xref: /openbmc/qemu/target/m68k/op_helper.c (revision 500eb21c)
1 /*
2  *  M68K helper routines
3  *
4  *  Copyright (c) 2007 CodeSourcery
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "semihosting/semihost.h"
25 #include "tcg/tcg.h"
26 
27 #if !defined(CONFIG_USER_ONLY)
28 
29 static void cf_rte(CPUM68KState *env)
30 {
31     uint32_t sp;
32     uint32_t fmt;
33 
34     sp = env->aregs[7];
35     fmt = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
36     env->pc = cpu_ldl_mmuidx_ra(env, sp + 4, MMU_KERNEL_IDX, 0);
37     sp |= (fmt >> 28) & 3;
38     env->aregs[7] = sp + 8;
39 
40     cpu_m68k_set_sr(env, fmt);
41 }
42 
43 static void m68k_rte(CPUM68KState *env)
44 {
45     uint32_t sp;
46     uint16_t fmt;
47     uint16_t sr;
48 
49     sp = env->aregs[7];
50 throwaway:
51     sr = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
52     sp += 2;
53     env->pc = cpu_ldl_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
54     sp += 4;
55     if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
56         /*  all except 68000 */
57         fmt = cpu_lduw_mmuidx_ra(env, sp, MMU_KERNEL_IDX, 0);
58         sp += 2;
59         switch (fmt >> 12) {
60         case 0:
61             break;
62         case 1:
63             env->aregs[7] = sp;
64             cpu_m68k_set_sr(env, sr);
65             goto throwaway;
66         case 2:
67         case 3:
68             sp += 4;
69             break;
70         case 4:
71             sp += 8;
72             break;
73         case 7:
74             sp += 52;
75             break;
76         }
77     }
78     env->aregs[7] = sp;
79     cpu_m68k_set_sr(env, sr);
80 }
81 
82 static const char *m68k_exception_name(int index)
83 {
84     switch (index) {
85     case EXCP_ACCESS:
86         return "Access Fault";
87     case EXCP_ADDRESS:
88         return "Address Error";
89     case EXCP_ILLEGAL:
90         return "Illegal Instruction";
91     case EXCP_DIV0:
92         return "Divide by Zero";
93     case EXCP_CHK:
94         return "CHK/CHK2";
95     case EXCP_TRAPCC:
96         return "FTRAPcc, TRAPcc, TRAPV";
97     case EXCP_PRIVILEGE:
98         return "Privilege Violation";
99     case EXCP_TRACE:
100         return "Trace";
101     case EXCP_LINEA:
102         return "A-Line";
103     case EXCP_LINEF:
104         return "F-Line";
105     case EXCP_DEBEGBP: /* 68020/030 only */
106         return "Copro Protocol Violation";
107     case EXCP_FORMAT:
108         return "Format Error";
109     case EXCP_UNINITIALIZED:
110         return "Uninitialized Interrupt";
111     case EXCP_SPURIOUS:
112         return "Spurious Interrupt";
113     case EXCP_INT_LEVEL_1:
114         return "Level 1 Interrupt";
115     case EXCP_INT_LEVEL_1 + 1:
116         return "Level 2 Interrupt";
117     case EXCP_INT_LEVEL_1 + 2:
118         return "Level 3 Interrupt";
119     case EXCP_INT_LEVEL_1 + 3:
120         return "Level 4 Interrupt";
121     case EXCP_INT_LEVEL_1 + 4:
122         return "Level 5 Interrupt";
123     case EXCP_INT_LEVEL_1 + 5:
124         return "Level 6 Interrupt";
125     case EXCP_INT_LEVEL_1 + 6:
126         return "Level 7 Interrupt";
127     case EXCP_TRAP0:
128         return "TRAP #0";
129     case EXCP_TRAP0 + 1:
130         return "TRAP #1";
131     case EXCP_TRAP0 + 2:
132         return "TRAP #2";
133     case EXCP_TRAP0 + 3:
134         return "TRAP #3";
135     case EXCP_TRAP0 + 4:
136         return "TRAP #4";
137     case EXCP_TRAP0 + 5:
138         return "TRAP #5";
139     case EXCP_TRAP0 + 6:
140         return "TRAP #6";
141     case EXCP_TRAP0 + 7:
142         return "TRAP #7";
143     case EXCP_TRAP0 + 8:
144         return "TRAP #8";
145     case EXCP_TRAP0 + 9:
146         return "TRAP #9";
147     case EXCP_TRAP0 + 10:
148         return "TRAP #10";
149     case EXCP_TRAP0 + 11:
150         return "TRAP #11";
151     case EXCP_TRAP0 + 12:
152         return "TRAP #12";
153     case EXCP_TRAP0 + 13:
154         return "TRAP #13";
155     case EXCP_TRAP0 + 14:
156         return "TRAP #14";
157     case EXCP_TRAP0 + 15:
158         return "TRAP #15";
159     case EXCP_FP_BSUN:
160         return "FP Branch/Set on unordered condition";
161     case EXCP_FP_INEX:
