1 /* 2 * M68K helper routines 3 * 4 * Copyright (c) 2007 CodeSourcery 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu/log.h" 21 #include "cpu.h" 22 #include "exec/helper-proto.h" 23 #include "exec/exec-all.h" 24 #include "exec/cpu_ldst.h" 25 #include "semihosting/semihost.h" 26 27 #if !defined(CONFIG_USER_ONLY) 28 29 static void cf_rte(CPUM68KState *env) 30 { 31 uint32_t sp; 32 uint32_t fmt; 33 34 sp = env->aregs[7]; 35 fmt = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0); 36 env->pc = cpu_ldl_mmuidx_ra(env, sp + 4, MMU_KERNEL_IDX, 0); 37 sp |= (fmt >> 28) & 3; 38 env->aregs[7] = sp + 8; 39 40 cpu_m68k_set_sr(env, fmt); 41 } 42 43 static void m68k_rte(CPUM68KState *env) 44 { 45 uint32_t sp; 46 uint16_t fmt; 47 uint16_t sr; 48 49 sp = env->aregs[7]; 50 throwaway: 51 sr = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0); 52 sp += 2; 53 env->pc = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0); 54 sp += 4; 55 if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) { 56 /* all except 68000 */ 57 fmt = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0); 58 sp += 2; 59 switch (fmt >> 12) { 60 case 0: 61 break; 62 case 1: 63 env->aregs[7] = sp; 64 cpu_m68k_set_sr(env, sr); 65 goto throwaway; 66 case 2: 67 case 3: 68 sp += 4; 69 break; 70 case 4: 71 sp += 8; 72 break; 73 case 7: 74 sp += 52; 75 break; 76 } 77 } 78 env->aregs[7] = sp; 79 cpu_m68k_set_sr(env, sr); 80 } 81 82 static const char *m68k_exception_name(int index) 83 { 84 switch (index) { 85 case EXCP_ACCESS: 86 return "Access Fault"; 87 case EXCP_ADDRESS: 88 return "Address Error"; 89 case EXCP_ILLEGAL: 90 return "Illegal Instruction"; 91 case EXCP_DIV0: 92 return "Divide by Zero"; 93 case EXCP_CHK: 94 return "CHK/CHK2"; 95 case EXCP_TRAPCC: 96 return "FTRAPcc, TRAPcc, TRAPV"; 97 case EXCP_PRIVILEGE: 98 return "Privilege Violation"; 99 case EXCP_TRACE: 100 return "Trace"; 101 case EXCP_LINEA: 102 return "A-Line"; 103 case EXCP_LINEF: 104 return "F-Line"; 105 case EXCP_DEBEGBP: /* 68020/030 only */ 106 return "Copro Protocol Violation"; 107 case EXCP_FORMAT: 108 return "Format Error"; 109 case EXCP_UNINITIALIZED: 110 return "Uninitialized Interrupt"; 111 case EXCP_SPURIOUS: 112 return "Spurious Interrupt"; 113 case EXCP_INT_LEVEL_1: 114 return "Level 1 Interrupt"; 115 case EXCP_INT_LEVEL_1 + 1: 116 return "Level 2 Interrupt"; 117 case EXCP_INT_LEVEL_1 + 2: 118 return "Level 3 Interrupt"; 119 case EXCP_INT_LEVEL_1 + 3: 120 return "Level 4 Interrupt"; 121 case EXCP_INT_LEVEL_1 + 4: 122 return "Level 5 Interrupt"; 123 case EXCP_INT_LEVEL_1 + 5: 124 return "Level 6 Interrupt"; 125 case EXCP_INT_LEVEL_1 + 6: 126 return "Level 7 Interrupt"; 127 case EXCP_TRAP0: 128 return "TRAP #0"; 129 case EXCP_TRAP0 + 1: 130 return "TRAP #1"; 131 case EXCP_TRAP0 + 2: 132 return "TRAP #2"; 133 case EXCP_TRAP0 + 3: 134 return "TRAP #3"; 135 case EXCP_TRAP0 + 4: 136 return "TRAP #4"; 137 case EXCP_TRAP0 + 5: 138 return "TRAP #5"; 139 case EXCP_TRAP0 + 6: 140 return "TRAP #6"; 141 case EXCP_TRAP0 + 7: 142 return "TRAP #7"; 143 case EXCP_TRAP0 + 8: 144 return "TRAP #8"; 145 case EXCP_TRAP0 + 9: 146 return "TRAP #9"; 147 case EXCP_TRAP0 + 10: 148 return "TRAP #10"; 149 case EXCP_TRAP0 + 11: 150 return "TRAP #11"; 151 case EXCP_TRAP0 + 12: 152 return "TRAP #12"; 153 case EXCP_TRAP0 + 13: 154 return "TRAP #13"; 155 case EXCP_TRAP0 + 14: 156 return "TRAP #14"; 157 case EXCP_TRAP0 + 15: 158 return "TRAP #15"; 159 case EXCP_FP_BSUN: 160 return "FP Branch/Set on unordered condition"; 161 case EXCP_FP_INEX: 162 return "FP Inexact Result"; 163 case EXCP_FP_DZ: 164 return "FP Divide by