xref: /openbmc/qemu/target/m68k/op_helper.c (revision 62a4db55)
1 /*
2  *  M68K helper routines
3  *
4  *  Copyright (c) 2007 CodeSourcery
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "semihosting/semihost.h"
25 #include "tcg/tcg.h"
26 
27 #if defined(CONFIG_USER_ONLY)
28 
29 void m68k_cpu_do_interrupt(CPUState *cs)
30 {
31     cs->exception_index = -1;
32 }
33 
34 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
35 {
36 }
37 
38 #else
39 
40 static void cf_rte(CPUM68KState *env)
41 {
42     uint32_t sp;
43     uint32_t fmt;
44 
45     sp = env->aregs[7];
46     fmt = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
47     env->pc = cpu_ldl_mmuidx_ra(env, sp + 4, MMU_KERNEL_IDX, 0);
48     sp |= (fmt >> 28) & 3;
49     env->aregs[7] = sp + 8;
50 
51     cpu_m68k_set_sr(env, fmt);
52 }
53 
54 static void m68k_rte(CPUM68KState *env)
55 {
56     uint32_t sp;
57     uint16_t fmt;
58     uint16_t sr;
59 
60     sp = env->aregs[7];
61 throwaway:
62     sr = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
63     sp += 2;
64     env->pc = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
65     sp += 4;
66     if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
67         /*  all except 68000 */
68         fmt = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
69         sp += 2;
70         switch (fmt >> 12) {
71         case 0:
72             break;
73         case 1:
74             env->aregs[7] = sp;
75             cpu_m68k_set_sr(env, sr);
76             goto throwaway;
77         case 2:
78         case 3:
79             sp += 4;
80             break;
81         case 4:
82             sp += 8;
83             break;
84         case 7:
85             sp += 52;
86             break;
87         }
88     }
89     env->aregs[7] = sp;
90     cpu_m68k_set_sr(env, sr);
91 }
92 
93 static const char *m68k_exception_name(int index)
94 {
95     switch (index) {
96     case EXCP_ACCESS:
97         return "Access Fault";
98     case EXCP_ADDRESS:
99         return "Address Error";
100     case EXCP_ILLEGAL:
101         return "Illegal Instruction";
102     case EXCP_DIV0:
103         return "Divide by Zero";
104     case EXCP_CHK:
105         return "CHK/CHK2";
106     case EXCP_TRAPCC:
107         return "FTRAPcc, TRAPcc, TRAPV";
108     case EXCP_PRIVILEGE:
109         return "Privilege Violation";
110     case EXCP_TRACE:
111         return "Trace";
112     case EXCP_LINEA:
113         return "A-Line";
114     case EXCP_LINEF:
115         return "F-Line";
116     case EXCP_DEBEGBP: /* 68020/030 only */
117         return "Copro Protocol Violation";
118     case EXCP_FORMAT:
119         return "Format Error";
120     case EXCP_UNINITIALIZED:
121         return "Uninitialized Interrupt";
122     case EXCP_SPURIOUS:
123         return "Spurious Interrupt";
124     case EXCP_INT_LEVEL_1:
125         return "Level 1 Interrupt";
126     case EXCP_INT_LEVEL_1 + 1:
127         return "Level 2 Interrupt";
128     case EXCP_INT_LEVEL_1 + 2:
129         return "Level 3 Interrupt";
130     case EXCP_INT_LEVEL_1 + 3:
131         return "Level 4 Interrupt";
132     case EXCP_INT_LEVEL_1 + 4:
133         return "Level 5 Interrupt";
134     case EXCP_INT_LEVEL_1 + 5:
135         return "Level 6 Interrupt";
136     case EXCP_INT_LEVEL_1 + 6:
137         return "Level 7 Interrupt";
138     case EXCP_TRAP0:
139         return "TRAP #0";
140     case EXCP_TRAP0 + 1:
141         return "TRAP #1";
142     case EXCP_TRAP0 + 2:
143         return "TRAP #2";
144     case EXCP_TRAP0 + 3:
145         return "TRAP #3";
146     case EXCP_TRAP0 + 4:
147         return "TRAP #4";
148     case EXCP_TRAP0 + 5:
149         return "TRAP #5";
150     case EXCP_TRAP0 + 6:
151         return "TRAP #6";
152     case EXCP_TRAP0 + 7:
153         return "TRAP #7";
154     case EXCP_TRAP0 + 8:
155         return "TRAP #8";
156     case EXCP_TRAP0 + 9:
157         return "TRAP #9";
158     case EXCP_TRAP0 + 10:
159         return "TRAP #10";
160     case EXCP_TRAP0 + 11:
161         return "TRAP #11";
162     case EXCP_TRAP0 + 12:
163         return "TRAP #12";
164     case EXCP_TRAP0 + 13:
165         return "TRAP #13";
166     case EXCP_TRAP0 + 14:
167         return "TRAP #14";
168     case EXCP_TRAP0 + 15:
169         return "TRAP #15";
170     case EXCP_FP_BSUN:
171         return "FP Branch/Set on unordered condition";
172     case EXCP_FP_INEX:
173         return "FP Inexact Result";
174     case EXCP_FP_DZ:
175         return "FP Divide by Zero";
176     case EXCP_FP_UNFL:
177         return "FP Underflow";
178     case EXCP_FP_OPERR:
179         return "FP Operand Error";
180     case EXCP_FP_OVFL:
181         return "FP Overflow";
182     case EXCP_FP_SNAN:
183         return "FP Signaling NAN";
184     case EXCP_FP_UNIMP:
185         return "FP Unimplemented Data Type";
186     case EXCP_MMU_CONF: /* 68030/68851 only */
187         return "MMU Configuration Error";
188     case EXCP_MMU_ILLEGAL: /* 68851 only */
189         return "MMU Illegal Operation";
190     case EXCP_MMU_ACCESS: /* 68851 only */
191         return "MMU Access Level Violation";
192     case 64 ... 255:
193         return "User Defined Vector";
194     }
195     return "Unassigned";
196 }
197 
198 static void cf_interrupt_all(CPUM68KState *env, int is_hw)
199 {
200     CPUState *cs = env_cpu(env);
201     uint32_t sp;
202     uint32_t sr;
203     uint32_t fmt;
204     uint32_t retaddr;
205     uint32_t vector;
206 
207     fmt = 0;
208     retaddr = env->pc;
209 
210     if (!is_hw) {
211         switch (cs->exception_index) {
212         case EXCP_RTE:
213             /* Return from an exception.  */
214             cf_rte(env);
215             return;
216         case EXCP_HALT_INSN:
217             if (semihosting_enabled()
218                     && (env->sr & SR_S) != 0
219                     && (env->pc & 3) == 0
220                     && cpu_lduw_code(env, env->pc - 4) == 0x4e71
221                     && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
222                 env->pc += 4;
223                 do_m68k_semihosting(env, env->dregs[0]);
224                 return;
225             }
226             cs->halted = 1;
227             cs->exception_index = EXCP_HLT;
228             cpu_loop_exit(cs);
229             return;
230         }
231         if (cs->exception_index >= EXCP_TRAP0
232             && cs->exception_index <= EXCP_TRAP15) {
233             /* Move the PC after the trap instruction.  */
234             retaddr += 2;
235         }
236     }
237 
238     vector = cs->exception_index << 2;
239 
240     sr = env->sr | cpu_m68k_get_ccr(env);
241     if (qemu_loglevel_mask(CPU_LOG_INT)) {
242         static int count;
243         qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
244                  ++count, m68k_exception_name(cs->exception_index),
245                  vector, env->pc, env->aregs[7], sr);
246     }
247 
248     fmt |= 0x40000000;
249     fmt |= vector << 16;
250     fmt |= sr;
251 
252     env->sr |= SR_S;
253     if (is_hw) {
254         env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
255         env->sr &= ~SR_M;
256     }
257     m68k_switch_sp(env);
258     sp = env->aregs[7];
259     fmt |= (sp & 3) << 28;
260 
261     /* ??? This could cause MMU faults.  */
262     sp &= ~3;
263     sp -= 4;
264     cpu_stl_mmuidx_ra(env, sp, retaddr, MMU_KERNEL_IDX, 0);
265     sp -= 4;
266     cpu_stl_mmuidx_ra(env, sp, fmt, MMU_KERNEL_IDX, 0);
267     env->aregs[7] = sp;
268     /* Jump to vector.  */
269     env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
270 }
271 
272 static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp,
273                                   uint16_t format, uint16_t sr,
274                                   uint32_t addr, uint32_t retaddr)
275 {
276     if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
277         /*  all except 68000 */
278         CPUState *cs = env_cpu(env);
279         switch (format) {
280         case 4:
281             *sp -= 4;
282             cpu_stl_mmuidx_ra(env, *sp, env->pc, MMU_KERNEL_IDX, 0);
283             *sp -= 4;
284             cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
285             break;
286         case 3:
287         case 2:
288             *sp -= 4;
289             cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
290             break;
291         }
292         *sp -= 2;
293         cpu_stw_mmuidx_ra(env, *sp, (format << 12) + (cs->exception_index << 2),
