1/* 2 * New-style decoder for i386 instructions 3 * 4 * Copyright (c) 2022 Red Hat, Inc. 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This library is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2.1 of the License, or (at your option) any later version. 12 * 13 * This library is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22/* 23 * The decoder is mostly based on tables copied from the Intel SDM. As 24 * a result, most operand load and writeback is done entirely in common 25 * table-driven code using the same operand type (X86_TYPE_*) and 26 * size (X86_SIZE_*) codes used in the manual. There are a few differences 27 * though. 28 * 29 * Operand sizes 30 * ------------- 31 * 32 * The manual lists d64 ("cannot encode 32-bit size in 64-bit mode") and f64 33 * ("cannot encode 16-bit or 32-bit size in 64-bit mode") as modifiers of the 34 * "v" or "z" sizes. The decoder simply makes them separate operand sizes. 35 * 36 * The manual lists immediate far destinations as Ap (technically an implicit 37 * argument). The decoder splits them into two immediates, using "Ip" for 38 * the offset part (that comes first in the instruction stream) and "Iw" for 39 * the segment/selector part. The size of the offset is given by s->dflag 40 * and the instructions are illegal in 64-bit mode, so the choice of "Ip" 41 * is somewhat arbitrary; "Iv" or "Iz" would work just as well. 42 * 43 * Operand types 44 * ------------- 45 * 46 * For memory-only operands, if the emitter functions wants to rely on 47 * generic load and writeback, the decoder needs to know the type of the 48 * operand. Therefore, M is often replaced by the more specific EM and WM 49 * (respectively selecting an ALU operand, like the operand type E, or a 50 * vector operand like the operand type W). 51 * 52 * Immediates are almost always signed or masked away in helpers. Two 53 * common exceptions are IN/OUT and absolute jumps. For these, there is 54 * an additional custom operand type "I_unsigned". Alternatively, the 55 * mask could be applied (and the original sign-extended value would be 56 * optimized away by TCG) in the emitter function. 57 * 58 * Finally, a "nop" operand type is used for multi-byte NOPs. It accepts 59 * any value of mod including 11b (unlike M) but it does not try to 60 * interpret the operand (like M). 61 * 62 * Vector operands 63 * --------------- 64 * 65 * The main difference is that the V, U and W types are extended to 66 * cover MMX as well; if an instruction is like 67 * 68 * por Pq, Qq 69 * 66 por Vx, Hx, Wx 70 * 71 * only the second row is included and the instruction is marked as a 72 * valid MMX instruction. The MMX flag directs the decoder to rewrite 73 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing 74 * "x" to "q" if there is no prefix. 75 * 76 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x" 77 * if the difference is expressed via prefixes. Individual instructions 78 * are separated by prefix in the generator functions. 79 * 80 * There is a custom size "xh" used to address half of a SSE/AVX operand. 81 * This points to a 64-bit operand for SSE operations, 128-bit operand 82 * for 256-bit AVX operands, etc. It is used for conversion operations 83 * such as VCVTPH2PS or VCVTSS2SD. 84 * 85 * There are a couple cases in which instructions (e.g. MOVD) write the 86 * whole XMM or MM register but are established incorrectly in the manual 87 * as "d" or "q". These have to be fixed for the decoder to work correctly. 88 * 89 * VEX exception classes 90 * --------------------- 91 * 92 * Speaking about imprecisions in the manual, the decoder treats all 93 * exception-class 4 instructions as having an optional VEX prefix, and 94 * all exception-class 6 instructions as having a mandatory VEX prefix. 95 * This is true except for a dozen instructions; these are in exception 96 * class 4 but do not ignore the VEX.W bit (which does not even exist 97 * without a VEX prefix). These instructions are mostly listed in Intel's 98 * table 2-16, but with a few exceptions. 99 * 100 * The AMD manual has more precise subclasses for exceptions, and unlike Intel 101 * they list the VEX.W requirements in the exception classes as well (except 102 * when they don't). AMD describes class 6 as "AVX Mixed Memory Argument" 103 * without defining what a mixed memory argument is, but still use 4 as the 104 * primary exception class... except when they don't. 105 * 106 * The summary is: 107 * Intel AMD VEX.W note 108 * ------------------------------------------------------------------- 109 * vpblendd 4 4J 0 110 * vpblendvb 4 4E-X 0 (*) 111 * vpbroadcastq 6 6D 0 (+) 112 * vpermd/vpermps 4 4H 0 (§) 113 * vpermq/vpermpd 4 4H-1 1 (§) 114 * vpermilpd/vpermilps 4 6E 0 (^) 115 * vpmaskmovd 6 4K significant (^) 116 * vpsllv 4 4K significant 117 * vpsrav 4 4J 0 118 * vpsrlv 4 4K significant 119 * vtestps/vtestpd 4 4G 0 120 * 121 * (*) AMD lists VPBLENDVB as related to SSE4.1 PBLENDVB, which may 122 * explain why it is considered exception class 4. However, 123 * Intel says that VEX-only instructions should be in class 6... 