Zero"; 165 case EXCP_FP_UNFL: 166 return "FP Underflow"; 167 case EXCP_FP_OPERR: 168 return "FP Operand Error"; 169 case EXCP_FP_OVFL: 170 return "FP Overflow"; 171 case EXCP_FP_SNAN: 172 return "FP Signaling NAN"; 173 case EXCP_FP_UNIMP: 174 return "FP Unimplemented Data Type"; 175 case EXCP_MMU_CONF: /* 68030/68851 only */ 176 return "MMU Configuration Error"; 177 case EXCP_MMU_ILLEGAL: /* 68851 only */ 178 return "MMU Illegal Operation"; 179 case EXCP_MMU_ACCESS: /* 68851 only */ 180 return "MMU Access Level Violation"; 181 case 64 ... 255: 182 return "User Defined Vector"; 183 } 184 return "Unassigned"; 185 } 186 187 static void cf_interrupt_all(CPUM68KState *env, int is_hw) 188 { 189 CPUState *cs = env_cpu(env); 190 uint32_t sp; 191 uint32_t sr; 192 uint32_t fmt; 193 uint32_t retaddr; 194 uint32_t vector; 195 196 fmt = 0; 197 retaddr = env->pc; 198 199 if (!is_hw) { 200 switch (cs->exception_index) { 201 case EXCP_RTE: 202 /* Return from an exception. */ 203 cf_rte(env); 204 return; 205 case EXCP_HALT_INSN: 206 if (semihosting_enabled((env->sr & SR_S) == 0) 207 && (env->pc & 3) == 0 208 && cpu_lduw_code(env, env->pc - 4) == 0x4e71 209 && cpu_ldl_code(env, env->pc) == 0x4e7bf000) { 210 env->pc += 4; 211 do_m68k_semihosting(env, env->dregs[0]); 212 return; 213 } 214 cs->halted = 1; 215 cs->exception_index = EXCP_HLT; 216 cpu_loop_exit(cs); 217 return; 218 } 219 } 220 221 vector = cs->exception_index << 2; 222 223 sr = env->sr | cpu_m68k_get_ccr(env); 224 if (qemu_loglevel_mask(CPU_LOG_INT)) { 225 static int count; 226 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n", 227 ++count, m68k_exception_name(cs->exception_index), 228 vector, env->pc, env->aregs[7], sr); 229 } 230 231 fmt |= 0x40000000; 232 fmt |= vector << 16; 233 fmt |= sr; 234 235 env->sr |= SR_S; 236 if (is_hw) { 237 env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT); 238 env->sr &= ~SR_M; 239 } 240 m68k_switch_sp(env); 241 sp = env->aregs[7]; 242 fmt |= (sp & 3) << 28; 243 244 /* ??? This could cause MMU faults. */ 245 sp &= ~3; 246 sp -= 4; 247 cpu_stl_mmuidx_ra(env, sp, retaddr, MMU_KERNEL_IDX, 0); 248 sp -= 4; 249 cpu_stl_mmuidx_ra(env, sp, fmt, MMU_KERNEL_IDX, 0); 250 env->aregs[7] = sp; 251 /* Jump to vector. */ 252 env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0); 253 } 254 255 static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp, 256 uint16_t format, uint16_t sr, 257 uint32_t addr, uint32_t retaddr) 258 { 259 if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) { 260 /* all except 68000 */ 261 CPUState *cs = env_cpu(env); 262 switch (format) { 263 case 4: 264 *sp -= 4; 265 cpu_stl_mmuidx_ra(env, *sp, env->pc, MMU_KERNEL_IDX, 0); 266 *sp -= 4; 267 cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0); 268 break; 269 case 3: 270 case 2: 271 *sp -= 4; 272 cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0); 273 break; 274 } 275 *sp -= 2; 276 cpu_stw_mmuidx_ra(env, *sp, (format << 12) + (cs->exception_index << 2), 277 MMU_KERNEL_IDX, 0); 278 } 279 *sp -= 4; 280 cpu_stl_mmuidx_ra(env, *sp, retaddr, MMU_KERNEL_IDX, 0); 281 *sp -= 2; 282 cpu_stw_mmuidx_ra(env, *sp, sr, MMU_KERNEL_IDX, 0); 283 } 284 285 static void m68k_interrupt_all(CPUM68KState *env, int is_hw) 286 { 287 CPUState *cs = env_cpu(env); 288 uint32_t sp; 289 uint32_t vector; 290 uint16_t sr, oldsr; 291 292 if (!is_hw) { 293 switch (cs->exception_index) { 294 case EXCP_RTE: 295 /* Return from an exception. */ 296 m68k_rte(env); 297 return; 298 } 299 } 300 301 vector = cs->exception_index << 2; 302 303 sr = env->sr | cpu_m68k_get_ccr(env); 304 if (qemu_loglevel_mask(CPU_LOG_INT)) { 