162         return "FP Inexact Result";
163     case EXCP_FP_DZ:
164         return "FP Divide by Zero";
165     case EXCP_FP_UNFL:
166         return "FP Underflow";
167     case EXCP_FP_OPERR:
168         return "FP Operand Error";
169     case EXCP_FP_OVFL:
170         return "FP Overflow";
171     case EXCP_FP_SNAN:
172         return "FP Signaling NAN";
173     case EXCP_FP_UNIMP:
174         return "FP Unimplemented Data Type";
175     case EXCP_MMU_CONF: /* 68030/68851 only */
176         return "MMU Configuration Error";
177     case EXCP_MMU_ILLEGAL: /* 68851 only */
178         return "MMU Illegal Operation";
179     case EXCP_MMU_ACCESS: /* 68851 only */
180         return "MMU Access Level Violation";
181     case 64 ... 255:
182         return "User Defined Vector";
183     }
184     return "Unassigned";
185 }
186 
187 static void cf_interrupt_all(CPUM68KState *env, int is_hw)
188 {
189     CPUState *cs = env_cpu(env);
190     uint32_t sp;
191     uint32_t sr;
192     uint32_t fmt;
193     uint32_t retaddr;
194     uint32_t vector;
195 
196     fmt = 0;
197     retaddr = env->pc;
198 
199     if (!is_hw) {
200         switch (cs->exception_index) {
201         case EXCP_RTE:
202             /* Return from an exception.  */
203             cf_rte(env);
204             return;
205         case EXCP_HALT_INSN:
206             if (semihosting_enabled()
207                     && (env->sr & SR_S) != 0
208                     && (env->pc & 3) == 0
209                     && cpu_lduw_code(env, env->pc - 4) == 0x4e71
210                     && cpu_ldl_code(env, env->pc) == 0x4e7bf000) {
211                 env->pc += 4;
212                 do_m68k_semihosting(env, env->dregs[0]);
213                 return;
214             }
215             cs->halted = 1;
216             cs->exception_index = EXCP_HLT;
217             cpu_loop_exit(cs);
218             return;
219         }
220         if (cs->exception_index >= EXCP_TRAP0
221             && cs->exception_index <= EXCP_TRAP15) {
222             /* Move the PC after the trap instruction.  */
223             retaddr += 2;
224         }
225     }
226 
227     vector = cs->exception_index << 2;
228 
229     sr = env->sr | cpu_m68k_get_ccr(env);
230     if (qemu_loglevel_mask(CPU_LOG_INT)) {
231         static int count;
232         qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
233                  ++count, m68k_exception_name(cs->exception_index),
234                  vector, env->pc, env->aregs[7], sr);
235     }
236 
237     fmt |= 0x40000000;
238     fmt |= vector << 16;
239     fmt |= sr;
240 
241     env->sr |= SR_S;
242     if (is_hw) {
243         env->sr = (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
244         env->sr &= ~SR_M;
245     }
246     m68k_switch_sp(env);
247     sp = env->aregs[7];
248     fmt |= (sp & 3) << 28;
249 
250     /* ??? This could cause MMU faults.  */
251     sp &= ~3;
252     sp -= 4;
253     cpu_stl_mmuidx_ra(env, sp, retaddr, MMU_KERNEL_IDX, 0);
254     sp -= 4;
255     cpu_stl_mmuidx_ra(env, sp, fmt, MMU_KERNEL_IDX, 0);
256     env->aregs[7] = sp;
257     /* Jump to vector.  */
258     env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
259 }
260 
261 static inline void do_stack_frame(CPUM68KState *env, uint32_t *sp,
262                                   uint16_t format, uint16_t sr,
263                                   uint32_t addr, uint32_t retaddr)
264 {
265     if (m68k_feature(env, M68K_FEATURE_QUAD_MULDIV)) {
266         /*  all except 68000 */
267         CPUState *cs = env_cpu(env);
268         switch (format) {
269         case 4:
270             *sp -= 4;
271             cpu_stl_mmuidx_ra(env, *sp, env->pc, MMU_KERNEL_IDX, 0);
272             *sp -= 4;
273             cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
274             break;
275         case 3:
276         case 2:
277             *sp -= 4;
278             cpu_stl_mmuidx_ra(env, *sp, addr, MMU_KERNEL_IDX, 0);
279             break;
280         }
281         *sp -= 2;
282         cpu_stw_mmuidx_ra(env, *sp, (format << 12) + (cs->exception_index << 2),
283                           MMU_KERNEL_IDX, 0);
284     }
285     *sp -= 4;
