xref: /openbmc/qemu/target/m68k/op_helper.c (revision 6016b7b46edb714a53a31536b30ead9c3aafaef7)
1 /*
2  *  M68K helper routines
3  *
4  *  Copyright (c) 2007 CodeSourcery
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "semihosting/semihost.h"
25 
26 #if !defined(CONFIG_USER_ONLY)
27 
28 static void cf_rte(CPUM68KState *env)
29 {
30     uint32_t sp;
31     uint32_t fmt;
32 
33     sp = env->aregs[7];
34     fmt = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
35     env->pc = cpu_ldl_mmuidx_ra(env, sp + 4, MMU_KERNEL_IDX, 0);
36     sp |= (fmt >> 28) & 3;
37     env->aregs[7] = sp + 8;
38 
39     cpu_m68k_set_sr(env, fmt);
40 }
41 
42 static void m68k_rte(CPUM68KState *env)
43 {
44     uint32_t sp;
45     uint16_t fmt;
46     uint16_t sr;
47 
48     sp = env->aregs[7];
49 throwaway:
50     sr = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
51     sp += 2;
52     env->pc = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
53     sp += 4;
54     if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
55         /*  all except 68000 */
56         fmt = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
57         sp += 2;
58         switch (fmt >> 12) {
59         case 0:
60             break;
61         case 1:
62             env->aregs[7] = sp;
63             cpu_m68k_set_sr(env, sr);
64             goto throwaway;
65         case 2:
66         case 3:
67             sp += 4;
68             break;
69         case 4:
70             sp += 8;
71             break;
72         case 7:
73             sp += 52;
74             break;
75         }
76     }
77     env->aregs[7] = sp;
78     cpu_m68k_set_sr(env, sr);
79 }
80 
81 static const char *m68k_exception_name(int index)
82 {
83     switch (index) {
84     case EXCP_ACCESS:
85         return "Access Fault";
86     case EXCP_ADDRESS:
87         return "Address Error";
88     case EXCP_ILLEGAL:
89         return "Illegal Instruction";
90     case EXCP_DIV0:
91         return "Divide by Zero";
92     case EXCP_CHK:
93         return "CHK/CHK2";
94     case EXCP_TRAPCC:
95         return "FTRAPcc, TRAPcc, TRAPV";
96     case EXCP_PRIVILEGE:
97         return "Privilege Violation";
98     case EXCP_TRACE:
99         return "Trace";
100     case EXCP_LINEA:
101         return "A-Line";
102     case EXCP_LINEF:
103         return "F-Line";
104     case EXCP_DEBEGBP: /* 68020/030 only */
105         return "Copro Protocol Violation";
106     case EXCP_FORMAT:
107         return "Format Error";
108     case EXCP_UNINITIALIZED:
109         return "Uninitialized Interrupt";
110     case EXCP_SPURIOUS:
111         return "Spurious Interrupt";
112     case EXCP_INT_LEVEL_1:
113         return "Level 1 Interrupt";
114     case EXCP_INT_LEVEL_1 + 1:
115         return "Level 2 Interrupt";
116     case EXCP_INT_LEVEL_1 + 2:
117         return "Level 3 Interrupt";
118     case EXCP_INT_LEVEL_1 + 3:
119         return "Level 4 Interrupt";
120     case EXCP_INT_LEVEL_1 + 4:
121         return "Level 5 Interrupt";
122     case EXCP_INT_LEVEL_1 + 5:
123         return "Level 6 Interrupt";
124     case EXCP_INT_LEVEL_1 + 6:
125         return "Level 7 Interrupt";
126     case EXCP_TRAP0:
127         return "TRAP #0";
128     case EXCP_TRAP0 + 1:
129         return "TRAP #1";
130     case EXCP_TRAP0 + 2:
131         return "TRAP #2";
132     case EXCP_TRAP0 + 3:
133         return "TRAP #3";
134     case EXCP_TRAP0 + 4:
135         return "TRAP #4";
136     case EXCP_TRAP0 + 5:
137         return "TRAP #5";
138     case EXCP_TRAP0 + 6:
139         return "TRAP #6";
140     case EXCP_TRAP0 + 7:
141         return "TRAP #7";
142     case EXCP_TRAP0 + 8:
143         return "TRAP #8";
144     case EXCP_TRAP0 + 9:
145         return "TRAP #9";
146     case EXCP_TRAP0 + 10:
147         return "TRAP #10";
148     case EXCP_TRAP0 + 11:
149         return "TRAP #11";
150     case EXCP_TRAP0 + 12:
151         return "TRAP #12";
152     case EXCP_TRAP0 + 13:
153         return "TRAP #13";
154     case EXCP_TRAP0 + 14:
155         return "TRAP #14";
156     case EXCP_TRAP0 + 15:
157         return "TRAP #15";
158     case EXCP_FP_BSUN:
159         return "FP Branch/Set on unordered condition";