305 static int count; 306 qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n", 307 ++count, m68k_exception_name(cs->exception_index), 308 vector, env->pc, env->aregs[7], sr); 309 } 310 311 /* 312 * MC68040UM/AD, chapter 9.3.10 313 */ 314 315 /* "the processor first make an internal copy" */ 316 oldsr = sr; 317 /* "set the mode to supervisor" */ 318 sr |= SR_S; 319 /* "suppress tracing" */ 320 sr &= ~SR_T; 321 /* "sets the processor interrupt mask" */ 322 if (is_hw) { 323 sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT); 324 } 325 cpu_m68k_set_sr(env, sr); 326 sp = env->aregs[7]; 327 328 if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) { 329 sp &= ~1; 330 } 331 332 switch (cs->exception_index) { 333 case EXCP_ACCESS: 334 if (env->mmu.fault) { 335 cpu_abort(cs, "DOUBLE MMU FAULT\n"); 336 } 337 env->mmu.fault = true; 338 /* push data 3 */ 339 sp -= 4; 340 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 341 /* push data 2 */ 342 sp -= 4; 343 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 344 /* push data 1 */ 345 sp -= 4; 346 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 347 /* write back 1 / push data 0 */ 348 sp -= 4; 349 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 350 /* write back 1 address */ 351 sp -= 4; 352 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 353 /* write back 2 data */ 354 sp -= 4; 355 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 356 /* write back 2 address */ 357 sp -= 4; 358 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 359 /* write back 3 data */ 360 sp -= 4; 361 cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 362 /* write back 3 address */ 363 sp -= 4; 364 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0); 365 /* fault address */ 366 sp -= 4; 367 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0); 368 /* write back 1 status */ 369 sp -= 2; 370 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 371 /* write back 2 status */ 372 sp -= 2; 373 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 374 /* write back 3 status */ 375 sp -= 2; 376 cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0); 377 /* special status word */ 378 sp -= 2; 379 cpu_stw_mmuidx_ra(env, sp, env->mmu.ssw, MMU_KERNEL_IDX, 0); 380 /* effective address */ 381 sp -= 4; 382 cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0); 383 384 do_stack_frame(env, &sp, 7, oldsr, 0, env->pc); 385 env->mmu.fault = false; 386 if (qemu_loglevel_mask(CPU_LOG_INT)) { 387 qemu_log(" " 388 "ssw: %08x ea: %08x sfc: %d dfc: %d\n", 389 env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc); 390 } 391 break; 392 393 case EXCP_ILLEGAL: 394 do_stack_frame(env, &sp, 0, oldsr, 0, env->pc); 395 break; 396 397 case EXCP_ADDRESS: 398 do_stack_frame(env, &sp, 2, oldsr, 0, env->pc); 399 break; 400 401 case EXCP_CHK: 402 case EXCP_DIV0: 403 case EXCP_TRACE: 404 case EXCP_TRAPCC: 405 do_stack_frame(env, &sp, 2, oldsr, env->mmu.ar, env->pc); 406 break; 407 408 case EXCP_SPURIOUS ... EXCP_INT_LEVEL_7: 409 if (is_hw && (oldsr & SR_M)) { 410 do_stack_frame(env, &sp, 0, oldsr, 0, env->pc); 411 oldsr = sr; 412 env->aregs[7] = sp; 413 cpu_m68k_set_sr(env, sr & ~SR_M); 414 sp = env->aregs[7]; 415 if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) { 416 sp &= ~1; 417 } 418 do_stack_frame(env, &sp, 1, oldsr, 0, env->pc); 419 break; 420 } 421 /* fall through */ 422 423 default: 424 do_stack_frame(env, &sp, 0, oldsr, 0, env->pc); 425 break; 426 } 427 428 env->aregs[7] = sp; 429 /* Jump to vector. */ 430 env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0); 