124 * 125 * (+) Not found in Intel's table 2-16 126 * 127 * (§) 4H and 4H-1 do not mention VEX.W requirements, which are 128 * however present in the description of the instruction 129 * 130 * (^) these are the two cases in which Intel and AMD disagree on the 131 * primary exception class 132 * 133 * Instructions still in translate.c 134 * --------------------------------- 135 * Generation of TCG opcodes for almost all instructions is in emit.c.inc; 136 * this file interprets the prefixes and opcode bytes down to individual 137 * instruction mnemonics. There is only a handful of opcodes still using 138 * a switch statement to decode modrm bits 3-5 and prefixes after decoding 139 * is complete; these are relics of the older x86 decoder and their code 140 * generation is performed in translate.c. 141 * 142 * These unconverted opcodes also perform their own effective address 143 * generation using the gen_lea_modrm() function. 144 * 145 * There is nothing particularly complicated about them; simply, they don't 146 * need any nasty hacks in the decoder, and they shouldn't get in the way 147 * of the implementation of new x86 instructions, so they are left alone 148 * for the time being. 149 * 150 * x87: 151 * 0xD8 - 0xDF 152 * 153 * privileged/system: 154 * 0x0F 0x00 group 6 (SLDT, STR, LLDT, LTR, VERR, VERW) 155 * 0x0F 0x01 group 7 (SGDT, SIDT, LGDT, LIDT, SMSW, LMSW, INVLPG, 156 * MONITOR, MWAIT, CLAC, STAC, XGETBV, XSETBV, 157 * SWAPGS, RDTSCP) 158 * 0x0F 0xC7 (reg operand) group 9 (RDRAND, RDSEED, RDPID) 159 * 160 * MPX: 161 * 0x0F 0x1A BNDLDX, BNDMOV, BNDCL, BNDCU 162 * 0x0F 0x1B BNDSTX, BNDMOV, BNDMK, BNDCN 163 */ 164 165#define X86_OP_NONE { 0 }, 166 167#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ 168 .decode = glue(decode_, op), \ 169 .op0 = glue(X86_TYPE_, op0_), \ 170 .s0 = glue(X86_SIZE_, s0_), \ 171 .op1 = glue(X86_TYPE_, op1_), \ 172 .s1 = glue(X86_SIZE_, s1_), \ 173 .op2 = glue(X86_TYPE_, op2_), \ 174 .s2 = glue(X86_SIZE_, s2_), \ 175 .is_decode = true, \ 176 ## __VA_ARGS__ \ 177} 178 179#define X86_OP_GROUP1(op, op0, s0, ...) \ 180 X86_OP_GROUP3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__) 181#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \ 182 X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) 183#define X86_OP_GROUPw(op, op0, s0, ...) \ 184 X86_OP_GROUP3(op, op0, s0, None, None, None, None, ## __VA_ARGS__) 185#define X86_OP_GROUPwr(op, op0, s0, op1, s1, ...) \ 186 X86_OP_GROUP3(op, op0, s0, op1, s1, None, None, ## __VA_ARGS__) 187#define X86_OP_GROUP0(op, ...) \ 188 X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__) 189 190#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ 191 .gen = glue(gen_, op), \ 192 .op0 = glue(X86_TYPE_, op0_), \ 193 .s0 = glue(X86_SIZE_, s0_), \ 194 .op1 = glue(X86_TYPE_, op1_), \ 195 .s1 = glue(X86_SIZE_, s1_), \ 196 .op2 = glue(X86_TYPE_, op2_), \ 197 .s2 = glue(X86_SIZE_, s2_), \ 198 ## __VA_ARGS__ \ 199} 200 201#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \ 202 X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \ 203 .op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \ 204 ## __VA_ARGS__) 205 206/* 207 * Short forms that are mostly useful for ALU opcodes and other 208 * one-byte opcodes. For vector instructions it is usually 209 * clearer to write all three operands explicitly, because the 210 * corresponding gen_* function will use OP_PTRn rather than s->T0 211 * and s->T1. 212 */ 213#define X86_OP_ENTRYrr(op, op0, s0, op1, s1, ...) \ 214 X86_OP_ENTRY3(op, None, None, op0, s0, op1, s1, ## __VA_ARGS__) 215#define X86_OP_ENTRYwr(op, op0, s0, op1, s1, ...) \ 216 X86_OP_ENTRY3(op, op0, s0, op1, s1, None, None, ## __VA_ARGS__) 217#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \ 218 X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) 219#define X86_OP_ENTRYw(op, op0, s0, ...) \ 220 X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__) 221#define X86_OP_ENTRYr(op, op0, s0, ...) \ 222 X86_OP_ENTRY3(op, None, None, op0, s0, None, None, ## __VA_ARGS__) 223#define X86_OP_ENTRY1(op, op0, s0, ...) \ 224 X86_OP_ENTRY3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__) 225#define X86_OP_ENTRY0(op, ...) \ 226 X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__) 227 228#define cpuid(feat) .cpuid = X86_FEAT_##feat, 229#define nolea .special = X86_SPECIAL_NoLoadEA, 230#define xchg .special = X86_SPECIAL_Locked, 231#define lock .special = X86_SPECIAL_HasLock, 232#define mmx .special = X86_SPECIAL_MMX, 233#define op0_Rd .special = X86_SPECIAL_Op0_Rd, 234#define op2_Ry .special = X86_SPECIAL_Op2_Ry, 235#define avx_movx .special = X86_SPECIAL_AVXExtMov, 236#define sextT0 .special = X86_SPECIAL_SExtT0, 237#define zextT0 .special = X86_SPECIAL_ZExtT0, 238#define op0_Mw .special = X86_SPECIAL_Op0_Mw, 239#define btEvGv .special = X86_SPECIAL_BitTest, 240 241#define vex1 .vex_class = 1, 242#define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar, 243#define vex2 .vex_class = 2, 244#define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar, 245#define vex3 .vex_class = 3, 246#define vex4 .vex_class = 4, 247#define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned, 248#define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar, 249#define vex5 .vex_class = 5, 250#define vex6 .vex_class = 6, 251#define vex7 .vex_class = 7, 252#define vex8 .vex_class = 8, 253#define vex11 .vex_class = 11, 254#define vex12 .vex_class = 12, 255#define vex13 .vex_class = 13, 256 257#define chk(a) .check = X86_CHECK_##a, 258#define chk2(a, b) .check = X86_CHECK_##a | X86_CHECK_##b, 259#define chk3(a, b, c) .check = X86_CHECK_##a | X86_CHECK_##b | X86_CHECK_##c, 260#define svm(a) .intercept = SVM_EXIT_##a, .has_intercept = true, 261 262#define avx2_256 .vex_special = X86_VEX_AVX2_256, 263 264#define P_00 1 265#define P_66 (1 << PREFIX_DATA) 266#define P_F3 (1 << PREFIX_REPZ) 267#define P_F2 (1 << PREFIX_REPNZ) 268 269#define p_00 .valid_prefix = P_00, 270#define p_66 .valid_prefix = P_66, 271#define p_f3 .valid_prefix = P_F3, 272#define p_f2 .valid_prefix = P_F2, 273#define p_00_66 .valid_prefix = P_00 | P_66, 274#define p_00_f3 .valid_prefix = P_00 | P_F3, 275#define p_66_f2 .valid_prefix = P_66 | P_F2, 276#define p_00_66_f3 .valid_prefix = P_00 | P_66 | P_F3, 277#define p_66_f3_f2 .valid_prefix = P_66 | P_F3 | P_F2, 278#define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2, 279 280#define UNKNOWN_OPCODE ((X86OpEntry) {}) 281 282static uint8_t get_modrm(DisasContext *s, CPUX86State *env) 283{ 284 if (!s->has_modrm) { 285 s->modrm = x86_ldub_code(env, s); 286 s->has_modrm = true; 287 } 288 return s->modrm; 289} 290 291static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4]) 292{ 293 if (s->prefix & PREFIX_REPNZ) { 294 return &entries[3]; 295 } else if (s->prefix & PREFIX_REPZ) { 296 return &entries[2]; 297 } else if (s->prefix & PREFIX_DATA) { 298 return &entries[1]; 299 } else { 300 return &entries[0]; 301 } 302} 303 304static void decode_group8(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 305{ 306 static const X86GenFunc group8_gen[8] = { 307 NULL, NULL, NULL, NULL, 308 gen_BT, gen_BTS, gen_BTR, gen_BTC, 309 }; 310 int op = (get_modrm(s, env) >> 3) & 7; 311 entry->gen = group8_gen[op]; 312 if (op == 4) { 313 /* prevent writeback and LOCK for BT */ 314 entry->op1 = entry->op0; 315 entry->op0 = X86_TYPE_None; 316 entry->s0 = X86_SIZE_None; 317 } else { 318 entry->special = X86_SPECIAL_HasLock; 319 } 320} 321 322static void decode_group9(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 323{ 324 static const X86OpEntry group9_reg = 325 X86_OP_ENTRY0(multi0F); /* unconverted */ 326 static const X86OpEntry cmpxchg8b = 327 X86_OP_ENTRY1(CMPXCHG8B, M,q, lock p_00 cpuid(CX8)); 328 static const X86OpEntry cmpxchg16b = 329 X86_OP_ENTRY1(CMPXCHG16B, M,dq, lock p_00 cpuid(CX16)); 330 331 int modrm = get_modrm(s, env); 332 int op = (modrm >> 3) & 7; 333 334 if ((modrm >> 6) == 3) { 335 *entry = group9_reg; 336 } else if (op == 1) { 337 *entry = REX_W(s) ? cmpxchg16b : cmpxchg8b; 338 } else { 339 *entry = UNKNOWN_OPCODE; 340 } 341} 342 343static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 344{ 345 static const X86OpEntry group15_reg[8] = { 346 [0] = X86_OP_ENTRYw(RDxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3), 347 [1] = X86_OP_ENTRYw(RDxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3), 348 [2] = X86_OP_ENTRYr(WRxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3 zextT0), 349 [3] = X86_OP_ENTRYr(WRxxBASE, R,y, cpuid(FSGSBASE) chk(o64) p_f3 zextT0), 350 [5] = X86_OP_ENTRY0(LFENCE, cpuid(SSE) p_00), 351 [6] = X86_OP_ENTRY0(MFENCE, cpuid(SSE2) p_00), 352 [7] = X86_OP_ENTRY0(SFENCE, cpuid(SSE) p_00), 353 }; 354 355 static const X86OpEntry group15_mem[8] = { 356 [0] = X86_OP_ENTRYw(FXSAVE, M,y, cpuid(FXSR) p_00), 357 [1] = X86_OP_ENTRYr(FXRSTOR, M,y, cpuid(FXSR) p_00), 358 [2] = X86_OP_ENTRYr(LDMXCSR, E,d, vex5 chk(VEX128) p_00), 359 [3] = X86_OP_ENTRYw(STMXCSR, E,d, vex5 chk(VEX128) p_00), 360 [4] = X86_OP_ENTRYw(XSAVE, M,y, cpuid(XSAVE) p_00), 361 [5] = X86_OP_ENTRYr(XRSTOR, M,y, cpuid(XSAVE) p_00), 362 [6] = X86_OP_ENTRYw(XSAVEOPT, M,b, cpuid(XSAVEOPT) p_00), 363 [7] = X86_OP_ENTRYw(NOP, M,b, cpuid(CLFLUSH) p_00), 364 }; 365 366 static const X86OpEntry group15_mem_66[8] = { 367 [6] = X86_OP_ENTRYw(NOP, M,b, cpuid(CLWB)), 368 [7] = X86_OP_ENTRYw(NOP, M,b, cpuid(CLFLUSHOPT)), 369 }; 370 371 uint8_t modrm = get_modrm(s, env); 372 int op = (modrm >> 3) & 7; 373 374 if ((modrm >> 6) == 3) { 375 *entry = group15_reg[op]; 376 } else if (s->prefix & PREFIX_DATA) { 377 *entry = group15_mem_66[op]; 378 } else { 379 *entry = group15_mem[op]; 380 } 381} 382 383static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 384{ 385 static const X86GenFunc group17_gen[8] = { 386 NULL, gen_BLSR, gen_BLSMSK, gen_BLSI, 387 }; 388 int op = (get_modrm(s, env) >> 3) & 7; 389 entry->gen = group17_gen[op]; 390} 391 392static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 393{ 394 static const X86OpEntry opcodes_group12[8] = { 395 {}, 396 {}, 397 X86_OP_ENTRY3(PSRLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 398 {}, 399 X86_OP_ENTRY3(PSRAW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 400 {}, 401 X86_OP_ENTRY3(PSLLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 402 {}, 403 }; 404 405 int op = (get_modrm(s, env) >> 3) & 7; 406 *entry = opcodes_group12[op]; 407} 408 409static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 410{ 411 static const X86OpEntry opcodes_group13[8] = { 412 {}, 413 {}, 414 X86_OP_ENTRY3(PSRLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 415 {}, 416 X86_OP_ENTRY3(PSRAD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 417 {}, 418 X86_OP_ENTRY3(PSLLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 419 {}, 420 }; 421 422 int op = (get_modrm(s, env) >> 3) & 7; 423 *entry = opcodes_group13[op]; 424} 425 426static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 427{ 428 static const X86OpEntry opcodes_group14[8] = { 429 /* grp14 */ 430 {}, 431 {}, 432 X86_OP_ENTRY3(PSRLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 433 X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), 434 {}, 435 {}, 436 X86_OP_ENTRY3(PSLLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 437 X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), 438 }; 439 440 int op = (get_modrm(s, env) >> 3) & 7; 441 *entry = opcodes_group14[op]; 442} 443 444static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 445{ 446 static const X86OpEntry opcodes_0F6F[4] = { 447 X86_OP_ENTRY3(MOVDQ, P,q, None,None, Q,q, vex5 mmx), /* movq */ 448 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1), /* movdqa */ 449 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* movdqu */ 450 {}, 451 }; 452 *entry = *decode_by_prefix(s, opcodes_0F6F); 453} 454 455static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 456{ 457 static const X86OpEntry pshufw[4] = { 458 X86_OP_ENTRY3(PSHUFW, P,q, Q,q, I,b, vex4 mmx), 459 X86_OP_ENTRY3(PSHUFD, V,x, W,x, I,b, vex4 avx2_256), 460 X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256), 461 X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256), 462 }; 463 464 *entry = *decode_by_prefix(s, pshufw); 465} 466 467static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 468{ 469 if (!(s->prefix & PREFIX_VEX)) { 470 entry->gen = gen_EMMS; 471 } else if (!s->vex_l) { 472 entry->gen = gen_VZEROUPPER; 473 entry->vex_class = 8; 474 } else { 475 entry->gen = gen_VZEROALL; 476 entry->vex_class = 8; 477 } 478} 479 480static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 481{ 482 static const X86OpEntry opcodes_0F78[4] = { 483 {}, 484 X86_OP_ENTRY3(EXTRQ_i, V,x, None,None, I,w, cpuid(SSE4A)), /* AMD extension */ 485 {}, 486 X86_OP_ENTRY3(INSERTQ_i, V,x, U,x, I,w, cpuid(SSE4A)), /* AMD extension */ 487 }; 488 *entry = *decode_by_prefix(s, opcodes_0F78); 489} 490 491static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 492{ 493 if (s->prefix & PREFIX_REPNZ) { 494 entry->gen = gen_INSERTQ_r; /* AMD extension */ 495 } else if (s->prefix & PREFIX_DATA) { 496 entry->gen = gen_EXTRQ_r; /* AMD extension */ 497 } else { 498 entry->gen = NULL; 499 }; 500} 501 502static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 503{ 504 static const X86OpEntry opcodes_0F7E[4] = { 505 X86_OP_ENTRY3(MOVD_from, E,y, None,None, P,y, vex5 mmx), 506 X86_OP_ENTRY3(MOVD_from, E,y, None,None, V,y, vex5), 507 X86_OP_ENTRY3(MOVQ, V,x, None,None, W,q, vex5), /* wrong dest Vy on SDM! */ 508 {}, 509 }; 510 *entry = *decode_by_prefix(s, opcodes_0F7E); 511} 512 513static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 514{ 515 static const X86OpEntry opcodes_0F7F[4] = { 516 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex5 mmx), /* movq */ 517 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1), /* movdqa */ 518 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4_unal), /* movdqu */ 519 {}, 520 }; 521 *entry = *decode_by_prefix(s, opcodes_0F7F); 522} 523 524static void decode_0FB8(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 525{ 526 static const X86OpEntry popcnt = 527 X86_OP_ENTRYwr(POPCNT, G,v, E,v, cpuid(POPCNT) zextT0); 528 529 if (s->prefix & PREFIX_REPZ) { 530 *entry = popcnt; 531 } else { 532 memset(entry, 0, sizeof(*entry)); 533 } 534} 535 536static void decode_0FBC(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 537{ 538 /* For BSF, pass 2op as the third operand so that we can use zextT0 */ 539 static const X86OpEntry opcodes_0FBC[4] = { 540 X86_OP_ENTRY3(BSF, G,v, E,v, 2op,v, zextT0), 541 X86_OP_ENTRY3(BSF, G,v, E,v, 2op,v, zextT0), /* 0x66 */ 542 X86_OP_ENTRYwr(TZCNT, G,v, E,v, zextT0), /* 0xf3 */ 543 X86_OP_ENTRY3(BSF, G,v, E,v, 2op,v, zextT0), /* 0xf2 */ 544 }; 545 if (!