160     case EXCP_FP_INEX:
161         return "FP Inexact Result";
162     case EXCP_FP_DZ:
163         return "FP Divide by Zero";
164     case EXCP_FP_UNFL:
165         return "FP Underflow";
166     case EXCP_FP_OPERR:
167         return "FP Operand Error";
168     case EXCP_FP_OVFL:
169         return "FP Overflow";
170     case EXCP_FP_SNAN:
171         return "FP Signaling NAN";
172     case EXCP_FP_UNIMP:
173         return "FP Unimplemented Data Type";
174     case EXCP_MMU_CONF: /* 68030/68851 only */
175         return "MMU Configuration Error";
176     case EXCP_MMU_ILLEGAL: /* 68851 only */
177         return "MMU Illegal Operation";
178     case EXCP_MMU_ACCESS: /* 68851 only */
179         return "MMU Access Level Violation";
180     case 64 ... 255:
181         return "User Defined Vector";
182     }
183     return "Unassigned";
184 }
185 
186 static void cf_interrupt_all(CPUM68KState *env, int is_hw)
187 {
188     CPUState *cs = env_cpu(env);
189     uint32_t sp;
190     uint32_t sr;
191     uint32_t fmt;
192     uint32_t retaddr;
193     uint32_t vector;
194 
195     fmt = 0;
196     retaddr = env->pc;
197 
198     if (!is_hw) {
199         switch (cs->exception_index) {
200         case EXCP_RTE:
201             /* Return from an exception.  */
202             cf_rte(env);
203             return;
204         case EXCP_HALT_INSN:
205             if (semihosting_enabled()
206                     && (env->sr & SR_S) != 0
207                     && (env->pc & 3) == 0
208                     && cpu_lduw_code(env, env->pc - 4) == 0x4e71
209                     && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
210                 env->pc += 4;
211                 do_m68k_semihosting(env, env->dregs[0]);
212                 return;
213             }
214             cs->halted = 1;
215             cs->exception_index = EXCP_HLT;
216             cpu_loop_exit(cs);
217             return;
218         }
219         if (cs->exception_index >= EXCP_TRAP0
220             && cs->exception_index <= EXCP_TRAP15) {
221             /* Move the PC after the trap instruction.  */
222             retaddr += 2;
223         }
224     }
225 
226     vector = cs->exception_index << 2;
227 
228     sr = env->sr | cpu_m68k_get_ccr(env);
229     if (qemu_loglevel_mask(CPU_LOG_INT)) {
230         static int count;
231         qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
232                  ++count, m68k_exception_name(cs->exception_index),
233                  vector, env->pc, env->aregs[7], sr);
234     }
235 
236     fmt |= 0x40000000;
237     fmt |= vector << 16;
238     fmt |= sr;
239 
240     env->sr |= SR_S;
241     if (is_hw) {
242         env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
243         env->sr &= ~SR_M;
244     }
245     m68k_switch_sp(env);
246     sp = env->aregs[7];
247     fmt |= (sp & 3) << 28;
248 
249     /* ??? This could cause MMU faults.  */
250     sp &= ~3;
251     sp -= 4;
252     cpu_stl_mmuidx_ra(env, sp, retaddr, MMU_KERNEL_IDX, 0);
253     sp -= 4;
254     cpu_stl_mmuidx_ra(env, sp, fmt, MMU_KERNEL_IDX, 0);
255     env->aregs[7] = sp;
256     /* Jump to vector.  */
257     env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
258 }
259 
260 static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp,
261                                   uint16_t format, uint16_t sr,
262                                   uint32_t addr, uint32_t retaddr)
263 {
264     if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
265         /*  all except 68000 */
266         CPUState *cs = env_cpu(env);
267         switch (format) {
268         case 4:
269             *sp -= 4;
270             cpu_stl_mmuidx_ra(env, *sp, env->pc, MMU_KERNEL_IDX, 0);
271             *sp -= 4;
272             cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
273             break;
274         case 3:
275         case 2:
276             *sp -= 4;
277             cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
278             break;
279         }
280         *sp -= 2;
281         cpu_stw_mmuidx_ra(env, *sp, (format << 12) + (cs->exception_index << 2),
282                           MMU_KERNEL_IDX, 0);
283     }