431 } 432 433 static void do_interrupt_all(CPUM68KState *env, int is_hw) 434 { 435 if (m68k_feature(env, M68K_FEATURE_M68K)) { 436 m68k_interrupt_all(env, is_hw); 437 return; 438 } 439 cf_interrupt_all(env, is_hw); 440 } 441 442 void m68k_cpu_do_interrupt(CPUState *cs) 443 { 444 M68kCPU *cpu = M68K_CPU(cs); 445 CPUM68KState *env = &cpu->env; 446 447 do_interrupt_all(env, 0); 448 } 449 450 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env) 451 { 452 do_interrupt_all(env, 1); 453 } 454 455 void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr, 456 unsigned size, MMUAccessType access_type, 457 int mmu_idx, MemTxAttrs attrs, 458 MemTxResult response, uintptr_t retaddr) 459 { 460 M68kCPU *cpu = M68K_CPU(cs); 461 CPUM68KState *env = &cpu->env; 462 463 cpu_restore_state(cs, retaddr, true); 464 465 if (m68k_feature(env, M68K_FEATURE_M68040)) { 466 env->mmu.mmusr = 0; 467 468 /* 469 * According to the MC68040 users manual the ATC bit of the SSW is 470 * used to distinguish between ATC faults and physical bus errors. 471 * In the case of a bus error e.g. during nubus read from an empty 472 * slot this bit should not be set 473 */ 474 if (response != MEMTX_DECODE_ERROR) { 475 env->mmu.ssw |= M68K_ATC_040; 476 } 477 478 /* FIXME: manage MMU table access error */ 479 env->mmu.ssw &= ~M68K_TM_040; 480 if (env->sr & SR_S) { /* SUPERVISOR */ 481 env->mmu.ssw |= M68K_TM_040_SUPER; 482 } 483 if (access_type == MMU_INST_FETCH) { /* instruction or data */ 484 env->mmu.ssw |= M68K_TM_040_CODE; 485 } else { 486 env->mmu.ssw |= M68K_TM_040_DATA; 487 } 488 env->mmu.ssw &= ~M68K_BA_SIZE_MASK; 489 switch (size) { 490 case 1: 491 env->mmu.ssw |= M68K_BA_SIZE_BYTE; 492 break; 493 case 2: 494 env->mmu.ssw |= M68K_BA_SIZE_WORD; 495 break; 496 case 4: 497 env->mmu.ssw |= M68K_BA_SIZE_LONG; 498 break; 499 } 500 501 if (access_type != MMU_DATA_STORE) { 502 env->mmu.ssw |= M68K_RW_040; 503 } 504 505 env->mmu.ar = addr; 506 507 cs->exception_index = EXCP_ACCESS; 508 cpu_loop_exit(cs); 509 } 510 } 511 512 bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 513 { 514 M68kCPU *cpu = M68K_CPU(cs); 515 CPUM68KState *env = &cpu->env; 516 517 if (interrupt_request & CPU_INTERRUPT_HARD 518 && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) { 519 /* 520 * Real hardware gets the interrupt vector via an IACK cycle 521 * at this point. Current emulated hardware doesn't rely on 522 * this, so we provide/save the vector when the interrupt is 523 * first signalled. 524 */ 525 cs->exception_index = env->pending_vector; 526 do_interrupt_m68k_hardirq(env); 527 return true; 528 } 529 return false; 530 } 531 532 #endif /* !CONFIG_USER_ONLY */ 533 534 G_NORETURN static void 535 raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr) 536 { 537 CPUState *cs = env_cpu(env); 538 539 cs->exception_index = tt; 540 cpu_loop_exit_restore(cs, raddr); 541 } 542 543 G_NORETURN static void raise_exception(CPUM68KState *env, int tt) 544 { 545 raise_exception_ra(env, tt, 0); 546 } 547 548 void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt) 549 { 550 raise_exception(env, tt); 551 } 552 553 G_NORETURN static void 554 raise_exception_format2(CPUM68KState *env, int tt, int ilen, uintptr_t raddr) 555 { 556 CPUState *cs = env_cpu(env); 557 558 cs->exception_index = tt; 559 560 /* Recover PC and CC_OP for the beginning of the insn. */ 561 cpu_restore_state(cs, raddr, true); 562 563 /* Flags are current in env->cc_*, or are undefined. */ 564 env->cc_op = CC_OP_FLAGS; 565 566 /* 567 * Remember original pc in mmu.ar, for the Format 2 stack frame. 