294                           MMU_KERNEL_IDX, 0);
295     }
296     *sp -= 4;
297     cpu_stl_mmuidx_ra(env, *sp, retaddr, MMU_KERNEL_IDX, 0);
298     *sp -= 2;
299     cpu_stw_mmuidx_ra(env, *sp, sr, MMU_KERNEL_IDX, 0);
300 }
301 
302 static void m68k_interrupt_all(CPUM68KState *env, int is_hw)
303 {
304     CPUState *cs = env_cpu(env);
305     uint32_t sp;
306     uint32_t retaddr;
307     uint32_t vector;
308     uint16_t sr, oldsr;
309 
310     retaddr = env->pc;
311 
312     if (!is_hw) {
313         switch (cs->exception_index) {
314         case EXCP_RTE:
315             /* Return from an exception.  */
316             m68k_rte(env);
317             return;
318         case EXCP_TRAP0 ...  EXCP_TRAP15:
319             /* Move the PC after the trap instruction.  */
320             retaddr += 2;
321             break;
322         }
323     }
324 
325     vector = cs->exception_index << 2;
326 
327     sr = env->sr | cpu_m68k_get_ccr(env);
328     if (qemu_loglevel_mask(CPU_LOG_INT)) {
329         static int count;
330         qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
331                  ++count, m68k_exception_name(cs->exception_index),
332                  vector, env->pc, env->aregs[7], sr);
333     }
334 
335     /*
336      * MC68040UM/AD,  chapter 9.3.10
337      */
338 
339     /* "the processor first make an internal copy" */
340     oldsr = sr;
341     /* "set the mode to supervisor" */
342     sr |= SR_S;
343     /* "suppress tracing" */
344     sr &= ~SR_T;
345     /* "sets the processor interrupt mask" */
346     if (is_hw) {
347         sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
348     }
349     cpu_m68k_set_sr(env, sr);
350     sp = env->aregs[7];
351 
352     if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
353         sp &= ~1;
354     }
355 
356     if (cs->exception_index == EXCP_ACCESS) {
357         if (env->mmu.fault) {
358             cpu_abort(cs, "DOUBLE MMU FAULT\n");
359         }
360         env->mmu.fault = true;
361         /* push data 3 */
362         sp -= 4;
363         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
364         /* push data 2 */
365         sp -= 4;
366         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
367         /* push data 1 */
368         sp -= 4;
369         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
370         /* write back 1 / push data 0 */
371         sp -= 4;
372         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
373         /* write back 1 address */
374         sp -= 4;
375         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
376         /* write back 2 data */
377         sp -= 4;
378         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
379         /* write back 2 address */
380         sp -= 4;
381         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
382         /* write back 3 data */
383         sp -= 4;
384         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
385         /* write back 3 address */
386         sp -= 4;
387         cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
388         /* fault address */
389         sp -= 4;
390         cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
391         /* write back 1 status */
392         sp -= 2;
393         cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
394         /* write back 2 status */
395         sp -= 2;
396         cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
397         /* write back 3 status */
398         sp -= 2;
399         cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
400         /* special status word */
401         sp -= 2;
402         cpu_stw_mmuidx_ra(env, sp, env->mmu.ssw, MMU_KERNEL_IDX, 0);
403         /* effective address */
404         sp -= 4;
405         cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
406 
407         do_stack_frame(env, &sp, 7, oldsr, 0, retaddr);
408         env->mmu.fault = false;
409         if (qemu_loglevel_mask(CPU_LOG_INT)) {
410             qemu_log("            "
411                      "ssw:  %08x ea:   %08x sfc:  %d    dfc: %d\n",
412                      env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc);
413         }
