xref: /openbmc/qemu/target/i386/tcg/decode-new.h (revision feb58e3b)
1 /*
2  * Decode table flags, mostly based on Intel SDM.
3  *
4  *  Copyright (c) 2022 Red Hat, Inc.
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 typedef enum X86OpType {
23     X86_TYPE_None,
24 
25     X86_TYPE_A, /* Implicit */
26     X86_TYPE_B, /* VEX.vvvv selects a GPR */
27     X86_TYPE_C, /* REG in the modrm byte selects a control register */
28     X86_TYPE_D, /* REG in the modrm byte selects a debug register */
29     X86_TYPE_E, /* ALU modrm operand */
30     X86_TYPE_F, /* EFLAGS/RFLAGS */
31     X86_TYPE_G, /* REG in the modrm byte selects a GPR */
32     X86_TYPE_H, /* For AVX, VEX.vvvv selects an XMM/YMM register */
33     X86_TYPE_I, /* Immediate */
34     X86_TYPE_J, /* Relative offset for a jump */
35     X86_TYPE_L, /* The upper 4 bits of the immediate select a 128-bit register */
36     X86_TYPE_M, /* modrm byte selects a memory operand */
37     X86_TYPE_N, /* R/M in the modrm byte selects an MMX register */
38     X86_TYPE_O, /* Absolute address encoded in the instruction */
39     X86_TYPE_P, /* reg in the modrm byte selects an MMX register */
40     X86_TYPE_Q, /* MMX modrm operand */
41     X86_TYPE_R, /* R/M in the modrm byte selects a register */
42     X86_TYPE_S, /* reg selects a segment register */
43     X86_TYPE_U, /* R/M in the modrm byte selects an XMM/YMM register */
44     X86_TYPE_V, /* reg in the modrm byte selects an XMM/YMM register */
45     X86_TYPE_W, /* XMM/YMM modrm operand */
46     X86_TYPE_X, /* string source */
47     X86_TYPE_Y, /* string destination */
48 
49     /* Custom */
50     X86_TYPE_EM, /* modrm byte selects an ALU memory operand */
51     X86_TYPE_WM, /* modrm byte selects an XMM/YMM memory operand */
52     X86_TYPE_I_unsigned, /* Immediate, zero-extended */
53     X86_TYPE_nop, /* modrm operand decoded but not loaded into s->T{0,1} */
54     X86_TYPE_2op, /* 2-operand RMW instruction */
55     X86_TYPE_LoBits, /* encoded in bits 0-2 of the operand + REX.B */
56     X86_TYPE_0, /* Hard-coded GPRs (RAX..RDI) */
57     X86_TYPE_1,
58     X86_TYPE_2,
59     X86_TYPE_3,
60     X86_TYPE_4,
61     X86_TYPE_5,
62     X86_TYPE_6,
63     X86_TYPE_7,
64     X86_TYPE_ES, /* Hard-coded segment registers */
65     X86_TYPE_CS,
66     X86_TYPE_SS,
67     X86_TYPE_DS,
68     X86_TYPE_FS,
69     X86_TYPE_GS,
70 } X86OpType;
71 
72 typedef enum X86OpSize {
73     X86_SIZE_None,
74 
75     X86_SIZE_a,  /* BOUND operand */
76     X86_SIZE_b,  /* byte */
77     X86_SIZE_d,  /* 32-bit */
78     X86_SIZE_dq, /* SSE/AVX 128-bit */
79     X86_SIZE_p,  /* Far pointer */
80     X86_SIZE_pd, /* SSE/AVX packed double precision */
81     X86_SIZE_pi, /* MMX */
82     X86_SIZE_ps, /* SSE/AVX packed single precision */
83     X86_SIZE_q,  /* 64-bit */
84     X86_SIZE_qq, /* AVX 256-bit */
85     X86_SIZE_s,  /* Descriptor */
86     X86_SIZE_sd, /* SSE/AVX scalar double precision */
87     X86_SIZE_ss, /* SSE/AVX scalar single precision */
88     X86_SIZE_si, /* 32-bit GPR */
89     X86_SIZE_v,  /* 16/32/64-bit, based on operand size */
90     X86_SIZE_w,  /* 16-bit */
91     X86_SIZE_x,  /* 128/256-bit, based on operand size */
92     X86_SIZE_y,  /* 32/64-bit, based on operand size */
93     X86_SIZE_y_d64,  /* 32/64-bit, based on 64-bit mode */
94     X86_SIZE_z,  /* 16-bit for 16-bit operand size, else 32-bit */
95     X86_SIZE_z_f64,  /* 32-bit for 32-bit operand size or 64-bit mode, else 16-bit */
96 
97     /* Custom */
98     X86_SIZE_d64,
99     X86_SIZE_f64,
100     X86_SIZE_xh, /* SSE/AVX packed half register */
101 } X86OpSize;
