xref: /openbmc/qemu/target/i386/tcg/decode-new.c.inc (revision f3518400882022ddcbe1148abf2165917a7b4640)
1/*
2 * New-style decoder for i386 instructions
3 *
4 *  Copyright (c) 2022 Red Hat, Inc.
5 *
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * The decoder is mostly based on tables copied from the Intel SDM.  As
24 * a result, most operand load and writeback is done entirely in common
25 * table-driven code using the same operand type (X86_TYPE_*) and
26 * size (X86_SIZE_*) codes used in the manual.  There are a few differences
27 * though.
28 *
29 * Operand sizes
30 * -------------
31 *
32 * The manual lists d64 ("cannot encode 32-bit size in 64-bit mode") and f64
33 * ("cannot encode 16-bit or 32-bit size in 64-bit mode") as modifiers of the
34 * "v" or "z" sizes.  The decoder simply makes them separate operand sizes.
35 *
36 * The manual lists immediate far destinations as Ap (technically an implicit
37 * argument).  The decoder splits them into two immediates, using "Ip" for
38 * the offset part (that comes first in the instruction stream) and "Iw" for
39 * the segment/selector part.  The size of the offset is given by s->dflag
40 * and the instructions are illegal in 64-bit mode, so the choice of "Ip"
41 * is somewhat arbitrary; "Iv" or "Iz" would work just as well.
42 *
43 * Operand types
44 * -------------
45 *
46 * For memory-only operands, if the emitter functions wants to rely on
47 * generic load and writeback, the decoder needs to know the type of the
48 * operand.  Therefore, M is often replaced by the more specific EM and WM
49 * (respectively selecting an ALU operand, like the operand type E, or a
50 * vector operand like the operand type W).
51 *
52 * Immediates are almost always signed or masked away in helpers.  Two
53 * common exceptions are IN/OUT and absolute jumps.  For these, there is
54 * an additional custom operand type "I_unsigned".  Alternatively, the
55 * mask could be applied (and the original sign-extended value would be
56 * optimized away by TCG) in the emitter function.
57 *
58 * Finally, a "nop" operand type is used for multi-byte NOPs.  It accepts
59 * any value of mod including 11b (unlike M) but it does not try to
60 * interpret the operand (like M).
61 *
62 * Vector operands
63 * ---------------
64 *
65 * The main difference is that the V, U and W types are extended to
66 * cover MMX as well; if an instruction is like
67 *
68 *      por   Pq, Qq
69 *  66  por   Vx, Hx, Wx
70 *
71 * only the second row is included and the instruction is marked as a
72 * valid MMX instruction.  The MMX flag directs the decoder to rewrite
73 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing
74 * "x" to "q" if there is no prefix.
75 *
76 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x"
77 * if the difference is expressed via prefixes.  Individual instructions
78 * are separated by prefix in the generator functions.
79 *
80 * There is a custom size "xh" used to address half of a SSE/AVX operand.
81 * This points to a 64-bit operand for SSE operations, 128-bit operand
82 * for 256-bit AVX operands, etc.  It is used for conversion operations
83 * such as VCVTPH2PS or VCVTSS2SD.
84 *
85 * There are a couple cases in which instructions (e.g. MOVD) write the
86 * whole XMM or MM register but are established incorrectly in the manual
87 * as "d" or "q".  These have to be fixed for the decoder to work correctly.
88 *
89 * VEX exception classes
90 * ---------------------
91 *
92 * Speaking about imprecisions in the manual, the decoder treats all
93 * exception-class 4 instructions as having an optional VEX prefix, and
94 * all exception-class 6 instructions as having a mandatory VEX prefix.
95 * This is true except for a dozen instructions; these are in exception
96 * class 4 but do not ignore the VEX.W bit (which does not even exist
97 * without a VEX prefix).  These instructions are mostly listed in Intel's
98 * table 2-16, but with a few exceptions.
99 *
100 * The AMD manual has more precise subclasses for exceptions, and unlike Intel
101 * they list the VEX.W requirements in the exception classes as well (except
102 * when they don't).  AMD describes class 6 as "AVX Mixed Memory Argument"
103 * without defining what a mixed memory argument is, but still use 4 as the
104 * primary exception class... except when they don't.
105 *
106 * The summary is:
107 *                       Intel     AMD         VEX.W           note
108 * -------------------------------------------------------------------
109 * vpblendd              4         4J          0
110 * vpblendvb             4         4E-X        0               (*)
111 * vpbroadcastq          6         6D          0               (+)
112 * vpermd/vpermps        4         4H          0               (§)
113 * vpermq/vpermpd        4         4H-1        1               (§)
114 * vpermilpd/vpermilps   4         6E          0               (^)
115 * vpmaskmovd            6         4K          significant     (^)
116 * vpsllv                4         4K          significant
117 * vpsrav                4         4J          0
118 * vpsrlv                4         4K          significant
119 * vtestps/vtestpd       4         4G          0
120 *
121 *    (*)  AMD lists VPBLENDVB as related to SSE4.1 PBLENDVB, which may
122 *         explain why it is considered exception class 4.  However,
123 *         Intel says that VEX-only instructions should be in class 6...
124 *
125 *    (+)  Not found in Intel's table 2-16
126 *
127 *    (§)  4H and 4H-1 do not mention VEX.W requirements, which are
128 *         however present in the description of the instruction
129 *
130 *    (^)  these are the two cases in which Intel and AMD disagree on the
131 *         primary exception class
132 *
133 * Instructions still in translate.c
134 * ---------------------------------
135 * Generation of TCG opcodes for almost all instructions is in emit.c.inc;
136 * this file interprets the prefixes and opcode bytes down to individual
137 * instruction mnemonics.  There is only a handful of opcodes still using
138 * a switch statement to decode modrm bits 3-5 and prefixes after decoding
139 * is complete; these are relics of the older x86 decoder and their code
140 * generation is performed in translate.c.
141 *
142 * These unconverted opcodes also perform their own effective address
143 * generation using the gen_lea_modrm() function.
144 *
145 * There is nothing particularly complicated about them; simply, they don't
146 * need any nasty hacks in the decoder, and they shouldn't get in the way
147 * of the implementation of new x86 instructions, so they are left alone
148 * for the time being.
149 *
150 * x87:
151 * 0xD8 - 0xDF
152 *
153 * privileged/system:
154 * 0x0F 0x00               group 6 (SLDT, STR, LLDT, LTR, VERR, VERW)
155 * 0x0F 0x01               group 7 (SGDT, SIDT, LGDT, LIDT, SMSW, LMSW, INVLPG,
156 *                                  MONITOR, MWAIT, CLAC, STAC, XGETBV, XSETBV,
157 *                                  SWAPGS, RDTSCP)
158 * 0x0F 0xC7 (reg operand) group 9 (RDRAND, RDSEED, RDPID)
159 *
160 * MPX:
161 * 0x0F 0x1A               BNDLDX, BNDMOV, BNDCL, BNDCU
162 * 0x0F 0x1B               BNDSTX, BNDMOV, BNDMK, BNDCN
163 */
164
165#define X86_OP_NONE { 0 },
166
167#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
168    .decode = glue(decode_, op),                                  \
169    .op0 = glue(X86_TYPE_, op0_),                                 \
170    .s0 = glue(X86_SIZE_, s0_),                                   \
171    .op1 = glue(X86_TYPE_, op1_),                                 \
172    .s1 = glue(X86_SIZE_, s1_),                                   \
173    .op2 = glue(X86_TYPE_, op2_),                                 \
174    .s2 = glue(X86_SIZE_, s2_),                                   \
175    .is_decode = true,                                            \
176    ## __VA_ARGS__                                                \
177}
178
179#define X86_OP_GROUP1(op, op0, s0, ...)                           \
180    X86_OP_GROUP3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__)
181#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...)                  \
182    X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
183#define X86_OP_GROUPw(op, op0, s0, ...)                           \
184    X86_OP_GROUP3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
185#define X86_OP_GROUPwr(op, op0, s0, op1, s1, ...)                 \
186    X86_OP_GROUP3(op, op0, s0, op1, s1, None, None, ## __VA_ARGS__)
187#define X86_OP_GROUP0(op, ...)                                    \
188    X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__)
189
190#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
191    .gen = glue(gen_, op),                                        \
192    .op0 = glue(X86_TYPE_, op0_),                                 \
193    .s0 = glue(X86_SIZE_, s0_),                                   \
194    .op1 = glue(X86_TYPE_, op1_),                                 \
195    .s1 = glue(X86_SIZE_, s1_),                                   \
196    .op2 = glue(X86_TYPE_, op2_),                                 \
197    .s2 = glue(X86_SIZE_, s2_),                                   \
198    ## __VA_ARGS__                                                \
199}
200
201#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...)   \
202    X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_,            \
203        .op3 = X86_TYPE_I, .s3 = X86_SIZE_b,                      \
204        ## __VA_ARGS__)
205
206/*
207 * Short forms that are mostly useful for ALU opcodes and other
208 * one-byte opcodes.  For vector instructions it is usually
209 * clearer to write all three operands explicitly, because the
210 * corresponding gen_* function will use OP_PTRn rather than s->T0
211 * and s->T1.
212 */
213#define X86_OP_ENTRYrr(op, op0, s0, op1, s1, ...)                 \
214    X86_OP_ENTRY3(op, None, None, op0, s0, op1, s1, ## __VA_ARGS__)
215#define X86_OP_ENTRYwr(op, op0, s0, op1, s1, ...)                 \
216    X86_OP_ENTRY3(op, op0, s0, op1, s1, None, None, ## __VA_ARGS__)
217#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...)                  \
218    X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
219#define X86_OP_ENTRYw(op, op0, s0, ...)                           \
220    X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
221#define X86_OP_ENTRYr(op, op0, s0, ...)                           \
222    X86_OP_ENTRY3(op, None, None, op0, s0, None, None, ## __VA_ARGS__)
223#define X86_OP_ENTRY1(op, op0, s0, ...)                           \
224    X86_OP_ENTRY3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__)
225#define X86_OP_ENTRY0(op, ...)                                    \
226    X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__)
227
228#define cpuid(feat) .cpuid = X86_FEAT_##feat,
229#define nolea .special = X86_SPECIAL_NoLoadEA,
230#define xchg .special = X86_SPECIAL_Locked,
231#define lock .special = X86_SPECIAL_HasLock,
232#define mmx .special = X86_SPECIAL_MMX,
233#define op0_Rd .special = X86_SPECIAL_Op0_Rd,
234#define op2_Ry .special = X86_SPECIAL_Op2_Ry,
235#define avx_movx .special = X86_SPECIAL_AVXExtMov,
236#define sextT0 .special = X86_SPECIAL_SExtT0,
237#define zextT0 .special = X86_SPECIAL_ZExtT0,
238#define op0_Mw .special = X86_SPECIAL_Op0_Mw,
239#define btEvGv .special = X86_SPECIAL_BitTest,
240
241#define vex1 .vex_class = 1,
242#define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar,
243#define vex2 .vex_class = 2,
244#define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar,
245#define vex3 .vex_class = 3,
246#define vex4 .vex_class = 4,
247#define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned,
248#define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar,
249#define vex5 .vex_class = 5,
250#define vex6 .vex_class = 6,
251#define vex7 .vex_class = 7,
252#define vex8 .vex_class = 8,
253#define vex11 .vex_class = 11,
254#define vex12 .vex_class = 12,
255#define vex13 .vex_class = 13,
256
257#define chk(a) .check = X86_CHECK_##a,
258#define chk2(a, b) .check = X86_CHECK_##a | X86_CHECK_##b,
259#define chk3(a, b, c) .check = X86_CHECK_##a | X86_CHECK_##b | X86_CHECK_##c,
260#define svm(a) .intercept = SVM_EXIT_##a, .has_intercept = true,
261
262#define avx2_256 .vex_special = X86_VEX_AVX2_256,
263
264#define P_00          1
265#define P_66          (1 << PREFIX_DATA)
266#define P_F3          (1 << PREFIX_REPZ)
267#define P_F2          (1 << PREFIX_REPNZ)
268
269#define p_00          .valid_prefix = P_00,
270#define p_66          .valid_prefix = P_66,
271#define p_f3          .valid_prefix = P_F3,
272#define p_f2          .valid_prefix = P_F2,
273#define p_00_66       .valid_prefix = P_00 | P_66,
274#define p_00_f3       .valid_prefix = P_00 | P_F3,
275#define p_66_f2       .valid_prefix = P_66 | P_F2,
276#define p_00_66_f3    .valid_prefix = P_00 | P_66 | P_F3,
277#define p_66_f3_f2    .valid_prefix = P_66 | P_F3 | P_F2,
278#define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2,
279
280#define UNKNOWN_OPCODE ((X86OpEntry) {})
281
282static uint8_t get_modrm(DisasContext *s, CPUX86State *env)
283{
284    if (!s->has_modrm) {
285        s->modrm = x86_ldub_code(env, s);
286        s->has_modrm = true;
287    }
288    return s->modrm;
289}
290
291static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4])
292{
293    if (s->prefix & PREFIX_REPNZ) {
294        return &entries[3];
295    } else if (s->prefix & PREFIX_REPZ) {
296        return &entries[2];
297    } else if (s->prefix & PREFIX_DATA) {
298        return &entries[1];
299    } else {
300        return &entries[0];
301    }
302}
303
304static void decode_group8(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
305{
306    static const X86GenFunc group8_gen[8] = {
307        NULL, NULL, NULL, NULL,
308        gen_BT, gen_BTS, gen_BTR, gen_BTC,
309    };
310    int op = (get_modrm(s, env) >> 3) & 7;
311    entry->gen = group8_gen[op];
312    if (op == 4) {
313        /* prevent writeback and LOCK for BT */
314        entry->op1 = entry->op0;
315        entry->op0 = X86_TYPE_None;
316        entry->s0 = X86_SIZE_None;
317    } else {
318        entry->special = X86_SPECIAL_HasLock;
319    }
320}
321
322static void decode_group9(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
323{
324    static const X86OpEntry group9_reg =
325        X86_OP_ENTRY0(multi0F);  /* unconverted */
326    static const X86OpEntry cmpxchg8b =
327        X86_OP_ENTRY1(CMPXCHG8B,  M,q,  lock p_00 cpuid(CX8));
328    static const X86OpEntry cmpxchg16b =
329        X86_OP_ENTRY1(CMPXCHG16B, M,dq, lock p_00 cpuid(CX16));
330
331    int modrm = get_modrm(s, env);
332    int op = (modrm >> 3) & 7;
333
334    if ((modrm >> 6) == 3) {
335        *entry = group9_reg;
336    } else if (op == 1) {
337        *entry = REX_W(s) ? cmpxchg16b : cmpxchg8b;
338    }
339}
340
341static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
342{
343    static const X86OpEntry group15_reg[8] = {
344        [0] = X86_OP_ENTRYw(RDxxBASE,   R,y, cpuid(FSGSBASE) chk(o64) p_f3),
345        [1] = X86_OP_ENTRYw(RDxxBASE,   R,y, cpuid(FSGSBASE) chk(o64) p_f3),
346        [2] = X86_OP_ENTRYr(WRxxBASE,   R,y, cpuid(FSGSBASE) chk(o64) p_f3 zextT0),
347        [3] = X86_OP_ENTRYr(WRxxBASE,   R,y, cpuid(FSGSBASE) chk(o64) p_f3 zextT0),
348        [5] = X86_OP_ENTRY0(LFENCE,          cpuid(SSE) p_00),
349        [6] = X86_OP_ENTRY0(MFENCE,          cpuid(SSE2) p_00),
350        [7] = X86_OP_ENTRY0(SFENCE,          cpuid(SSE) p_00),
351    };
352
353    static const X86OpEntry group15_mem[8] = {
354        [0] = X86_OP_ENTRYw(FXSAVE,     M,y, cpuid(FXSR) p_00),
355        [1] = X86_OP_ENTRYr(FXRSTOR,    M,y, cpuid(FXSR) p_00),
356        [2] = X86_OP_ENTRYr(LDMXCSR,    E,d, vex5 chk(VEX128) p_00),
357        [3] = X86_OP_ENTRYw(STMXCSR,    E,d, vex5 chk(VEX128) p_00),
358        [4] = X86_OP_ENTRYw(XSAVE,      M,y, cpuid(XSAVE) p_00),
359        [5] = X86_OP_ENTRYr(XRSTOR,     M,y, cpuid(XSAVE) p_00),
360        [6] = X86_OP_ENTRYw(XSAVEOPT,   M,b, cpuid(XSAVEOPT) p_00),
361        [7] = X86_OP_ENTRYw(NOP,        M,b, cpuid(CLFLUSH) p_00),
362    };
363
364    static const X86OpEntry group15_mem_66[8] = {
365        [6] = X86_OP_ENTRYw(NOP,        M,b, cpuid(CLWB)),
366        [7] = X86_OP_ENTRYw(NOP,        M,b, cpuid(CLFLUSHOPT)),
367    };
368
369    uint8_t modrm = get_modrm(s, env);
370    int op = (modrm >> 3) & 7;
371
372    if ((modrm >> 6) == 3) {
373        *entry = group15_reg[op];
374    } else if (s->prefix & PREFIX_DATA) {
375        *entry = group15_mem_66[op];
376    } else {
377        *entry = group15_mem[op];
378    }
379}
380
381static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
382{
383    static const X86GenFunc group17_gen[8] = {
384        NULL, gen_BLSR, gen_BLSMSK, gen_BLSI,
385    };
386    int op = (get_modrm(s, env) >> 3) & 7;
387    entry->gen = group17_gen[op];
388}
389
390static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
391{
392    static const X86OpEntry opcodes_group12[8] = {
393        {},
394        {},
395        X86_OP_ENTRY3(PSRLW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
396        {},