414     } else if (cs->exception_index == EXCP_ADDRESS) {
415         do_stack_frame(env, &sp, 2, oldsr, 0, retaddr);
416     } else if (cs->exception_index == EXCP_ILLEGAL ||
417                cs->exception_index == EXCP_DIV0 ||
418                cs->exception_index == EXCP_CHK ||
419                cs->exception_index == EXCP_TRAPCC ||
420                cs->exception_index == EXCP_TRACE) {
421         /* FIXME: addr is not only env->pc */
422         do_stack_frame(env, &sp, 2, oldsr, env->pc, retaddr);
423     } else if (is_hw && oldsr & SR_M &&
424                cs->exception_index >= EXCP_SPURIOUS &&
425                cs->exception_index <= EXCP_INT_LEVEL_7) {
426         do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
427         oldsr = sr;
428         env->aregs[7] = sp;
429         cpu_m68k_set_sr(env, sr &= ~SR_M);
430         sp = env->aregs[7] & ~1;
431         do_stack_frame(env, &sp, 1, oldsr, 0, retaddr);
432     } else {
433         do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
434     }
435 
436     env->aregs[7] = sp;
437     /* Jump to vector.  */
438     env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
439 }
440 
441 static void do_interrupt_all(CPUM68KState *env, int is_hw)
442 {
443     if (m68k_feature(env, M68K_FEATURE_M68000)) {
444         m68k_interrupt_all(env, is_hw);
445         return;
446     }
447     cf_interrupt_all(env, is_hw);
448 }
449 
450 void m68k_cpu_do_interrupt(CPUState *cs)
451 {
452     M68kCPU *cpu = M68K_CPU(cs);
453     CPUM68KState *env = &cpu->env;
454 
455     do_interrupt_all(env, 0);
456 }
457 
458 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
459 {
460     do_interrupt_all(env, 1);
461 }
462 
463 void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
464                                  unsigned size, MMUAccessType access_type,
465                                  int mmu_idx, MemTxAttrs attrs,
466                                  MemTxResult response, uintptr_t retaddr)
467 {
468     M68kCPU *cpu = M68K_CPU(cs);
469     CPUM68KState *env = &cpu->env;
470 
471     cpu_restore_state(cs, retaddr, true);
472 
473     if (m68k_feature(env, M68K_FEATURE_M68040)) {
474         env->mmu.mmusr = 0;
475 
476         /*
477          * According to the MC68040 users manual the ATC bit of the SSW is
478          * used to distinguish between ATC faults and physical bus errors.
479          * In the case of a bus error e.g. during nubus read from an empty
480          * slot this bit should not be set
481          */
482         if (response != MEMTX_DECODE_ERROR) {
483             env->mmu.ssw |= M68K_ATC_040;
484         }
485 
486         /* FIXME: manage MMU table access error */
487         env->mmu.ssw &= ~M68K_TM_040;
488         if (env->sr & SR_S) { /* SUPERVISOR */
489             env->mmu.ssw |= M68K_TM_040_SUPER;
490         }
491         if (access_type == MMU_INST_FETCH) { /* instruction or data */
492             env->mmu.ssw |= M68K_TM_040_CODE;
493         } else {
494             env->mmu.ssw |= M68K_TM_040_DATA;
495         }
496         env->mmu.ssw &= ~M68K_BA_SIZE_MASK;
497         switch (size) {
498         case 1:
499             env->mmu.ssw |= M68K_BA_SIZE_BYTE;
500             break;
501         case 2:
502             env->mmu.ssw |= M68K_BA_SIZE_WORD;
503             break;
504         case 4:
505             env->mmu.ssw |= M68K_BA_SIZE_LONG;
506             break;
507         }
508 
509         if (access_type != MMU_DATA_STORE) {
510             env->mmu.ssw |= M68K_RW_040;
511         }
512 
513         env->mmu.ar = addr;
514 
515         cs->exception_index = EXCP_ACCESS;
516         cpu_loop_exit(cs);
517     }
518 }
519 #endif
520 
521 bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
522 {
523     M68kCPU *cpu = M68K_CPU(cs);
524     CPUM68KState *env = &cpu->env;
525 
526     if (interrupt_request & CPU_INTERRUPT_HARD
527         && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
528         /*
529          * Real hardware gets the interrupt vector via an IACK cycle
530          * at this point.  Current emulated hardware doesn't rely on
531          * this, so we provide/save the vector when the interrupt is
532          * first signalled.