284     *sp -= 4;
285     cpu_stl_mmuidx_ra(env, *sp, retaddr, MMU_KERNEL_IDX, 0);
286     *sp -= 2;
287     cpu_stw_mmuidx_ra(env, *sp, sr, MMU_KERNEL_IDX, 0);
288 }
289 
290 static void m68k_interrupt_all(CPUM68KState *env, int is_hw)
291 {
292     CPUState *cs = env_cpu(env);
293     uint32_t sp;
294     uint32_t retaddr;
295     uint32_t vector;
296     uint16_t sr, oldsr;
297 
298     retaddr = env->pc;
299 
300     if (!is_hw) {
301         switch (cs->exception_index) {
302         case EXCP_RTE:
303             /* Return from an exception.  */
304             m68k_rte(env);
305             return;
306         case EXCP_TRAP0 ...  EXCP_TRAP15:
307             /* Move the PC after the trap instruction.  */
308             retaddr += 2;
309             break;
310         }
311     }
312 
313     vector = cs->exception_index << 2;
314 
315     sr = env->sr | cpu_m68k_get_ccr(env);
316     if (qemu_loglevel_mask(CPU_LOG_INT)) {
317         static int count;
318         qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
319                  ++count, m68k_exception_name(cs->exception_index),
320                  vector, env->pc, env->aregs[7], sr);
321     }
322 
323     /*
324      * MC68040UM/AD,  chapter 9.3.10
325      */
326 
327     /* "the processor first make an internal copy" */
328     oldsr = sr;
329     /* "set the mode to supervisor" */
330     sr |= SR_S;
331     /* "suppress tracing" */
332     sr &= ~SR_T;
333     /* "sets the processor interrupt mask" */
334     if (is_hw) {
335         sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
336     }
337     cpu_m68k_set_sr(env, sr);
338     sp = env->aregs[7];
339 
340     if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
341         sp &= ~1;
342     }
343 
344     if (cs->exception_index == EXCP_ACCESS) {
345         if (env->mmu.fault) {
346             cpu_abort(cs, "DOUBLE MMU FAULT\n");
347         }
348         env->mmu.fault = true;
349         /* push data 3 */
350         sp -= 4;
351         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
352         /* push data 2 */
353         sp -= 4;
354         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
355         /* push data 1 */
356         sp -= 4;
357         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
358         /* write back 1 / push data 0 */
359         sp -= 4;
360         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
361         /* write back 1 address */
362         sp -= 4;
363         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
364         /* write back 2 data */
365         sp -= 4;
366         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
367         /* write back 2 address */
368         sp -= 4;
369         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
370         /* write back 3 data */
371         sp -= 4;
372         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
373         /* write back 3 address */
374         sp -= 4;
375         cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
376         /* fault address */
377         sp -= 4;
378         cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
379         /* write back 1 status */
380         sp -= 2;
381         cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
382         /* write back 2 status */
383         sp -= 2;
384         cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
385         /* write back 3 status */
386         sp -= 2;
387         cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
388         /* special status word */
389         sp -= 2;
390         cpu_stw_mmuidx_ra(env, sp, env->mmu.ssw, MMU_KERNEL_IDX, 0);
391         /* effective address */
392         sp -= 4;
393         cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
394 
395         do_stack_frame(env, &sp, 7, oldsr, 0, retaddr);
396         env->mmu.fault = false;
397         if (qemu_loglevel_mask(CPU_LOG_INT)) {
398             qemu_log("            "
399                      "ssw:  %08x ea:   %08x sfc:  %d    dfc: %d\n",
400                      env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc);
401         }
402     } else if (cs->exception_index == EXCP_ADDRESS) {