568 * Adjust PC to end of the insn. 569 */ 570 env->mmu.ar = env->pc; 571 env->pc += ilen; 572 573 cpu_loop_exit(cs); 574 } 575 576 void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den, int ilen) 577 { 578 uint32_t num = env->dregs[destr]; 579 uint32_t quot, rem; 580 581 env->cc_c = 0; /* always cleared, even if div0 */ 582 583 if (den == 0) { 584 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC()); 585 } 586 quot = num / den; 587 rem = num % den; 588 589 if (quot > 0xffff) { 590 env->cc_v = -1; 591 /* 592 * real 68040 keeps N and unset Z on overflow, 593 * whereas documentation says "undefined" 594 */ 595 env->cc_z = 1; 596 return; 597 } 598 env->dregs[destr] = deposit32(quot, 16, 16, rem); 599 env->cc_z = (int16_t)quot; 600 env->cc_n = (int16_t)quot; 601 env->cc_v = 0; 602 } 603 604 void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den, int ilen) 605 { 606 int32_t num = env->dregs[destr]; 607 uint32_t quot, rem; 608 609 env->cc_c = 0; /* always cleared, even if overflow/div0 */ 610 611 if (den == 0) { 612 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC()); 613 } 614 quot = num / den; 615 rem = num % den; 616 617 if (quot != (int16_t)quot) { 618 env->cc_v = -1; 619 /* nothing else is modified */ 620 /* 621 * real 68040 keeps N and unset Z on overflow, 622 * whereas documentation says "undefined" 623 */ 624 env->cc_z = 1; 625 return; 626 } 627 env->dregs[destr] = deposit32(quot, 16, 16, rem); 628 env->cc_z = (int16_t)quot; 629 env->cc_n = (int16_t)quot; 630 env->cc_v = 0; 631 } 632 633 void HELPER(divul)(CPUM68KState *env, int numr, int regr, 634 uint32_t den, int ilen) 635 { 636 uint32_t num = env->dregs[numr]; 637 uint32_t quot, rem; 638 639 env->cc_c = 0; /* always cleared, even if div0 */ 640 641 if (den == 0) { 642 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC()); 643 } 644 quot = num / den; 645 rem = num % den; 646 647 env->cc_z = quot; 648 env->cc_n = quot; 649 env->cc_v = 0; 650 651 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { 652 if (numr == regr) { 653 env->dregs[numr] = quot; 654 } else { 655 env->dregs[regr] = rem; 656 } 657 } else { 658 env->dregs[regr] = rem; 659 env->dregs[numr] = quot; 660 } 661 } 662 663 void HELPER(divsl)(CPUM68KState *env, int numr, int regr, 664 int32_t den, int ilen) 665 { 666 int32_t num = env->dregs[numr]; 667 int32_t quot, rem; 668 669 env->cc_c = 0; /* always cleared, even if overflow/div0 */ 670 671 if (den == 0) { 672 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC()); 673 } 674 quot = num / den; 675 rem = num % den; 676 677 env->cc_z = quot; 678 env->cc_n = quot; 679 env->cc_v = 0; 680 681 if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) { 682 if (numr == regr) { 683 env->dregs[numr] = quot; 684 } else { 685 env->dregs[regr] = rem; 686 } 687 } else { 688 env->dregs[regr] = rem; 689 env->dregs[numr] = quot; 690 } 691 } 692 693 void HELPER(divull)(CPUM68KState *env, int numr, int regr, 694 uint32_t den, int ilen) 695 { 696 uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); 697 uint64_t quot; 698 uint32_t rem; 699 700 env->cc_c = 0; /* always cleared, even if overflow/div0 */ 701 702 if (den == 0) { 703 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC()); 704 } 705 quot = num / den; 706 rem = num % den; 707 708 if (quot > 0xffffffffULL) { 709 env->cc_v = -1; 710 /* 711 * real 68040 keeps N and unset Z on overflow, 712 * whereas documentation says "undefined" 713 */ 714 env->cc_z = 1; 715 return; 716 } 717 env->cc_z = quot; 718 env->cc_n = quot; 719 env->cc_v = 0; 720 721 /* 722 * If Dq and Dr are the same, the quotient is returned. 