102 
103 typedef enum X86CPUIDFeature {
104     X86_FEAT_None,
105     X86_FEAT_3DNOW,
106     X86_FEAT_ADX,
107     X86_FEAT_AES,
108     X86_FEAT_AVX,
109     X86_FEAT_AVX2,
110     X86_FEAT_BMI1,
111     X86_FEAT_BMI2,
112     X86_FEAT_CLFLUSH,
113     X86_FEAT_CLFLUSHOPT,
114     X86_FEAT_CLWB,
115     X86_FEAT_CMOV,
116     X86_FEAT_CMPCCXADD,
117     X86_FEAT_CX8,
118     X86_FEAT_CX16,
119     X86_FEAT_F16C,
120     X86_FEAT_FMA,
121     X86_FEAT_FSGSBASE,
122     X86_FEAT_FXSR,
123     X86_FEAT_MOVBE,
124     X86_FEAT_PCLMULQDQ,
125     X86_FEAT_POPCNT,
126     X86_FEAT_SHA_NI,
127     X86_FEAT_SSE,
128     X86_FEAT_SSE2,
129     X86_FEAT_SSE3,
130     X86_FEAT_SSSE3,
131     X86_FEAT_SSE41,
132     X86_FEAT_SSE42,
133     X86_FEAT_SSE4A,
134     X86_FEAT_XSAVE,
135     X86_FEAT_XSAVEOPT,
136 } X86CPUIDFeature;
137 
138 /* Execution flags */
139 
140 typedef enum X86OpUnit {
141     X86_OP_SKIP,    /* not valid or managed by emission function */
142     X86_OP_SEG,     /* segment selector */
143     X86_OP_CR,      /* control register */
144     X86_OP_DR,      /* debug register */
145     X86_OP_INT,     /* loaded into/stored from s->T0/T1 */
146     X86_OP_IMM,     /* immediate */
147     X86_OP_SSE,     /* address in either s->ptrX or s->A0 depending on has_ea */
148     X86_OP_MMX,     /* address in either s->ptrX or s->A0 depending on has_ea */
149 } X86OpUnit;
150 
151 typedef enum X86InsnCheck {
152     /* Illegal or exclusive to 64-bit mode */
153     X86_CHECK_i64 = 1,
154     X86_CHECK_o64 = 2,
155 
156     /* Fault in vm86 mode */
157     X86_CHECK_no_vm86 = 4,
158 
159     /* Privileged instruction checks */
160     X86_CHECK_cpl0 = 8,
161     X86_CHECK_vm86_iopl = 16,
162     X86_CHECK_cpl_iopl = 32,
163     X86_CHECK_iopl = X86_CHECK_cpl_iopl | X86_CHECK_vm86_iopl,
164 
165     /* Fault if VEX.L=1 */
166     X86_CHECK_VEX128 = 64,
167 
168     /* Fault if VEX.W=1 */
169     X86_CHECK_W0 = 128,
170 
171     /* Fault if VEX.W=0 */
172     X86_CHECK_W1 = 256,
173 
174     /* Fault outside protected mode, possibly including vm86 mode */
175     X86_CHECK_prot_or_vm86 = 512,
176     X86_CHECK_prot = X86_CHECK_prot_or_vm86 | X86_CHECK_no_vm86,
177 
178     /* Fault outside SMM */
179     X86_CHECK_smm = 1024,
180 
181     /* Vendor-specific checks for Intel/AMD differences */
182     X86_CHECK_i64_amd = 2048,
183     X86_CHECK_o64_intel = 4096,
184 } X86InsnCheck;
185 
186 typedef enum X86InsnSpecial {
187     X86_SPECIAL_None,
188 
189     /* Accepts LOCK prefix; LOCKed operations do not load or writeback operand 0 */
190     X86_SPECIAL_HasLock,
191 
192     /* Always locked if it has a memory operand (XCHG) */
193     X86_SPECIAL_Locked,
194 
195     /* Like HasLock, but also operand 2 provides bit displacement into memory.  */
196     X86_SPECIAL_BitTest,
197 
198     /* Do not load effective address in s->A0 */
199     X86_SPECIAL_NoLoadEA,
200 
201     /*
202      * Rd/Mb or Rd/Mw in the manual: register operand 0 is treated as 32 bits
203      * (and writeback zero-extends it to 64 bits if applicable).  PREFIX_DATA
204      * does not trigger 16-bit writeback and, as a side effect, high-byte
205      * registers are never used.
206      */
207     X86_SPECIAL_Op0_Rd,
208 
209     /*
210      * Ry/Mb in the manual (PINSRB).  However, the high bits are never used by
211      * the instruction in either the register or memory cases; the *real* effect
212      * of this modifier is that high-byte registers are never used, even without
213      * a REX prefix.  Therefore, PINSRW does not need it despite having Ry/Mw.