403         do_stack_frame(env, &sp, 2, oldsr, 0, retaddr);
404     } else if (cs->exception_index == EXCP_ILLEGAL ||
405                cs->exception_index == EXCP_DIV0 ||
406                cs->exception_index == EXCP_CHK ||
407                cs->exception_index == EXCP_TRAPCC ||
408                cs->exception_index == EXCP_TRACE) {
409         /* FIXME: addr is not only env->pc */
410         do_stack_frame(env, &sp, 2, oldsr, env->pc, retaddr);
411     } else if (is_hw && oldsr & SR_M &&
412                cs->exception_index >= EXCP_SPURIOUS &&
413                cs->exception_index <= EXCP_INT_LEVEL_7) {
414         do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
415         oldsr = sr;
416         env->aregs[7] = sp;
417         cpu_m68k_set_sr(env, sr &= ~SR_M);
418         sp = env->aregs[7] & ~1;
419         do_stack_frame(env, &sp, 1, oldsr, 0, retaddr);
420     } else {
421         do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
422     }
423 
424     env->aregs[7] = sp;
425     /* Jump to vector.  */
426     env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
427 }
428 
429 static void do_interrupt_all(CPUM68KState *env, int is_hw)
430 {
431     if (m68k_feature(env, M68K_FEATURE_M68000)) {
432         m68k_interrupt_all(env, is_hw);
433         return;
434     }
435     cf_interrupt_all(env, is_hw);
436 }
437 
438 void m68k_cpu_do_interrupt(CPUState *cs)
439 {
440     M68kCPU *cpu = M68K_CPU(cs);
441     CPUM68KState *env = &cpu->env;
442 
443     do_interrupt_all(env, 0);
444 }
445 
446 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
447 {
448     do_interrupt_all(env, 1);
449 }
450 
451 void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
452                                  unsigned size, MMUAccessType access_type,
453                                  int mmu_idx, MemTxAttrs attrs,
454                                  MemTxResult response, uintptr_t retaddr)
455 {
456     M68kCPU *cpu = M68K_CPU(cs);
457     CPUM68KState *env = &cpu->env;
458 
459     cpu_restore_state(cs, retaddr, true);
460 
461     if (m68k_feature(env, M68K_FEATURE_M68040)) {
462         env->mmu.mmusr = 0;
463 
464         /*
465          * According to the MC68040 users manual the ATC bit of the SSW is
466          * used to distinguish between ATC faults and physical bus errors.
467          * In the case of a bus error e.g. during nubus read from an empty
468          * slot this bit should not be set
469          */
470         if (response != MEMTX_DECODE_ERROR) {
471             env->mmu.ssw |= M68K_ATC_040;
472         }
473 
474         /* FIXME: manage MMU table access error */
475         env->mmu.ssw &= ~M68K_TM_040;
476         if (env->sr & SR_S) { /* SUPERVISOR */
477             env->mmu.ssw |= M68K_TM_040_SUPER;
478         }
479         if (access_type == MMU_INST_FETCH) { /* instruction or data */
480             env->mmu.ssw |= M68K_TM_040_CODE;
481         } else {
482             env->mmu.ssw |= M68K_TM_040_DATA;
483         }
484         env->mmu.ssw &= ~M68K_BA_SIZE_MASK;
485         switch (size) {
486         case 1:
487             env->mmu.ssw |= M68K_BA_SIZE_BYTE;
488             break;
489         case 2:
490             env->mmu.ssw |= M68K_BA_SIZE_WORD;
491             break;
492         case 4:
493             env->mmu.ssw |= M68K_BA_SIZE_LONG;
494             break;
495         }
496 
497         if (access_type != MMU_DATA_STORE) {
498             env->mmu.ssw |= M68K_RW_040;
499         }
500 
501         env->mmu.ar = addr;
502 
503         cs->exception_index = EXCP_ACCESS;
504         cpu_loop_exit(cs);
505     }
506 }
507 
508 bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
509 {
510     M68kCPU *cpu = M68K_CPU(cs);
511     CPUM68KState *env = &cpu->env;
512 
513     if (interrupt_request & CPU_INTERRUPT_HARD
514         && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
515         /*
516          * Real hardware gets the interrupt vector via an IACK cycle
517          * at this point.  Current emulated hardware doesn't rely on
518          * this, so we provide/save the vector when the interrupt is
519          * first signalled.
