP; 72 }; 73 74 extern const struct mips_def_t mips_defs[]; 75 extern const int mips_defs_number; 76 77 void mips_cpu_do_interrupt(CPUState *cpu); 78 bool mips_cpu_exec_interrupt(CPUState *cpu, int int_req); 79 void mips_cpu_dump_state(CPUState *cpu, FILE *f, int flags); 80 hwaddr mips_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 81 int mips_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 82 int mips_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 83 void mips_cpu_do_unaligned_access(CPUState *cpu, vaddr addr, 84 MMUAccessType access_type, 85 int mmu_idx, uintptr_t retaddr); 86 87 #if !defined(CONFIG_USER_ONLY) 88 89 typedef struct r4k_tlb_t r4k_tlb_t; 90 struct r4k_tlb_t { 91 target_ulong VPN; 92 uint32_t PageMask; 93 uint16_t ASID; 94 uint32_t MMID; 95 unsigned int G:1; 96 unsigned int C0:3; 97 unsigned int C1:3; 98 unsigned int V0:1; 99 unsigned int V1:1; 100 unsigned int D0:1; 101 unsigned int D1:1; 102 unsigned int XI0:1; 103 unsigned int XI1:1; 104 unsigned int RI0:1; 105 unsigned int RI1:1; 106 unsigned int EHINV:1; 107 uint64_t PFN[2]; 108 }; 109 110 struct CPUMIPSTLBContext { 111 uint32_t nb_tlb; 112 uint32_t tlb_in_use; 113 int (*map_address)(struct CPUMIPSState *env, hwaddr *physical, int *prot, 114 target_ulong address, int rw, int access_type); 115 void (*helper_tlbwi)(struct CPUMIPSState *env); 116 void (*helper_tlbwr)(struct CPUMIPSState *env); 117 void (*helper_tlbp)(struct CPUMIPSState *env); 118 void (*helper_tlbr)(struct CPUMIPSState *env); 119 void (*helper_tlbinv)(struct CPUMIPSState *env); 120 void (*helper_tlbinvf)(struct CPUMIPSState *env); 121 union { 122 struct { 123 r4k_tlb_t tlb[MIPS_TLB_MAX]; 124 } r4k; 125 } mmu; 126 }; 127 128 int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, 129 target_ulong address, int rw, int access_type); 130 int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, 131 target_ulong address, int rw, int access_type); 132 int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, 133 target_ulong address, int rw, int access_type); 134 void r4k_helper_tlbwi(CPUMIPSState *env); 135 void r4k_helper_tlbwr(CPUMIPSState *env); 136 void r4k_helper_tlbp(CPUMIPSState *env); 137 void r4k_helper_tlbr(CPUMIPSState *env); 138 void r4k_helper_tlbinv(CPUMIPSState *env); 139 void r4k_helper_tlbinvf(CPUMIPSState *env); 140 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra); 141 uint32_t cpu_mips_get_random(CPUMIPSState *env); 142 143 void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 144 vaddr addr, unsigned size, 145 MMUAccessType access_type, 146 int mmu_idx, MemTxAttrs attrs, 147 MemTxResult response, uintptr_t retaddr); 148 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, 149 int rw); 150 #endif 151 152 #define cpu_signal_handler cpu_mips_signal_handler 153 154 #ifndef CONFIG_USER_ONLY 155 extern const VMStateDescription vmstate_mips_cpu; 156 #endif 157 158 static inline bool cpu_mips_hw_interrupts_enabled(CPUMIPSState *env) 159 { 160 return (env->CP0_Status & (1 << CP0St_IE)) && 161 !(env->CP0_Status & (1 << CP0St_EXL)) && 162 !(env->CP0_Status & (1 << CP0St_ERL)) && 163 !(env->hflags & MIPS_HFLAG_DM) && 164 /* 165 * Note that the TCStatus IXMT field is initialized to zero, 166 * and only MT capable cores can set it to one. So we don't 167 * need to check for MT capabilities here. 168 */ 169 !(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_IXMT)); 170 } 171 172 /* Check if there is pending and not masked out interrupt */ 173 static inline bool cpu_mips_hw_interrupts_pending(CPUMIPSState *env) 174 { 175 int32_t pending; 176 int32_t status; 177 bool r; 178 179 pending = env->CP0_Cause & CP0Ca_IP_mask; 180 status = env->CP0_Status & CP0Ca_IP_mask; 181 182 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) { 183 /* 184 * A MIPS configured with a vectorizing external interrupt controller 185 * will feed a vector into the Cause pending lines. The core treats 186 * the status lines as a vector level, not as individual masks. 