533          */
534         cs->exception_index = env->pending_vector;
535         do_interrupt_m68k_hardirq(env);
536         return true;
537     }
538     return false;
539 }
540 
541 static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
542 {
543     CPUState *cs = env_cpu(env);
544 
545     cs->exception_index = tt;
546     cpu_loop_exit_restore(cs, raddr);
547 }
548 
549 static void raise_exception(CPUM68KState *env, int tt)
550 {
551     raise_exception_ra(env, tt, 0);
552 }
553 
554 void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
555 {
556     raise_exception(env, tt);
557 }
558 
559 void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
560 {
561     uint32_t num = env->dregs[destr];
562     uint32_t quot, rem;
563 
564     if (den == 0) {
565         raise_exception_ra(env, EXCP_DIV0, GETPC());
566     }
567     quot = num / den;
568     rem = num % den;
569 
570     env->cc_c = 0; /* always cleared, even if overflow */
571     if (quot > 0xffff) {
572         env->cc_v = -1;
573         /*
574          * real 68040 keeps N and unset Z on overflow,
575          * whereas documentation says "undefined"
576          */
577         env->cc_z = 1;
578         return;
579     }
580     env->dregs[destr] = deposit32(quot, 16, 16, rem);
581     env->cc_z = (int16_t)quot;
582     env->cc_n = (int16_t)quot;
583     env->cc_v = 0;
584 }
585 
586 void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
587 {
588     int32_t num = env->dregs[destr];
589     uint32_t quot, rem;
590 
591     if (den == 0) {
592         raise_exception_ra(env, EXCP_DIV0, GETPC());
593     }
594     quot = num / den;
595     rem = num % den;
596 
597     env->cc_c = 0; /* always cleared, even if overflow */
598     if (quot != (int16_t)quot) {
599         env->cc_v = -1;
600         /* nothing else is modified */
601         /*
602          * real 68040 keeps N and unset Z on overflow,
603          * whereas documentation says "undefined"
604          */
605         env->cc_z = 1;
606         return;
607     }
608     env->dregs[destr] = deposit32(quot, 16, 16, rem);
609     env->cc_z = (int16_t)quot;
610     env->cc_n = (int16_t)quot;
611     env->cc_v = 0;
612 }
613 
614 void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
615 {
616     uint32_t num = env->dregs[numr];
617     uint32_t quot, rem;
618 
619     if (den == 0) {
620         raise_exception_ra(env, EXCP_DIV0, GETPC());
621     }
622     quot = num / den;
623     rem = num % den;
624 
625     env->cc_c = 0;
626     env->cc_z = quot;
627     env->cc_n = quot;
628     env->cc_v = 0;
629 
630     if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
631         if (numr == regr) {
632             env->dregs[numr] = quot;
633         } else {
634             env->dregs[regr] = rem;
635         }
636     } else {
637         env->dregs[regr] = rem;
638         env->dregs[numr] = quot;
639     }
640 }
641 
642 void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
643 {
644     int32_t num = env->dregs[numr];
645     int32_t quot, rem;
646 
647     if (den == 0) {
648         raise_exception_ra(env, EXCP_DIV0, GETPC());
649     }
650     quot = num / den;
651     rem = num % den;
652 
653     env->cc_c = 0;
654     env->cc_z = quot;
655     env->cc_n = quot;
656     env->cc_v = 0;
657 
658     if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
659         if (numr == regr) {
660             env->dregs[numr] = quot;
661         } else {
662             env->dregs[regr] = rem;
663         }
664     } else {
665         env->dregs[regr] = rem;
666         env->dregs[numr] = quot;
667     }
668 }
669 
670 void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
671 {
672     uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
673     uint64_t quot;
674     uint32_t rem;
675 
676     if (den == 0) {
677         raise_exception_ra(env, EXCP_DIV0, GETPC());
678     }
679     quot = num / den;
680     rem = num % den;
681 
682     env->cc_c = 0; /* always cleared, even if overflow */
683     if (quot > 0xffffffffULL) {
684         env->cc_v = -1;
685         /*
686          * real 68040 keeps N and unset Z on overflow,
687          * whereas documentation says "undefined"
688          */
689         env->cc_z = 1;
690         return;
691     }
692     env->cc_z = quot;
693     env->cc_n = quot;
694     env->cc_v = 0;
695 
696     /*
697      * If Dq and Dr are the same, the quotient is returned.
698      * therefore we set Dq last.