397        X86_OP_ENTRY3(PSRAW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
398        {},
399        X86_OP_ENTRY3(PSLLW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
400        {},
401    };
402
403    int op = (get_modrm(s, env) >> 3) & 7;
404    *entry = opcodes_group12[op];
405}
406
407static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
408{
409    static const X86OpEntry opcodes_group13[8] = {
410        {},
411        {},
412        X86_OP_ENTRY3(PSRLD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
413        {},
414        X86_OP_ENTRY3(PSRAD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
415        {},
416        X86_OP_ENTRY3(PSLLD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
417        {},
418    };
419
420    int op = (get_modrm(s, env) >> 3) & 7;
421    *entry = opcodes_group13[op];
422}
423
424static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
425{
426    static const X86OpEntry opcodes_group14[8] = {
427        /* grp14 */
428        {},
429        {},
430        X86_OP_ENTRY3(PSRLQ_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
431        X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
432        {},
433        {},
434        X86_OP_ENTRY3(PSLLQ_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
435        X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
436    };
437
438    int op = (get_modrm(s, env) >> 3) & 7;
439    *entry = opcodes_group14[op];
440}
441
442static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
443{
444    static const X86OpEntry opcodes_0F6F[4] = {
445        X86_OP_ENTRY3(MOVDQ,       P,q, None,None, Q,q, vex5 mmx),  /* movq */
446        X86_OP_ENTRY3(MOVDQ,       V,x, None,None, W,x, vex1),      /* movdqa */
447        X86_OP_ENTRY3(MOVDQ,       V,x, None,None, W,x, vex4_unal), /* movdqu */
448        {},
449    };
450    *entry = *decode_by_prefix(s, opcodes_0F6F);
451}
452
453static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
454{
455    static const X86OpEntry pshufw[4] = {
456        X86_OP_ENTRY3(PSHUFW,  P,q, Q,q, I,b, vex4 mmx),
457        X86_OP_ENTRY3(PSHUFD,  V,x, W,x, I,b, vex4 avx2_256),
458        X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256),
459        X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256),
460    };
461
462    *entry = *decode_by_prefix(s, pshufw);
463}
464
465static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
466{
467    if (!(s->prefix & PREFIX_VEX)) {
468        entry->gen = gen_EMMS;
469    } else if (!s->vex_l) {
470        entry->gen = gen_VZEROUPPER;
471        entry->vex_class = 8;
472    } else {
473        entry->gen = gen_VZEROALL;
474        entry->vex_class = 8;
475    }
476}
477
478static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
479{
480    static const X86OpEntry opcodes_0F78[4] = {
481        {},
482        X86_OP_ENTRY3(EXTRQ_i,       V,x, None,None, I,w,  cpuid(SSE4A)), /* AMD extension */
483        {},
484        X86_OP_ENTRY3(INSERTQ_i,     V,x, U,x, I,w,        cpuid(SSE4A)), /* AMD extension */
485    };
486    *entry = *decode_by_prefix(s, opcodes_0F78);
487}
488
489static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
490{
491    if (s->prefix & PREFIX_REPNZ) {
492        entry->gen = gen_INSERTQ_r; /* AMD extension */
493    } else if (s->prefix & PREFIX_DATA) {
494        entry->gen = gen_EXTRQ_r; /* AMD extension */
495    } else {
496        entry->gen = NULL;
497    };
498}
499
500static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
501{
502    static const X86OpEntry opcodes_0F7E[4] = {
503        X86_OP_ENTRY3(MOVD_from,  E,y, None,None, P,y, vex5 mmx),
504        X86_OP_ENTRY3(MOVD_from,  E,y, None,None, V,y, vex5),
505        X86_OP_ENTRY3(MOVQ,       V,x, None,None, W,q, vex5),  /* wrong dest Vy on SDM! */
506        {},
507    };
508    *entry = *decode_by_prefix(s, opcodes_0F7E);
509}
510
511static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
512{
513    static const X86OpEntry opcodes_0F7F[4] = {
514        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex5 mmx), /* movq */
515        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex1), /* movdqa */
516        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex4_unal), /* movdqu */
517        {},
518    };
519    *entry = *decode_by_prefix(s, opcodes_0F7F);
520}
521
522static void decode_0FB8(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
523{
524    static const X86OpEntry popcnt =
525        X86_OP_ENTRYwr(POPCNT,    G,v, E,v,  cpuid(POPCNT) zextT0);
526
527    if (s->prefix & PREFIX_REPZ) {
528        *entry = popcnt;
529    } else {
530        memset(entry, 0, sizeof(*entry));
531    }
532}
533
534static void decode_0FBC(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
535{
536    /* For BSF, pass 2op as the third operand so that we can use zextT0 */
537    static const X86OpEntry opcodes_0FBC[4] = {
538        X86_OP_ENTRY3(BSF,    G,v, E,v, 2op,v, zextT0),
539        X86_OP_ENTRY3(BSF,    G,v, E,v, 2op,v, zextT0), /* 0x66 */
540        X86_OP_ENTRYwr(TZCNT, G,v, E,v,        zextT0), /* 0xf3 */
541        X86_OP_ENTRY3(BSF,    G,v, E,v, 2op,v, zextT0), /* 0xf2 */
542    };
543    if (!(s->cpuid_ext3_features & CPUID_EXT3_ABM)) {
544        *entry = opcodes_0FBC[0];
545    } else {
546        *entry = *decode_by_prefix(s, opcodes_0FBC);
547    }
548}
549
550static void decode_0FBD(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
551{
552    /* For BSR, pass 2op as the third operand so that we can use zextT0 */
553    static const X86OpEntry opcodes_0FBD[4] = {
554        X86_OP_ENTRY3(BSR,    G,v, E,v, 2op,v, zextT0),
555        X86_OP_ENTRY3(BSR,    G,v, E,v, 2op,v, zextT0), /* 0x66 */
556        X86_OP_ENTRYwr(LZCNT, G,v, E,v,        zextT0), /* 0xf3 */
557        X86_OP_ENTRY3(BSR,    G,v, E,v, 2op,v, zextT0), /* 0xf2 */
558    };
559    if (!(s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1)) {
560        *entry = opcodes_0FBD[0];
561    } else {
562        *entry = *decode_by_prefix(s, opcodes_0FBD);
563    }
564}
565
566static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
567{
568    static const X86OpEntry movq[4] = {
569        {},
570        X86_OP_ENTRY3(MOVQ,    W,x,  None, None, V,q, vex5),
571        X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q),
572        X86_OP_ENTRY3(MOVq_dq, P,q,  None, None, U,q),
573    };
574
575    *entry = *decode_by_prefix(s, movq);
576}
577
578static const X86OpEntry opcodes_0F38_00toEF[240] = {
579    [0x00] = X86_OP_ENTRY3(PSHUFB,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
580    [0x01] = X86_OP_ENTRY3(PHADDW,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
581    [0x02] = X86_OP_ENTRY3(PHADDD,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
582    [0x03] = X86_OP_ENTRY3(PHADDSW,   V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
583    [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
584    [0x05] = X86_OP_ENTRY3(PHSUBW,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
585    [0x06] = X86_OP_ENTRY3(PHSUBD,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
586    [0x07] = X86_OP_ENTRY3(PHSUBSW,   V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
587
588    [0x10] = X86_OP_ENTRY2(PBLENDVB,  V,x,         W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
589    [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x,         W,xh, vex11 chk(W0) cpuid(F16C) p_66),
590    [0x14] = X86_OP_ENTRY2(BLENDVPS,  V,x,         W,x,  vex4 cpuid(SSE41) p_66),
591    [0x15] = X86_OP_ENTRY2(BLENDVPD,  V,x,         W,x,  vex4 cpuid(SSE41) p_66),
592    /* Listed incorrectly as type 4 */
593    [0x16] = X86_OP_ENTRY3(VPERMD,    V,qq, H,qq,      W,qq,  vex6 chk(W0) cpuid(AVX2) p_66), /* vpermps */
594    [0x17] = X86_OP_ENTRY3(VPTEST,    None,None, V,x,  W,x,   vex4 cpuid(SSE41) p_66),
595
596    /*
597     * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed
598     * as 128-bit only in 2-17.
599     */
600    [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
601    [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
602    [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x,  None,None, W,w,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
603    [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
604    [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
605    [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
606
607    /* Same as PMOVSX.  */
608    [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
609    [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
610    [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x,  None,None, W,w,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
611    [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
612    [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
613    [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
614    [0x36] = X86_OP_ENTRY3(VPERMD,    V,qq, H,qq,      W,qq,  vex6 chk(W0) cpuid(AVX2) p_66),
615    [0x37] = X86_OP_ENTRY3(PCMPGTQ,   V,x,  H,x,       W,x,   vex4 cpuid(SSE42) avx2_256 p_66),
616
617    [0x40] = X86_OP_ENTRY3(PMULLD,      V,x,  H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
618    [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66),
619    /* Listed incorrectly as type 4 */
620    [0x45] = X86_OP_ENTRY3(VPSRLV,      V,x,  H,x,       W,x,  vex6 cpuid(AVX2) p_66),
621    [0x46] = X86_OP_ENTRY3(VPSRAV,      V,x,  H,x,       W,x,  vex6 chk(W0) cpuid(AVX2) p_66),
622    [0x47] = X86_OP_ENTRY3(VPSLLV,      V,x,  H,x,       W,x,  vex6 cpuid(AVX2) p_66),
623
624    [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x,  H,x,  M,d,  vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */
625    [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x,  H,x,  M,q,  vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */
626    [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x,  H,x,  M,d,  vex12 cpuid(AVX2) p_66), /* vgatherdps/d */
627    [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x,  H,x,  M,q,  vex12 cpuid(AVX2) p_66), /* vgatherqps/d */
628
629    /* Should be exception type 2 but they do not have legacy SSE equivalents? */
630    [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
631    [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
632
633    [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
634    [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
635
636    [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
637    [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
638
639    [0x08] = X86_OP_ENTRY3(PSIGNB,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
640    [0x09] = X86_OP_ENTRY3(PSIGNW,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
641    [0x0a] = X86_OP_ENTRY3(PSIGND,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
642    [0x0b] = X86_OP_ENTRY3(PMULHRSW,  V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
643    /* Listed incorrectly as type 4 */
644    [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x,        H,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_00_66),
645    [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x,        H,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_66),
646    [0x0e] = X86_OP_ENTRY3(VTESTPS,   None,None,  V,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_66),
647    [0x0f] = X86_OP_ENTRY3(VTESTPD,   None,None,  V,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_66),
648
649    [0x18] = X86_OP_ENTRY3(VPBROADCASTD,   V,x,  None,None, W,d,  vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastss */
650    [0x19] = X86_OP_ENTRY3(VPBROADCASTQ,   V,qq, None,None, W,q,  vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastsd */
651    [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX) p_66),
652    [0x1c] = X86_OP_ENTRY3(PABSB,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
653    [0x1d] = X86_OP_ENTRY3(PABSW,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
654    [0x1e] = X86_OP_ENTRY3(PABSD,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
655
656    [0x28] = X86_OP_ENTRY3(PMULDQ,        V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
657    [0x29] = X86_OP_ENTRY3(PCMPEQQ,       V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
658    [0x2a] = X86_OP_ENTRY3(MOVDQ,         V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */
659    [0x2b] = X86_OP_ENTRY3(VPACKUSDW,     V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
660    [0x2c] = X86_OP_ENTRY3(VMASKMOVPS,    V,x, H,x,       WM,x, vex6 chk(W0) cpuid(AVX) p_66),
661    [0x2d] = X86_OP_ENTRY3(VMASKMOVPD,    V,x, H,x,       WM,x, vex6 chk(W0) cpuid(AVX) p_66),
662    /* Incorrectly listed as Mx,Hx,Vx in the manual */
663    [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x,       H,x,  vex6 chk(W0) cpuid(AVX) p_66),
664    [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x,       H,x,  vex6 chk(W0) cpuid(AVX) p_66),
665
666    [0x38] = X86_OP_ENTRY3(PMINSB,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
667    [0x39] = X86_OP_ENTRY3(PMINSD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
668    [0x3a] = X86_OP_ENTRY3(PMINUW,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
669    [0x3b] = X86_OP_ENTRY3(PMINUD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
670    [0x3c] = X86_OP_ENTRY3(PMAXSB,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
671    [0x3d] = X86_OP_ENTRY3(PMAXSD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
672    [0x3e] = X86_OP_ENTRY3(PMAXUW,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
673    [0x3f] = X86_OP_ENTRY3(PMAXUD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
674
675    /* VPBROADCASTQ not listed as W0 in table 2-16 */
676    [0x58] = X86_OP_ENTRY3(VPBROADCASTD,   V,x,  None,None, W,d,  vex6 chk(W0) cpuid(AVX2) p_66),
677    [0x59] = X86_OP_ENTRY3(VPBROADCASTQ,   V,x,  None,None, W,q,  vex6 chk(W0) cpuid(AVX2) p_66),
678    [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX2) p_66),
679
680    [0x78] = X86_OP_ENTRY3(VPBROADCASTB,   V,x,  None,None, W,b,  vex6 chk(W0) cpuid(AVX2) p_66),
681    [0x79] = X86_OP_ENTRY3(VPBROADCASTW,   V,x,  None,None, W,w,  vex6 chk(W0) cpuid(AVX2) p_66),
682
683    [0x8c] = X86_OP_ENTRY3(VPMASKMOV,    V,x,  H,x, WM,x, vex6 cpuid(AVX2) p_66),
684    [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x,  V,x, H,x,  vex6 cpuid(AVX2) p_66),
685
686    /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */
687    [0x98] = X86_OP_ENTRY3(VFMADD132Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
688    [0x99] = X86_OP_ENTRY3(VFMADD132Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
689    [0x9a] = X86_OP_ENTRY3(VFMSUB132Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
690    [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
691    [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
692    [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
693    [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
694    [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
695
696    [0xa8] = X86_OP_ENTRY3(VFMADD213Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
697    [0xa9] = X86_OP_ENTRY3(VFMADD213Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
698    [0xaa] = X86_OP_ENTRY3(VFMSUB213Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
699    [0xab] = X86_OP_ENTRY3(VFMSUB213Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
700    [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
701    [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
702    [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
703    [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
704
705    [0xb8] = X86_OP_ENTRY3(VFMADD231Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
706    [0xb9] = X86_OP_ENTRY3(VFMADD231Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
707    [0xba] = X86_OP_ENTRY3(VFMSUB231Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
708    [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
709    [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
710    [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
711    [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
712    [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
713
714    [0xc8] = X86_OP_ENTRY2(SHA1NEXTE,   V,dq, W,dq, cpuid(SHA_NI)),
715    [0xc9] = X86_OP_ENTRY2(SHA1MSG1,    V,dq, W,dq, cpuid(SHA_NI)),
716    [0xca] = X86_OP_ENTRY2(SHA1MSG2,    V,dq, W,dq, cpuid(SHA_NI)),
717    [0xcb] = X86_OP_ENTRY2(SHA256RNDS2, V,dq, W,dq, cpuid(SHA_NI)),
718    [0xcc] = X86_OP_ENTRY2(SHA256MSG1,  V,dq, W,dq, cpuid(SHA_NI)),
719    [0xcd] = X86_OP_ENTRY2(SHA256MSG2,  V,dq, W,dq, cpuid(SHA_NI)),
720
721    [0xdb] = X86_OP_ENTRY3(VAESIMC,     V,dq, None,None, W,dq, vex4 cpuid(AES) p_66),
722    [0xdc] = X86_OP_ENTRY3(VAESENC,     V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
723    [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
724    [0xde] = X86_OP_ENTRY3(VAESDEC,     V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
725    [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
726
727    /*
728     * REG selects srcdest2 operand, VEX.vvvv selects src3.  VEX class not found
729     * in manual, assumed to be 13 from the VEX.L0 constraint.