(s->cpuid_ext3_features & CPUID_EXT3_ABM)) { 546 *entry = opcodes_0FBC[0]; 547 } else { 548 *entry = *decode_by_prefix(s, opcodes_0FBC); 549 } 550} 551 552static void decode_0FBD(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 553{ 554 /* For BSR, pass 2op as the third operand so that we can use zextT0 */ 555 static const X86OpEntry opcodes_0FBD[4] = { 556 X86_OP_ENTRY3(BSR, G,v, E,v, 2op,v, zextT0), 557 X86_OP_ENTRY3(BSR, G,v, E,v, 2op,v, zextT0), /* 0x66 */ 558 X86_OP_ENTRYwr(LZCNT, G,v, E,v, zextT0), /* 0xf3 */ 559 X86_OP_ENTRY3(BSR, G,v, E,v, 2op,v, zextT0), /* 0xf2 */ 560 }; 561 if (!(s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1)) { 562 *entry = opcodes_0FBD[0]; 563 } else { 564 *entry = *decode_by_prefix(s, opcodes_0FBD); 565 } 566} 567 568static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 569{ 570 static const X86OpEntry movq[4] = { 571 {}, 572 X86_OP_ENTRY3(MOVQ, W,x, None, None, V,q, vex5), 573 X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q), 574 X86_OP_ENTRY3(MOVq_dq, P,q, None, None, U,q), 575 }; 576 577 *entry = *decode_by_prefix(s, movq); 578} 579 580static const X86OpEntry opcodes_0F38_00toEF[240] = { 581 [0x00] = X86_OP_ENTRY3(PSHUFB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 582 [0x01] = X86_OP_ENTRY3(PHADDW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 583 [0x02] = X86_OP_ENTRY3(PHADDD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 584 [0x03] = X86_OP_ENTRY3(PHADDSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 585 [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 586 [0x05] = X86_OP_ENTRY3(PHSUBW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 587 [0x06] = X86_OP_ENTRY3(PHSUBD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 588 [0x07] = X86_OP_ENTRY3(PHSUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 589 590 [0x10] = X86_OP_ENTRY2(PBLENDVB, V,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 591 [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x, W,xh, vex11 chk(W0) cpuid(F16C) p_66), 592 [0x14] = X86_OP_ENTRY2(BLENDVPS, V,x, W,x, vex4 cpuid(SSE41) p_66), 593 [0x15] = X86_OP_ENTRY2(BLENDVPD, V,x, W,x, vex4 cpuid(SSE41) p_66), 594 /* Listed incorrectly as type 4 */ 595 [0x16] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), /* vpermps */ 596 [0x17] = X86_OP_ENTRY3(VPTEST, None,None, V,x, W,x, vex4 cpuid(SSE41) p_66), 597 598 /* 599 * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed 600 * as 128-bit only in 2-17. 601 */ 602 [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 603 [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 604 [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 605 [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 606 [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 607 [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 608 609 /* Same as PMOVSX. */ 610 [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 611 [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 612 [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 613 [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 614 [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 615 [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 616 [0x36] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), 617 [0x37] = X86_OP_ENTRY3(PCMPGTQ, V,x, H,x, W,x, vex4 cpuid(SSE42) avx2_256 p_66), 618 619 [0x40] = X86_OP_ENTRY3(PMULLD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 620 [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66), 621 /* Listed incorrectly as type 4 */ 622 [0x45] = X86_OP_ENTRY3(VPSRLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 623 [0x46] = X86_OP_ENTRY3(VPSRAV, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX2) p_66), 624 [0x47] = X86_OP_ENTRY3(VPSLLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 625 626 [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */ 627 [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */ 628 [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vgatherdps/d */ 629 [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vgatherqps/d */ 630 631 /* Should be exception type 2 but they do not have legacy SSE equivalents? */ 632 [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 633 [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 634 635 [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 636 [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 637 638 [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 639 [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 640 641 [0x08] = X86_OP_ENTRY3(PSIGNB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 642 [0x09] = X86_OP_ENTRY3(PSIGNW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 643 [0x0a] = X86_OP_ENTRY3(PSIGND, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 644 [0x0b] = X86_OP_ENTRY3(PMULHRSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 645 /* Listed incorrectly as type 4 */ 646 [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 647 [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 648 [0x0e] = X86_OP_ENTRY3(VTESTPS, None,None, V,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 649 [0x0f] = X86_OP_ENTRY3(VTESTPD, None,None, V,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 650 651 [0x18] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastss */ 652 [0x19] = X86_OP_ENTRY3(VPBROADCASTQ, V,qq, None,None, W,q, vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastsd */ 653 [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX) p_66), 654 [0x1c] = X86_OP_ENTRY3(PABSB, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 655 [0x1d] = X86_OP_ENTRY3(PABSW, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 656 [0x1e] = X86_OP_ENTRY3(PABSD, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 657 658 [0x28] = X86_OP_ENTRY3(PMULDQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 659 [0x29] = X86_OP_ENTRY3(PCMPEQQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 660 [0x2a] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */ 661 [0x2b] = X86_OP_ENTRY3(VPACKUSDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 662 [0x2c] = X86_OP_ENTRY3(VMASKMOVPS, V,x, H,x, WM,x, vex6 chk(W0) cpuid(AVX) p_66), 663 [0x2d] = X86_OP_ENTRY3(VMASKMOVPD, V,x, H,x, WM,x, vex6 chk(W0) cpuid(AVX) p_66), 664 /* Incorrectly listed as Mx,Hx,Vx in the manual */ 665 [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x, H,x, vex6 chk(W0) cpuid(AVX) p_66), 666 [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x, H,x, vex6 chk(W0) cpuid(AVX) p_66), 667 668 [0x38] = X86_OP_ENTRY3(PMINSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 669 [0x39] = X86_OP_ENTRY3(PMINSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 670 [0x3a] = X86_OP_ENTRY3(PMINUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 671 [0x3b] = X86_OP_ENTRY3(PMINUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 672 [0x3c] = X86_OP_ENTRY3(PMAXSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 673 [0x3d] = X86_OP_ENTRY3(PMAXSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 674 [0x3e] = X86_OP_ENTRY3(PMAXUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 675 [0x3f] = X86_OP_ENTRY3(PMAXUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 676 677 /* VPBROADCASTQ not listed as W0 in table 2-16 */ 678 [0x58] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 chk(W0) cpuid(AVX2) p_66), 679 [0x59] = X86_OP_ENTRY3(VPBROADCASTQ, V,x, None,None, W,q, vex6 chk(W0) cpuid(AVX2) p_66), 680 [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX2) p_66), 681 682 [0x78] = X86_OP_ENTRY3(VPBROADCASTB, V,x, None,None, W,b, vex6 chk(W0) cpuid(AVX2) p_66), 683 [0x79] = X86_OP_ENTRY3(VPBROADCASTW, V,x, None,None, W,w, vex6 chk(W0) cpuid(AVX2) p_66), 684 685 [0x8c] = X86_OP_ENTRY3(VPMASKMOV, V,x, H,x, WM,x, vex6 cpuid(AVX2) p_66), 686 [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x, V,x, H,x, vex6 cpuid(AVX2) p_66), 687 688 /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */ 689 [0x98] = X86_OP_ENTRY3(VFMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 690 [0x99] = X86_OP_ENTRY3(VFMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 691 [0x9a] = X86_OP_ENTRY3(VFMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 692 [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 693 [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 694 [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 695 [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 696 [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 697 698 [0xa8] = X86_OP_ENTRY3(VFMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 699 [0xa9] = X86_OP_ENTRY3(VFMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 700 [0xaa] = X86_OP_ENTRY3(VFMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 701 [0xab] = X86_OP_ENTRY3(VFMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 702 [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 703 [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 704 [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 705 [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 706 707 [0xb8] = X86_OP_ENTRY3(VFMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 708 [0xb9] = X86_OP_ENTRY3(VFMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 709 [0xba] = X86_OP_ENTRY3(VFMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 710 [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 711 [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 712 [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 713 [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 714 [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 715 716 [0xc8] = X86_OP_ENTRY2(SHA1NEXTE, V,dq, W,dq, cpuid(SHA_NI)), 717 [0xc9] = X86_OP_ENTRY2(SHA1MSG1, V,dq, W,dq, cpuid(SHA_NI)), 718 [0xca] = X86_OP_ENTRY2(SHA1MSG2, V,dq, W,dq, cpuid(SHA_NI)), 719 [0xcb] = X86_OP_ENTRY2(SHA256RNDS2, V,dq, W,dq, cpuid(SHA_NI)), 720 [0xcc] = X86_OP_ENTRY2(SHA256MSG1, V,dq, W,dq, cpuid(SHA_NI)), 721 [0xcd] = X86_OP_ENTRY2(SHA256MSG2, V,dq, W,dq, cpuid(SHA_NI)), 722 723 [0xdb] = X86_OP_ENTRY3(VAESIMC, V,dq, None,None, W,dq, vex4 cpuid(AES) p_66), 724 [0xdc] = X86_OP_ENTRY3(VAESENC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 725 [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 726 [0xde] = X86_OP_ENTRY3(VAESDEC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 727 [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 728 729 /* 730 * REG selects srcdest2 operand, VEX.vvvv selects src3. VEX class not found 731 * in manual, assumed to be 13 from the VEX.L0 constraint. 732 */ 733 [0xe0] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 734 [0xe1] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 735 [0xe2] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 736 [0xe3] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 737 [0xe4] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 738 [0xe5] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 739 [0xe6] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 740 [0xe7] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 741 742 [0xe8] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 743 [0xe9] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 744 [0xea] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 745 [0xeb] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 746 [0xec] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 747 [0xed] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 748 [0xee] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 749 [0xef] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 750}; 751 752/* five rows for no prefix, 66, F3, F2, 66+F2 */ 753static const X86OpEntry opcodes_0F38_F0toFF[16][5] = { 754 [0] = { 755 X86_OP_ENTRYwr(MOVBE, G,y, M,y, cpuid(MOVBE)), 756 X86_OP_ENTRYwr(MOVBE, G,w, M,w, cpuid(MOVBE)), 757 {}, 758 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), 759 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), 760 }, 761 [1] = { 762 X86_OP_ENTRYwr(MOVBE, M,y, G,y, cpuid(MOVBE)), 763 X86_OP_ENTRYwr(MOVBE, M,w, G,w, cpuid(MOVBE)), 764 {}, 765 X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)), 766 X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)), 767 }, 768 [2] = { 769 X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)), 770 {}, 771 {}, 772 {}, 773 {}, 774 }, 775 [3] = { 776 X86_OP_GROUP3(group17, B,y, None,None, E,y, vex13 cpuid(BMI1)), 777 {}, 778 {}, 779 {}, 780 {}, 781 }, 782 [5] = { 783 X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)), 784 {}, 785 X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)), 786 X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)), 787 {}, 788 }, 789 [6] = { 790 {}, 791 X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)), 792 X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)), 793 X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)), 794 {}, 795 }, 796 [7] = { 797 X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)), 798 X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)), 799 X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 sextT0 cpuid(BMI1)), 800 X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)), 801 {}, 802 }, 803}; 804 805static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 806{ 807 *b = x86_ldub_code(env, s); 808 if (*b < 0xf0) { 809 *entry = opcodes_0F38_00toEF[*b]; 810 } else { 811 int row = 0; 812 if (s->prefix & PREFIX_REPZ) { 813 /* The REPZ (F3) prefix has priority over 66 */ 814 row = 2; 815 } else { 816 row += s->prefix & PREFIX_REPNZ ? 3 : 0; 817 row += s->prefix & PREFIX_DATA ? 1 : 0; 818 } 819 *entry = opcodes_0F38_F0toFF[*b & 15][row]; 820 } 821} 822 823static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 824{ 825 static const X86OpEntry 826 vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66), 827 vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d, vex5 cpuid(SSE41) p_66); 828 829 int modrm = get_modrm(s, env); 830 *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem; 831} 832 833static const X86OpEntry opcodes_0F3A[256] = { 834 /* 835 * These are VEX-only, but incorrectly listed in the manual as exception type 4. 