723 * therefore we set Dq last. 724 */ 725 726 env->dregs[regr] = rem; 727 env->dregs[numr] = quot; 728 } 729 730 void HELPER(divsll)(CPUM68KState *env, int numr, int regr, 731 int32_t den, int ilen) 732 { 733 int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]); 734 int64_t quot; 735 int32_t rem; 736 737 env->cc_c = 0; /* always cleared, even if overflow/div0 */ 738 739 if (den == 0) { 740 raise_exception_format2(env, EXCP_DIV0, ilen, GETPC()); 741 } 742 quot = num / den; 743 rem = num % den; 744 745 if (quot != (int32_t)quot) { 746 env->cc_v = -1; 747 /* 748 * real 68040 keeps N and unset Z on overflow, 749 * whereas documentation says "undefined" 750 */ 751 env->cc_z = 1; 752 return; 753 } 754 env->cc_z = quot; 755 env->cc_n = quot; 756 env->cc_v = 0; 757 758 /* 759 * If Dq and Dr are the same, the quotient is returned. 760 * therefore we set Dq last. 761 */ 762 763 env->dregs[regr] = rem; 764 env->dregs[numr] = quot; 765 } 766 767 /* We're executing in a serial context -- no need to be atomic. */ 768 void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) 769 { 770 uint32_t Dc1 = extract32(regs, 9, 3); 771 uint32_t Dc2 = extract32(regs, 6, 3); 772 uint32_t Du1 = extract32(regs, 3, 3); 773 uint32_t Du2 = extract32(regs, 0, 3); 774 int16_t c1 = env->dregs[Dc1]; 775 int16_t c2 = env->dregs[Dc2]; 776 int16_t u1 = env->dregs[Du1]; 777 int16_t u2 = env->dregs[Du2]; 778 int16_t l1, l2; 779 uintptr_t ra = GETPC(); 780 781 l1 = cpu_lduw_data_ra(env, a1, ra); 782 l2 = cpu_lduw_data_ra(env, a2, ra); 783 if (l1 == c1 && l2 == c2) { 784 cpu_stw_data_ra(env, a1, u1, ra); 785 cpu_stw_data_ra(env, a2, u2, ra); 786 } 787 788 if (c1 != l1) { 789 env->cc_n = l1; 790 env->cc_v = c1; 791 } else { 792 env->cc_n = l2; 793 env->cc_v = c2; 794 } 795 env->cc_op = CC_OP_CMPW; 796 env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1); 797 env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2); 798 } 799 800 static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2, 801 bool parallel) 802 { 803 uint32_t Dc1 = extract32(regs, 9, 3); 804 uint32_t Dc2 = extract32(regs, 6, 3); 805 uint32_t Du1 = extract32(regs, 3, 3); 806 uint32_t Du2 = extract32(regs, 0, 3); 807 uint32_t c1 = env->dregs[Dc1]; 808 uint32_t c2 = env->dregs[Dc2]; 809 uint32_t u1 = env->dregs[Du1]; 810 uint32_t u2 = env->dregs[Du2]; 811 uint32_t l1, l2; 812 uintptr_t ra = GETPC(); 813 #if defined(CONFIG_ATOMIC64) 814 int mmu_idx = cpu_mmu_index(env, 0); 815 MemOpIdx oi = make_memop_idx(MO_BEUQ, mmu_idx); 816 #endif 817 818 if (parallel) { 819 /* We're executing in a parallel context -- must be atomic. */ 820 #ifdef CONFIG_ATOMIC64 821 uint64_t c, u, l; 822 if ((a1 & 7) == 0 && a2 == a1 + 4) { 823 c = deposit64(c2, 32, 32, c1); 824 u = deposit64(u2, 32, 32, u1); 825 l = cpu_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra); 826 l1 = l >> 32; 827 l2 = l; 828 } else if ((a2 & 7) == 0 && a1 == a2 + 4) { 829 c = deposit64(c1, 32, 32, c2); 830 u = deposit64(u1, 32, 32, u2); 831 l = cpu_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra); 832 l2 = l >> 32; 833 l1 = l; 834 } else 835 #endif 836 { 837 /* Tell the main loop we need to serialize this insn. */ 838 cpu_loop_exit_atomic(env_cpu(env), ra); 839 } 840 } else { 841 /* We're executing in a serial context -- no need to be atomic. */ 842 l1 = cpu_ldl_data_ra(env, a1, ra); 843 l2 = cpu_ldl_data_ra(env, a2, ra); 844 if (l1 == c1 && l2 == c2) { 845 cpu_stl_data_ra(env, a1, u1, ra); 846 cpu_stl_data_ra(env, a2, u2, ra); 847 } 848 } 849 850 if (c1 != l1) { 851 env->cc_n = l1; 852 env->cc_v = c1; 853 } else { 854 env->cc_n = l2; 855 env->cc_v = c2; 856 } 857 env->cc_op = CC_OP_CMPL; 858 env->dregs[Dc1] = l1; 859 env->dregs[Dc2] = l2; 860 } 861 862 void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2) 863 { 864 do_cas2l(env, regs, a1, a2, false); 865 } 866 867 void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1, 868 uint32_t a2) 869 { 870 do_cas2l(env, regs, a1, a2, true); 871 } 872 873 struct bf_data { 874 uint32_t addr; 875 uint32_t bofs; 876 uint32_t blen; 877 uint32_t len; 878 }; 879 880 static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len) 881 { 882 int bofs, blen; 883 884 /* Bound length; map 0 to 32. */ 885 len = ((len - 1) & 31) + 1; 886 887 /* Note that ofs is signed. */ 888 addr += ofs / 8; 889 bofs = ofs % 8; 890 if (bofs < 0) { 891 bofs += 8; 892 addr -= 1; 893 } 894 895 /* 896 * Compute the number of bytes required (minus one) to 897 * satisfy the bitfield. 898 */ 899 blen = (bofs + len - 1) / 8; 900 901 /* 902 * Canonicalize the bit offset for data loaded into a 64-bit big-endian 903 * word. For the cases where BLEN is not a power of 2, adjust ADDR so 904 * that we can use the next power of two sized load without crossing a 905 * page boundary, unless the field itself crosses the boundary. 906 */ 907 switch (blen) { 908 case 0: 909 bofs += 56; 910 break; 911 case 1: 912 bofs += 48; 913 break; 914 case 2: 915 if (addr & 1) { 916 bofs += 8; 917 addr -= 1; 918 } 919 /* fallthru */ 920 case 3: 921 bofs += 32; 922 break; 923 case 4: 924 if (addr & 3) { 925 bofs += 8 * (addr & 3); 926 addr &= -4; 927 } 928 break; 929 default: 930 g_assert_not_reached(); 931 } 932 933 return (struct bf_data){ 934 .addr = addr, 935 .bofs = bofs, 936 .blen = blen, 937 .len = len, 938 }; 939 } 940 941 static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen, 942 uintptr_t ra) 943 { 944 switch (blen) { 945 case 0: 946 return cpu_ldub_data_ra(env, addr, ra); 947 case 1: 948 return cpu_lduw_data_ra(env, addr, ra); 949 case 2: 950 case 3: 951 return cpu_ldl_data_ra(env, addr, ra); 952 case 4: 953 return cpu_ldq_data_ra(env, addr, ra); 954 default: 955 g_assert_not_reached(); 956 } 957 } 958 959 static void bf_store(CPUM68KState *env, uint32_t addr, int blen, 960 uint64_t data, uintptr_t ra) 961 { 962 switch (blen) { 963 case 0: 964 cpu_stb_data_ra(env, addr, data, ra); 965 break; 966 case 1: 967 cpu_stw_data_ra(env, addr, data, ra); 968 break; 969 case 2: 970 case 3: 971 cpu_stl_data_ra(env, addr, data, ra); 972 break; 973 case 4: 974 cpu_stq_data_ra(env, addr, data, ra); 975 break; 976 default: 977 g_assert_not_reached(); 978 } 979 } 980 981 uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr, 982 int32_t ofs, uint32_t len) 983 { 984 uintptr_t ra = GETPC(); 985 struct bf_data d = bf_prep(addr, ofs, len); 986 uint64_t data = bf_load(env, d.addr, d.blen, ra); 987 988 return (int64_t)(data << d.bofs) >> (64 - d.len); 989 } 990 991 uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr, 992 int32_t ofs, uint32_t len) 993 { 994 uintptr_t ra = GETPC(); 995 struct bf_data d = bf_prep(addr, ofs, len); 996 uint64_t data = bf_load(env, d.addr, d.blen, ra); 997 998 /* 999 * Put CC_N at the top of the high word; put the zero-extended value 1000 * at the bottom of the low word. 1001 */ 1002 data <<= d.bofs; 1003 data >>= 64 - d.len; 1004 data |= data << (64 - d.len); 1005 1006 return data; 1007 } 1008 1009 uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val, 1010 int32_t ofs, uint32_t len) 1011 { 1012 uintptr_t ra = GETPC(); 1013 struct bf_data d = bf_prep(addr, ofs, len); 1014 uint64_t data = bf_load(env, d.addr, d.blen, ra); 1015 uint64_t mask = -1ull << (64 - d.len) >> d.bofs; 