730     */
731    [0xe0] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
732    [0xe1] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
733    [0xe2] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
734    [0xe3] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
735    [0xe4] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
736    [0xe5] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
737    [0xe6] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
738    [0xe7] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
739
740    [0xe8] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
741    [0xe9] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
742    [0xea] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
743    [0xeb] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
744    [0xec] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
745    [0xed] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
746    [0xee] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
747    [0xef] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
748};
749
750/* five rows for no prefix, 66, F3, F2, 66+F2  */
751static const X86OpEntry opcodes_0F38_F0toFF[16][5] = {
752    [0] = {
753        X86_OP_ENTRYwr(MOVBE, G,y, M,y, cpuid(MOVBE)),
754        X86_OP_ENTRYwr(MOVBE, G,w, M,w, cpuid(MOVBE)),
755        {},
756        X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
757        X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
758    },
759    [1] = {
760        X86_OP_ENTRYwr(MOVBE, M,y, G,y, cpuid(MOVBE)),
761        X86_OP_ENTRYwr(MOVBE, M,w, G,w, cpuid(MOVBE)),
762        {},
763        X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)),
764        X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)),
765    },
766    [2] = {
767        X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)),
768        {},
769        {},
770        {},
771        {},
772    },
773    [3] = {
774        X86_OP_GROUP3(group17, B,y, None,None, E,y, vex13 cpuid(BMI1)),
775        {},
776        {},
777        {},
778        {},
779    },
780    [5] = {
781        X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)),
782        {},
783        X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)),
784        X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)),
785        {},
786    },
787    [6] = {
788        {},
789        X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)),
790        X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)),
791        X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)),
792        {},
793    },
794    [7] = {
795        X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)),
796        X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
797        X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 sextT0 cpuid(BMI1)),
798        X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)),
799        {},
800    },
801};
802
803static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
804{
805    *b = x86_ldub_code(env, s);
806    if (*b < 0xf0) {
807        *entry = opcodes_0F38_00toEF[*b];
808    } else {
809        int row = 0;
810        if (s->prefix & PREFIX_REPZ) {
811            /* The REPZ (F3) prefix has priority over 66 */
812            row = 2;
813        } else {
814            row += s->prefix & PREFIX_REPNZ ? 3 : 0;
815            row += s->prefix & PREFIX_DATA ? 1 : 0;
816        }
817        *entry = opcodes_0F38_F0toFF[*b & 15][row];
818    }
819}
820
821static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
822{
823    static const X86OpEntry
824        vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66),
825        vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d,  vex5 cpuid(SSE41) p_66);
826
827    int modrm = get_modrm(s, env);
828    *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem;
829}
830
831static const X86OpEntry opcodes_0F3A[256] = {
832    /*
833     * These are VEX-only, but incorrectly listed in the manual as exception type 4.
834     * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256
835     * only.
836     */
837    [0x00] = X86_OP_ENTRY3(VPERMQ,      V,qq, W,qq, I,b,  vex6 chk(W1) cpuid(AVX2) p_66),
838    [0x01] = X86_OP_ENTRY3(VPERMQ,      V,qq, W,qq, I,b,  vex6 chk(W1) cpuid(AVX2) p_66), /* VPERMPD */
839    [0x02] = X86_OP_ENTRY4(VBLENDPS,    V,x,  H,x,  W,x,  vex6 chk(W0) cpuid(AVX2) p_66), /* VPBLENDD */
840    [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x,  W,x,  I,b,  vex6 chk(W0) cpuid(AVX) p_66),
841    [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x,  W,x,  I,b,  vex6 chk(W0) cpuid(AVX) p_66),
842    [0x06] = X86_OP_ENTRY4(VPERM2x128,  V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66),
843
844    [0x14] = X86_OP_ENTRY3(PEXTRB,     E,b,  V,dq, I,b,  vex5 cpuid(SSE41) op0_Rd p_66),
845    [0x15] = X86_OP_ENTRY3(PEXTRW,     E,w,  V,dq, I,b,  vex5 cpuid(SSE41) op0_Rd p_66),
846    [0x16] = X86_OP_ENTRY3(PEXTR,      E,y,  V,dq, I,b,  vex5 cpuid(SSE41) p_66),
847    [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d,  V,dq, I,b,  vex5 cpuid(SSE41) p_66),
848    [0x1d] = X86_OP_ENTRY3(VCVTPS2PH,  W,xh, V,x,  I,b,  vex11 chk(W0) cpuid(F16C) p_66),
849
850    [0x20] = X86_OP_ENTRY4(PINSRB,     V,dq, H,dq, E,b,  vex5 cpuid(SSE41) op2_Ry p_66),
851    [0x21] = X86_OP_GROUP0(VINSERTPS),
852    [0x22] = X86_OP_ENTRY4(PINSR,      V,dq, H,dq, E,y,  vex5 cpuid(SSE41) p_66),
853
854    [0x40] = X86_OP_ENTRY4(VDDPS,      V,x,  H,x,  W,x,  vex2 cpuid(SSE41) p_66),
855    [0x41] = X86_OP_ENTRY4(VDDPD,      V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66),
856    [0x42] = X86_OP_ENTRY4(VMPSADBW,   V,x,  H,x,  W,x,  vex2 cpuid(SSE41) avx2_256 p_66),
857    [0x44] = X86_OP_ENTRY4(PCLMULQDQ,  V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66),
858    [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66),
859
860    [0x60] = X86_OP_ENTRY4(PCMPESTRM,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
861    [0x61] = X86_OP_ENTRY4(PCMPESTRI,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
862    [0x62] = X86_OP_ENTRY4(PCMPISTRM,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
863    [0x63] = X86_OP_ENTRY4(PCMPISTRI,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
864
865    [0x08] = X86_OP_ENTRY3(VROUNDPS,   V,x,  W,x,  I,b,  vex2 cpuid(SSE41) p_66),
866    [0x09] = X86_OP_ENTRY3(VROUNDPD,   V,x,  W,x,  I,b,  vex2 cpuid(SSE41) p_66),
867    /*
868     * Not listed as four operand in the manual.  Also writes and reads 128-bits
869     * from the first two operands due to the V operand picking higher entries of
870     * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect.
871     * For other unary operations such as VSQRTSx this is hidden by the "REPScalar"
872     * value of vex_special, because the table lists the operand types of VSQRTPx.
873     */
874    [0x0a] = X86_OP_ENTRY4(VROUNDSS,   V,x,  H,x, W,ss, vex3 cpuid(SSE41) p_66),
875    [0x0b] = X86_OP_ENTRY4(VROUNDSD,   V,x,  H,x, W,sd, vex3 cpuid(SSE41) p_66),
876    [0x0c] = X86_OP_ENTRY4(VBLENDPS,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) p_66),
877    [0x0d] = X86_OP_ENTRY4(VBLENDPD,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) p_66),
878    [0x0e] = X86_OP_ENTRY4(VPBLENDW,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
879    [0x0f] = X86_OP_ENTRY4(PALIGNR,    V,x,  H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
880
881    [0x18] = X86_OP_ENTRY4(VINSERTx128,  V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66),
882    [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b,  vex6 chk(W0) cpuid(AVX) p_66),
883
884    [0x38] = X86_OP_ENTRY4(VINSERTx128,  V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66),
885    [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b,  vex6 chk(W0) cpuid(AVX2) p_66),
886
887    /* Listed incorrectly as type 4 */
888    [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x,  H,x,  W,x,   vex6 chk(W0) cpuid(AVX) p_66),
889    [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x,  H,x,  W,x,   vex6 chk(W0) cpuid(AVX) p_66),
890    [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x,  H,x,  W,x,   vex6 chk(W0) cpuid(AVX) p_66 avx2_256),
891
892    [0xcc] = X86_OP_ENTRY3(SHA1RNDS4,  V,dq, W,dq, I,b,  cpuid(SHA_NI)),
893
894    [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b,  vex4 cpuid(AES) p_66),
895
896    [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2),
897};
898
899static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
900{
901    *b = x86_ldub_code(env, s);
902    *entry = opcodes_0F3A[*b];
903}
904
905/*
906 * There are some mistakes in the operands in the manual, and the load/store/register
907 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and
908 * efficiency of implementation rather than copying what the manual says.
909 *
910 * In particular:
911 *
912 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b,
913 * but this is not mentioned in the tables.
914 *
915 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their
916 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high
917 * quadword of the V operand.
918 */
919static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
920{
921    static const X86OpEntry opcodes_0F10_reg[4] = {
922        X86_OP_ENTRY3(MOVDQ,   V,x,  None,None, W,x, vex4_unal), /* MOVUPS */
923        X86_OP_ENTRY3(MOVDQ,   V,x,  None,None, W,x, vex4_unal), /* MOVUPD */
924        X86_OP_ENTRY3(VMOVSS,  V,x,  H,x,       W,x, vex5),
925        X86_OP_ENTRY3(VMOVLPx, V,x,  H,x,       W,x, vex5), /* MOVSD */
926    };
927
928    static const X86OpEntry opcodes_0F10_mem[4] = {
929        X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x,  vex4_unal), /* MOVUPS */
930        X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x,  vex4_unal), /* MOVUPD */
931        X86_OP_ENTRY3(VMOVSS_ld,  V,x,  H,x,       M,ss, vex5),
932        X86_OP_ENTRY3(VMOVSD_ld,  V,x,  H,x,       M,sd, vex5),
933    };
934
935    if ((get_modrm(s, env) >> 6) == 3) {
936        *entry = *decode_by_prefix(s, opcodes_0F10_reg);
937    } else {
938        *entry = *decode_by_prefix(s, opcodes_0F10_mem);
939    }
940}
941
942static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
943{
944    static const X86OpEntry opcodes_0F11_reg[4] = {
945        X86_OP_ENTRY3(MOVDQ,   W,x,  None,None, V,x, vex4), /* MOVUPS */
946        X86_OP_ENTRY3(MOVDQ,   W,x,  None,None, V,x, vex4), /* MOVUPD */
947        X86_OP_ENTRY3(VMOVSS,  W,x,  H,x,       V,x, vex5),
948        X86_OP_ENTRY3(VMOVLPx, W,x,  H,x,       V,q, vex5), /* MOVSD */
949    };
950
951    static const X86OpEntry opcodes_0F11_mem[4] = {
952        X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex4), /* MOVUPS */
953        X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex4), /* MOVUPD */
954        X86_OP_ENTRY3(VMOVSS_st,  M,ss, None,None, V,x, vex5),
955        X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */
956    };
957
958    if ((get_modrm(s, env) >> 6) == 3) {
959        *entry = *decode_by_prefix(s, opcodes_0F11_reg);
960    } else {
961        *entry = *decode_by_prefix(s, opcodes_0F11_mem);
962    }
963}
964
965static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
966{
967    static const X86OpEntry opcodes_0F12_mem[4] = {
968        /*
969         * Use dq for operand for compatibility with gen_MOVSD and
970         * to allow VEX128 only.
971         */
972        X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVLPS */
973        X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVLPD */
974        X86_OP_ENTRY3(VMOVSLDUP,  V,x,  None,None, W,x, vex4 cpuid(SSE3)),
975        X86_OP_ENTRY3(VMOVDDUP,   V,x,  None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */
976    };
977    static const X86OpEntry opcodes_0F12_reg[4] = {
978        X86_OP_ENTRY3(VMOVHLPS,  V,dq, H,dq,       U,dq, vex7),
979        X86_OP_ENTRY3(VMOVLPx,   W,x,  H,x,        U,q,  vex5), /* MOVLPD */
980        X86_OP_ENTRY3(VMOVSLDUP, V,x,  None,None,  U,x,  vex4 cpuid(SSE3)),
981        X86_OP_ENTRY3(VMOVDDUP,  V,x,  None,None,  U,x,  vex5 cpuid(SSE3)),
982    };
983
984    if ((get_modrm(s, env) >> 6) == 3) {
985        *entry = *decode_by_prefix(s, opcodes_0F12_reg);
986    } else {
987        *entry = *decode_by_prefix(s, opcodes_0F12_mem);
988        if ((s->prefix & PREFIX_REPNZ) && s->vex_l) {
989            entry->s2 = X86_SIZE_qq;
990        }
991    }
992}
993
994static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
995{
996    static const X86OpEntry opcodes_0F16_mem[4] = {
997        /*
998         * Operand 1 technically only reads the low 64 bits, but uses dq so that
999         * it is easier to check for op0 == op1 in an endianness-neutral manner.
1000         */
1001        X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVHPS */
1002        X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVHPD */
1003        X86_OP_ENTRY3(VMOVSHDUP,  V,x,  None,None, W,x, vex4 cpuid(SSE3)),
1004        {},
1005    };
1006    static const X86OpEntry opcodes_0F16_reg[4] = {
1007        /* Same as above, operand 1 could be Hq if it wasn't for big-endian.  */
1008        X86_OP_ENTRY3(VMOVLHPS,  V,dq, H,dq,      U,q, vex7),
1009        X86_OP_ENTRY3(VMOVHPx,   V,x,  H,x,       U,x, vex5), /* MOVHPD */
1010        X86_OP_ENTRY3(VMOVSHDUP, V,x,  None,None, U,x, vex4 cpuid(SSE3)),
1011        {},
1012    };
1013
1014    if ((get_modrm(s, env) >> 6) == 3) {
1015        *entry = *decode_by_prefix(s, opcodes_0F16_reg);
1016    } else {
1017        *entry = *decode_by_prefix(s, opcodes_0F16_mem);
1018    }
1019}
1020
1021static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1022{
1023    static const X86OpEntry opcodes_0F2A[4] = {
1024        X86_OP_ENTRY3(CVTPI2Px,  V,x,  None,None, Q,q),
1025        X86_OP_ENTRY3(CVTPI2Px,  V,x,  None,None, Q,q),
1026        X86_OP_ENTRY3(VCVTSI2Sx, V,x,  H,x, E,y,        vex3),
1027        X86_OP_ENTRY3(VCVTSI2Sx, V,x,  H,x, E,y,        vex3),
1028    };
1029    *entry = *decode_by_prefix(s, opcodes_0F2A);
1030}
1031
1032static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1033{
1034    static const X86OpEntry opcodes_0F2B[4] = {
1035        X86_OP_ENTRY3(MOVDQ,      M,x,  None,None, V,x, vex1), /* MOVNTPS */
1036        X86_OP_ENTRY3(MOVDQ,      M,x,  None,None, V,x, vex1), /* MOVNTPD */
1037        /* AMD extensions */
1038        X86_OP_ENTRY3(VMOVSS_st,  M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */
1039        X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */
1040    };
1041
1042    *entry = *decode_by_prefix(s, opcodes_0F2B);
1043}
1044
1045static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1046{
1047    static const X86OpEntry opcodes_0F2C[4] = {
1048        /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit.  */
1049        X86_OP_ENTRY3(CVTTPx2PI,  P,q,  None,None, W,q),
1050        X86_OP_ENTRY3(CVTTPx2PI,  P,q,  None,None, W,dq),
1051        X86_OP_ENTRY3(VCVTTSx2SI, G,y,  None,None, W,ss, vex3),
1052        X86_OP_ENTRY3(VCVTTSx2SI, G,y,  None,None, W,sd, vex3),
1053    };
1054    *entry = *decode_by_prefix(s, opcodes_0F2C);
1055}
1056
1057static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1058{
1059    static const X86OpEntry opcodes_0F2D[4] = {
1060        /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit.  */
1061        X86_OP_ENTRY3(CVTPx2PI,  P,q,  None,None, W,q),
1062        X86_OP_ENTRY3(CVTPx2PI,  P,q,  None,None, W,dq),
1063        X86_OP_ENTRY3(VCVTSx2SI, G,y,  None,None, W,ss, vex3),
1064        X86_OP_ENTRY3(VCVTSx2SI, G,y,  None,None, W,sd, vex3),
1065    };
1066    *entry = *decode_by_prefix(s, opcodes_0F2D);
1067}
1068
1069static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1070{
1071    /*
1072     * VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD
1073     * respectively.  Scalar values usually are associated with 0xF2 and 0xF3, for
1074     * which X86_VEX_REPScalar exists, but here it has to be decoded by hand.
1075     */
1076    entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss);
1077    entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI);
1078}
1079
1080static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1081{
1082    if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) {
1083        entry->op1 = X86_TYPE_None;
1084        entry->s1 = X86_SIZE_None;
1085    }
1086    switch (*b) {
1087    case 0x51: entry->gen = gen_VSQRT; break;
1088    case 0x52: entry->gen = gen_VRSQRT; break;
1089    case 0x53: entry->gen = gen_VRCP; break;
1090    }
1091}
1092
1093static void decode_0F5A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1094{
1095    static const X86OpEntry opcodes_0F5A[4] = {
1096        X86_OP_ENTRY2(VCVTPS2PD,  V,x,       W,xh, vex2),      /* VCVTPS2PD */
1097        X86_OP_ENTRY2(VCVTPD2PS,  V,x,       W,x,  vex2),      /* VCVTPD2PS */
1098        X86_OP_ENTRY3(VCVTSS2SD,  V,x,  H,x, W,x,  vex2_rep3), /* VCVTSS2SD */
1099        X86_OP_ENTRY3(VCVTSD2SS,  V,x,  H,x, W,x,  vex2_rep3), /* VCVTSD2SS */
1100    };
1101    *entry = *decode_by_prefix(s, opcodes_0F5A);
1102}
1103
1104static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1105{
1106    static const X86OpEntry opcodes_0F5B[4] = {
1107        X86_OP_ENTRY2(VCVTDQ2PS,   V,x, W,x,      vex2),
1108        X86_OP_ENTRY2(VCVTPS2DQ,   V,x, W,x,      vex2),
1109        X86_OP_ENTRY2(VCVTTPS2DQ,  V,x, W,x,      vex2),
1110        {},
1111    };
1112    *entry = *decode_by_prefix(s, opcodes_0F5B);
1113}
1114
1115static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1116{
1117    static const X86OpEntry opcodes_0FE6[4] = {
1118        {},
1119        X86_OP_ENTRY2(VCVTTPD2DQ,  V,x, W,x,      vex2),
1120        X86_OP_ENTRY2(VCVTDQ2PD,   V,x, W,x,      vex5),
1121        X86_OP_ENTRY2(VCVTPD2DQ,   V,x, W,x,      vex2),
1122    };
1123    *entry = *decode_by_prefix(s, opcodes_0FE6);
1124}
1125
1126/*
1127 * These ignore the mod bits (assume (modrm&0xc0)==0xc0), so group the
1128 * pre-decode tweak here for all MOVs from/to CR and DR.