520          */
521         cs->exception_index = env->pending_vector;
522         do_interrupt_m68k_hardirq(env);
523         return true;
524     }
525     return false;
526 }
527 
528 #endif /* !CONFIG_USER_ONLY */
529 
530 static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
531 {
532     CPUState *cs = env_cpu(env);
533 
534     cs->exception_index = tt;
535     cpu_loop_exit_restore(cs, raddr);
536 }
537 
538 static void raise_exception(CPUM68KState *env, int tt)
539 {
540     raise_exception_ra(env, tt, 0);
541 }
542 
543 void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
544 {
545     raise_exception(env, tt);
546 }
547 
548 void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
549 {
550     uint32_t num = env->dregs[destr];
551     uint32_t quot, rem;
552 
553     if (den == 0) {
554         raise_exception_ra(env, EXCP_DIV0, GETPC());
555     }
556     quot = num / den;
557     rem = num % den;
558 
559     env->cc_c = 0; /* always cleared, even if overflow */
560     if (quot > 0xffff) {
561         env->cc_v = -1;
562         /*
563          * real 68040 keeps N and unset Z on overflow,
564          * whereas documentation says "undefined"
565          */
566         env->cc_z = 1;
567         return;
568     }
569     env->dregs[destr] = deposit32(quot, 16, 16, rem);
570     env->cc_z = (int16_t)quot;
571     env->cc_n = (int16_t)quot;
572     env->cc_v = 0;
573 }
574 
575 void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
576 {
577     int32_t num = env->dregs[destr];
578     uint32_t quot, rem;
579 
580     if (den == 0) {
581         raise_exception_ra(env, EXCP_DIV0, GETPC());
582     }
583     quot = num / den;
584     rem = num % den;
585 
586     env->cc_c = 0; /* always cleared, even if overflow */
587     if (quot != (int16_t)quot) {
588         env->cc_v = -1;
589         /* nothing else is modified */
590         /*
591          * real 68040 keeps N and unset Z on overflow,
592          * whereas documentation says "undefined"
593          */
594         env->cc_z = 1;
595         return;
596     }
597     env->dregs[destr] = deposit32(quot, 16, 16, rem);
598     env->cc_z = (int16_t)quot;
599     env->cc_n = (int16_t)quot;
600     env->cc_v = 0;
601 }
602 
603 void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
604 {
605     uint32_t num = env->dregs[numr];
606     uint32_t quot, rem;
607 
608     if (den == 0) {
609         raise_exception_ra(env, EXCP_DIV0, GETPC());
610     }
611     quot = num / den;
612     rem = num % den;
613 
614     env->cc_c = 0;
615     env->cc_z = quot;
616     env->cc_n = quot;
617     env->cc_v = 0;
618 
619     if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
620         if (numr == regr) {
621             env->dregs[numr] = quot;
622         } else {
623             env->dregs[regr] = rem;
624         }
625     } else {
626         env->dregs[regr] = rem;
627         env->dregs[numr] = quot;
628     }
629 }
630 
631 void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
632 {
633     int32_t num = env->dregs[numr];
634     int32_t quot, rem;
635 
636     if (den == 0) {
637         raise_exception_ra(env, EXCP_DIV0, GETPC());
638     }
639     quot = num / den;
640     rem = num % den;
641 
642     env->cc_c = 0;
643     env->cc_z = quot;
644     env->cc_n = quot;
645     env->cc_v = 0;
646 
647     if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
648         if (numr == regr) {
649             env->dregs[numr] = quot;
650         } else {
651             env->dregs[regr] = rem;
652         }
653     } else {
654         env->dregs[regr] = rem;
655         env->dregs[numr] = quot;
656     }
657 }
658 
659 void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
660 {
661     uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
662     uint64_t quot;
663     uint32_t rem;
664 
665     if (den == 0) {
666         raise_exception_ra(env, EXCP_DIV0, GETPC());
667     }
668     quot = num / den;
669     rem = num % den;
670 
671     env->cc_c = 0; /* always cleared, even if overflow */
672     if (quot > 0xffffffffULL) {
673         env->cc_v = -1;
674         /*
675          * real 68040 keeps N and unset Z on overflow,
676          * whereas documentation says "undefined"
677          */
678         env->cc_z = 1;
679         return;
680     }
681     env->cc_z = quot;
682     env->cc_n = quot;
683     env->cc_v = 0;
684 
685     /*
686      * If Dq and Dr are the same, the quotient is returned.
687      * therefore we set Dq last.