286     cpu_stl_mmuidx_ra(env, *sp, retaddr, MMU_KERNEL_IDX, 0);
287     *sp -= 2;
288     cpu_stw_mmuidx_ra(env, *sp, sr, MMU_KERNEL_IDX, 0);
289 }
290 
291 static void m68k_interrupt_all(CPUM68KState *env, int is_hw)
292 {
293     CPUState *cs = env_cpu(env);
294     uint32_t sp;
295     uint32_t retaddr;
296     uint32_t vector;
297     uint16_t sr, oldsr;
298 
299     retaddr = env->pc;
300 
301     if (!is_hw) {
302         switch (cs->exception_index) {
303         case EXCP_RTE:
304             /* Return from an exception.  */
305             m68k_rte(env);
306             return;
307         case EXCP_TRAP0 ...  EXCP_TRAP15:
308             /* Move the PC after the trap instruction.  */
309             retaddr += 2;
310             break;
311         }
312     }
313 
314     vector = cs->exception_index << 2;
315 
316     sr = env->sr | cpu_m68k_get_ccr(env);
317     if (qemu_loglevel_mask(CPU_LOG_INT)) {
318         static int count;
319         qemu_log("INT %6d: %s(%#x) pc=%08x sp=%08x sr=%04x\n",
320                  ++count, m68k_exception_name(cs->exception_index),
321                  vector, env->pc, env->aregs[7], sr);
322     }
323 
324     /*
325      * MC68040UM/AD,  chapter 9.3.10
326      */
327 
328     /* "the processor first make an internal copy" */
329     oldsr = sr;
330     /* "set the mode to supervisor" */
331     sr |= SR_S;
332     /* "suppress tracing" */
333     sr &= ~SR_T;
334     /* "sets the processor interrupt mask" */
335     if (is_hw) {
336         sr |= (env->sr & ~SR_I) | (env->pending_level << SR_I_SHIFT);
337     }
338     cpu_m68k_set_sr(env, sr);
339     sp = env->aregs[7];
340 
341     if (!m68k_feature(env, M68K_FEATURE_UNALIGNED_DATA)) {
342         sp &= ~1;
343     }
344 
345     if (cs->exception_index == EXCP_ACCESS) {
346         if (env->mmu.fault) {
347             cpu_abort(cs, "DOUBLE MMU FAULT\n");
348         }
349         env->mmu.fault = true;
350         /* push data 3 */
351         sp -= 4;
352         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
353         /* push data 2 */
354         sp -= 4;
355         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
356         /* push data 1 */
357         sp -= 4;
358         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
359         /* write back 1 / push data 0 */
360         sp -= 4;
361         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
362         /* write back 1 address */
363         sp -= 4;
364         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
365         /* write back 2 data */
366         sp -= 4;
367         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
368         /* write back 2 address */
369         sp -= 4;
370         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
371         /* write back 3 data */
372         sp -= 4;
373         cpu_stl_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
374         /* write back 3 address */
375         sp -= 4;
376         cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
377         /* fault address */
378         sp -= 4;
379         cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
380         /* write back 1 status */
381         sp -= 2;
382         cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
383         /* write back 2 status */
384         sp -= 2;
385         cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
386         /* write back 3 status */
387         sp -= 2;
388         cpu_stw_mmuidx_ra(env, sp, 0, MMU_KERNEL_IDX, 0);
389         /* special status word */
390         sp -= 2;
391         cpu_stw_mmuidx_ra(env, sp, env->mmu.ssw, MMU_KERNEL_IDX, 0);
392         /* effective address */
393         sp -= 4;
394         cpu_stl_mmuidx_ra(env, sp, env->mmu.ar, MMU_KERNEL_IDX, 0);
395 
396         do_stack_frame(env, &sp, 7, oldsr, 0, retaddr);
397         env->mmu.fault = false;
398         if (qemu_loglevel_mask(CPU_LOG_INT)) {
399             qemu_log("            "
400                      "ssw:  %08x ea:   %08x sfc:  %d    dfc: %d\n",
401                      env->mmu.ssw, env->mmu.ar, env->sfc, env->dfc);
402         }
403     } else if (cs->exception_index == EXCP_ADDRESS) {