187 */ 188 r = pending > status; 189 } else { 190 /* 191 * A MIPS configured with compatibility or VInt (Vectored Interrupts) 192 * treats the pending lines as individual interrupt lines, the status 193 * lines are individual masks. 194 */ 195 r = (pending & status) != 0; 196 } 197 return r; 198 } 199 200 void mips_tcg_init(void); 201 202 void msa_reset(CPUMIPSState *env); 203 204 /* cp0_timer.c */ 205 uint32_t cpu_mips_get_count(CPUMIPSState *env); 206 void cpu_mips_store_count(CPUMIPSState *env, uint32_t value); 207 void cpu_mips_store_compare(CPUMIPSState *env, uint32_t value); 208 void cpu_mips_start_count(CPUMIPSState *env); 209 void cpu_mips_stop_count(CPUMIPSState *env); 210 211 /* helper.c */ 212 void mmu_init(CPUMIPSState *env, const mips_def_t *def); 213 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 214 MMUAccessType access_type, int mmu_idx, 215 bool probe, uintptr_t retaddr); 216 217 /* op_helper.c */ 218 void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask); 219 220 static inline void restore_pamask(CPUMIPSState *env) 221 { 222 if (env->hflags & MIPS_HFLAG_ELPA) { 223 env->PAMask = (1ULL << env->PABITS) - 1; 224 } else { 225 env->PAMask = PAMASK_BASE; 226 } 227 } 228 229 static inline int mips_vpe_active(CPUMIPSState *env) 230 { 231 int active = 1; 232 233 /* Check that the VPE is enabled. */ 234 if (!(env->mvp->CP0_MVPControl & (1 << CP0MVPCo_EVP))) { 235 active = 0; 236 } 237 /* Check that the VPE is activated. */ 238 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))) { 239 active = 0; 240 } 241 242 /* 243 * Now verify that there are active thread contexts in the VPE. 244 * 245 * This assumes the CPU model will internally reschedule threads 246 * if the active one goes to sleep. If there are no threads available 247 * the active one will be in a sleeping state, and we can turn off 248 * the entire VPE. 249 */ 250 if (!(env->active_tc.CP0_TCStatus & (1 << CP0TCSt_A))) { 251 /* TC is not activated. */ 252 active = 0; 253 } 254 if (env->active_tc.CP0_TCHalt & 1) { 255 /* TC is in halt state. */ 256 active = 0; 257 } 258 259 return active; 260 } 261 262 static inline int mips_vp_active(CPUMIPSState *env) 263 { 264 CPUState *other_cs = first_cpu; 265 266 /* Check if the VP disabled other VPs (which means the VP is enabled) */ 267 if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) { 268 return 1; 269 } 270 271 /* Check if the virtual processor is disabled due to a DVP */ 272 CPU_FOREACH(other_cs) { 273 MIPSCPU *other_cpu = MIPS_CPU(other_cs); 274 if ((&other_cpu->env != env) && 275 ((other_cpu->env.CP0_VPControl >> CP0VPCtl_DIS) & 1)) { 276 return 0; 277 } 278 } 279 return 1; 280 } 281 282 static inline void compute_hflags(CPUMIPSState *env) 283 { 284 env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 | 285 MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU | 286 MIPS_HFLAG_AWRAP | MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 | 287 MIPS_HFLAG_DSP_R3 | MIPS_HFLAG_SBRI | MIPS_HFLAG_MSA | 288 MIPS_HFLAG_FRE | MIPS_HFLAG_ELPA | MIPS_HFLAG_ERL); 289 if (env->CP0_Status & (1 << CP0St_ERL)) { 290 env->hflags |= MIPS_HFLAG_ERL; 291 } 292 if (!(env->CP0_Status & (1 << CP0St_EXL)) && 293 !(env->CP0_Status & (1 << CP0St_ERL)) && 294 !(env->hflags & MIPS_HFLAG_DM)) { 295 env->hflags |= (env->CP0_Status >> CP0St_KSU) & 296 MIPS_HFLAG_KSU; 297 } 298 #if defined(TARGET_MIPS64) 299 if ((env->insn_flags & ISA_MIPS3) && 300 (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) || 301 (env->CP0_Status & (1 << CP0St_PX)) || 302 (env->CP0_Status & (1 << CP0St_UX)))) { 303 env->hflags |= MIPS_HFLAG_64; 304 } 305 306 if (!