699      */
700 
701     env->dregs[regr] = rem;
702     env->dregs[numr] = quot;
703 }
704 
705 void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
706 {
707     int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
708     int64_t quot;
709     int32_t rem;
710 
711     if (den == 0) {
712         raise_exception_ra(env, EXCP_DIV0, GETPC());
713     }
714     quot = num / den;
715     rem = num % den;
716 
717     env->cc_c = 0; /* always cleared, even if overflow */
718     if (quot != (int32_t)quot) {
719         env->cc_v = -1;
720         /*
721          * real 68040 keeps N and unset Z on overflow,
722          * whereas documentation says "undefined"
723          */
724         env->cc_z = 1;
725         return;
726     }
727     env->cc_z = quot;
728     env->cc_n = quot;
729     env->cc_v = 0;
730 
731     /*
732      * If Dq and Dr are the same, the quotient is returned.
733      * therefore we set Dq last.
734      */
735 
736     env->dregs[regr] = rem;
737     env->dregs[numr] = quot;
738 }
739 
740 /* We're executing in a serial context -- no need to be atomic.  */
741 void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
742 {
743     uint32_t Dc1 = extract32(regs, 9, 3);
744     uint32_t Dc2 = extract32(regs, 6, 3);
745     uint32_t Du1 = extract32(regs, 3, 3);
746     uint32_t Du2 = extract32(regs, 0, 3);
747     int16_t c1 = env->dregs[Dc1];
748     int16_t c2 = env->dregs[Dc2];
749     int16_t u1 = env->dregs[Du1];
750     int16_t u2 = env->dregs[Du2];
751     int16_t l1, l2;
752     uintptr_t ra = GETPC();
753 
754     l1 = cpu_lduw_data_ra(env, a1, ra);
755     l2 = cpu_lduw_data_ra(env, a2, ra);
756     if (l1 == c1 && l2 == c2) {
757         cpu_stw_data_ra(env, a1, u1, ra);
758         cpu_stw_data_ra(env, a2, u2, ra);
759     }
760 
761     if (c1 != l1) {
762         env->cc_n = l1;
763         env->cc_v = c1;
764     } else {
765         env->cc_n = l2;
766         env->cc_v = c2;
767     }
768     env->cc_op = CC_OP_CMPW;
769     env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
770     env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
771 }
772 
773 static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
774                      bool parallel)
775 {
776     uint32_t Dc1 = extract32(regs, 9, 3);
777     uint32_t Dc2 = extract32(regs, 6, 3);
778     uint32_t Du1 = extract32(regs, 3, 3);
779     uint32_t Du2 = extract32(regs, 0, 3);
780     uint32_t c1 = env->dregs[Dc1];
781     uint32_t c2 = env->dregs[Dc2];
782     uint32_t u1 = env->dregs[Du1];
783     uint32_t u2 = env->dregs[Du2];
784     uint32_t l1, l2;
785     uintptr_t ra = GETPC();
786 #if defined(CONFIG_ATOMIC64)
787     int mmu_idx = cpu_mmu_index(env, 0);
788     TCGMemOpIdx oi = make_memop_idx(MO_BEQ, mmu_idx);
789 #endif
790 
791     if (parallel) {
792         /* We're executing in a parallel context -- must be atomic.  */
793 #ifdef CONFIG_ATOMIC64
794         uint64_t c, u, l;
795         if ((a1 & 7) == 0 && a2 == a1 + 4) {
796             c = deposit64(c2, 32, 32, c1);
797             u = deposit64(u2, 32, 32, u1);
798             l = cpu_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
799             l1 = l >> 32;
800             l2 = l;
801         } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
802             c = deposit64(c1, 32, 32, c2);
803             u = deposit64(u1, 32, 32, u2);
804             l = cpu_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
805             l2 = l >> 32;
806             l1 = l;
807         } else
808 #endif
809         {
810             /* Tell the main loop we need to serialize this insn.  */
811             cpu_loop_exit_atomic(env_cpu(env), ra);
812         }
813     } else {
814         /* We're executing in a serial context -- no need to be atomic.  */
815         l1 = cpu_ldl_data_ra(env, a1, ra);
816         l2 = cpu_ldl_data_ra(env, a2, ra);
817         if (l1 == c1 && l2 == c2) {
818             cpu_stl_data_ra(env, a1, u1, ra);
819             cpu_stl_data_ra(env, a2, u2, ra);
820         }
821     }
822 
823     if (c1 != l1) {
824         env->cc_n = l1;
825         env->cc_v = c1;
826     } else {
827         env->cc_n = l2;
828         env->cc_v = c2;
829     }
830     env->cc_op = CC_OP_CMPL;
831     env->dregs[Dc1] = l1;
832     env->dregs[Dc2] = l2;
833 }
834 
835 void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
836 {
837     do_cas2l(env, regs, a1, a2, false);
838 }
839 
840 void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
841                             uint32_t a2)
842 {
843     do_cas2l(env, regs, a1, a2, true);
844 }
845 
846 struct bf_data {
847     uint32_t addr;
848     uint32_t bofs;
849     uint32_t blen;
850     uint32_t len;
851 };
852 
853 static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
854 {
855     int bofs, blen;
856 
857     /* Bound length; map 0 to 32.  */
858     len = ((len - 1) & 31) + 1;
859 
860     /* Note that ofs is signed.  */
861     addr += ofs / 8;
862     bofs = ofs % 8;
863     if (bofs < 0) {
864         bofs += 8;
865         addr -= 1;
866     }
867 
868     /*
869      * Compute the number of bytes required (minus one) to
870      * satisfy the bitfield.
