1 /* 2 * x86 exception helpers - sysemu code 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/cpu_ldst.h" 23 #include "exec/exec-all.h" 24 #include "exec/page-protection.h" 25 #include "tcg/helper-tcg.h" 26 27 typedef struct TranslateParams { 28 target_ulong addr; 29 target_ulong cr3; 30 int pg_mode; 31 int mmu_idx; 32 int ptw_idx; 33 MMUAccessType access_type; 34 } TranslateParams; 35 36 typedef struct TranslateResult { 37 hwaddr paddr; 38 int prot; 39 int page_size; 40 } TranslateResult; 41 42 typedef enum TranslateFaultStage2 { 43 S2_NONE, 44 S2_GPA, 45 S2_GPT, 46 } TranslateFaultStage2; 47 48 typedef struct TranslateFault { 49 int exception_index; 50 int error_code; 51 target_ulong cr2; 52 TranslateFaultStage2 stage2; 53 } TranslateFault; 54 55 typedef struct PTETranslate { 56 CPUX86State *env; 57 TranslateFault *err; 58 int ptw_idx; 59 void *haddr; 60 hwaddr gaddr; 61 } PTETranslate; 62 63 static bool ptw_translate(PTETranslate *inout, hwaddr addr) 64 { 65 int flags; 66 67 inout->gaddr = addr; 68 flags = probe_access_full_mmu(inout->env, addr, 0, MMU_DATA_STORE, 69 inout->ptw_idx, &inout->haddr, NULL); 70 71 if (unlikely(flags & TLB_INVALID_MASK)) { 72 TranslateFault *err = inout->err; 73 74 assert(inout->ptw_idx == MMU_NESTED_IDX); 75 *err = (TranslateFault){ 76 .error_code = inout->env->error_code, 77 .cr2 = addr, 78 .stage2 = S2_GPT, 79 }; 80 return false; 81 } 82 return true; 83 } 84 85 static inline uint32_t ptw_ldl(const PTETranslate *in, uint64_t ra) 86 { 87 if (likely(in->haddr)) { 88 return ldl_p(in->haddr); 89 } 90 return cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, ra); 91 } 92 93 static inline uint64_t ptw_ldq(const PTETranslate *in, uint64_t ra) 94 { 95 if (likely(in->haddr)) { 96 return ldq_p(in->haddr); 97 } 98 return cpu_ldq_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, ra); 99 } 100 101 /* 102 * Note that we can use a 32-bit cmpxchg for all page table entries, 103 * even 64-bit ones, because PG_PRESENT_MASK, PG_ACCESSED_MASK and 104 * PG_DIRTY_MASK are all in the low 32 bits. 105 */ 106 static bool ptw_setl_slow(const PTETranslate *in, uint32_t old, uint32_t new) 107 { 108 uint32_t cmp; 109 110 CPUState *cpu = env_cpu(in->env); 111 /* We are in cpu_exec, and start_exclusive can't be called directly.*/ 112 g_assert(cpu->running); 113 cpu_exec_end(cpu); 114 /* Does x86 really perform a rmw cycle on mmio for ptw? */ 115 start_exclusive(); 116 cmp = cpu_ldl_mmuidx_ra(in->env, in->gaddr, in->ptw_idx, 0); 117 if (cmp == old) { 118 cpu_stl_mmuidx_ra(in->env, in->gaddr, new, in->ptw_idx, 0); 119 } 120 end_exclusive(); 121 cpu_exec_start(cpu); 122 return cmp == old; 123 } 124 125 static inline bool ptw_setl(const PTETranslate *in, uint32_t old, uint32_t set) 126 { 127 if (set & ~old) { 128 uint32_t new = old | set; 129 if (likely(in->haddr)) { 130 old = cpu_to_le32(old); 131 new = cpu_to_le32(new); 132 return qatomic_cmpxchg((uint32_t *)in->haddr, old, new) == old; 133 } 134 return ptw_setl_slow(in, old, new); 135 } 136 return true; 137 } 138 139 static bool mmu_translate(CPUX86State *env, const TranslateParams *in, 140 TranslateResult *out, TranslateFault *err, 141 uint64_t ra) 142 { 143 const target_ulong addr = in->addr; 144 const int pg_mode = in->pg_mode; 145 const bool is_user = is_mmu_index_user(in->mmu_idx); 146 const MMUAccessType access_type = in->access_type; 147 uint64_t ptep, pte, rsvd_mask; 148 PTETranslate pte_trans = { 149 .env = env, 150 .err = err, 151 .ptw_idx = in->ptw_idx, 152 }; 153 hwaddr pte_addr, paddr; 154 uint32_t pkr; 155 int page_size; 156 int error_code; 157 int prot; 158 159 restart_all: 160 rsvd_mask = ~MAKE_64BIT_MASK(0, env_archcpu(env)->phys_bits); 161 rsvd_mask &= PG_ADDRESS_MASK; 162 if (!