404         do_stack_frame(env, &sp, 2, oldsr, 0, retaddr);
405     } else if (cs->exception_index == EXCP_ILLEGAL ||
406                cs->exception_index == EXCP_DIV0 ||
407                cs->exception_index == EXCP_CHK ||
408                cs->exception_index == EXCP_TRAPCC ||
409                cs->exception_index == EXCP_TRACE) {
410         /* FIXME: addr is not only env->pc */
411         do_stack_frame(env, &sp, 2, oldsr, env->pc, retaddr);
412     } else if (is_hw && oldsr & SR_M &&
413                cs->exception_index >= EXCP_SPURIOUS &&
414                cs->exception_index <= EXCP_INT_LEVEL_7) {
415         do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
416         oldsr = sr;
417         env->aregs[7] = sp;
418         cpu_m68k_set_sr(env, sr &= ~SR_M);
419         sp = env->aregs[7] & ~1;
420         do_stack_frame(env, &sp, 1, oldsr, 0, retaddr);
421     } else {
422         do_stack_frame(env, &sp, 0, oldsr, 0, retaddr);
423     }
424 
425     env->aregs[7] = sp;
426     /* Jump to vector.  */
427     env->pc = cpu_ldl_mmuidx_ra(env, env->vbr + vector, MMU_KERNEL_IDX, 0);
428 }
429 
430 static void do_interrupt_all(CPUM68KState *env, int is_hw)
431 {
432     if (m68k_feature(env, M68K_FEATURE_M68000)) {
433         m68k_interrupt_all(env, is_hw);
434         return;
435     }
436     cf_interrupt_all(env, is_hw);
437 }
438 
439 void m68k_cpu_do_interrupt(CPUState *cs)
440 {
441     M68kCPU *cpu = M68K_CPU(cs);
442     CPUM68KState *env = &cpu->env;
443 
444     do_interrupt_all(env, 0);
445 }
446 
447 static inline void do_interrupt_m68k_hardirq(CPUM68KState *env)
448 {
449     do_interrupt_all(env, 1);
450 }
451 
452 void m68k_cpu_transaction_failed(CPUState *cs, hwaddr physaddr, vaddr addr,
453                                  unsigned size, MMUAccessType access_type,
454                                  int mmu_idx, MemTxAttrs attrs,
455                                  MemTxResult response, uintptr_t retaddr)
456 {
457     M68kCPU *cpu = M68K_CPU(cs);
458     CPUM68KState *env = &cpu->env;
459 
460     cpu_restore_state(cs, retaddr, true);
461 
462     if (m68k_feature(env, M68K_FEATURE_M68040)) {
463         env->mmu.mmusr = 0;
464 
465         /*
466          * According to the MC68040 users manual the ATC bit of the SSW is
467          * used to distinguish between ATC faults and physical bus errors.
468          * In the case of a bus error e.g. during nubus read from an empty
469          * slot this bit should not be set
470          */
471         if (response != MEMTX_DECODE_ERROR) {
472             env->mmu.ssw |= M68K_ATC_040;
473         }
474 
475         /* FIXME: manage MMU table access error */
476         env->mmu.ssw &= ~M68K_TM_040;
477         if (env->sr & SR_S) { /* SUPERVISOR */
478             env->mmu.ssw |= M68K_TM_040_SUPER;
479         }
480         if (access_type == MMU_INST_FETCH) { /* instruction or data */
481             env->mmu.ssw |= M68K_TM_040_CODE;
482         } else {
483             env->mmu.ssw |= M68K_TM_040_DATA;
484         }
485         env->mmu.ssw &= ~M68K_BA_SIZE_MASK;
486         switch (size) {
487         case 1:
488             env->mmu.ssw |= M68K_BA_SIZE_BYTE;
489             break;
490         case 2:
491             env->mmu.ssw |= M68K_BA_SIZE_WORD;
492             break;
493         case 4:
494             env->mmu.ssw |= M68K_BA_SIZE_LONG;
495             break;
496         }
497 
498         if (access_type != MMU_DATA_STORE) {
499             env->mmu.ssw |= M68K_RW_040;
500         }
501 
502         env->mmu.ar = addr;
503 
504         cs->exception_index = EXCP_ACCESS;
505         cpu_loop_exit(cs);
506     }
507 }
508 
509 bool m68k_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
510 {
511     M68kCPU *cpu = M68K_CPU(cs);
512     CPUM68KState *env = &cpu->env;
513 
514     if (interrupt_request & CPU_INTERRUPT_HARD
515         && ((env->sr & SR_I) >> SR_I_SHIFT) < env->pending_level) {
516         /*
517          * Real hardware gets the interrupt vector via an IACK cycle
518          * at this point.  Current emulated hardware doesn't rely on
519          * this, so we provide/save the vector when the interrupt is
520          * first signalled.