1129 *
1130 * AMD documentation (24594.pdf) and testing of Intel 386 and 486
1131 * processors all show that the mod bits are assumed to be 1's,
1132 * regardless of actual values.
1133 */
1134static void decode_MOV_CR_DR(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1135{
1136    /*
1137     */
1138    get_modrm(s, env);
1139    s->modrm |= 0xC0;
1140
1141    entry->gen = gen_MOV;
1142}
1143
1144static const X86OpEntry opcodes_0F[256] = {
1145    [0x00] = X86_OP_ENTRY1(multi0F,     nop,v,                nolea), /* unconverted */
1146    [0x01] = X86_OP_ENTRY1(multi0F,     nop,v,                nolea), /* unconverted */
1147    [0x02] = X86_OP_ENTRYwr(LAR,        G,v, E,w,             chk(prot)),
1148    [0x03] = X86_OP_ENTRYwr(LSL,        G,v, E,w,             chk(prot)),
1149    [0x05] = X86_OP_ENTRY0(SYSCALL,                           chk(o64_intel)),
1150    [0x06] = X86_OP_ENTRY0(CLTS,                              chk(cpl0) svm(WRITE_CR0)),
1151    [0x07] = X86_OP_ENTRY0(SYSRET,                            chk3(o64_intel, prot, cpl0)),
1152
1153    [0x10] = X86_OP_GROUP0(0F10),
1154    [0x11] = X86_OP_GROUP0(0F11),
1155    [0x12] = X86_OP_GROUP0(0F12),
1156    [0x13] = X86_OP_ENTRY3(VMOVLPx_st,  M,q, None,None, V,q,  vex5 p_00_66),
1157    [0x14] = X86_OP_ENTRY3(VUNPCKLPx,   V,x, H,x, W,x,        vex4 p_00_66),
1158    [0x15] = X86_OP_ENTRY3(VUNPCKHPx,   V,x, H,x, W,x,        vex4 p_00_66),
1159    [0x16] = X86_OP_GROUP0(0F16),
1160    /* Incorrectly listed as Mq,Vq in the manual */
1161    [0x17] = X86_OP_ENTRY3(VMOVHPx_st,  M,q, None,None, V,dq, vex5 p_00_66),
1162
1163    /*
1164     * Incorrectly listed as using "d" operand type in the manual.  In reality
1165     * there's no 16-bit version (like y) and it does not use REX.W (like d64).
1166     */
1167    [0x20] = X86_OP_GROUPwr(MOV_CR_DR,   R,y_d64, C,y_d64, chk(cpl0) svm(READ_CR0)),
1168    [0x21] = X86_OP_GROUPwr(MOV_CR_DR,   R,y_d64, D,y_d64, chk(cpl0) svm(READ_DR0)),
1169    [0x22] = X86_OP_GROUPwr(MOV_CR_DR,   C,y_d64, R,y_d64, zextT0 chk(cpl0) svm(WRITE_CR0)),
1170    [0x23] = X86_OP_GROUPwr(MOV_CR_DR,   D,y_d64, R,y_d64, zextT0 chk(cpl0) svm(WRITE_DR0)),
1171
1172    [0x30] = X86_OP_ENTRY0(WRMSR,                             chk(cpl0)),
1173    [0x31] = X86_OP_ENTRY0(RDTSC),
1174    [0x32] = X86_OP_ENTRY0(RDMSR,                             chk(cpl0)),
1175    [0x33] = X86_OP_ENTRY0(RDPMC),
1176    [0x34] = X86_OP_ENTRY0(SYSENTER,                          chk2(i64_amd, prot_or_vm86)),
1177    [0x35] = X86_OP_ENTRY0(SYSEXIT,                           chk3(i64_amd, prot, cpl0)),
1178
1179    [0x40] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1180    [0x41] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1181    [0x42] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1182    [0x43] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1183    [0x44] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1184    [0x45] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1185    [0x46] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1186    [0x47] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1187
1188    [0x50] = X86_OP_ENTRY3(MOVMSK,     G,y, None,None, U,x, vex7 p_00_66),
1189    [0x51] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */
1190    [0x52] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */
1191    [0x53] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */
1192    [0x54] = X86_OP_ENTRY3(PAND,       V,x, H,x, W,x,  vex4 p_00_66), /* vand */
1193    [0x55] = X86_OP_ENTRY3(PANDN,      V,x, H,x, W,x,  vex4 p_00_66), /* vandn */
1194    [0x56] = X86_OP_ENTRY3(POR,        V,x, H,x, W,x,  vex4 p_00_66), /* vor */
1195    [0x57] = X86_OP_ENTRY3(PXOR,       V,x, H,x, W,x,  vex4 p_00_66), /* vxor */
1196
1197    [0x60] = X86_OP_ENTRY3(PUNPCKLBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1198    [0x61] = X86_OP_ENTRY3(PUNPCKLWD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1199    [0x62] = X86_OP_ENTRY3(PUNPCKLDQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1200    [0x63] = X86_OP_ENTRY3(PACKSSWB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1201    [0x64] = X86_OP_ENTRY3(PCMPGTB,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1202    [0x65] = X86_OP_ENTRY3(PCMPGTW,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1203    [0x66] = X86_OP_ENTRY3(PCMPGTD,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1204    [0x67] = X86_OP_ENTRY3(PACKUSWB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1205
1206    [0x70] = X86_OP_GROUP0(0F70),
1207    [0x71] = X86_OP_GROUP0(group12),
1208    [0x72] = X86_OP_GROUP0(group13),
1209    [0x73] = X86_OP_GROUP0(group14),
1210    [0x74] = X86_OP_ENTRY3(PCMPEQB,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1211    [0x75] = X86_OP_ENTRY3(PCMPEQW,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1212    [0x76] = X86_OP_ENTRY3(PCMPEQD,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1213    [0x77] = X86_OP_GROUP0(0F77),
1214
1215    [0x80] = X86_OP_ENTRYr(Jcc, J,z_f64),
1216    [0x81] = X86_OP_ENTRYr(Jcc, J,z_f64),
1217    [0x82] = X86_OP_ENTRYr(Jcc, J,z_f64),
1218    [0x83] = X86_OP_ENTRYr(Jcc, J,z_f64),
1219    [0x84] = X86_OP_ENTRYr(Jcc, J,z_f64),
1220    [0x85] = X86_OP_ENTRYr(Jcc, J,z_f64),
1221    [0x86] = X86_OP_ENTRYr(Jcc, J,z_f64),
1222    [0x87] = X86_OP_ENTRYr(Jcc, J,z_f64),
1223
1224    [0x90] = X86_OP_ENTRYw(SETcc, E,b),
1225    [0x91] = X86_OP_ENTRYw(SETcc, E,b),
1226    [0x92] = X86_OP_ENTRYw(SETcc, E,b),
1227    [0x93] = X86_OP_ENTRYw(SETcc, E,b),
1228    [0x94] = X86_OP_ENTRYw(SETcc, E,b),
1229    [0x95] = X86_OP_ENTRYw(SETcc, E,b),
1230    [0x96] = X86_OP_ENTRYw(SETcc, E,b),
1231    [0x97] = X86_OP_ENTRYw(SETcc, E,b),
1232
1233    [0xa0] = X86_OP_ENTRYr(PUSH, FS, w),
1234    [0xa1] = X86_OP_ENTRYw(POP, FS, w),
1235    [0xa2] = X86_OP_ENTRY0(CPUID),
1236    [0xa3] = X86_OP_ENTRYrr(BT,   E,v, G,v,          btEvGv),
1237    [0xa4] = X86_OP_ENTRY4(SHLD,  E,v, 2op,v, G,v),
1238    [0xa5] = X86_OP_ENTRY3(SHLD,  E,v, 2op,v, G,v),
1239
1240    [0xb0] = X86_OP_ENTRY2(CMPXCHG,E,b, G,b, lock),
1241    [0xb1] = X86_OP_ENTRY2(CMPXCHG,E,v, G,v, lock),
1242    [0xb2] = X86_OP_ENTRY3(LSS,    G,v, EM,p, None, None),
1243    [0xb3] = X86_OP_ENTRY2(BTR,    E,v, G,v,             btEvGv),
1244    [0xb4] = X86_OP_ENTRY3(LFS,    G,v, EM,p, None, None),
1245    [0xb5] = X86_OP_ENTRY3(LGS,    G,v, EM,p, None, None),
1246    [0xb6] = X86_OP_ENTRY3(MOV,    G,v, E,b, None, None, zextT0), /* MOVZX */
1247    [0xb7] = X86_OP_ENTRY3(MOV,    G,v, E,w, None, None, zextT0), /* MOVZX */
1248
1249    [0xc0] = X86_OP_ENTRY2(XADD,       E,b, G,b,            lock),
1250    [0xc1] = X86_OP_ENTRY2(XADD,       E,v, G,v,            lock),
1251    [0xc2] = X86_OP_ENTRY4(VCMP,       V,x, H,x, W,x,       vex2_rep3 p_00_66_f3_f2),
1252    [0xc3] = X86_OP_ENTRY3(MOV,        EM,y,G,y, None,None, cpuid(SSE2)), /* MOVNTI */
1253    [0xc4] = X86_OP_ENTRY4(PINSRW,     V,dq,H,dq,E,w,       vex5 mmx p_00_66),
1254    [0xc5] = X86_OP_ENTRY3(PEXTRW,     G,d, U,dq,I,b,       vex5 mmx p_00_66),
1255    [0xc6] = X86_OP_ENTRY4(VSHUF,      V,x, H,x, W,x,       vex4 p_00_66),
1256    [0xc7] = X86_OP_GROUP0(group9),
1257
1258    [0xd0] = X86_OP_ENTRY3(VADDSUB,   V,x, H,x, W,x,        vex2 cpuid(SSE3) p_66_f2),
1259    [0xd1] = X86_OP_ENTRY3(PSRLW_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1260    [0xd2] = X86_OP_ENTRY3(PSRLD_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1261    [0xd3] = X86_OP_ENTRY3(PSRLQ_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1262    [0xd4] = X86_OP_ENTRY3(PADDQ,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1263    [0xd5] = X86_OP_ENTRY3(PMULLW,    V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1264    [0xd6] = X86_OP_GROUP0(0FD6),
1265    [0xd7] = X86_OP_ENTRY3(PMOVMSKB,  G,d, None,None, U,x,  vex7 mmx avx2_256 p_00_66),
1266
1267    [0xe0] = X86_OP_ENTRY3(PAVGB,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1268    [0xe1] = X86_OP_ENTRY3(PSRAW_r,   V,x, H,x, W,x,        vex7 mmx avx2_256 p_00_66),
1269    [0xe2] = X86_OP_ENTRY3(PSRAD_r,   V,x, H,x, W,x,        vex7 mmx avx2_256 p_00_66),
1270    [0xe3] = X86_OP_ENTRY3(PAVGW,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1271    [0xe4] = X86_OP_ENTRY3(PMULHUW,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1272    [0xe5] = X86_OP_ENTRY3(PMULHW,    V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
1273    [0xe6] = X86_OP_GROUP0(0FE6),
1274    [0xe7] = X86_OP_ENTRY3(MOVDQ,     W,x, None,None, V,x,  vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */
1275
1276    [0xf0] = X86_OP_ENTRY3(MOVDQ,    V,x, None,None, WM,x,  vex4_unal cpuid(SSE3) p_f2), /* LDDQU */
1277    [0xf1] = X86_OP_ENTRY3(PSLLW_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
1278    [0xf2] = X86_OP_ENTRY3(PSLLD_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
1279    [0xf3] = X86_OP_ENTRY3(PSLLQ_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
1280    [0xf4] = X86_OP_ENTRY3(PMULUDQ,  V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
1281    [0xf5] = X86_OP_ENTRY3(PMADDWD,  V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
1282    [0xf6] = X86_OP_ENTRY3(PSADBW,   V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
1283    [0xf7] = X86_OP_ENTRY3(MASKMOV,  None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66),
1284
1285    [0x08] = X86_OP_ENTRY0(NOP,           svm(INVD)),
1286    [0x09] = X86_OP_ENTRY0(NOP,           svm(WBINVD)),
1287    [0x0b] = X86_OP_ENTRY0(UD),           /* UD2 */
1288    [0x0d] = X86_OP_ENTRY1(NOP,  M,v),    /* 3DNow! prefetch */
1289    [0x0e] = X86_OP_ENTRY0(EMMS,                              cpuid(3DNOW)), /* femms */
1290    /*
1291     * 3DNow!'s opcode byte comes *after* modrm and displacements, making it
1292     * more like an Ib operand.  Dispatch to the right helper in a single gen_*
1293     * function.
1294     */
1295    [0x0f] = X86_OP_ENTRY3(3dnow,       P,q, Q,q, I,b,        cpuid(3DNOW)),
1296
1297    [0x18] = X86_OP_ENTRY1(NOP,  nop,v),  /* prefetch/reserved NOP */
1298    [0x19] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
1299    [0x1a] = X86_OP_ENTRY1(multi0F, nop,v, nolea),  /* unconverted MPX */
1300    [0x1b] = X86_OP_ENTRY1(multi0F, nop,v, nolea),  /* unconverted MPX */
1301    [0x1c] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
1302    [0x1d] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
1303    [0x1e] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
1304    [0x1f] = X86_OP_ENTRY1(NOP,  nop,v),  /* NOP/reserved NOP */
1305
1306    [0x28] = X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x, vex1 p_00_66), /* MOVAPS */
1307    [0x29] = X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex1 p_00_66), /* MOVAPS */
1308    [0x2A] = X86_OP_GROUP0(0F2A),
1309    [0x2B] = X86_OP_GROUP0(0F2B),
1310    [0x2C] = X86_OP_GROUP0(0F2C),
1311    [0x2D] = X86_OP_GROUP0(0F2D),
1312    [0x2E] = X86_OP_GROUP3(VxCOMISx,   None,None, V,x, W,x,  vex3 p_00_66), /* VUCOMISS/SD */
1313    [0x2F] = X86_OP_GROUP3(VxCOMISx,   None,None, V,x, W,x,  vex3 p_00_66), /* VCOMISS/SD */
1314
1315    [0x38] = X86_OP_GROUP0(0F38),
1316    [0x3a] = X86_OP_GROUP0(0F3A),
1317
1318    [0x48] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1319    [0x49] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1320    [0x4a] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1321    [0x4b] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1322    [0x4c] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1323    [0x4d] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1324    [0x4e] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1325    [0x4f] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
1326
1327    [0x58] = X86_OP_ENTRY3(VADD,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1328    [0x59] = X86_OP_ENTRY3(VMUL,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1329    [0x5a] = X86_OP_GROUP0(0F5A),
1330    [0x5b] = X86_OP_GROUP0(0F5B),
1331    [0x5c] = X86_OP_ENTRY3(VSUB,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1332    [0x5d] = X86_OP_ENTRY3(VMIN,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1333    [0x5e] = X86_OP_ENTRY3(VDIV,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1334    [0x5f] = X86_OP_ENTRY3(VMAX,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
1335
1336    [0x68] = X86_OP_ENTRY3(PUNPCKHBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1337    [0x69] = X86_OP_ENTRY3(PUNPCKHWD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1338    [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1339    [0x6b] = X86_OP_ENTRY3(PACKSSDW,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1340    [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x,  vex4 p_66 avx2_256),
1341    [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x,  vex4 p_66 avx2_256),
1342    [0x6e] = X86_OP_ENTRY3(MOVD_to,    V,x, None,None, E,y, vex5 mmx p_00_66),  /* wrong dest Vy on SDM! */
1343    [0x6f] = X86_OP_GROUP0(0F6F),
1344
1345    [0x78] = X86_OP_GROUP0(0F78),
1346    [0x79] = X86_OP_GROUP2(0F79,       V,x, U,x,       cpuid(SSE4A)),
1347    [0x7c] = X86_OP_ENTRY3(VHADD,      V,x, H,x, W,x,  vex2 cpuid(SSE3) p_66_f2),
1348    [0x7d] = X86_OP_ENTRY3(VHSUB,      V,x, H,x, W,x,  vex2 cpuid(SSE3) p_66_f2),
1349    [0x7e] = X86_OP_GROUP0(0F7E),
1350    [0x7f] = X86_OP_GROUP0(0F7F),
1351
1352    [0x88] = X86_OP_ENTRYr(Jcc, J,z_f64),
1353    [0x89] = X86_OP_ENTRYr(Jcc, J,z_f64),
1354    [0x8a] = X86_OP_ENTRYr(Jcc, J,z_f64),
1355    [0x8b] = X86_OP_ENTRYr(Jcc, J,z_f64),
1356    [0x8c] = X86_OP_ENTRYr(Jcc, J,z_f64),
1357    [0x8d] = X86_OP_ENTRYr(Jcc, J,z_f64),
1358    [0x8e] = X86_OP_ENTRYr(Jcc, J,z_f64),
1359    [0x8f] = X86_OP_ENTRYr(Jcc, J,z_f64),
1360
1361    [0x98] = X86_OP_ENTRYw(SETcc, E,b),
1362    [0x99] = X86_OP_ENTRYw(SETcc, E,b),
1363    [0x9a] = X86_OP_ENTRYw(SETcc, E,b),
1364    [0x9b] = X86_OP_ENTRYw(SETcc, E,b),
1365    [0x9c] = X86_OP_ENTRYw(SETcc, E,b),
1366    [0x9d] = X86_OP_ENTRYw(SETcc, E,b),
1367    [0x9e] = X86_OP_ENTRYw(SETcc, E,b),
1368    [0x9f] = X86_OP_ENTRYw(SETcc, E,b),
1369
1370    [0xa8] = X86_OP_ENTRYr(PUSH,   GS, w),
1371    [0xa9] = X86_OP_ENTRYw(POP,    GS, w),
1372    [0xaa] = X86_OP_ENTRY0(RSM,             chk(smm) svm(RSM)),
1373    [0xab] = X86_OP_ENTRY2(BTS,    E,v, G,v,             btEvGv),
1374    [0xac] = X86_OP_ENTRY4(SHRD,   E,v, 2op,v, G,v),
1375    [0xad] = X86_OP_ENTRY3(SHRD,   E,v, 2op,v, G,v),
1376    [0xae] = X86_OP_GROUP0(group15),
1377    /*
1378     * It's slightly more efficient to put Ev operand in T0 and allow gen_IMUL3
1379     * to assume sextT0.  Multiplication is commutative anyway.