688      */
689 
690     env->dregs[regr] = rem;
691     env->dregs[numr] = quot;
692 }
693 
694 void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
695 {
696     int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
697     int64_t quot;
698     int32_t rem;
699 
700     if (den == 0) {
701         raise_exception_ra(env, EXCP_DIV0, GETPC());
702     }
703     quot = num / den;
704     rem = num % den;
705 
706     env->cc_c = 0; /* always cleared, even if overflow */
707     if (quot != (int32_t)quot) {
708         env->cc_v = -1;
709         /*
710          * real 68040 keeps N and unset Z on overflow,
711          * whereas documentation says "undefined"
712          */
713         env->cc_z = 1;
714         return;
715     }
716     env->cc_z = quot;
717     env->cc_n = quot;
718     env->cc_v = 0;
719 
720     /*
721      * If Dq and Dr are the same, the quotient is returned.
722      * therefore we set Dq last.
723      */
724 
725     env->dregs[regr] = rem;
726     env->dregs[numr] = quot;
727 }
728 
729 /* We're executing in a serial context -- no need to be atomic.  */
730 void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
731 {
732     uint32_t Dc1 = extract32(regs, 9, 3);
733     uint32_t Dc2 = extract32(regs, 6, 3);
734     uint32_t Du1 = extract32(regs, 3, 3);
735     uint32_t Du2 = extract32(regs, 0, 3);
736     int16_t c1 = env->dregs[Dc1];
737     int16_t c2 = env->dregs[Dc2];
738     int16_t u1 = env->dregs[Du1];
739     int16_t u2 = env->dregs[Du2];
740     int16_t l1, l2;
741     uintptr_t ra = GETPC();
742 
743     l1 = cpu_lduw_data_ra(env, a1, ra);
744     l2 = cpu_lduw_data_ra(env, a2, ra);
745     if (l1 == c1 && l2 == c2) {
746         cpu_stw_data_ra(env, a1, u1, ra);
747         cpu_stw_data_ra(env, a2, u2, ra);
748     }
749 
750     if (c1 != l1) {
751         env->cc_n = l1;
752         env->cc_v = c1;
753     } else {
754         env->cc_n = l2;
755         env->cc_v = c2;
756     }
757     env->cc_op = CC_OP_CMPW;
758     env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
759     env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
760 }
761 
762 static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
763                      bool parallel)
764 {
765     uint32_t Dc1 = extract32(regs, 9, 3);
766     uint32_t Dc2 = extract32(regs, 6, 3);
767     uint32_t Du1 = extract32(regs, 3, 3);
768     uint32_t Du2 = extract32(regs, 0, 3);
769     uint32_t c1 = env->dregs[Dc1];
770     uint32_t c2 = env->dregs[Dc2];
771     uint32_t u1 = env->dregs[Du1];
772     uint32_t u2 = env->dregs[Du2];
773     uint32_t l1, l2;
774     uintptr_t ra = GETPC();
775 #if defined(CONFIG_ATOMIC64)
776     int mmu_idx = cpu_mmu_index(env, 0);
777     MemOpIdx oi = make_memop_idx(MO_BEQ, mmu_idx);
778 #endif
779 
780     if (parallel) {
781         /* We're executing in a parallel context -- must be atomic.  */
782 #ifdef CONFIG_ATOMIC64
783         uint64_t c, u, l;
784         if ((a1 & 7) == 0 && a2 == a1 + 4) {
785             c = deposit64(c2, 32, 32, c1);
786             u = deposit64(u2, 32, 32, u1);
787             l = cpu_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
788             l1 = l >> 32;
789             l2 = l;
790         } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
791             c = deposit64(c1, 32, 32, c2);
792             u = deposit64(u1, 32, 32, u2);
793             l = cpu_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
794             l2 = l >> 32;
795             l1 = l;
796         } else
797 #endif
798         {
799             /* Tell the main loop we need to serialize this insn.  */
800             cpu_loop_exit_atomic(env_cpu(env), ra);
801         }
802     } else {
803         /* We're executing in a serial context -- no need to be atomic.  */
804         l1 = cpu_ldl_data_ra(env, a1, ra);
805         l2 = cpu_ldl_data_ra(env, a2, ra);
806         if (l1 == c1 && l2 == c2) {
807             cpu_stl_data_ra(env, a1, u1, ra);
808             cpu_stl_data_ra(env, a2, u2, ra);
809         }
810     }
811 
812     if (c1 != l1) {
813         env->cc_n = l1;
814         env->cc_v = c1;
815     } else {
816         env->cc_n = l2;
817         env->cc_v = c2;
818     }
819     env->cc_op = CC_OP_CMPL;
820     env->dregs[Dc1] = l1;
821     env->dregs[Dc2] = l2;
822 }
823 
824 void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
825 {
826     do_cas2l(env, regs, a1, a2, false);
827 }
828 
829 void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
830                             uint32_t a2)
831 {
832     do_cas2l(env, regs, a1, a2, true);
833 }
834 
835 struct bf_data {
836     uint32_t addr;
837     uint32_t bofs;
838     uint32_t blen;
839     uint32_t len;
840 };
841 
842 static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
843 {
844     int bofs, blen;
845 
846     /* Bound length; map 0 to 32.  */
847     len = ((len - 1) & 31) + 1;
848 
849     /* Note that ofs is signed.  */
850     addr += ofs / 8;
851     bofs = ofs % 8;
852     if (bofs < 0) {
853         bofs += 8;
854         addr -= 1;
855     }
856 
857     /*
858      * Compute the number of bytes required (minus one) to
859      * satisfy the bitfield.