(env->insn_flags & ISA_MIPS3)) { 307 env->hflags |= MIPS_HFLAG_AWRAP; 308 } else if (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_UM) && 309 !(env->CP0_Status & (1 << CP0St_UX))) { 310 env->hflags |= MIPS_HFLAG_AWRAP; 311 } else if (env->insn_flags & ISA_MIPS_R6) { 312 /* Address wrapping for Supervisor and Kernel is specified in R6 */ 313 if ((((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_SM) && 314 !(env->CP0_Status & (1 << CP0St_SX))) || 315 (((env->hflags & MIPS_HFLAG_KSU) == MIPS_HFLAG_KM) && 316 !(env->CP0_Status & (1 << CP0St_KX)))) { 317 env->hflags |= MIPS_HFLAG_AWRAP; 318 } 319 } 320 #endif 321 if (((env->CP0_Status & (1 << CP0St_CU0)) && 322 !(env->insn_flags & ISA_MIPS_R6)) || 323 !(env->hflags & MIPS_HFLAG_KSU)) { 324 env->hflags |= MIPS_HFLAG_CP0; 325 } 326 if (env->CP0_Status & (1 << CP0St_CU1)) { 327 env->hflags |= MIPS_HFLAG_FPU; 328 } 329 if (env->CP0_Status & (1 << CP0St_FR)) { 330 env->hflags |= MIPS_HFLAG_F64; 331 } 332 if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_KM) && 333 (env->CP0_Config5 & (1 << CP0C5_SBRI))) { 334 env->hflags |= MIPS_HFLAG_SBRI; 335 } 336 if (env->insn_flags & ASE_DSP_R3) { 337 /* 338 * Our cpu supports DSP R3 ASE, so enable 339 * access to DSP R3 resources. 340 */ 341 if (env->CP0_Status & (1 << CP0St_MX)) { 342 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2 | 343 MIPS_HFLAG_DSP_R3; 344 } 345 } else if (env->insn_flags & ASE_DSP_R2) { 346 /* 347 * Our cpu supports DSP R2 ASE, so enable 348 * access to DSP R2 resources. 349 */ 350 if (env->CP0_Status & (1 << CP0St_MX)) { 351 env->hflags |= MIPS_HFLAG_DSP | MIPS_HFLAG_DSP_R2; 352 } 353 354 } else if (env->insn_flags & ASE_DSP) { 355 /* 356 * Our cpu supports DSP ASE, so enable 357 * access to DSP resources. 358 */ 359 if (env->CP0_Status & (1 << CP0St_MX)) { 360 env->hflags |= MIPS_HFLAG_DSP; 361 } 362 363 } 364 if (env->insn_flags & ISA_MIPS_R2) { 365 if (env->active_fpu.fcr0 & (1 << FCR0_F64)) { 366 env->hflags |= MIPS_HFLAG_COP1X; 367 } 368 } else if (env->insn_flags & ISA_MIPS_R1) { 369 if (env->hflags & MIPS_HFLAG_64) { 370 env->hflags |= MIPS_HFLAG_COP1X; 371 } 372 } else if (env->insn_flags & ISA_MIPS4) { 373 /* 374 * All supported MIPS IV CPUs use the XX (CU3) to enable 375 * and disable the MIPS IV extensions to the MIPS III ISA. 376 * Some other MIPS IV CPUs ignore the bit, so the check here 377 * would be too restrictive for them. 378 */ 379 if (env->CP0_Status & (1U << CP0St_CU3)) { 380 env->hflags |= MIPS_HFLAG_COP1X; 381 } 382 } 383 if (ase_msa_available(env)) { 384 if (env->CP0_Config5 & (1 << CP0C5_MSAEn)) { 385 env->hflags |= MIPS_HFLAG_MSA; 386 } 387 } 388 if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) { 389 if (env->CP0_Config5 & (1 << CP0C5_FRE)) { 390 env->hflags |= MIPS_HFLAG_FRE; 391 } 392 } 393 if (env->CP0_Config3 & (1 << CP0C3_LPA)) { 394 if (env->CP0_PageGrain & (1 << CP0PG_ELPA)) { 395 env->hflags |= MIPS_HFLAG_ELPA; 396 } 397 } 398 } 399 400 void cpu_mips_tlb_flush(CPUMIPSState *env); 401 void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc); 402 void cpu_mips_store_status(CPUMIPSState *env, target_ulong val); 403 void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val); 404 405 const char *mips_exception_name(int32_t exception); 406 407 void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, uint32_t exception, 408 int error_code, uintptr_t pc); 409 410 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env, 411 uint32_t exception, 412 uintptr_t pc) 413 { 414 do_raise_exception_err(env, exception, 0, pc); 415 } 416 417 #endif 418