(pg_mode & PG_MODE_NXE)) { 163 rsvd_mask |= PG_NX_MASK; 164 } 165 166 if (pg_mode & PG_MODE_PAE) { 167 #ifdef TARGET_X86_64 168 if (pg_mode & PG_MODE_LMA) { 169 if (pg_mode & PG_MODE_LA57) { 170 /* 171 * Page table level 5 172 */ 173 pte_addr = (in->cr3 & ~0xfff) + (((addr >> 48) & 0x1ff) << 3); 174 if (!ptw_translate(&pte_trans, pte_addr)) { 175 return false; 176 } 177 restart_5: 178 pte = ptw_ldq(&pte_trans, ra); 179 if (!(pte & PG_PRESENT_MASK)) { 180 goto do_fault; 181 } 182 if (pte & (rsvd_mask | PG_PSE_MASK)) { 183 goto do_fault_rsvd; 184 } 185 if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) { 186 goto restart_5; 187 } 188 ptep = pte ^ PG_NX_MASK; 189 } else { 190 pte = in->cr3; 191 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; 192 } 193 194 /* 195 * Page table level 4 196 */ 197 pte_addr = (pte & PG_ADDRESS_MASK) + (((addr >> 39) & 0x1ff) << 3); 198 if (!ptw_translate(&pte_trans, pte_addr)) { 199 return false; 200 } 201 restart_4: 202 pte = ptw_ldq(&pte_trans, ra); 203 if (!(pte & PG_PRESENT_MASK)) { 204 goto do_fault; 205 } 206 if (pte & (rsvd_mask | PG_PSE_MASK)) { 207 goto do_fault_rsvd; 208 } 209 if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) { 210 goto restart_4; 211 } 212 ptep &= pte ^ PG_NX_MASK; 213 214 /* 215 * Page table level 3 216 */ 217 pte_addr = (pte & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3); 218 if (!ptw_translate(&pte_trans, pte_addr)) { 219 return false; 220 } 221 restart_3_lma: 222 pte = ptw_ldq(&pte_trans, ra); 223 if (!(pte & PG_PRESENT_MASK)) { 224 goto do_fault; 225 } 226 if (pte & rsvd_mask) { 227 goto do_fault_rsvd; 228 } 229 if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) { 230 goto restart_3_lma; 231 } 232 ptep &= pte ^ PG_NX_MASK; 233 if (pte & PG_PSE_MASK) { 234 /* 1 GB page */ 235 page_size = 1024 * 1024 * 1024; 236 goto do_check_protect; 237 } 238 } else 239 #endif 240 { 241 /* 242 * Page table level 3 243 */ 244 pte_addr = (in->cr3 & 0xffffffe0ULL) + ((addr >> 27) & 0x18); 245 if (!ptw_translate(&pte_trans, pte_addr)) { 246 return false; 247 } 248 rsvd_mask |= PG_HI_USER_MASK; 249 restart_3_nolma: 250 pte = ptw_ldq(&pte_trans, ra); 251 if (!(pte & PG_PRESENT_MASK)) { 252 goto do_fault; 253 } 254 if (pte & (rsvd_mask | PG_NX_MASK)) { 255 goto do_fault_rsvd; 256 } 257 if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) { 258 goto restart_3_nolma; 259 } 260 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; 261 } 262 263 /* 264 * Page table level 2 265 */ 266 pte_addr = (pte & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3); 267 if (!ptw_translate(&pte_trans, pte_addr)) { 268 return false; 269 } 270 restart_2_pae: 271 pte = ptw_ldq(&pte_trans, ra); 272 if (!