1380     */
1381    [0xaf] = X86_OP_ENTRY3(IMUL3,  G,v, E,v, 2op,v, sextT0),
1382
1383    [0xb8] = X86_OP_GROUP0(0FB8),
1384    /* decoded as modrm, which is visible as a difference between page fault and #UD */
1385    [0xb9] = X86_OP_ENTRYr(UD,     nop,v),                        /* UD1 */
1386    [0xba] = X86_OP_GROUP2(group8, E,v, I,b),
1387    [0xbb] = X86_OP_ENTRY2(BTC,    E,v, G,v,             btEvGv),
1388    [0xbc] = X86_OP_GROUP0(0FBC),
1389    [0xbd] = X86_OP_GROUP0(0FBD),
1390    [0xbe] = X86_OP_ENTRY3(MOV,    G,v, E,b, None, None, sextT0), /* MOVSX */
1391    [0xbf] = X86_OP_ENTRY3(MOV,    G,v, E,w, None, None, sextT0), /* MOVSX */
1392
1393    [0xc8] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1394    [0xc9] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1395    [0xca] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1396    [0xcb] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1397    [0xcc] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1398    [0xcd] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1399    [0xce] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1400    [0xcf] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
1401
1402    /* Incorrectly missing from 2-17 */
1403    [0xd8] = X86_OP_ENTRY3(PSUBUSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1404    [0xd9] = X86_OP_ENTRY3(PSUBUSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1405    [0xda] = X86_OP_ENTRY3(PMINUB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1406    [0xdb] = X86_OP_ENTRY3(PAND,     V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1407    [0xdc] = X86_OP_ENTRY3(PADDUSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1408    [0xdd] = X86_OP_ENTRY3(PADDUSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1409    [0xde] = X86_OP_ENTRY3(PMAXUB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1410    [0xdf] = X86_OP_ENTRY3(PANDN,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1411
1412    [0xe8] = X86_OP_ENTRY3(PSUBSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1413    [0xe9] = X86_OP_ENTRY3(PSUBSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1414    [0xea] = X86_OP_ENTRY3(PMINSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1415    [0xeb] = X86_OP_ENTRY3(POR,     V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1416    [0xec] = X86_OP_ENTRY3(PADDSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1417    [0xed] = X86_OP_ENTRY3(PADDSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1418    [0xee] = X86_OP_ENTRY3(PMAXSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1419    [0xef] = X86_OP_ENTRY3(PXOR,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1420
1421    [0xf8] = X86_OP_ENTRY3(PSUBB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1422    [0xf9] = X86_OP_ENTRY3(PSUBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1423    [0xfa] = X86_OP_ENTRY3(PSUBD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1424    [0xfb] = X86_OP_ENTRY3(PSUBQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1425    [0xfc] = X86_OP_ENTRY3(PADDB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1426    [0xfd] = X86_OP_ENTRY3(PADDW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1427    [0xfe] = X86_OP_ENTRY3(PADDD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
1428    [0xff] = X86_OP_ENTRYr(UD,     nop,v),                        /* UD0 */
1429};
1430
1431static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1432{
1433    *entry = opcodes_0F[*b];
1434}
1435
1436static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1437{
1438    *b = x86_ldub_code(env, s);
1439    do_decode_0F(s, env, entry, b);
1440}
1441
1442static void decode_63(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1443{
1444    static const X86OpEntry arpl = X86_OP_ENTRY2(ARPL, E,w, G,w, chk(prot));
1445    static const X86OpEntry mov = X86_OP_ENTRY3(MOV, G,v, E,v, None, None);
1446    static const X86OpEntry movsxd = X86_OP_ENTRY3(MOV, G,v, E,d, None, None, sextT0);
1447    if (!CODE64(s)) {
1448        *entry = arpl;
1449    } else if (REX_W(s)) {
1450        *entry = movsxd;
1451    } else {
1452        *entry = mov;
1453    }
1454}
1455
1456static void decode_group1(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1457{
1458    static const X86GenFunc group1_gen[8] = {
1459        gen_ADD, gen_OR, gen_ADC, gen_SBB, gen_AND, gen_SUB, gen_XOR, gen_SUB,
1460    };
1461    int op = (get_modrm(s, env) >> 3) & 7;
1462    entry->gen = group1_gen[op];
1463
1464    if (op == 7) {
1465        /* prevent writeback for CMP */
1466        entry->op1 = entry->op0;
1467        entry->op0 = X86_TYPE_None;
1468        entry->s0 = X86_SIZE_None;
1469    } else {
1470        entry->special = X86_SPECIAL_HasLock;
1471    }
1472}
1473
1474static void decode_group1A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1475{
1476    int op = (get_modrm(s, env) >> 3) & 7;
1477    if (op != 0) {
1478        /* could be XOP prefix too */
1479        *entry = UNKNOWN_OPCODE;
1480    } else {
1481        entry->gen = gen_POP;
1482        /* The address must use the value of ESP after the pop.  */
1483        s->popl_esp_hack = 1 << mo_pushpop(s, s->dflag);
1484    }
1485}
1486
1487static void decode_group2(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1488{
1489    static const X86GenFunc group2_gen[8] = {
1490        gen_ROL, gen_ROR, gen_RCL, gen_RCR,
1491        gen_SHL, gen_SHR, gen_SHL /* SAL, undocumented */, gen_SAR,
1492    };
1493    int op = (get_modrm(s, env) >> 3) & 7;
1494    entry->gen = group2_gen[op];
1495    if (op == 7) {
1496        entry->special = X86_SPECIAL_SExtT0;
1497    } else {
1498        entry->special = X86_SPECIAL_ZExtT0;
1499    }
1500}
1501
1502static void decode_group3(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1503{
1504    static const X86OpEntry opcodes_grp3[16] = {
1505        /* 0xf6 */
1506        [0x00] = X86_OP_ENTRYrr(AND, E,b, I,b),
1507        [0x02] = X86_OP_ENTRY1(NOT,  E,b,      lock),
1508        [0x03] = X86_OP_ENTRY1(NEG,  E,b,      lock),
1509        [0x04] = X86_OP_ENTRYrr(MUL, E,b, 0,b, zextT0),
1510        [0x05] = X86_OP_ENTRYrr(IMUL,E,b, 0,b, sextT0),
1511        [0x06] = X86_OP_ENTRYr(DIV,  E,b),
1512        [0x07] = X86_OP_ENTRYr(IDIV, E,b),
1513
1514        /* 0xf7 */
1515        [0x08] = X86_OP_ENTRYrr(AND, E,v, I,z),
1516        [0x0a] = X86_OP_ENTRY1(NOT,  E,v,      lock),
1517        [0x0b] = X86_OP_ENTRY1(NEG,  E,v,      lock),
1518        [0x0c] = X86_OP_ENTRYrr(MUL, E,v, 0,v, zextT0),
1519        [0x0d] = X86_OP_ENTRYrr(IMUL,E,v, 0,v, sextT0),
1520        [0x0e] = X86_OP_ENTRYr(DIV,  E,v),
1521        [0x0f] = X86_OP_ENTRYr(IDIV, E,v),
1522    };
1523
1524    int w = (*b & 1);
1525    int reg = (get_modrm(s, env) >> 3) & 7;
1526
1527    *entry = opcodes_grp3[(w << 3) | reg];
1528}
1529
1530static void decode_group4_5(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1531{
1532    static const X86OpEntry opcodes_grp4_5[16] = {
1533        /* 0xfe */
1534        [0x00] = X86_OP_ENTRY1(INC,     E,b,                           lock),
1535        [0x01] = X86_OP_ENTRY1(DEC,     E,b,                           lock),
1536
1537        /* 0xff */
1538        [0x08] = X86_OP_ENTRY1(INC,     E,v,                           lock),
1539        [0x09] = X86_OP_ENTRY1(DEC,     E,v,                           lock),
1540        [0x0a] = X86_OP_ENTRYr(CALL_m,  E,f64,                         zextT0),
1541        [0x0b] = X86_OP_ENTRYr(CALLF_m, M,p),
1542        [0x0c] = X86_OP_ENTRYr(JMP_m,   E,f64,                         zextT0),
1543        [0x0d] = X86_OP_ENTRYr(JMPF_m,  M,p),
1544        [0x0e] = X86_OP_ENTRYr(PUSH,    E,f64),
1545    };
1546
1547    int w = (*b & 1);
1548    int reg = (get_modrm(s, env) >> 3) & 7;
1549
1550    *entry = opcodes_grp4_5[(w << 3) | reg];
1551}
1552
1553
1554static void decode_group11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1555{
1556    int op = (get_modrm(s, env) >> 3) & 7;
1557    if (op != 0) {
1558        *entry = UNKNOWN_OPCODE;
1559    } else {
1560        entry->gen = gen_MOV;
1561    }
1562}
1563
1564static void decode_90(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1565{
1566    static X86OpEntry pause = X86_OP_ENTRY0(PAUSE, svm(PAUSE));
1567    static X86OpEntry nop = X86_OP_ENTRY0(NOP);
1568    static X86OpEntry xchg_ax = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v);
1569
1570    if (REX_B(s)) {
1571        *entry = xchg_ax;
1572    } else {
1573        *entry = (s->prefix & PREFIX_REPZ) ? pause : nop;
1574    }
1575}
1576
1577static const X86OpEntry opcodes_root[256] = {
1578    [0x00] = X86_OP_ENTRY2(ADD, E,b, G,b, lock),
1579    [0x01] = X86_OP_ENTRY2(ADD, E,v, G,v, lock),
1580    [0x02] = X86_OP_ENTRY2(ADD, G,b, E,b, lock),
1581    [0x03] = X86_OP_ENTRY2(ADD, G,v, E,v, lock),
1582    [0x04] = X86_OP_ENTRY2(ADD, 0,b, I,b, lock),   /* AL, Ib */
1583    [0x05] = X86_OP_ENTRY2(ADD, 0,v, I,z, lock),   /* rAX, Iz */
1584    [0x06] = X86_OP_ENTRYr(PUSH, ES, w, chk(i64)),
1585    [0x07] = X86_OP_ENTRYw(POP, ES, w, chk(i64)),
1586
1587    [0x10] = X86_OP_ENTRY2(ADC, E,b, G,b, lock),
1588    [0x11] = X86_OP_ENTRY2(ADC, E,v, G,v, lock),
1589    [0x12] = X86_OP_ENTRY2(ADC, G,b, E,b, lock),
1590    [0x13] = X86_OP_ENTRY2(ADC, G,v, E,v, lock),
1591    [0x14] = X86_OP_ENTRY2(ADC, 0,b, I,b, lock),   /* AL, Ib */
1592    [0x15] = X86_OP_ENTRY2(ADC, 0,v, I,z, lock),   /* rAX, Iz */
1593    [0x16] = X86_OP_ENTRYr(PUSH, SS, w, chk(i64)),
1594    [0x17] = X86_OP_ENTRYw(POP, SS, w, chk(i64)),
1595
1596    [0x20] = X86_OP_ENTRY2(AND, E,b, G,b, lock),
1597    [0x21] = X86_OP_ENTRY2(AND, E,v, G,v, lock),
1598    [0x22] = X86_OP_ENTRY2(AND, G,b, E,b, lock),
1599    [0x23] = X86_OP_ENTRY2(AND, G,v, E,v, lock),
1600    [0x24] = X86_OP_ENTRY2(AND, 0,b, I,b, lock),   /* AL, Ib */
1601    [0x25] = X86_OP_ENTRY2(AND, 0,v, I,z, lock),   /* rAX, Iz */
1602    [0x26] = {},
1603    [0x27] = X86_OP_ENTRY0(DAA, chk(i64)),
1604
1605    [0x30] = X86_OP_ENTRY2(XOR, E,b, G,b, lock),
1606    [0x31] = X86_OP_ENTRY2(XOR, E,v, G,v, lock),
1607    [0x32] = X86_OP_ENTRY2(XOR, G,b, E,b, lock),
1608    [0x33] = X86_OP_ENTRY2(XOR, G,v, E,v, lock),
1609    [0x34] = X86_OP_ENTRY2(XOR, 0,b, I,b, lock),   /* AL, Ib */
1610    [0x35] = X86_OP_ENTRY2(XOR, 0,v, I,z, lock),   /* rAX, Iz */
1611    [0x36] = {},
1612    [0x37] = X86_OP_ENTRY0(AAA, chk(i64)),
1613
1614    [0x40] = X86_OP_ENTRY1(INC, 0,v, chk(i64)),
1615    [0x41] = X86_OP_ENTRY1(INC, 1,v, chk(i64)),
1616    [0x42] = X86_OP_ENTRY1(INC, 2,v, chk(i64)),
1617    [0x43] = X86_OP_ENTRY1(INC, 3,v, chk(i64)),
1618    [0x44] = X86_OP_ENTRY1(INC, 4,v, chk(i64)),
1619    [0x45] = X86_OP_ENTRY1(INC, 5,v, chk(i64)),
1620    [0x46] = X86_OP_ENTRY1(INC, 6,v, chk(i64)),
1621    [0x47] = X86_OP_ENTRY1(INC, 7,v, chk(i64)),
1622
1623    [0x50] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1624    [0x51] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1625    [0x52] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1626    [0x53] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1627    [0x54] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1628    [0x55] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1629    [0x56] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1630    [0x57] = X86_OP_ENTRYr(PUSH, LoBits,d64),
1631
1632    [0x60] = X86_OP_ENTRY0(PUSHA, chk(i64)),
1633    [0x61] = X86_OP_ENTRY0(POPA, chk(i64)),
1634    [0x62] = X86_OP_ENTRYrr(BOUND, G,v, M,a, chk(i64)),
1635    [0x63] = X86_OP_GROUP0(63),
1636    [0x64] = {},