871      */
872     blen = (bofs + len - 1) / 8;
873 
874     /*
875      * Canonicalize the bit offset for data loaded into a 64-bit big-endian
876      * word.  For the cases where BLEN is not a power of 2, adjust ADDR so
877      * that we can use the next power of two sized load without crossing a
878      * page boundary, unless the field itself crosses the boundary.
879      */
880     switch (blen) {
881     case 0:
882         bofs += 56;
883         break;
884     case 1:
885         bofs += 48;
886         break;
887     case 2:
888         if (addr & 1) {
889             bofs += 8;
890             addr -= 1;
891         }
892         /* fallthru */
893     case 3:
894         bofs += 32;
895         break;
896     case 4:
897         if (addr & 3) {
898             bofs += 8 * (addr & 3);
899             addr &= -4;
900         }
901         break;
902     default:
903         g_assert_not_reached();
904     }
905 
906     return (struct bf_data){
907         .addr = addr,
908         .bofs = bofs,
909         .blen = blen,
910         .len = len,
911     };
912 }
913 
914 static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
915                         uintptr_t ra)
916 {
917     switch (blen) {
918     case 0:
919         return cpu_ldub_data_ra(env, addr, ra);
920     case 1:
921         return cpu_lduw_data_ra(env, addr, ra);
922     case 2:
923     case 3:
924         return cpu_ldl_data_ra(env, addr, ra);
925     case 4:
926         return cpu_ldq_data_ra(env, addr, ra);
927     default:
928         g_assert_not_reached();
929     }
930 }
931 
932 static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
933                      uint64_t data, uintptr_t ra)
934 {
935     switch (blen) {
936     case 0:
937         cpu_stb_data_ra(env, addr, data, ra);
938         break;
939     case 1:
940         cpu_stw_data_ra(env, addr, data, ra);
941         break;
942     case 2:
943     case 3:
944         cpu_stl_data_ra(env, addr, data, ra);
945         break;
946     case 4:
947         cpu_stq_data_ra(env, addr, data, ra);
948         break;
949     default:
950         g_assert_not_reached();
951     }
952 }
953 
954 uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
955                             int32_t ofs, uint32_t len)
956 {
957     uintptr_t ra = GETPC();
958     struct bf_data d = bf_prep(addr, ofs, len);
959     uint64_t data = bf_load(env, d.addr, d.blen, ra);
960 
961     return (int64_t)(data << d.bofs) >> (64 - d.len);
962 }
963 
964 uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
965                             int32_t ofs, uint32_t len)
966 {
967     uintptr_t ra = GETPC();
968     struct bf_data d = bf_prep(addr, ofs, len);
969     uint64_t data = bf_load(env, d.addr, d.blen, ra);
970 
971     /*
972      * Put CC_N at the top of the high word; put the zero-extended value
973      * at the bottom of the low word.