(pte & PG_PRESENT_MASK)) { 273 goto do_fault; 274 } 275 if (pte & rsvd_mask) { 276 goto do_fault_rsvd; 277 } 278 if (pte & PG_PSE_MASK) { 279 /* 2 MB page */ 280 page_size = 2048 * 1024; 281 ptep &= pte ^ PG_NX_MASK; 282 goto do_check_protect; 283 } 284 if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) { 285 goto restart_2_pae; 286 } 287 ptep &= pte ^ PG_NX_MASK; 288 289 /* 290 * Page table level 1 291 */ 292 pte_addr = (pte & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3); 293 if (!ptw_translate(&pte_trans, pte_addr)) { 294 return false; 295 } 296 pte = ptw_ldq(&pte_trans, ra); 297 if (!(pte & PG_PRESENT_MASK)) { 298 goto do_fault; 299 } 300 if (pte & rsvd_mask) { 301 goto do_fault_rsvd; 302 } 303 /* combine pde and pte nx, user and rw protections */ 304 ptep &= pte ^ PG_NX_MASK; 305 page_size = 4096; 306 } else if (pg_mode & PG_MODE_PG) { 307 /* 308 * Page table level 2 309 */ 310 pte_addr = (in->cr3 & 0xfffff000ULL) + ((addr >> 20) & 0xffc); 311 if (!ptw_translate(&pte_trans, pte_addr)) { 312 return false; 313 } 314 restart_2_nopae: 315 pte = ptw_ldl(&pte_trans, ra); 316 if (!(pte & PG_PRESENT_MASK)) { 317 goto do_fault; 318 } 319 ptep = pte | PG_NX_MASK; 320 321 /* if PSE bit is set, then we use a 4MB page */ 322 if ((pte & PG_PSE_MASK) && (pg_mode & PG_MODE_PSE)) { 323 page_size = 4096 * 1024; 324 /* 325 * Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved. 326 * Leave bits 20-13 in place for setting accessed/dirty bits below. 327 */ 328 pte = (uint32_t)pte | ((pte & 0x1fe000LL) << (32 - 13)); 329 rsvd_mask = 0x200000; 330 goto do_check_protect_pse36; 331 } 332 if (!ptw_setl(&pte_trans, pte, PG_ACCESSED_MASK)) { 333 goto restart_2_nopae; 334 } 335 336 /* 337 * Page table level 1 338 */ 339 pte_addr = (pte & ~0xfffu) + ((addr >> 10) & 0xffc); 340 if (!ptw_translate(&pte_trans, pte_addr)) { 341 return false; 342 } 343 pte = ptw_ldl(&pte_trans, ra); 344 if (!(pte & PG_PRESENT_MASK)) { 345 goto do_fault; 346 } 347 /* combine pde and pte user and rw protections */ 348 ptep &= pte | PG_NX_MASK; 349 page_size = 4096; 350 rsvd_mask = 0; 351 } else { 352 /* 353 * No paging (real mode), let's tentatively resolve the address as 1:1 354 * here, but conditionally still perform an NPT walk on it later. 355 */ 356 page_size = 0x40000000; 357 paddr = in->addr; 358 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 359 goto stage2; 360 } 361 362 do_check_protect: 363 rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK; 364 do_check_protect_pse36: 365 if (pte & rsvd_mask) { 366 goto do_fault_rsvd; 367 } 368 ptep ^= PG_NX_MASK; 369 370 /* can the page can be put in the TLB? prot will tell us */ 371 if (is_user && !(ptep & PG_USER_MASK)) { 372 goto do_fault_protect; 373 } 374 375 prot = 0; 376 if (!is_mmu_index_smap(in->mmu_idx) || !(ptep & PG_USER_MASK)) { 377 prot |= PAGE_READ; 378 if ((ptep & PG_RW_MASK) || !(is_user || (pg_mode & PG_MODE_WP))) { 379 prot |= PAGE_WRITE; 380 } 381 } 382 if (!(ptep & PG_NX_MASK) && 383 (is_user || 384 !((pg_mode & PG_MODE_SMEP) && (ptep & PG_USER_MASK)))) { 385 prot |= PAGE_EXEC; 386 } 387 388 if (ptep & PG_USER_MASK) { 389 pkr = pg_mode & PG_MODE_PKE ? env->pkru : 0; 390 } else { 391 pkr = pg_mode & PG_MODE_PKS ? env->pkrs : 0; 392 } 393 if (pkr) { 394 uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT; 395 uint32_t pkr_ad = (pkr >> pk * 2) & 1; 396 uint32_t pkr_wd = (pkr >> pk * 2) & 2; 397 uint32_t pkr_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 398 399 if (pkr_ad) { 400 pkr_prot &= ~(PAGE_READ | PAGE_WRITE); 401 } else if (pkr_wd && (is_user || (pg_mode & PG_MODE_WP))) { 402 pkr_prot &= ~PAGE_WRITE; 403 } 404 if ((pkr_prot & (1 << access_type)) == 0) { 405 goto do_fault_pk_protect; 406 } 407 prot &= pkr_prot; 408 } 409 410 if ((prot & (1 << access_type)) == 0) { 411 goto do_fault_protect; 412 } 413 414 /* yes, it can! */ 415 { 416 uint32_t set = PG_ACCESSED_MASK; 417 if (access_type == MMU_DATA_STORE) { 418 set |= PG_DIRTY_MASK; 419 } else if (!