1637    [0x65] = {},
1638    [0x66] = {},
1639    [0x67] = {},
1640
1641    [0x70] = X86_OP_ENTRYr(Jcc, J,b),
1642    [0x71] = X86_OP_ENTRYr(Jcc, J,b),
1643    [0x72] = X86_OP_ENTRYr(Jcc, J,b),
1644    [0x73] = X86_OP_ENTRYr(Jcc, J,b),
1645    [0x74] = X86_OP_ENTRYr(Jcc, J,b),
1646    [0x75] = X86_OP_ENTRYr(Jcc, J,b),
1647    [0x76] = X86_OP_ENTRYr(Jcc, J,b),
1648    [0x77] = X86_OP_ENTRYr(Jcc, J,b),
1649
1650    [0x80] = X86_OP_GROUP2(group1, E,b, I,b),
1651    [0x81] = X86_OP_GROUP2(group1, E,v, I,z),
1652    [0x82] = X86_OP_GROUP2(group1, E,b, I,b, chk(i64)),
1653    [0x83] = X86_OP_GROUP2(group1, E,v, I,b),
1654    [0x84] = X86_OP_ENTRYrr(AND, E,b, G,b),
1655    [0x85] = X86_OP_ENTRYrr(AND, E,v, G,v),
1656    [0x86] = X86_OP_ENTRY2(XCHG, E,b, G,b, xchg),
1657    [0x87] = X86_OP_ENTRY2(XCHG, E,v, G,v, xchg),
1658
1659    [0x90] = X86_OP_GROUP0(90),
1660    [0x91] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1661    [0x92] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1662    [0x93] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1663    [0x94] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1664    [0x95] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1665    [0x96] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1666    [0x97] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
1667
1668    [0xA0] = X86_OP_ENTRY3(MOV, 0,b, O,b, None, None), /* AL, Ob */
1669    [0xA1] = X86_OP_ENTRY3(MOV, 0,v, O,v, None, None), /* rAX, Ov */
1670    [0xA2] = X86_OP_ENTRY3(MOV, O,b, 0,b, None, None), /* Ob, AL */
1671    [0xA3] = X86_OP_ENTRY3(MOV, O,v, 0,v, None, None), /* Ov, rAX */
1672    [0xA4] = X86_OP_ENTRYrr(MOVS, Y,b, X,b),
1673    [0xA5] = X86_OP_ENTRYrr(MOVS, Y,v, X,v),
1674    [0xA6] = X86_OP_ENTRYrr(CMPS, Y,b, X,b),
1675    [0xA7] = X86_OP_ENTRYrr(CMPS, Y,v, X,v),
1676
1677    [0xB0] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1678    [0xB1] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1679    [0xB2] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1680    [0xB3] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1681    [0xB4] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1682    [0xB5] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1683    [0xB6] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1684    [0xB7] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
1685
1686    [0xC0] = X86_OP_GROUP2(group2, E,b, I,b),
1687    [0xC1] = X86_OP_GROUP2(group2, E,v, I,b),
1688    [0xC2] = X86_OP_ENTRYr(RET, I,w),
1689    [0xC3] = X86_OP_ENTRY0(RET),
1690    [0xC4] = X86_OP_ENTRY3(LES, G,z, EM,p, None, None, chk(i64)),
1691    [0xC5] = X86_OP_ENTRY3(LDS, G,z, EM,p, None, None, chk(i64)),
1692    [0xC6] = X86_OP_GROUP3(group11, E,b, I,b, None, None), /* reg=000b */
1693    [0xC7] = X86_OP_GROUP3(group11, E,v, I,z, None, None), /* reg=000b */
1694
1695    [0xD0] = X86_OP_GROUP1(group2, E,b),
1696    [0xD1] = X86_OP_GROUP1(group2, E,v),
1697    [0xD2] = X86_OP_GROUP2(group2, E,b, 1,b), /* CL */
1698    [0xD3] = X86_OP_GROUP2(group2, E,v, 1,b), /* CL */
1699    [0xD4] = X86_OP_ENTRY2(AAM, 0,w, I,b),
1700    [0xD5] = X86_OP_ENTRY2(AAD, 0,w, I,b),
1701    [0xD6] = X86_OP_ENTRYw(SALC, 0,b),
1702    [0xD7] = X86_OP_ENTRY1(XLAT, 0,b, zextT0), /* AL read/written */
1703
1704    [0xE0] = X86_OP_ENTRYr(LOOPNE, J,b), /* implicit: CX with aflag size */
1705    [0xE1] = X86_OP_ENTRYr(LOOPE,  J,b), /* implicit: CX with aflag size */
1706    [0xE2] = X86_OP_ENTRYr(LOOP,   J,b), /* implicit: CX with aflag size */
1707    [0xE3] = X86_OP_ENTRYr(JCXZ,   J,b), /* implicit: CX with aflag size */
1708    [0xE4] = X86_OP_ENTRYwr(IN,    0,b, I_unsigned,b), /* AL */
1709    [0xE5] = X86_OP_ENTRYwr(IN,    0,z, I_unsigned,b), /* AX/EAX */
1710    [0xE6] = X86_OP_ENTRYrr(OUT,   0,b, I_unsigned,b), /* AL */
1711    [0xE7] = X86_OP_ENTRYrr(OUT,   0,z, I_unsigned,b), /* AX/EAX */
1712
1713    [0xF1] = X86_OP_ENTRY0(INT1,   svm(ICEBP)),
1714    [0xF4] = X86_OP_ENTRY0(HLT,    chk(cpl0) svm(HLT)),
1715    [0xF5] = X86_OP_ENTRY0(CMC),
1716    [0xF6] = X86_OP_GROUP1(group3, E,b),
1717    [0xF7] = X86_OP_GROUP1(group3, E,v),
1718
1719    [0x08] = X86_OP_ENTRY2(OR, E,b, G,b, lock),
1720    [0x09] = X86_OP_ENTRY2(OR, E,v, G,v, lock),
1721    [0x0A] = X86_OP_ENTRY2(OR, G,b, E,b, lock),
1722    [0x0B] = X86_OP_ENTRY2(OR, G,v, E,v, lock),
1723    [0x0C] = X86_OP_ENTRY2(OR, 0,b, I,b, lock),   /* AL, Ib */
1724    [0x0D] = X86_OP_ENTRY2(OR, 0,v, I,z, lock),   /* rAX, Iz */
1725    [0x0E] = X86_OP_ENTRYr(PUSH, CS, w, chk(i64)),
1726    [0x0F] = X86_OP_GROUP0(0F),
1727
1728    [0x18] = X86_OP_ENTRY2(SBB, E,b, G,b, lock),
1729    [0x19] = X86_OP_ENTRY2(SBB, E,v, G,v, lock),
1730    [0x1A] = X86_OP_ENTRY2(SBB, G,b, E,b, lock),
1731    [0x1B] = X86_OP_ENTRY2(SBB, G,v, E,v, lock),
1732    [0x1C] = X86_OP_ENTRY2(SBB, 0,b, I,b, lock),   /* AL, Ib */
1733    [0x1D] = X86_OP_ENTRY2(SBB, 0,v, I,z, lock),   /* rAX, Iz */
1734    [0x1E] = X86_OP_ENTRYr(PUSH, DS, w, chk(i64)),
1735    [0x1F] = X86_OP_ENTRYw(POP, DS, w, chk(i64)),
1736
1737    [0x28] = X86_OP_ENTRY2(SUB, E,b, G,b, lock),
1738    [0x29] = X86_OP_ENTRY2(SUB, E,v, G,v, lock),
1739    [0x2A] = X86_OP_ENTRY2(SUB, G,b, E,b, lock),
1740    [0x2B] = X86_OP_ENTRY2(SUB, G,v, E,v, lock),
1741    [0x2C] = X86_OP_ENTRY2(SUB, 0,b, I,b, lock),   /* AL, Ib */
1742    [0x2D] = X86_OP_ENTRY2(SUB, 0,v, I,z, lock),   /* rAX, Iz */
1743    [0x2E] = {},
1744    [0x2F] = X86_OP_ENTRY0(DAS, chk(i64)),
1745
1746    [0x38] = X86_OP_ENTRYrr(SUB, E,b, G,b),
1747    [0x39] = X86_OP_ENTRYrr(SUB, E,v, G,v),
1748    [0x3A] = X86_OP_ENTRYrr(SUB, G,b, E,b),
1749    [0x3B] = X86_OP_ENTRYrr(SUB, G,v, E,v),
1750    [0x3C] = X86_OP_ENTRYrr(SUB, 0,b, I,b),   /* AL, Ib */
1751    [0x3D] = X86_OP_ENTRYrr(SUB, 0,v, I,z),   /* rAX, Iz */
1752    [0x3E] = {},
1753    [0x3F] = X86_OP_ENTRY0(AAS, chk(i64)),
1754
1755    [0x48] = X86_OP_ENTRY1(DEC, 0,v, chk(i64)),
1756    [0x49] = X86_OP_ENTRY1(DEC, 1,v, chk(i64)),
1757    [0x4A] = X86_OP_ENTRY1(DEC, 2,v, chk(i64)),
1758    [0x4B] = X86_OP_ENTRY1(DEC, 3,v, chk(i64)),
1759    [0x4C] = X86_OP_ENTRY1(DEC, 4,v, chk(i64)),
1760    [0x4D] = X86_OP_ENTRY1(DEC, 5,v, chk(i64)),
1761    [0x4E] = X86_OP_ENTRY1(DEC, 6,v, chk(i64)),
1762    [0x4F] = X86_OP_ENTRY1(DEC, 7,v, chk(i64)),
1763
1764    [0x58] = X86_OP_ENTRYw(POP, LoBits,d64),
1765    [0x59] = X86_OP_ENTRYw(POP, LoBits,d64),
1766    [0x5A] = X86_OP_ENTRYw(POP, LoBits,d64),
1767    [0x5B] = X86_OP_ENTRYw(POP, LoBits,d64),
1768    [0x5C] = X86_OP_ENTRYw(POP, LoBits,d64),
1769    [0x5D] = X86_OP_ENTRYw(POP, LoBits,d64),
1770    [0x5E] = X86_OP_ENTRYw(POP, LoBits,d64),
1771    [0x5F] = X86_OP_ENTRYw(POP, LoBits,d64),
1772
1773    [0x68] = X86_OP_ENTRYr(PUSH, I,z),
1774    [0x69] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,z, sextT0),
1775    [0x6A] = X86_OP_ENTRYr(PUSH, I,b),
1776    [0x6B] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,b, sextT0),
1777    [0x6C] = X86_OP_ENTRYrr(INS, Y,b, 2,w), /* DX */
1778    [0x6D] = X86_OP_ENTRYrr(INS, Y,z, 2,w), /* DX */
1779    [0x6E] = X86_OP_ENTRYrr(OUTS, X,b, 2,w), /* DX */
1780    [0x6F] = X86_OP_ENTRYrr(OUTS, X,z, 2,w), /* DX */
1781
1782    [0x78] = X86_OP_ENTRYr(Jcc, J,b),
1783    [0x79] = X86_OP_ENTRYr(Jcc, J,b),
1784    [0x7A] = X86_OP_ENTRYr(Jcc, J,b),
1785    [0x7B] = X86_OP_ENTRYr(Jcc, J,b),
1786    [0x7C] = X86_OP_ENTRYr(Jcc, J,b),
1787    [0x7D] = X86_OP_ENTRYr(Jcc, J,b),
1788    [0x7E] = X86_OP_ENTRYr(Jcc, J,b),
1789    [0x7F] = X86_OP_ENTRYr(Jcc, J,b),
1790
1791    [0x88] = X86_OP_ENTRYwr(MOV, E,b, G,b),
1792    [0x89] = X86_OP_ENTRYwr(MOV, E,v, G,v),
1793    [0x8A] = X86_OP_ENTRYwr(MOV, G,b, E,b),
1794    [0x8B] = X86_OP_ENTRYwr(MOV, G,v, E,v),
1795     /* Missing in Table A-2: memory destination is always 16-bit.  */
1796    [0x8C] = X86_OP_ENTRYwr(MOV, E,v, S,w, op0_Mw),
1797    [0x8D] = X86_OP_ENTRYwr(LEA, G,v, M,v, nolea),
1798    [0x8E] = X86_OP_ENTRYwr(MOV, S,w, E,w),
1799    [0x8F] = X86_OP_GROUPw(group1A, E,d64),
1800
1801    [0x98] = X86_OP_ENTRY1(CBW,    0,v), /* rAX */
1802    [0x99] = X86_OP_ENTRYwr(CWD,   2,v, 0,v), /* rDX, rAX */
1803    [0x9A] = X86_OP_ENTRYrr(CALLF, I_unsigned,p, I_unsigned,w, chk(i64)),
1804    [0x9B] = X86_OP_ENTRY0(WAIT),
1805    [0x9C] = X86_OP_ENTRY0(PUSHF,  chk(vm86_iopl) svm(PUSHF)),
1806    [0x9D] = X86_OP_ENTRY0(POPF,   chk(vm86_iopl) svm(POPF)),
1807    [0x9E] = X86_OP_ENTRY0(SAHF),
1808    [0x9F] = X86_OP_ENTRY0(LAHF),
1809
1810    [0xA8] = X86_OP_ENTRYrr(AND, 0,b, I,b),   /* AL, Ib */
1811    [0xA9] = X86_OP_ENTRYrr(AND, 0,v, I,z),   /* rAX, Iz */
1812    [0xAA] = X86_OP_ENTRYwr(STOS, Y,b, 0,b),
1813    [0xAB] = X86_OP_ENTRYwr(STOS, Y,v, 0,v),
1814    /* Manual writeback because REP LODS (!) has to write EAX/RAX after every LODS.  */
1815    [0xAC] = X86_OP_ENTRYr(LODS, X,b),
1816    [0xAD] = X86_OP_ENTRYr(LODS, X,v),
1817    [0xAE] = X86_OP_ENTRYrr(SCAS, 0,b, Y,b),
1818    [0xAF] = X86_OP_ENTRYrr(SCAS, 0,v, Y,v),
1819
1820    [0xB8] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
1821    [0xB9] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
1822    [0xBA] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
1823    [0xBB] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
1824    [0xBC] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
1825    [0xBD] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
1826    [0xBE] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
1827    [0xBF] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v),
1828
1829    [0xC8] = X86_OP_ENTRYrr(ENTER, I,w, I,b),
1830    [0xC9] = X86_OP_ENTRY1(LEAVE, A,d64),
1831    [0xCA] = X86_OP_ENTRYr(RETF,  I,w),
1832    [0xCB] = X86_OP_ENTRY0(RETF),
1833    [0xCC] = X86_OP_ENTRY0(INT3),
1834    [0xCD] = X86_OP_ENTRYr(INT, I,b,  chk(vm86_iopl)),
1835    [0xCE] = X86_OP_ENTRY0(INTO),
1836    [0xCF] = X86_OP_ENTRY0(IRET,      chk(vm86_iopl) svm(IRET)),
1837
1838    /*
1839     * x87 is nolea because it needs the address without segment base,
1840     * in order to store it in fdp.
1841     */
1842    [0xD8] = X86_OP_ENTRY1(x87,    nop,v, nolea),
1843    [0xD9] = X86_OP_ENTRY1(x87,    nop,v, nolea),
1844    [0xDA] = X86_OP_ENTRY1(x87,    nop,v, nolea),
1845    [0xDB] = X86_OP_ENTRY1(x87,    nop,v, nolea),
1846    [0xDC] = X86_OP_ENTRY1(x87,    nop,v, nolea),
1847    [0xDD] = X86_OP_ENTRY1(x87,    nop,v, nolea),
1848    [0xDE] = X86_OP_ENTRY1(x87,    nop,v, nolea),
1849    [0xDF] = X86_OP_ENTRY1(x87,    nop,v, nolea),
1850
1851    [0xE8] = X86_OP_ENTRYr(CALL,   J,z_f64),
1852    [0xE9] = X86_OP_ENTRYr(JMP,    J,z_f64),
1853    [0xEA] = X86_OP_ENTRYrr(JMPF,  I_unsigned,p, I_unsigned,w, chk(i64)),
1854    [0xEB] = X86_OP_ENTRYr(JMP,    J,b),
1855    [0xEC] = X86_OP_ENTRYwr(IN,    0,b, 2,w), /* AL, DX */
1856    [0xED] = X86_OP_ENTRYwr(IN,    0,z, 2,w), /* AX/EAX, DX */
1857    [0xEE] = X86_OP_ENTRYrr(OUT,   0,b, 2,w), /* DX, AL */
1858    [0xEF] = X86_OP_ENTRYrr(OUT,   0,z, 2,w), /* DX, AX/EAX */
1859
1860    [0xF8] = X86_OP_ENTRY0(CLC),
1861    [0xF9] = X86_OP_ENTRY0(STC),
1862    [0xFA] = X86_OP_ENTRY0(CLI,    chk(iopl)),
1863    [0xFB] = X86_OP_ENTRY0(STI,    chk(iopl)),
1864    [0xFC] = X86_OP_ENTRY0(CLD),
1865    [0xFD] = X86_OP_ENTRY0(STD),
1866    [0xFE] = X86_OP_GROUP1(group4_5, E,b),
1867    [0xFF] = X86_OP_GROUP1(group4_5, E,v),
1868};
1869
1870#undef mmx
1871#undef vex1
1872#undef vex2
1873#undef vex3
1874#undef vex4
1875#undef vex4_unal
1876#undef vex5
1877#undef vex6
1878#undef vex7
1879#undef vex8
1880#undef vex11
1881#undef vex12
1882#undef vex13
1883
1884/*
1885 * Decode the fixed part of the opcode and place the last
1886 * in b.