974      */
975     data <<= d.bofs;
976     data >>= 64 - d.len;
977     data |= data << (64 - d.len);
978 
979     return data;
980 }
981 
982 uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
983                            int32_t ofs, uint32_t len)
984 {
985     uintptr_t ra = GETPC();
986     struct bf_data d = bf_prep(addr, ofs, len);
987     uint64_t data = bf_load(env, d.addr, d.blen, ra);
988     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
989 
990     data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
991 
992     bf_store(env, d.addr, d.blen, data, ra);
993 
994     /* The field at the top of the word is also CC_N for CC_OP_LOGIC.  */
995     return val << (32 - d.len);
996 }
997 
998 uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
999                            int32_t ofs, uint32_t len)
1000 {
1001     uintptr_t ra = GETPC();
1002     struct bf_data d = bf_prep(addr, ofs, len);
1003     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1004     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1005 
1006     bf_store(env, d.addr, d.blen, data ^ mask, ra);
1007 
1008     return ((data & mask) << d.bofs) >> 32;
1009 }
1010 
1011 uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
1012                            int32_t ofs, uint32_t len)
1013 {
1014     uintptr_t ra = GETPC();
1015     struct bf_data d = bf_prep(addr, ofs, len);
1016     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1017     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1018 
1019     bf_store(env, d.addr, d.blen, data & ~mask, ra);
1020 
1021     return ((data & mask) << d.bofs) >> 32;
1022 }
1023 
1024 uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
1025                            int32_t ofs, uint32_t len)
1026 {
1027     uintptr_t ra = GETPC();
1028     struct bf_data d = bf_prep(addr, ofs, len);
1029     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1030     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1031 
1032     bf_store(env, d.addr, d.blen, data | mask, ra);
1033 
1034     return ((data & mask) << d.bofs) >> 32;
1035 }
1036 
1037 uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
1038 {
1039     return (n ? clz32(n) : len) + ofs;
1040 }
1041 
1042 uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
1043                            int32_t ofs, uint32_t len)
1044 {
1045     uintptr_t ra = GETPC();
1046     struct bf_data d = bf_prep(addr, ofs, len);
1047     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1048     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1049     uint64_t n = (data & mask) << d.bofs;
1050     uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
1051 
1052     /*
1053      * Return FFO in the low word and N in the high word.
1054      * Note that because of MASK and the shift, the low word
1055      * is already zero.
1056      */
1057     return n | ffo;
1058 }
1059 
1060 void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
1061 {
1062     /*
1063      * From the specs:
1064      *   X: Not affected, C,V,Z: Undefined,
1065      *   N: Set if val < 0; cleared if val > ub, undefined otherwise
1066      * We implement here values found from a real MC68040:
1067      *   X,V,Z: Not affected
1068      *   N: Set if val < 0; cleared if val >= 0
1069      *   C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
1070      *      if 0 > ub: set if val > ub and val < 0, cleared otherwise
1071      */
1072     env->cc_n = val;
1073     env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0;
1074 
1075     if (val < 0 || val > ub) {
1076         CPUState *cs = env_cpu(env);
1077 
1078         /* Recover PC and CC_OP for the beginning of the insn.  */
1079         cpu_restore_state(cs, GETPC(), true);
1080 
1081         /* flags have been modified by gen_flush_flags() */
1082         env->cc_op = CC_OP_FLAGS;
1083         /* Adjust PC to end of the insn.  */
1084         env->pc += 2;
1085 
1086         cs->exception_index = EXCP_CHK;
1087         cpu_loop_exit(cs);
1088     }
1089 }
1090 
1091 void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
1092 {
1093     /*
1094      * From the specs:
1095      *   X: Not affected, N,V: Undefined,
1096      *   Z: Set if val is equal to lb or ub
1097      *   C: Set if val < lb or val > ub, cleared otherwise
1098      * We implement here values found from a real MC68040:
1099      *   X,N,V: Not affected
1100      *   Z: Set if val is equal to lb or ub
1101      *   C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
1102      *      if lb > ub: set if val > ub and val < lb, cleared otherwise
1103      */
1104     env->cc_z = val != lb && val != ub;
1105     env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb;
1106 
1107     if (env->cc_c) {
1108         CPUState *cs = env_cpu(env);
1109 
1110         /* Recover PC and CC_OP for the beginning of the insn.  */
1111         cpu_restore_state(cs, GETPC(), true);
1112 
1113         /* flags have been modified by gen_flush_flags() */
1114         env->cc_op = CC_OP_FLAGS;
1115         /* Adjust PC to end of the insn.  */
1116         env->pc += 4;
1117 
1118         cs->exception_index = EXCP_CHK;
1119         cpu_loop_exit(cs);
1120     }
1121 }
1122