521          */
522         cs->exception_index = env->pending_vector;
523         do_interrupt_m68k_hardirq(env);
524         return true;
525     }
526     return false;
527 }
528 
529 #endif /* !CONFIG_USER_ONLY */
530 
531 static void raise_exception_ra(CPUM68KState *env, int tt, uintptr_t raddr)
532 {
533     CPUState *cs = env_cpu(env);
534 
535     cs->exception_index = tt;
536     cpu_loop_exit_restore(cs, raddr);
537 }
538 
539 static void raise_exception(CPUM68KState *env, int tt)
540 {
541     raise_exception_ra(env, tt, 0);
542 }
543 
544 void HELPER(raise_exception)(CPUM68KState *env, uint32_t tt)
545 {
546     raise_exception(env, tt);
547 }
548 
549 void HELPER(divuw)(CPUM68KState *env, int destr, uint32_t den)
550 {
551     uint32_t num = env->dregs[destr];
552     uint32_t quot, rem;
553 
554     if (den == 0) {
555         raise_exception_ra(env, EXCP_DIV0, GETPC());
556     }
557     quot = num / den;
558     rem = num % den;
559 
560     env->cc_c = 0; /* always cleared, even if overflow */
561     if (quot > 0xffff) {
562         env->cc_v = -1;
563         /*
564          * real 68040 keeps N and unset Z on overflow,
565          * whereas documentation says "undefined"
566          */
567         env->cc_z = 1;
568         return;
569     }
570     env->dregs[destr] = deposit32(quot, 16, 16, rem);
571     env->cc_z = (int16_t)quot;
572     env->cc_n = (int16_t)quot;
573     env->cc_v = 0;
574 }
575 
576 void HELPER(divsw)(CPUM68KState *env, int destr, int32_t den)
577 {
578     int32_t num = env->dregs[destr];
579     uint32_t quot, rem;
580 
581     if (den == 0) {
582         raise_exception_ra(env, EXCP_DIV0, GETPC());
583     }
584     quot = num / den;
585     rem = num % den;
586 
587     env->cc_c = 0; /* always cleared, even if overflow */
588     if (quot != (int16_t)quot) {
589         env->cc_v = -1;
590         /* nothing else is modified */
591         /*
592          * real 68040 keeps N and unset Z on overflow,
593          * whereas documentation says "undefined"
594          */
595         env->cc_z = 1;
596         return;
597     }
598     env->dregs[destr] = deposit32(quot, 16, 16, rem);
599     env->cc_z = (int16_t)quot;
600     env->cc_n = (int16_t)quot;
601     env->cc_v = 0;
602 }
603 
604 void HELPER(divul)(CPUM68KState *env, int numr, int regr, uint32_t den)
605 {
606     uint32_t num = env->dregs[numr];
607     uint32_t quot, rem;
608 
609     if (den == 0) {
610         raise_exception_ra(env, EXCP_DIV0, GETPC());
611     }
612     quot = num / den;
613     rem = num % den;
614 
615     env->cc_c = 0;
616     env->cc_z = quot;
617     env->cc_n = quot;
618     env->cc_v = 0;
619 
620     if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
621         if (numr == regr) {
622             env->dregs[numr] = quot;
623         } else {
624             env->dregs[regr] = rem;
625         }
626     } else {
627         env->dregs[regr] = rem;
628         env->dregs[numr] = quot;
629     }
630 }
631 
632 void HELPER(divsl)(CPUM68KState *env, int numr, int regr, int32_t den)
633 {
634     int32_t num = env->dregs[numr];
635     int32_t quot, rem;
636 
637     if (den == 0) {
638         raise_exception_ra(env, EXCP_DIV0, GETPC());
639     }
640     quot = num / den;
641     rem = num % den;
642 
643     env->cc_c = 0;
644     env->cc_z = quot;
645     env->cc_n = quot;
646     env->cc_v = 0;
647 
648     if (m68k_feature(env, M68K_FEATURE_CF_ISA_A)) {
649         if (numr == regr) {
650             env->dregs[numr] = quot;
651         } else {
652             env->dregs[regr] = rem;
653         }
654     } else {
655         env->dregs[regr] = rem;
656         env->dregs[numr] = quot;
657     }
658 }
659 
660 void HELPER(divull)(CPUM68KState *env, int numr, int regr, uint32_t den)
661 {
662     uint64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
663     uint64_t quot;
664     uint32_t rem;
665 
666     if (den == 0) {
667         raise_exception_ra(env, EXCP_DIV0, GETPC());
668     }
669     quot = num / den;
670     rem = num % den;
671 
672     env->cc_c = 0; /* always cleared, even if overflow */
673     if (quot > 0xffffffffULL) {
674         env->cc_v = -1;
675         /*
676          * real 68040 keeps N and unset Z on overflow,
677          * whereas documentation says "undefined"
678          */
679         env->cc_z = 1;
680         return;
681     }
682     env->cc_z = quot;
683     env->cc_n = quot;
684     env->cc_v = 0;
685 
686     /*
687      * If Dq and Dr are the same, the quotient is returned.
688      * therefore we set Dq last.
689      */
690 
691     env->dregs[regr] = rem;
692     env->dregs[numr] = quot;
693 }
694 
695 void HELPER(divsll)(CPUM68KState *env, int numr, int regr, int32_t den)
696 {
697     int64_t num = deposit64(env->dregs[numr], 32, 32, env->dregs[regr]);
698     int64_t quot;
699     int32_t rem;
700 
701     if (den == 0) {
702         raise_exception_ra(env, EXCP_DIV0, GETPC());
703     }
704     quot = num / den;
705     rem = num % den;
706 
707     env->cc_c = 0; /* always cleared, even if overflow */
708     if (quot != (int32_t)quot) {
709         env->cc_v = -1;
710         /*
711          * real 68040 keeps N and unset Z on overflow,
712          * whereas documentation says "undefined"
713          */
714         env->cc_z = 1;
715         return;
716     }
717     env->cc_z = quot;
718     env->cc_n = quot;
719     env->cc_v = 0;
720 
721     /*
722      * If Dq and Dr are the same, the quotient is returned.