1887 */
1888static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
1889{
1890    *entry = opcodes_root[*b];
1891}
1892
1893
1894static int decode_modrm(DisasContext *s, CPUX86State *env,
1895                        X86DecodedInsn *decode, X86DecodedOp *op)
1896{
1897    int modrm = get_modrm(s, env);
1898    if ((modrm >> 6) == 3) {
1899        op->n = (modrm & 7);
1900        if (op->unit != X86_OP_MMX) {
1901            op->n |= REX_B(s);
1902        }
1903    } else {
1904        op->has_ea = true;
1905        op->n = -1;
1906        decode->mem = gen_lea_modrm_0(env, s, modrm,
1907                                      decode->e.vex_class == 12);
1908    }
1909    return modrm;
1910}
1911
1912static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot)
1913{
1914    switch (size) {
1915    case X86_SIZE_b:  /* byte */
1916        *ot = MO_8;
1917        return true;
1918
1919    case X86_SIZE_d:  /* 32-bit */
1920    case X86_SIZE_ss: /* SSE/AVX scalar single precision */
1921        *ot = MO_32;
1922        return true;
1923
1924    case X86_SIZE_p:  /* Far pointer, return offset size */
1925    case X86_SIZE_s:  /* Descriptor, return offset size */
1926    case X86_SIZE_v:  /* 16/32/64-bit, based on operand size */
1927        *ot = s->dflag;
1928        return true;
1929
1930    case X86_SIZE_pi: /* MMX */
1931    case X86_SIZE_q:  /* 64-bit */
1932    case X86_SIZE_sd: /* SSE/AVX scalar double precision */
1933        *ot = MO_64;
1934        return true;
1935
1936    case X86_SIZE_w:  /* 16-bit */
1937        *ot = MO_16;
1938        return true;
1939
1940    case X86_SIZE_y:  /* 32/64-bit, based on operand size */
1941        *ot = s->dflag == MO_16 ? MO_32 : s->dflag;
1942        return true;
1943
1944    case X86_SIZE_y_d64:  /* Full (not 16-bit) register access */
1945        *ot = CODE64(s) ? MO_64 : MO_32;
1946        return true;
1947
1948    case X86_SIZE_z:  /* 16-bit for 16-bit operand size, else 32-bit */
1949        *ot = s->dflag == MO_16 ? MO_16 : MO_32;
1950        return true;
1951
1952    case X86_SIZE_z_f64:  /* 32-bit for 32-bit operand size or 64-bit mode, else 16-bit */
1953        *ot = !CODE64(s) && s->dflag == MO_16 ? MO_16 : MO_32;
1954        return true;
1955
1956    case X86_SIZE_dq: /* SSE/AVX 128-bit */
1957        if (e->special == X86_SPECIAL_MMX &&
1958            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1959            *ot = MO_64;
1960            return true;
1961        }
1962        if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) {
1963            return false;
1964        }
1965        *ot = MO_128;
1966        return true;
1967
1968    case X86_SIZE_qq: /* AVX 256-bit */
1969        if (!s->vex_l) {
1970            return false;
1971        }
1972        *ot = MO_256;
1973        return true;
1974
1975    case X86_SIZE_x:  /* 128/256-bit, based on operand size */
1976        if (e->special == X86_SPECIAL_MMX &&
1977            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
1978            *ot = MO_64;
1979            return true;
1980        }
1981        /* fall through */
1982    case X86_SIZE_ps: /* SSE/AVX packed single precision */
1983    case X86_SIZE_pd: /* SSE/AVX packed double precision */
1984        *ot = s->vex_l ? MO_256 : MO_128;
1985        return true;
1986
1987    case X86_SIZE_xh: /* SSE/AVX packed half register */
1988        *ot = s->vex_l ? MO_128 : MO_64;
1989        return true;
1990
1991    case X86_SIZE_d64:  /* Default to 64-bit in 64-bit mode */
1992        *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag;
1993        return true;
1994
1995    case X86_SIZE_f64:  /* Ignore size override prefix in 64-bit mode */
1996        *ot = CODE64(s) ? MO_64 : s->dflag;
1997        return true;
1998
1999    default:
2000        *ot = -1;
2001        return true;
2002    }
2003}
2004
2005static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
2006                      X86DecodedOp *op, X86OpType type, int b)
2007{
2008    int modrm;
2009
2010    switch (type) {
2011    case X86_TYPE_None:  /* Implicit or absent */
2012    case X86_TYPE_A:  /* Implicit */
2013    case X86_TYPE_F:  /* EFLAGS/RFLAGS */
2014    case X86_TYPE_X:  /* string source */
2015    case X86_TYPE_Y:  /* string destination */
2016        break;
2017
2018    case X86_TYPE_B:  /* VEX.vvvv selects a GPR */
2019        op->unit = X86_OP_INT;
2020        op->n = s->vex_v;
2021        break;
2022
2023    case X86_TYPE_C:  /* REG in the modrm byte selects a control register */
2024        op->unit = X86_OP_CR;
2025        op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
2026        if (op->n == 0 && (s->prefix & PREFIX_LOCK) &&
2027            (s->cpuid_ext3_features & CPUID_EXT3_CR8LEG)) {
2028            op->n = 8;
2029            s->prefix &= ~PREFIX_LOCK;
2030        }
2031        if (op->n != 0 && op->n != 2 && op->n != 3 && op->n != 4 && op->n != 8) {
2032            return false;
2033        }
2034        if (decode->e.intercept) {
2035            decode->e.intercept += op->n;
2036        }
2037        break;
2038
2039    case X86_TYPE_D:  /* REG in the modrm byte selects a debug register */
2040        op->unit = X86_OP_DR;
2041        op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
2042        if (op->n >= 8) {
2043            /*
2044             * illegal opcode.  The DR4 and DR5 case is checked in the generated
2045             * code instead, to save on hflags bits.
2046             */
2047            return false;
2048        }
2049        if (decode->e.intercept) {
2050            decode->e.intercept += op->n;
2051        }
2052        break;
2053
2054    case X86_TYPE_G:  /* REG in the modrm byte selects a GPR */
2055        op->unit = X86_OP_INT;
2056        goto get_reg;
2057
2058    case X86_TYPE_S:  /* reg selects a segment register */
2059        op->unit = X86_OP_SEG;
2060        goto get_reg;
2061
2062    case X86_TYPE_P:
2063        op->unit = X86_OP_MMX;
2064        goto get_reg;
2065
2066    case X86_TYPE_V:  /* reg in the modrm byte selects an XMM/YMM register */
2067        if (decode->e.special == X86_SPECIAL_MMX &&
2068            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
2069            op->unit = X86_OP_MMX;
2070        } else {
2071            op->unit = X86_OP_SSE;
2072        }
2073    get_reg:
2074        op->n = ((get_modrm(s, env) >> 3) & 7);
2075        if (op->unit != X86_OP_MMX) {
2076            op->n |= REX_R(s);
2077        }
2078        break;
2079
2080    case X86_TYPE_E:  /* ALU modrm operand */
2081        op->unit = X86_OP_INT;
2082        goto get_modrm;
2083
2084    case X86_TYPE_Q:  /* MMX modrm operand */
2085        op->unit = X86_OP_MMX;
2086        goto get_modrm;
2087
2088    case X86_TYPE_W:  /* XMM/YMM modrm operand */
2089        if (decode->e.special == X86_SPECIAL_MMX &&
2090            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
2091            op->unit = X86_OP_MMX;
2092        } else {
2093            op->unit = X86_OP_SSE;
2094        }
2095        goto get_modrm;
2096
2097    case X86_TYPE_N:  /* R/M in the modrm byte selects an MMX register */
2098        op->unit = X86_OP_MMX;
2099        goto get_modrm_reg;
2100
2101    case X86_TYPE_U:  /* R/M in the modrm byte selects an XMM/YMM register */
2102        if (decode->e.special == X86_SPECIAL_MMX &&
2103            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
2104            op->unit = X86_OP_MMX;
2105        } else {
2106            op->unit = X86_OP_SSE;
2107        }
2108        goto get_modrm_reg;
2109
2110    case X86_TYPE_R:  /* R/M in the modrm byte selects a register */
2111        op->unit = X86_OP_INT;
2112    get_modrm_reg:
2113        modrm = get_modrm(s, env);
2114        if ((modrm >> 6) != 3) {
2115            return false;
2116        }
2117        goto get_modrm;
2118
2119    case X86_TYPE_WM:  /* modrm byte selects an XMM/YMM memory operand */
2120        op->unit = X86_OP_SSE;
2121        goto get_modrm_mem;
2122
2123    case X86_TYPE_EM:  /* modrm byte selects an ALU memory operand */
2124        op->unit = X86_OP_INT;
2125        /* fall through */
2126    case X86_TYPE_M:  /* modrm byte selects a memory operand */
2127    get_modrm_mem:
2128        modrm = get_modrm(s, env);
2129        if ((modrm >> 6) == 3) {
2130            return false;
2131        }
2132        /* fall through */
2133    case X86_TYPE_nop:  /* modrm operand decoded but not fetched */
2134    get_modrm:
2135        decode_modrm(s, env, decode, op);
2136        break;
2137
2138    case X86_TYPE_O:  /* Absolute address encoded in the instruction */
2139        op->unit = X86_OP_INT;
2140        op->has_ea = true;
2141        op->n = -1;
2142        decode->mem = (AddressParts) {
2143            .def_seg = R_DS,
2144            .base = -1,
2145            .index = -1,
2146            .disp = insn_get_addr(env, s, s->aflag)
2147        };
2148        break;
2149
2150    case X86_TYPE_H:  /* For AVX, VEX.vvvv selects an XMM/YMM register */
2151        if ((s->prefix & PREFIX_VEX)) {
2152            op->unit = X86_OP_SSE;
2153            op->n = s->vex_v;
2154            break;
2155        }
2156        if (op == &decode->op[0]) {
2157            /* shifts place the destination in VEX.vvvv, use modrm */
2158            return decode_op(s, env, decode, op, decode->e.op1, b);
2159        } else {
2160            return decode_op(s, env, decode, op, decode->e.op0, b);
2161        }
2162
2163    case X86_TYPE_I:  /* Immediate */
2164    case X86_TYPE_J:  /* Relative offset for a jump */
2165        op->unit = X86_OP_IMM;
2166        decode->immediate = op->imm = insn_get_signed(env, s, op->ot);
2167        break;
2168
2169    case X86_TYPE_I_unsigned:  /* Immediate */
2170        op->unit = X86_OP_IMM;
2171        decode->immediate = op->imm = insn_get(env, s, op->ot);
2172        break;
2173
2174    case X86_TYPE_L:  /* The upper 4 bits of the immediate select a 128-bit register */
2175        op->n = insn_get(env, s, op->ot) >> 4;
2176        break;
2177
2178    case X86_TYPE_2op:
2179        *op = decode->op[0];
2180        break;
2181
2182    case X86_TYPE_LoBits:
2183        op->n = (b & 7) | REX_B(s);
2184        op->unit = X86_OP_INT;
2185        break;
2186
2187    case X86_TYPE_0 ... X86_TYPE_7:
2188        op->n = type - X86_TYPE_0;
2189        op->unit = X86_OP_INT;
2190        break;
2191
2192    case X86_TYPE_ES ... X86_TYPE_GS:
2193        op->n = type - X86_TYPE_ES;
2194        op->unit = X86_OP_SEG;
2195        break;
2196    }
2197
2198    return true;
2199}
2200
2201static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e)
2202{
2203    uint16_t sse_prefixes;
2204
2205    if (!e->valid_prefix) {
2206        return true;
2207    }
2208    if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
2209        /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66.  */
2210        s->prefix &= ~PREFIX_DATA;
2211    }
2212
2213    /* Now, either zero or one bit is set in sse_prefixes.  */
2214    sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA);
2215    return e->valid_prefix & (1 << sse_prefixes);
2216}
2217
2218static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func,
2219                        X86DecodedInsn *decode)
2220{
2221    X86OpEntry *e = &decode->e;
2222
2223    decode_func(s, env, e, &decode->b);
2224    while (e->is_decode) {
2225        e->is_decode = false;
2226        e->decode(s, env, e, &decode->b);
2227    }
2228
2229    if (!validate_sse_prefix(s, e)) {
2230        return false;
2231    }
2232
2233    /* First compute size of operands in order to initialize s->rip_offset.  */
2234    if (e->op0 != X86_TYPE_None) {
2235        if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) {
2236            return false;
2237        }
2238        if (e->op0 == X86_TYPE_I) {
2239            s->rip_offset += 1 << decode->op[0].ot;
2240        }
2241    }
2242    if (e->op1 != X86_TYPE_None) {
2243        if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) {
2244            return false;
2245        }
2246        if (e->op1 == X86_TYPE_I) {
2247            s->rip_offset += 1 << decode->op[1].ot;
2248        }
2249    }
2250    if (e->op2 != X86_TYPE_None) {
2251        if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) {
2252            return false;
2253        }
2254        if (e->op2 == X86_TYPE_I) {
2255            s->rip_offset += 1 << decode->op[2].ot;
2256        }
2257    }
2258    if (e->op3 != X86_TYPE_None) {
2259        /*
2260         * A couple instructions actually use the extra immediate byte for an Lx
2261         * register operand; those are handled in the gen_* functions as one off.
2262         */
2263        assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b);
2264        s->rip_offset += 1;
2265    }
2266
2267    if (e->op0 != X86_TYPE_None &&
2268        !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) {
2269        return false;
2270    }
2271
2272    if (e->op1 != X86_TYPE_None &&
2273        !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) {
2274        return false;
2275    }
2276
2277    if (e->op2 != X86_TYPE_None &&
2278        !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) {
2279        return false;
2280    }
2281
2282    if (e->op3 != X86_TYPE_None) {
2283        decode->immediate = insn_get_signed(env, s, MO_8);
2284    }
2285
2286    return true;
2287}
2288
2289static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid)
2290{
2291    switch (cpuid) {
2292    case X86_FEAT_None:
2293        return true;
2294    case X86_FEAT_CMOV:
2295        return (s->cpuid_features & CPUID_CMOV);
2296    case X86_FEAT_CLFLUSH:
2297        return (s->cpuid_features & CPUID_CLFLUSH);
2298    case X86_FEAT_CX8:
2299        return (s->cpuid_features & CPUID_CX8);
2300    case X86_FEAT_FXSR:
2301        return (s->cpuid_features & CPUID_FXSR);
2302    case X86_FEAT_CX16:
2303        return (s->cpuid_ext_features & CPUID_EXT_CX16);
2304    case X86_FEAT_F16C:
2305        return (s->cpuid_ext_features & CPUID_EXT_F16C);
2306    case X86_FEAT_FMA:
2307        return (s->cpuid_ext_features & CPUID_EXT_FMA);
2308    case X86_FEAT_MOVBE:
2309        return (s->cpuid_ext_features & CPUID_EXT_MOVBE);
2310    case X86_FEAT_PCLMULQDQ:
2311        return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ);
2312    case X86_FEAT_POPCNT:
2313        return (s->cpuid_ext_features & CPUID_EXT_POPCNT);
2314    case X86_FEAT_SSE:
2315        return (s->cpuid_features & CPUID_SSE);
2316    case X86_FEAT_SSE2:
2317        return (s->cpuid_features & CPUID_SSE2);
2318    case X86_FEAT_SSE3:
2319        return (s->cpuid_ext_features & CPUID_EXT_SSE3);
2320    case X86_FEAT_SSSE3:
2321        return (s->cpuid_ext_features & CPUID_EXT_SSSE3);
2322    case X86_FEAT_SSE41:
2323        return (s->cpuid_ext_features & CPUID_EXT_SSE41);
2324    case X86_FEAT_SSE42:
2325        return (s->cpuid_ext_features & CPUID_EXT_SSE42);
2326    case X86_FEAT_AES:
2327        if (!(s->cpuid_ext_features & CPUID_EXT_AES)) {
2328            return false;
2329        } else if (!(s->prefix & PREFIX_VEX)) {
2330            return true;
2331        } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) {
2332            return false;
2333        } else {
2334            return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES);
2335        }
2336
2337    case X86_FEAT_AVX:
2338        return (s->cpuid_ext_features & CPUID_EXT_AVX);
2339    case X86_FEAT_XSAVE:
2340        return (s->cpuid_ext_features & CPUID_EXT_XSAVE);
2341
2342    case X86_FEAT_3DNOW:
2343        return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW);
2344    case X86_FEAT_SSE4A:
2345        return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A);
2346
2347    case X86_FEAT_ADX:
2348        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX);
2349    case X86_FEAT_BMI1:
2350        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1);
2351    case X86_FEAT_BMI2:
2352        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2);
2353    case X86_FEAT_AVX2:
2354        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2);
2355    case X86_FEAT_CLFLUSHOPT:
2356        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_CLFLUSHOPT);
2357    case X86_FEAT_CLWB:
2358        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_CLWB);
2359    case X86_FEAT_FSGSBASE:
2360        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_FSGSBASE);
2361    case X86_FEAT_SHA_NI:
2362        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SHA_NI);
2363
2364    case X86_FEAT_CMPCCXADD:
2365        return (s->cpuid_7_1_eax_features & CPUID_7_1_EAX_CMPCCXADD);
2366
2367    case X86_FEAT_XSAVEOPT:
2368        return (s->cpuid_xsave_features & CPUID_XSAVE_XSAVEOPT);
2369    }
2370    g_assert_not_reached();
2371}
2372
2373static bool validate_vex(DisasContext *s, X86DecodedInsn *decode)
2374{
2375    X86OpEntry *e = &decode->e;
2376
2377    switch (e->vex_special) {
2378    case X86_VEX_REPScalar:
2379        /*
2380         * Instructions which differ between 00/66 and F2/F3 in the
2381         * exception classification and the size of the memory operand.