214      */
215     X86_SPECIAL_Op2_Ry,
216 
217     /*
218      * Register operand 2 is extended to full width, while a memory operand
219      * is doubled in size if VEX.L=1.
220      */
221     X86_SPECIAL_AVXExtMov,
222 
223     /*
224      * MMX instruction exists with no prefix; if there is no prefix, V/H/W/U operands
225      * become P/P/Q/N, and size "x" becomes "q".
226      */
227     X86_SPECIAL_MMX,
228 
229     /* When loaded into s->T0, register operand 1 is zero/sign extended.  */
230     X86_SPECIAL_SExtT0,
231     X86_SPECIAL_ZExtT0,
232 
233     /* Memory operand size of MOV from segment register is MO_16 */
234     X86_SPECIAL_Op0_Mw,
235 } X86InsnSpecial;
236 
237 /*
238  * Special cases for instructions that operate on XMM/YMM registers.  Intel
239  * retconned all of them to have VEX exception classes other than 0 and 13, so
240  * all these only matter for instructions that have a VEX exception class.
241  * Based on tables in the "AVX and SSE Instruction Exception Specification"
242  * section of the manual.
243  */
244 typedef enum X86VEXSpecial {
245     /* Legacy SSE instructions that allow unaligned operands */
246     X86_VEX_SSEUnaligned,
247 
248     /*
249      * Used for instructions that distinguish the XMM operand type with an
250      * instruction prefix; legacy SSE encodings will allow unaligned operands
251      * for scalar operands only (identified by a REP prefix).  In this case,
252      * the decoding table uses "x" for the vector operands instead of specifying
253      * pd/ps/sd/ss individually.
254      */
255     X86_VEX_REPScalar,
256 
257     /*
258      * VEX instructions that only support 256-bit operands with AVX2 (Table 2-17
259      * column 3).  Columns 2 and 4 (instructions limited to 256- and 127-bit
260      * operands respectively) are implicit in the presence of dq and qq
261      * operands, and thus handled by decode_op_size.
262      */
263     X86_VEX_AVX2_256,
264 } X86VEXSpecial;
265 
266 
267 typedef struct X86OpEntry  X86OpEntry;
268 typedef struct X86DecodedInsn X86DecodedInsn;
269 struct DisasContext;
270 
271 /* Decode function for multibyte opcodes.  */
272 typedef void (*X86DecodeFunc)(struct DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b);
273 
274 /* Code generation function.  */
275 typedef void (*X86GenFunc)(struct DisasContext *s, X86DecodedInsn *decode);
276 
277 struct X86OpEntry {
278     /* Based on the is_decode flags.  */
279     union {
280         X86GenFunc gen;
281         X86DecodeFunc decode;
282     };
283     /* op0 is always written, op1 and op2 are always read.  */
284     X86OpType    op0:8;
285     X86OpSize    s0:8;
286     X86OpType    op1:8;
287     X86OpSize    s1:8;
288     X86OpType    op2:8;
289     X86OpSize    s2:8;
290     /* Must be I and b respectively if present.  */
291     X86OpType    op3:8;
292     X86OpSize    s3:8;
293 
294     X86InsnSpecial special:8;
295     X86CPUIDFeature cpuid:8;
296     unsigned     vex_class:8;
297     X86VEXSpecial vex_special:8;
298     unsigned     valid_prefix:16;
299     unsigned     check:16;
300     unsigned     intercept:8;
301     bool         has_intercept:1;
302     bool         is_decode:1;
303 };
304 
305 typedef struct X86DecodedOp {
306     int8_t n;
307     MemOp ot;     /* For b/c/d/p/s/q/v/w/y/z */
308     X86OpUnit unit;
309     bool has_ea;
310     int offset;   /* For MMX and SSE */
311 
312     union {
313 	target_ulong imm;
314         /*
315          * This field is used internally by macros OP0_PTR/OP1_PTR/OP2_PTR,
316          * do not access directly!
317          */
318         TCGv_ptr v_ptr;
319     };
320 } X86DecodedOp;
321 
322 typedef struct AddressParts {
323     int def_seg;
324     int base;
325     int index;
326     int scale;
327     target_long disp;
328 } AddressParts;
329 
330 struct X86DecodedInsn {
331     X86OpEntry e;
332     X86DecodedOp op[3];
333     /*
334      * Rightmost immediate, for convenience since most instructions have
335      * one (and also for 4-operand instructions).
336      */
337     target_ulong immediate;
338     AddressParts mem;
339 
340     TCGv cc_dst, cc_src, cc_src2;
341     TCGv_i32 cc_op_dynamic;
342     int8_t cc_op;
343 
344     uint8_t b;
345 };
346 
347 static void gen_lea_modrm(struct DisasContext *s, X86DecodedInsn *decode);
348