1016 1017 data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs); 1018 1019 bf_store(env, d.addr, d.blen, data, ra); 1020 1021 /* The field at the top of the word is also CC_N for CC_OP_LOGIC. */ 1022 return val << (32 - d.len); 1023 } 1024 1025 uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr, 1026 int32_t ofs, uint32_t len) 1027 { 1028 uintptr_t ra = GETPC(); 1029 struct bf_data d = bf_prep(addr, ofs, len); 1030 uint64_t data = bf_load(env, d.addr, d.blen, ra); 1031 uint64_t mask = -1ull << (64 - d.len) >> d.bofs; 1032 1033 bf_store(env, d.addr, d.blen, data ^ mask, ra); 1034 1035 return ((data & mask) << d.bofs) >> 32; 1036 } 1037 1038 uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr, 1039 int32_t ofs, uint32_t len) 1040 { 1041 uintptr_t ra = GETPC(); 1042 struct bf_data d = bf_prep(addr, ofs, len); 1043 uint64_t data = bf_load(env, d.addr, d.blen, ra); 1044 uint64_t mask = -1ull << (64 - d.len) >> d.bofs; 1045 1046 bf_store(env, d.addr, d.blen, data & ~mask, ra); 1047 1048 return ((data & mask) << d.bofs) >> 32; 1049 } 1050 1051 uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr, 1052 int32_t ofs, uint32_t len) 1053 { 1054 uintptr_t ra = GETPC(); 1055 struct bf_data d = bf_prep(addr, ofs, len); 1056 uint64_t data = bf_load(env, d.addr, d.blen, ra); 1057 uint64_t mask = -1ull << (64 - d.len) >> d.bofs; 1058 1059 bf_store(env, d.addr, d.blen, data | mask, ra); 1060 1061 return ((data & mask) << d.bofs) >> 32; 1062 } 1063 1064 uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len) 1065 { 1066 return (n ? clz32(n) : len) + ofs; 1067 } 1068 1069 uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr, 1070 int32_t ofs, uint32_t len) 1071 { 1072 uintptr_t ra = GETPC(); 1073 struct bf_data d = bf_prep(addr, ofs, len); 1074 uint64_t data = bf_load(env, d.addr, d.blen, ra); 1075 uint64_t mask = -1ull << (64 - d.len) >> d.bofs; 1076 uint64_t n = (data & mask) << d.bofs; 1077 uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len); 1078 1079 /* 1080 * Return FFO in the low word and N in the high word. 1081 * Note that because of MASK and the shift, the low word 1082 * is already zero. 1083 */ 1084 return n | ffo; 1085 } 1086 1087 void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub) 1088 { 1089 /* 1090 * From the specs: 1091 * X: Not affected, C,V,Z: Undefined, 1092 * N: Set if val < 0; cleared if val > ub, undefined otherwise 1093 * We implement here values found from a real MC68040: 1094 * X,V,Z: Not affected 1095 * N: Set if val < 0; cleared if val >= 0 1096 * C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise 1097 * if 0 > ub: set if val > ub and val < 0, cleared otherwise 1098 */ 1099 env->cc_n = val; 1100 env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0; 1101 1102 if (val < 0 || val > ub) { 1103 raise_exception_format2(env, EXCP_CHK, 2, GETPC()); 1104 } 1105 } 1106 1107 void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub) 1108 { 1109 /* 1110 * From the specs: 1111 * X: Not affected, N,V: Undefined, 1112 * Z: Set if val is equal to lb or ub 1113 * C: Set if val < lb or val > ub, cleared otherwise 1114 * We implement here values found from a real MC68040: 1115 * X,N,V: Not affected 1116 * Z: Set if val is equal to lb or ub 1117 * C: if lb <= ub: set if val < lb or val > ub, cleared otherwise 1118 * if lb > ub: set if val > ub and val < lb, cleared otherwise 1119 */ 1120 env->cc_z = val != lb && val != ub; 1121 env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb; 1122 1123 if (env->cc_c) { 1124 raise_exception_format2(env, EXCP_CHK, 4, GETPC()); 1125 } 1126 } 1127