(pte & PG_DIRTY_MASK)) { 420 /* 421 * Only set write access if already dirty... 422 * otherwise wait for dirty access. 423 */ 424 prot &= ~PAGE_WRITE; 425 } 426 if (!ptw_setl(&pte_trans, pte, set)) { 427 /* 428 * We can arrive here from any of 3 levels and 2 formats. 429 * The only safe thing is to restart the entire lookup. 430 */ 431 goto restart_all; 432 } 433 } 434 435 /* merge offset within page */ 436 paddr = (pte & PG_ADDRESS_MASK & ~(page_size - 1)) | (addr & (page_size - 1)); 437 stage2: 438 439 /* 440 * Note that NPT is walked (for both paging structures and final guest 441 * addresses) using the address with the A20 bit set. 442 */ 443 if (in->ptw_idx == MMU_NESTED_IDX) { 444 CPUTLBEntryFull *full; 445 int flags, nested_page_size; 446 447 flags = probe_access_full_mmu(env, paddr, 0, access_type, 448 MMU_NESTED_IDX, &pte_trans.haddr, &full); 449 if (unlikely(flags & TLB_INVALID_MASK)) { 450 *err = (TranslateFault){ 451 .error_code = env->error_code, 452 .cr2 = paddr, 453 .stage2 = S2_GPA, 454 }; 455 return false; 456 } 457 458 /* Merge stage1 & stage2 protection bits. */ 459 prot &= full->prot; 460 461 /* Re-verify resulting protection. */ 462 if ((prot & (1 << access_type)) == 0) { 463 goto do_fault_protect; 464 } 465 466 /* Merge stage1 & stage2 addresses to final physical address. */ 467 nested_page_size = 1 << full->lg_page_size; 468 paddr = (full->phys_addr & ~(nested_page_size - 1)) 469 | (paddr & (nested_page_size - 1)); 470 471 /* 472 * Use the larger of stage1 & stage2 page sizes, so that 473 * invalidation works. 474 */ 475 if (nested_page_size > page_size) { 476 page_size = nested_page_size; 477 } 478 } 479 480 out->paddr = paddr & x86_get_a20_mask(env); 481 out->prot = prot; 482 out->page_size = page_size; 483 return true; 484 485 do_fault_rsvd: 486 error_code = PG_ERROR_RSVD_MASK; 487 goto do_fault_cont; 488 do_fault_protect: 489 error_code = PG_ERROR_P_MASK; 490 goto do_fault_cont; 491 do_fault_pk_protect: 492 assert(access_type != MMU_INST_FETCH); 493 error_code = PG_ERROR_PK_MASK | PG_ERROR_P_MASK; 494 goto do_fault_cont; 495 do_fault: 496 error_code = 0; 497 do_fault_cont: 498 if (is_user) { 499 error_code |= PG_ERROR_U_MASK; 500 } 501 switch (access_type) { 502 case MMU_DATA_LOAD: 503 break; 504 case MMU_DATA_STORE: 505 error_code |= PG_ERROR_W_MASK; 506 break; 507 case MMU_INST_FETCH: 508 if (pg_mode & (PG_MODE_NXE | PG_MODE_SMEP)) { 509 error_code |= PG_ERROR_I_D_MASK; 510 } 511 break; 512 } 513 *err = (TranslateFault){ 514 .exception_index = EXCP0E_PAGE, 515 .error_code = error_code, 516 .cr2 = addr, 517 }; 518 return false; 519 } 520 521 static G_NORETURN void raise_stage2(CPUX86State *env, TranslateFault *err, 522 uintptr_t retaddr) 523 { 524 uint64_t exit_info_1 = err->error_code; 525 526 switch (err->stage2) { 527 case S2_GPT: 528 exit_info_1 |= SVM_NPTEXIT_GPT; 529 break; 530 case S2_GPA: 531 exit_info_1 |= SVM_NPTEXIT_GPA; 532 break; 533 default: 534 g_assert_not_reached(); 535 } 536 537 