723      * therefore we set Dq last.
724      */
725 
726     env->dregs[regr] = rem;
727     env->dregs[numr] = quot;
728 }
729 
730 /* We're executing in a serial context -- no need to be atomic.  */
731 void HELPER(cas2w)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
732 {
733     uint32_t Dc1 = extract32(regs, 9, 3);
734     uint32_t Dc2 = extract32(regs, 6, 3);
735     uint32_t Du1 = extract32(regs, 3, 3);
736     uint32_t Du2 = extract32(regs, 0, 3);
737     int16_t c1 = env->dregs[Dc1];
738     int16_t c2 = env->dregs[Dc2];
739     int16_t u1 = env->dregs[Du1];
740     int16_t u2 = env->dregs[Du2];
741     int16_t l1, l2;
742     uintptr_t ra = GETPC();
743 
744     l1 = cpu_lduw_data_ra(env, a1, ra);
745     l2 = cpu_lduw_data_ra(env, a2, ra);
746     if (l1 == c1 && l2 == c2) {
747         cpu_stw_data_ra(env, a1, u1, ra);
748         cpu_stw_data_ra(env, a2, u2, ra);
749     }
750 
751     if (c1 != l1) {
752         env->cc_n = l1;
753         env->cc_v = c1;
754     } else {
755         env->cc_n = l2;
756         env->cc_v = c2;
757     }
758     env->cc_op = CC_OP_CMPW;
759     env->dregs[Dc1] = deposit32(env->dregs[Dc1], 0, 16, l1);
760     env->dregs[Dc2] = deposit32(env->dregs[Dc2], 0, 16, l2);
761 }
762 
763 static void do_cas2l(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2,
764                      bool parallel)
765 {
766     uint32_t Dc1 = extract32(regs, 9, 3);
767     uint32_t Dc2 = extract32(regs, 6, 3);
768     uint32_t Du1 = extract32(regs, 3, 3);
769     uint32_t Du2 = extract32(regs, 0, 3);
770     uint32_t c1 = env->dregs[Dc1];
771     uint32_t c2 = env->dregs[Dc2];
772     uint32_t u1 = env->dregs[Du1];
773     uint32_t u2 = env->dregs[Du2];
774     uint32_t l1, l2;
775     uintptr_t ra = GETPC();
776 #if defined(CONFIG_ATOMIC64)
777     int mmu_idx = cpu_mmu_index(env, 0);
778     TCGMemOpIdx oi = make_memop_idx(MO_BEQ, mmu_idx);
779 #endif
780 
781     if (parallel) {
782         /* We're executing in a parallel context -- must be atomic.  */
783 #ifdef CONFIG_ATOMIC64
784         uint64_t c, u, l;
785         if ((a1 & 7) == 0 && a2 == a1 + 4) {
786             c = deposit64(c2, 32, 32, c1);
787             u = deposit64(u2, 32, 32, u1);
788             l = cpu_atomic_cmpxchgq_be_mmu(env, a1, c, u, oi, ra);
789             l1 = l >> 32;
790             l2 = l;
791         } else if ((a2 & 7) == 0 && a1 == a2 + 4) {
792             c = deposit64(c1, 32, 32, c2);
793             u = deposit64(u1, 32, 32, u2);
794             l = cpu_atomic_cmpxchgq_be_mmu(env, a2, c, u, oi, ra);
795             l2 = l >> 32;
796             l1 = l;
797         } else
798 #endif
799         {
800             /* Tell the main loop we need to serialize this insn.  */
801             cpu_loop_exit_atomic(env_cpu(env), ra);
802         }
803     } else {
804         /* We're executing in a serial context -- no need to be atomic.  */
805         l1 = cpu_ldl_data_ra(env, a1, ra);
806         l2 = cpu_ldl_data_ra(env, a2, ra);
807         if (l1 == c1 && l2 == c2) {
808             cpu_stl_data_ra(env, a1, u1, ra);
809             cpu_stl_data_ra(env, a2, u2, ra);
810         }
811     }
812 
813     if (c1 != l1) {
814         env->cc_n = l1;
815         env->cc_v = c1;
816     } else {
817         env->cc_n = l2;
818         env->cc_v = c2;
819     }
820     env->cc_op = CC_OP_CMPL;
821     env->dregs[Dc1] = l1;
822     env->dregs[Dc2] = l2;
823 }
824 
825 void HELPER(cas2l)(CPUM68KState *env, uint32_t regs, uint32_t a1, uint32_t a2)
826 {
827     do_cas2l(env, regs, a1, a2, false);
828 }
829 
830 void HELPER(cas2l_parallel)(CPUM68KState *env, uint32_t regs, uint32_t a1,
831                             uint32_t a2)
832 {
833     do_cas2l(env, regs, a1, a2, true);
834 }
835 
836 struct bf_data {
837     uint32_t addr;
838     uint32_t bofs;
839     uint32_t blen;
840     uint32_t len;
841 };
842 
843 static struct bf_data bf_prep(uint32_t addr, int32_t ofs, uint32_t len)
844 {
845     int bofs, blen;
846 
847     /* Bound length; map 0 to 32.  */
848     len = ((len - 1) & 31) + 1;
849 
850     /* Note that ofs is signed.  */
851     addr += ofs / 8;
852     bofs = ofs % 8;
853     if (bofs < 0) {
854         bofs += 8;
855         addr -= 1;
856     }
857 
858     /*
859      * Compute the number of bytes required (minus one) to
860      * satisfy the bitfield.