860      */
861     blen = (bofs + len - 1) / 8;
862 
863     /*
864      * Canonicalize the bit offset for data loaded into a 64-bit big-endian
865      * word.  For the cases where BLEN is not a power of 2, adjust ADDR so
866      * that we can use the next power of two sized load without crossing a
867      * page boundary, unless the field itself crosses the boundary.
868      */
869     switch (blen) {
870     case 0:
871         bofs += 56;
872         break;
873     case 1:
874         bofs += 48;
875         break;
876     case 2:
877         if (addr & 1) {
878             bofs += 8;
879             addr -= 1;
880         }
881         /* fallthru */
882     case 3:
883         bofs += 32;
884         break;
885     case 4:
886         if (addr & 3) {
887             bofs += 8 * (addr & 3);
888             addr &= -4;
889         }
890         break;
891     default:
892         g_assert_not_reached();
893     }
894 
895     return (struct bf_data){
896         .addr = addr,
897         .bofs = bofs,
898         .blen = blen,
899         .len = len,
900     };
901 }
902 
903 static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
904                         uintptr_t ra)
905 {
906     switch (blen) {
907     case 0:
908         return cpu_ldub_data_ra(env, addr, ra);
909     case 1:
910         return cpu_lduw_data_ra(env, addr, ra);
911     case 2:
912     case 3:
913         return cpu_ldl_data_ra(env, addr, ra);
914     case 4:
915         return cpu_ldq_data_ra(env, addr, ra);
916     default:
917         g_assert_not_reached();
918     }
919 }
920 
921 static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
922                      uint64_t data, uintptr_t ra)
923 {
924     switch (blen) {
925     case 0:
926         cpu_stb_data_ra(env, addr, data, ra);
927         break;
928     case 1:
929         cpu_stw_data_ra(env, addr, data, ra);
930         break;
931     case 2:
932     case 3:
933         cpu_stl_data_ra(env, addr, data, ra);
934         break;
935     case 4:
936         cpu_stq_data_ra(env, addr, data, ra);
937         break;
938     default:
939         g_assert_not_reached();
940     }
941 }
942 
943 uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
944                             int32_t ofs, uint32_t len)
945 {
946     uintptr_t ra = GETPC();
947     struct bf_data d = bf_prep(addr, ofs, len);
948     uint64_t data = bf_load(env, d.addr, d.blen, ra);
949 
950     return (int64_t)(data << d.bofs) >> (64 - d.len);
951 }
952 
953 uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
954                             int32_t ofs, uint32_t len)
955 {
956     uintptr_t ra = GETPC();
957     struct bf_data d = bf_prep(addr, ofs, len);
958     uint64_t data = bf_load(env, d.addr, d.blen, ra);
959 
960     /*
961      * Put CC_N at the top of the high word; put the zero-extended value
962      * at the bottom of the low word.