x86_stq_phys(env_cpu(env), 538 env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 539 err->cr2); 540 cpu_vmexit(env, SVM_EXIT_NPF, exit_info_1, retaddr); 541 } 542 543 static bool get_physical_address(CPUX86State *env, vaddr addr, 544 MMUAccessType access_type, int mmu_idx, 545 TranslateResult *out, TranslateFault *err, 546 uint64_t ra) 547 { 548 TranslateParams in; 549 bool use_stage2 = env->hflags2 & HF2_NPT_MASK; 550 551 in.addr = addr; 552 in.access_type = access_type; 553 554 switch (mmu_idx) { 555 case MMU_PHYS_IDX: 556 break; 557 558 case MMU_NESTED_IDX: 559 if (likely(use_stage2)) { 560 in.cr3 = env->nested_cr3; 561 in.pg_mode = env->nested_pg_mode; 562 in.mmu_idx = 563 env->nested_pg_mode & PG_MODE_LMA ? MMU_USER64_IDX : MMU_USER32_IDX; 564 in.ptw_idx = MMU_PHYS_IDX; 565 566 if (!mmu_translate(env, &in, out, err, ra)) { 567 err->stage2 = S2_GPA; 568 return false; 569 } 570 return true; 571 } 572 break; 573 574 default: 575 if (is_mmu_index_32(mmu_idx)) { 576 addr = (uint32_t)addr; 577 } 578 579 if (likely(env->cr[0] & CR0_PG_MASK || use_stage2)) { 580 in.cr3 = env->cr[3]; 581 in.mmu_idx = mmu_idx; 582 in.ptw_idx = use_stage2 ? MMU_NESTED_IDX : MMU_PHYS_IDX; 583 in.pg_mode = get_pg_mode(env); 584 585 if (in.pg_mode & PG_MODE_LMA) { 586 /* test virtual address sign extension */ 587 int shift = in.pg_mode & PG_MODE_LA57 ? 56 : 47; 588 int64_t sext = (int64_t)addr >> shift; 589 if (sext != 0 && sext != -1) { 590 *err = (TranslateFault){ 591 .exception_index = EXCP0D_GPF, 592 .cr2 = addr, 593 }; 594 return false; 595 } 596 } 597 return mmu_translate(env, &in, out, err, ra); 598 } 599 break; 600 } 601 602 /* No translation needed. */ 603 out->paddr = addr & x86_get_a20_mask(env); 604 out->prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 605 out->page_size = TARGET_PAGE_SIZE; 606 return true; 607 } 608 609 bool x86_cpu_tlb_fill(CPUState *cs, vaddr addr, int size, 610 MMUAccessType access_type, int mmu_idx, 611 bool probe, uintptr_t retaddr) 612 { 613 CPUX86State *env = cpu_env(cs); 614 TranslateResult out; 615 TranslateFault err; 616 617 if (get_physical_address(env, addr, access_type, mmu_idx, &out, &err, 618 retaddr)) { 619 /* 620 * Even if 4MB pages, we map only one 4KB page in the cache to 621 * avoid filling it too fast. 622 */ 623 assert(out.prot & (1 << access_type)); 624 tlb_set_page_with_attrs(cs, addr & TARGET_PAGE_MASK, 625 out.paddr & TARGET_PAGE_MASK, 626 cpu_get_mem_attrs(env), 627 out.prot, mmu_idx, out.page_size); 628 return true; 629 } 630 631 if (probe) { 632 /* This will be used if recursing for stage2 translation. */ 633 env->error_code = err.error_code; 634 return false; 635 } 636 637 if (err.stage2 != S2_NONE) { 638 raise_stage2(env, &err, retaddr); 639 } 640 641 if (env->intercept_exceptions & (1 << err.exception_index)) { 642 /* cr2 is not modified in case of exceptions */ 643 x86_stq_phys(cs, env->vm_vmcb + 644 offsetof(struct vmcb, control.exit_info_2), 645 err.cr2); 646 } else { 647 env->cr[2] = err.cr2; 648 } 649 raise_exception_err_ra(env, err.exception_index, err.error_code, retaddr); 650 } 651 652 G_NORETURN void x86_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, 653 MMUAccessType access_type, 654 int mmu_idx, uintptr_t retaddr) 655 { 656 X86CPU *cpu = X86_CPU(cs); 657 handle_unaligned_access(&cpu->env, vaddr, access_type, retaddr); 658 } 659