2382         */
2383        assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4);
2384        if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
2385            e->vex_class = e->vex_class < 4 ? 3 : 5;
2386            if (s->vex_l) {
2387                goto illegal;
2388            }
2389            assert(decode->e.s2 == X86_SIZE_x);
2390            if (decode->op[2].has_ea) {
2391                decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64;
2392            }
2393        }
2394        break;
2395
2396    case X86_VEX_SSEUnaligned:
2397        /* handled in sse_needs_alignment.  */
2398        break;
2399
2400    case X86_VEX_AVX2_256:
2401        if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) {
2402            goto illegal;
2403        }
2404    }
2405
2406    switch (e->vex_class) {
2407    case 0:
2408        if (s->prefix & PREFIX_VEX) {
2409            goto illegal;
2410        }
2411        return true;
2412    case 1:
2413    case 2:
2414    case 3:
2415    case 4:
2416    case 5:
2417    case 7:
2418        if (s->prefix & PREFIX_VEX) {
2419            if (!(s->flags & HF_AVX_EN_MASK)) {
2420                goto illegal;
2421            }
2422        } else if (e->special != X86_SPECIAL_MMX ||
2423                   (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
2424            if (!(s->flags & HF_OSFXSR_MASK)) {
2425                goto illegal;
2426            }
2427        }
2428        break;
2429    case 12:
2430        /* Must have a VSIB byte and no address prefix.  */
2431        assert(s->has_modrm);
2432        if ((s->modrm & 7) != 4 || s->aflag == MO_16) {
2433            goto illegal;
2434        }
2435
2436        /* Check no overlap between registers.  */
2437        if (!decode->op[0].has_ea &&
2438            (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) {
2439            goto illegal;
2440        }
2441        assert(!decode->op[1].has_ea);
2442        if (decode->op[1].n == decode->mem.index) {
2443            goto illegal;
2444        }
2445        if (!decode->op[2].has_ea &&
2446            (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) {
2447            goto illegal;
2448        }
2449        /* fall through */
2450    case 6:
2451    case 11:
2452        if (!(s->prefix & PREFIX_VEX)) {
2453            goto illegal;
2454        }
2455        if (!(s->flags & HF_AVX_EN_MASK)) {
2456            goto illegal;
2457        }
2458        break;
2459    case 8:
2460        /* Non-VEX case handled in decode_0F77.  */
2461        assert(s->prefix & PREFIX_VEX);
2462        if (!(s->flags & HF_AVX_EN_MASK)) {
2463            goto illegal;
2464        }
2465        break;
2466    case 13:
2467        if (!(s->prefix & PREFIX_VEX)) {
2468            goto illegal;
2469        }
2470        if (s->vex_l) {
2471            goto illegal;
2472        }
2473        /* All integer instructions use VEX.vvvv, so exit.  */
2474        return true;
2475    }
2476
2477    if (s->vex_v != 0 &&
2478        e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B &&
2479        e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B &&
2480        e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) {
2481        goto illegal;
2482    }
2483
2484    if (s->flags & HF_TS_MASK) {
2485        goto nm_exception;
2486    }
2487    if (s->flags & HF_EM_MASK) {
2488        goto illegal;
2489    }
2490
2491    if (e->check) {
2492        if (e->check & X86_CHECK_VEX128) {
2493            if (s->vex_l) {
2494                goto illegal;
2495            }
2496        }
2497        if (e->check & X86_CHECK_W0) {
2498            if (s->vex_w) {
2499                goto illegal;
2500            }
2501        }
2502        if (e->check & X86_CHECK_W1) {
2503            if (!s->vex_w) {
2504                goto illegal;
2505            }
2506        }
2507    }
2508    return true;
2509
2510nm_exception:
2511    gen_NM_exception(s);
2512    return false;
2513illegal:
2514    gen_illegal_opcode(s);
2515    return false;
2516}
2517
2518/*
2519 * Convert one instruction. s->base.is_jmp is set if the translation must
2520 * be stopped.
2521 */
2522static void disas_insn(DisasContext *s, CPUState *cpu)
2523{
2524    CPUX86State *env = cpu_env(cpu);
2525    X86DecodedInsn decode;
2526    X86DecodeFunc decode_func = decode_root;
2527    bool accept_lock = false;
2528    uint8_t cc_live, b;
2529
2530    s->pc = s->base.pc_next;
2531    s->override = -1;
2532    s->popl_esp_hack = 0;
2533#ifdef TARGET_X86_64
2534    s->rex_r = 0;
2535    s->rex_x = 0;
2536    s->rex_b = 0;
2537#endif
2538    s->rip_offset = 0; /* for relative ip address */
2539    s->vex_l = 0;
2540    s->vex_v = 0;
2541    s->vex_w = false;
2542    s->has_modrm = false;
2543    s->prefix = 0;
2544
2545 next_byte:
2546    b = x86_ldub_code(env, s);
2547
2548    /* Collect prefixes.  */
2549    switch (b) {
2550    case 0xf3:
2551        s->prefix |= PREFIX_REPZ;
2552        s->prefix &= ~PREFIX_REPNZ;
2553        goto next_byte;
2554    case 0xf2:
2555        s->prefix |= PREFIX_REPNZ;
2556        s->prefix &= ~PREFIX_REPZ;
2557        goto next_byte;
2558    case 0xf0:
2559        s->prefix |= PREFIX_LOCK;
2560        goto next_byte;
2561    case 0x2e:
2562        s->override = R_CS;
2563        goto next_byte;
2564    case 0x36:
2565        s->override = R_SS;
2566        goto next_byte;
2567    case 0x3e:
2568        s->override = R_DS;
2569        goto next_byte;
2570    case 0x26:
2571        s->override = R_ES;
2572        goto next_byte;
2573    case 0x64:
2574        s->override = R_FS;
2575        goto next_byte;
2576    case 0x65:
2577        s->override = R_GS;
2578        goto next_byte;
2579    case 0x66:
2580        s->prefix |= PREFIX_DATA;
2581        goto next_byte;
2582    case 0x67:
2583        s->prefix |= PREFIX_ADR;
2584        goto next_byte;
2585#ifdef TARGET_X86_64
2586    case 0x40 ... 0x4f:
2587        if (CODE64(s)) {
2588            /* REX prefix */
2589            s->prefix |= PREFIX_REX;
2590            s->vex_w = (b >> 3) & 1;
2591            s->rex_r = (b & 0x4) << 1;
2592            s->rex_x = (b & 0x2) << 2;
2593            s->rex_b = (b & 0x1) << 3;
2594            goto next_byte;
2595        }
2596        break;
2597#endif
2598    case 0xc5: /* 2-byte VEX */
2599    case 0xc4: /* 3-byte VEX */
2600        /*
2601         * VEX prefixes cannot be used except in 32-bit mode.
2602         * Otherwise the instruction is LES or LDS.
2603         */
2604        if (CODE32(s) && !VM86(s)) {
2605            static const int pp_prefix[4] = {
2606                0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ
2607            };
2608            int vex3, vex2 = x86_ldub_code(env, s);
2609
2610            if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) {
2611                /*
2612                 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b,
2613                 * otherwise the instruction is LES or LDS.
2614                 */
2615                s->pc--; /* rewind the advance_pc() x86_ldub_code() did */
2616                break;
2617            }
2618
2619            /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */
2620            if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ
2621                             | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) {
2622                goto illegal_op;
2623            }
2624#ifdef TARGET_X86_64
2625            s->rex_r = (~vex2 >> 4) & 8;
2626#endif
2627            if (b == 0xc5) {
2628                /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */
2629                vex3 = vex2;
2630                decode_func = decode_0F;
2631            } else {
2632                /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */
2633                vex3 = x86_ldub_code(env, s);
2634#ifdef TARGET_X86_64
2635                s->rex_x = (~vex2 >> 3) & 8;
2636                s->rex_b = (~vex2 >> 2) & 8;
2637#endif
2638                s->vex_w = (vex3 >> 7) & 1;
2639                switch (vex2 & 0x1f) {
2640                case 0x01: /* Implied 0f leading opcode bytes.  */
2641                    decode_func = decode_0F;
2642                    break;
2643                case 0x02: /* Implied 0f 38 leading opcode bytes.  */
2644                    decode_func = decode_0F38;
2645                    break;
2646                case 0x03: /* Implied 0f 3a leading opcode bytes.  */
2647                    decode_func = decode_0F3A;
2648                    break;
2649                default:   /* Reserved for future use.  */
2650                    goto unknown_op;
2651                }
2652            }
2653            s->vex_v = (~vex3 >> 3) & 0xf;
2654            s->vex_l = (vex3 >> 2) & 1;
2655            s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX;
2656        }
2657        break;
2658    default:
2659        break;
2660    }
2661
2662    /* Post-process prefixes.  */
2663    if (CODE64(s)) {
2664        /*
2665         * In 64-bit mode, the default data size is 32-bit.  Select 64-bit
2666         * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence
2667         * over 0x66 if both are present.
2668         */
2669        s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32);
2670        /* In 64-bit mode, 0x67 selects 32-bit addressing.  */
2671        s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64);
2672    } else {
2673        /* In 16/32-bit mode, 0x66 selects the opposite data size.  */
2674        if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) {
2675            s->dflag = MO_32;
2676        } else {
2677            s->dflag = MO_16;
2678        }
2679        /* In 16/32-bit mode, 0x67 selects the opposite addressing.  */
2680        if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) {
2681            s->aflag = MO_32;
2682        }  else {
2683            s->aflag = MO_16;
2684        }
2685    }
2686
2687    memset(&decode, 0, sizeof(decode));
2688    decode.cc_op = -1;
2689    decode.b = b;
2690    if (!decode_insn(s, env, decode_func, &decode)) {
2691        goto illegal_op;
2692    }
2693    if (!decode.e.gen) {
2694        goto unknown_op;
2695    }
2696
2697    if (!has_cpuid_feature(s, decode.e.cpuid)) {
2698        goto illegal_op;
2699    }
2700
2701    /* Checks that result in #UD come first.  */
2702    if (decode.e.check) {
2703        if (CODE64(s)) {
2704            if (decode.e.check & X86_CHECK_i64) {
2705                goto illegal_op;
2706            }
2707            if ((decode.e.check & X86_CHECK_i64_amd) && env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1) {
2708                goto illegal_op;
2709            }
2710        } else {
2711            if (decode.e.check & X86_CHECK_o64) {
2712                goto illegal_op;
2713            }
2714            if ((decode.e.check & X86_CHECK_o64_intel) && env->cpuid_vendor1 == CPUID_VENDOR_INTEL_1) {
2715                goto illegal_op;
2716            }
2717        }
2718        if (decode.e.check & X86_CHECK_prot_or_vm86) {
2719            if (!PE(s)) {
2720                goto illegal_op;
2721            }
2722        }
2723        if (decode.e.check & X86_CHECK_no_vm86) {
2724            if (VM86(s)) {
2725                goto illegal_op;
2726            }
2727        }
2728    }
2729
2730    switch (decode.e.special) {
2731    case X86_SPECIAL_None:
2732        break;
2733
2734    case X86_SPECIAL_Locked:
2735        if (decode.op[0].has_ea) {
2736            s->prefix |= PREFIX_LOCK;
2737        }
2738        /* fallthrough */
2739    case X86_SPECIAL_HasLock:
2740    case X86_SPECIAL_BitTest:
2741        accept_lock = decode.op[0].has_ea;
2742        break;
2743
2744    case X86_SPECIAL_Op0_Rd:
2745        assert(decode.op[0].unit == X86_OP_INT);
2746        if (!decode.op[0].has_ea) {
2747            decode.op[0].ot = MO_32;
2748        }
2749        break;
2750
2751    case X86_SPECIAL_Op2_Ry:
2752        assert(decode.op[2].unit == X86_OP_INT);
2753        if (!decode.op[2].has_ea) {
2754            decode.op[2].ot = s->dflag == MO_16 ? MO_32 : s->dflag;
2755        }
2756        break;
2757
2758    case X86_SPECIAL_AVXExtMov:
2759        if (!decode.op[2].has_ea) {
2760            decode.op[2].ot = s->vex_l ? MO_256 : MO_128;
2761        } else if (s->vex_l) {
2762            decode.op[2].ot++;
2763        }
2764        break;
2765
2766    case X86_SPECIAL_SExtT0:
2767    case X86_SPECIAL_ZExtT0:
2768        /* Handled in gen_load.  */
2769        assert(decode.op[1].unit == X86_OP_INT);
2770        break;
2771
2772    case X86_SPECIAL_Op0_Mw:
2773        assert(decode.op[0].unit == X86_OP_INT);
2774        if (decode.op[0].has_ea) {
2775            decode.op[0].ot = MO_16;
2776        }
2777        break;
2778
2779    default:
2780        break;
2781    }
2782
2783    if ((s->prefix & PREFIX_LOCK) && !accept_lock) {
2784        goto illegal_op;
2785    }
2786
2787    if (!validate_vex(s, &decode)) {
2788        return;
2789    }
2790
2791    /*
2792     * Checks that result in #GP or VMEXIT come second.  Intercepts are
2793     * generally checked after non-memory exceptions (i.e. after all
2794     * exceptions if there is no memory operand).  Exceptions are
2795     * vm86 checks (INTn, IRET, PUSHF/POPF), RSM and XSETBV (!).
2796     *
2797     * XSETBV will check for CPL0 in the gen_* function instead of using chk().
2798     */
2799    if (decode.e.check & X86_CHECK_cpl0) {
2800        if (CPL(s) != 0) {
2801            goto gp_fault;
2802        }
2803    }
2804    if (decode.e.has_intercept && unlikely(GUEST(s))) {
2805        gen_helper_svm_check_intercept(tcg_env,
2806                                       tcg_constant_i32(decode.e.intercept));
2807    }
2808    if (decode.e.check) {
2809        if ((decode.e.check & X86_CHECK_smm) && !(s->flags & HF_SMM_MASK)) {
2810            goto illegal_op;
2811        }
2812        if ((decode.e.check & X86_CHECK_vm86_iopl) && VM86(s)) {
2813            if (IOPL(s) < 3) {
2814                goto gp_fault;
2815            }
2816        } else if (decode.e.check & X86_CHECK_cpl_iopl) {
2817            if (IOPL(s) < CPL(s)) {
2818                goto gp_fault;
2819            }
2820        }
2821    }
2822
2823    if (decode.e.special == X86_SPECIAL_MMX &&
2824        !(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
2825        gen_helper_enter_mmx(tcg_env);
2826    }
2827
2828    if (decode.e.special != X86_SPECIAL_NoLoadEA &&
2829        (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea)) {
2830        gen_lea_modrm(s, &decode);
2831    }
2832    if (s->prefix & PREFIX_LOCK) {
2833        assert(decode.op[0].has_ea && !decode.op[2].has_ea);
2834        gen_load(s, &decode, 2, s->T1);
2835        decode.e.gen(s, &decode);
2836    } else {
2837        if (decode.op[0].unit == X86_OP_MMX) {
2838            compute_mmx_offset(&decode.op[0]);
2839        } else if (decode.op[0].unit == X86_OP_SSE) {
2840            compute_xmm_offset(&decode.op[0]);
2841        }
2842        gen_load(s, &decode, 1, s->T0);
2843        gen_load(s, &decode, 2, s->T1);
2844        decode.e.gen(s, &decode);
2845        gen_writeback(s, &decode, 0, s->T0);
2846    }
2847
2848    /*
2849     * Write back flags after last memory access.  Some older ALU instructions, as
2850     * well as SSE instructions, write flags in the gen_* function, but that can
2851     * cause incorrect tracking of CC_OP for instructions that write to both memory
2852     * and flags.
2853     */
2854    if (decode.cc_op != -1) {
2855        if (decode.cc_dst) {
2856            tcg_gen_mov_tl(cpu_cc_dst, decode.cc_dst);
2857        }
2858        if (decode.cc_src) {
2859            tcg_gen_mov_tl(cpu_cc_src, decode.cc_src);
2860        }
2861        if (decode.cc_src2) {
2862            tcg_gen_mov_tl(cpu_cc_src2, decode.cc_src2);
2863        }
2864        if (decode.cc_op == CC_OP_DYNAMIC) {
2865            tcg_gen_mov_i32(cpu_cc_op, decode.cc_op_dynamic);
2866        }
2867        set_cc_op(s, decode.cc_op);
2868        cc_live = cc_op_live(decode.cc_op);
2869    } else {
2870        cc_live = 0;
2871    }
2872    if (decode.cc_op != CC_OP_DYNAMIC) {
2873        assert(!decode.cc_op_dynamic);
2874        assert(!!decode.cc_dst == !!(cc_live & USES_CC_DST));
2875        assert(!!decode.cc_src == !!(cc_live & USES_CC_SRC));
2876        assert(!!decode.cc_src2 == !!(cc_live & USES_CC_SRC2));
2877    }
2878
2879    return;
2880 gp_fault:
2881    gen_exception_gpf(s);
2882    return;
2883 illegal_op:
2884    gen_illegal_opcode(s);
2885    return;
2886 unknown_op:
2887    gen_unknown_opcode(env, s);
2888}
2889