861      */
862     blen = (bofs + len - 1) / 8;
863 
864     /*
865      * Canonicalize the bit offset for data loaded into a 64-bit big-endian
866      * word.  For the cases where BLEN is not a power of 2, adjust ADDR so
867      * that we can use the next power of two sized load without crossing a
868      * page boundary, unless the field itself crosses the boundary.
869      */
870     switch (blen) {
871     case 0:
872         bofs += 56;
873         break;
874     case 1:
875         bofs += 48;
876         break;
877     case 2:
878         if (addr & 1) {
879             bofs += 8;
880             addr -= 1;
881         }
882         /* fallthru */
883     case 3:
884         bofs += 32;
885         break;
886     case 4:
887         if (addr & 3) {
888             bofs += 8 * (addr & 3);
889             addr &= -4;
890         }
891         break;
892     default:
893         g_assert_not_reached();
894     }
895 
896     return (struct bf_data){
897         .addr = addr,
898         .bofs = bofs,
899         .blen = blen,
900         .len = len,
901     };
902 }
903 
904 static uint64_t bf_load(CPUM68KState *env, uint32_t addr, int blen,
905                         uintptr_t ra)
906 {
907     switch (blen) {
908     case 0:
909         return cpu_ldub_data_ra(env, addr, ra);
910     case 1:
911         return cpu_lduw_data_ra(env, addr, ra);
912     case 2:
913     case 3:
914         return cpu_ldl_data_ra(env, addr, ra);
915     case 4:
916         return cpu_ldq_data_ra(env, addr, ra);
917     default:
918         g_assert_not_reached();
919     }
920 }
921 
922 static void bf_store(CPUM68KState *env, uint32_t addr, int blen,
923                      uint64_t data, uintptr_t ra)
924 {
925     switch (blen) {
926     case 0:
927         cpu_stb_data_ra(env, addr, data, ra);
928         break;
929     case 1:
930         cpu_stw_data_ra(env, addr, data, ra);
931         break;
932     case 2:
933     case 3:
934         cpu_stl_data_ra(env, addr, data, ra);
935         break;
936     case 4:
937         cpu_stq_data_ra(env, addr, data, ra);
938         break;
939     default:
940         g_assert_not_reached();
941     }
942 }
943 
944 uint32_t HELPER(bfexts_mem)(CPUM68KState *env, uint32_t addr,
945                             int32_t ofs, uint32_t len)
946 {
947     uintptr_t ra = GETPC();
948     struct bf_data d = bf_prep(addr, ofs, len);
949     uint64_t data = bf_load(env, d.addr, d.blen, ra);
950 
951     return (int64_t)(data << d.bofs) >> (64 - d.len);
952 }
953 
954 uint64_t HELPER(bfextu_mem)(CPUM68KState *env, uint32_t addr,
955                             int32_t ofs, uint32_t len)
956 {
957     uintptr_t ra = GETPC();
958     struct bf_data d = bf_prep(addr, ofs, len);
959     uint64_t data = bf_load(env, d.addr, d.blen, ra);
960 
961     /*
962      * Put CC_N at the top of the high word; put the zero-extended value
963      * at the bottom of the low word.