963      */
964     data <<= d.bofs;
965     data >>= 64 - d.len;
966     data |= data << (64 - d.len);
967 
968     return data;
969 }
970 
971 uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
972                            int32_t ofs, uint32_t len)
973 {
974     uintptr_t ra = GETPC();
975     struct bf_data d = bf_prep(addr, ofs, len);
976     uint64_t data = bf_load(env, d.addr, d.blen, ra);
977     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
978 
979     data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
980 
981     bf_store(env, d.addr, d.blen, data, ra);
982 
983     /* The field at the top of the word is also CC_N for CC_OP_LOGIC.  */
984     return val << (32 - d.len);
985 }
986 
987 uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
988                            int32_t ofs, uint32_t len)
989 {
990     uintptr_t ra = GETPC();
991     struct bf_data d = bf_prep(addr, ofs, len);
992     uint64_t data = bf_load(env, d.addr, d.blen, ra);
993     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
994 
995     bf_store(env, d.addr, d.blen, data ^ mask, ra);
996 
997     return ((data & mask) << d.bofs) >> 32;
998 }
999 
1000 uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
1001                            int32_t ofs, uint32_t len)
1002 {
1003     uintptr_t ra = GETPC();
1004     struct bf_data d = bf_prep(addr, ofs, len);
1005     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1006     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1007 
1008     bf_store(env, d.addr, d.blen, data & ~mask, ra);
1009 
1010     return ((data & mask) << d.bofs) >> 32;
1011 }
1012 
1013 uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
1014                            int32_t ofs, uint32_t len)
1015 {
1016     uintptr_t ra = GETPC();
1017     struct bf_data d = bf_prep(addr, ofs, len);
1018     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1019     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1020 
1021     bf_store(env, d.addr, d.blen, data | mask, ra);
1022 
1023     return ((data & mask) << d.bofs) >> 32;
1024 }
1025 
1026 uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
1027 {
1028     return (n ? clz32(n) : len) + ofs;
1029 }
1030 
1031 uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
1032                            int32_t ofs, uint32_t len)
1033 {
1034     uintptr_t ra = GETPC();
1035     struct bf_data d = bf_prep(addr, ofs, len);
1036     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1037     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1038     uint64_t n = (data & mask) << d.bofs;
1039     uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
1040 
1041     /*
1042      * Return FFO in the low word and N in the high word.
1043      * Note that because of MASK and the shift, the low word
1044      * is already zero.
1045      */
1046     return n | ffo;
1047 }
1048 
1049 void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
1050 {
1051     /*
1052      * From the specs:
1053      *   X: Not affected, C,V,Z: Undefined,
1054      *   N: Set if val < 0; cleared if val > ub, undefined otherwise
1055      * We implement here values found from a real MC68040:
1056      *   X,V,Z: Not affected
1057      *   N: Set if val < 0; cleared if val >= 0
1058      *   C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
1059      *      if 0 > ub: set if val > ub and val < 0, cleared otherwise
1060      */
1061     env->cc_n = val;
1062     env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0;
1063 
1064     if (val < 0 || val > ub) {
1065         CPUState *cs = env_cpu(env);
1066 
1067         /* Recover PC and CC_OP for the beginning of the insn.  */
1068         cpu_restore_state(cs, GETPC(), true);
1069 
1070         /* flags have been modified by gen_flush_flags() */
1071         env->cc_op = CC_OP_FLAGS;
1072         /* Adjust PC to end of the insn.  */
1073         env->pc += 2;
1074 
1075         cs->exception_index = EXCP_CHK;
1076         cpu_loop_exit(cs);
1077     }
1078 }
1079 
1080 void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
1081 {
1082     /*
1083      * From the specs:
1084      *   X: Not affected, N,V: Undefined,
1085      *   Z: Set if val is equal to lb or ub
1086      *   C: Set if val < lb or val > ub, cleared otherwise
1087      * We implement here values found from a real MC68040:
1088      *   X,N,V: Not affected
1089      *   Z: Set if val is equal to lb or ub
1090      *   C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
1091      *      if lb > ub: set if val > ub and val < lb, cleared otherwise
1092      */
1093     env->cc_z = val != lb && val != ub;
1094     env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb;
1095 
1096     if (env->cc_c) {
1097         CPUState *cs = env_cpu(env);
1098 
1099         /* Recover PC and CC_OP for the beginning of the insn.  */
1100         cpu_restore_state(cs, GETPC(), true);
1101 
1102         /* flags have been modified by gen_flush_flags() */
1103         env->cc_op = CC_OP_FLAGS;
1104         /* Adjust PC to end of the insn.  */
1105         env->pc += 4;
1106 
1107         cs->exception_index = EXCP_CHK;
1108         cpu_loop_exit(cs);
1109     }
1110 }
1111