964      */
965     data <<= d.bofs;
966     data >>= 64 - d.len;
967     data |= data << (64 - d.len);
968 
969     return data;
970 }
971 
972 uint32_t HELPER(bfins_mem)(CPUM68KState *env, uint32_t addr, uint32_t val,
973                            int32_t ofs, uint32_t len)
974 {
975     uintptr_t ra = GETPC();
976     struct bf_data d = bf_prep(addr, ofs, len);
977     uint64_t data = bf_load(env, d.addr, d.blen, ra);
978     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
979 
980     data = (data & ~mask) | (((uint64_t)val << (64 - d.len)) >> d.bofs);
981 
982     bf_store(env, d.addr, d.blen, data, ra);
983 
984     /* The field at the top of the word is also CC_N for CC_OP_LOGIC.  */
985     return val << (32 - d.len);
986 }
987 
988 uint32_t HELPER(bfchg_mem)(CPUM68KState *env, uint32_t addr,
989                            int32_t ofs, uint32_t len)
990 {
991     uintptr_t ra = GETPC();
992     struct bf_data d = bf_prep(addr, ofs, len);
993     uint64_t data = bf_load(env, d.addr, d.blen, ra);
994     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
995 
996     bf_store(env, d.addr, d.blen, data ^ mask, ra);
997 
998     return ((data & mask) << d.bofs) >> 32;
999 }
1000 
1001 uint32_t HELPER(bfclr_mem)(CPUM68KState *env, uint32_t addr,
1002                            int32_t ofs, uint32_t len)
1003 {
1004     uintptr_t ra = GETPC();
1005     struct bf_data d = bf_prep(addr, ofs, len);
1006     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1007     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1008 
1009     bf_store(env, d.addr, d.blen, data & ~mask, ra);
1010 
1011     return ((data & mask) << d.bofs) >> 32;
1012 }
1013 
1014 uint32_t HELPER(bfset_mem)(CPUM68KState *env, uint32_t addr,
1015                            int32_t ofs, uint32_t len)
1016 {
1017     uintptr_t ra = GETPC();
1018     struct bf_data d = bf_prep(addr, ofs, len);
1019     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1020     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1021 
1022     bf_store(env, d.addr, d.blen, data | mask, ra);
1023 
1024     return ((data & mask) << d.bofs) >> 32;
1025 }
1026 
1027 uint32_t HELPER(bfffo_reg)(uint32_t n, uint32_t ofs, uint32_t len)
1028 {
1029     return (n ? clz32(n) : len) + ofs;
1030 }
1031 
1032 uint64_t HELPER(bfffo_mem)(CPUM68KState *env, uint32_t addr,
1033                            int32_t ofs, uint32_t len)
1034 {
1035     uintptr_t ra = GETPC();
1036     struct bf_data d = bf_prep(addr, ofs, len);
1037     uint64_t data = bf_load(env, d.addr, d.blen, ra);
1038     uint64_t mask = -1ull << (64 - d.len) >> d.bofs;
1039     uint64_t n = (data & mask) << d.bofs;
1040     uint32_t ffo = helper_bfffo_reg(n >> 32, ofs, d.len);
1041 
1042     /*
1043      * Return FFO in the low word and N in the high word.
1044      * Note that because of MASK and the shift, the low word
1045      * is already zero.
1046      */
1047     return n | ffo;
1048 }
1049 
1050 void HELPER(chk)(CPUM68KState *env, int32_t val, int32_t ub)
1051 {
1052     /*
1053      * From the specs:
1054      *   X: Not affected, C,V,Z: Undefined,
1055      *   N: Set if val < 0; cleared if val > ub, undefined otherwise
1056      * We implement here values found from a real MC68040:
1057      *   X,V,Z: Not affected
1058      *   N: Set if val < 0; cleared if val >= 0
1059      *   C: if 0 <= ub: set if val < 0 or val > ub, cleared otherwise
1060      *      if 0 > ub: set if val > ub and val < 0, cleared otherwise
1061      */
1062     env->cc_n = val;
1063     env->cc_c = 0 <= ub ? val < 0 || val > ub : val > ub && val < 0;
1064 
1065     if (val < 0 || val > ub) {
1066         CPUState *cs = env_cpu(env);
1067 
1068         /* Recover PC and CC_OP for the beginning of the insn.  */
1069         cpu_restore_state(cs, GETPC(), true);
1070 
1071         /* flags have been modified by gen_flush_flags() */
1072         env->cc_op = CC_OP_FLAGS;
1073         /* Adjust PC to end of the insn.  */
1074         env->pc += 2;
1075 
1076         cs->exception_index = EXCP_CHK;
1077         cpu_loop_exit(cs);
1078     }
1079 }
1080 
1081 void HELPER(chk2)(CPUM68KState *env, int32_t val, int32_t lb, int32_t ub)
1082 {
1083     /*
1084      * From the specs:
1085      *   X: Not affected, N,V: Undefined,
1086      *   Z: Set if val is equal to lb or ub
1087      *   C: Set if val < lb or val > ub, cleared otherwise
1088      * We implement here values found from a real MC68040:
1089      *   X,N,V: Not affected
1090      *   Z: Set if val is equal to lb or ub
1091      *   C: if lb <= ub: set if val < lb or val > ub, cleared otherwise
1092      *      if lb > ub: set if val > ub and val < lb, cleared otherwise
1093      */
1094     env->cc_z = val != lb && val != ub;
1095     env->cc_c = lb <= ub ? val < lb || val > ub : val > ub && val < lb;
1096 
1097     if (env->cc_c) {
1098         CPUState *cs = env_cpu(env);
1099 
1100         /* Recover PC and CC_OP for the beginning of the insn.  */
1101         cpu_restore_state(cs, GETPC(), true);
1102 
1103         /* flags have been modified by gen_flush_flags() */
1104         env->cc_op = CC_OP_FLAGS;
1105         /* Adjust PC to end of the insn.  */
1106         env->pc += 4;
1107 
1108         cs->exception_index = EXCP_CHK;
1109         cpu_loop_exit(cs);
1110     }
1111 }
1112