836 * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256 837 * only. 838 */ 839 [0x00] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 chk(W1) cpuid(AVX2) p_66), 840 [0x01] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 chk(W1) cpuid(AVX2) p_66), /* VPERMPD */ 841 [0x02] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX2) p_66), /* VPBLENDD */ 842 [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x, W,x, I,b, vex6 chk(W0) cpuid(AVX) p_66), 843 [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x, W,x, I,b, vex6 chk(W0) cpuid(AVX) p_66), 844 [0x06] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66), 845 846 [0x14] = X86_OP_ENTRY3(PEXTRB, E,b, V,dq, I,b, vex5 cpuid(SSE41) op0_Rd p_66), 847 [0x15] = X86_OP_ENTRY3(PEXTRW, E,w, V,dq, I,b, vex5 cpuid(SSE41) op0_Rd p_66), 848 [0x16] = X86_OP_ENTRY3(PEXTR, E,y, V,dq, I,b, vex5 cpuid(SSE41) p_66), 849 [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d, V,dq, I,b, vex5 cpuid(SSE41) p_66), 850 [0x1d] = X86_OP_ENTRY3(VCVTPS2PH, W,xh, V,x, I,b, vex11 chk(W0) cpuid(F16C) p_66), 851 852 [0x20] = X86_OP_ENTRY4(PINSRB, V,dq, H,dq, E,b, vex5 cpuid(SSE41) op2_Ry p_66), 853 [0x21] = X86_OP_GROUP0(VINSERTPS), 854 [0x22] = X86_OP_ENTRY4(PINSR, V,dq, H,dq, E,y, vex5 cpuid(SSE41) p_66), 855 856 [0x40] = X86_OP_ENTRY4(VDDPS, V,x, H,x, W,x, vex2 cpuid(SSE41) p_66), 857 [0x41] = X86_OP_ENTRY4(VDDPD, V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66), 858 [0x42] = X86_OP_ENTRY4(VMPSADBW, V,x, H,x, W,x, vex2 cpuid(SSE41) avx2_256 p_66), 859 [0x44] = X86_OP_ENTRY4(PCLMULQDQ, V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66), 860 [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), 861 862 [0x60] = X86_OP_ENTRY4(PCMPESTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 863 [0x61] = X86_OP_ENTRY4(PCMPESTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 864 [0x62] = X86_OP_ENTRY4(PCMPISTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 865 [0x63] = X86_OP_ENTRY4(PCMPISTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 866 867 [0x08] = X86_OP_ENTRY3(VROUNDPS, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), 868 [0x09] = X86_OP_ENTRY3(VROUNDPD, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), 869 /* 870 * Not listed as four operand in the manual. Also writes and reads 128-bits 871 * from the first two operands due to the V operand picking higher entries of 872 * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect. 873 * For other unary operations such as VSQRTSx this is hidden by the "REPScalar" 874 * value of vex_special, because the table lists the operand types of VSQRTPx. 875 */ 876 [0x0a] = X86_OP_ENTRY4(VROUNDSS, V,x, H,x, W,ss, vex3 cpuid(SSE41) p_66), 877 [0x0b] = X86_OP_ENTRY4(VROUNDSD, V,x, H,x, W,sd, vex3 cpuid(SSE41) p_66), 878 [0x0c] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), 879 [0x0d] = X86_OP_ENTRY4(VBLENDPD, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), 880 [0x0e] = X86_OP_ENTRY4(VPBLENDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 881 [0x0f] = X86_OP_ENTRY4(PALIGNR, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 882 883 [0x18] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,dq, vex6 chk(W0) cpuid(AVX) p_66), 884 [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 chk(W0) cpuid(AVX) p_66), 885 886 [0x38] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,dq, vex6 chk(W0) cpuid(AVX2) p_66), 887 [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 chk(W0) cpuid(AVX2) p_66), 888 889 /* Listed incorrectly as type 4 */ 890 [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 891 [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 892 [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66 avx2_256), 893 894 [0xcc] = X86_OP_ENTRY3(SHA1RNDS4, V,dq, W,dq, I,b, cpuid(SHA_NI)), 895 896 [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b, vex4 cpuid(AES) p_66), 897 898 [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2), 899}; 900 901static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 902{ 903 *b = x86_ldub_code(env, s); 904 *entry = opcodes_0F3A[*b]; 905} 906 907/* 908 * There are some mistakes in the operands in the manual, and the load/store/register 909 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and 910 * efficiency of implementation rather than copying what the manual says. 911 * 912 * In particular: 913 * 914 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b, 915 * but this is not mentioned in the tables. 916 * 917 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their 918 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high 919 * quadword of the V operand. 920 */ 921static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 922{ 923 static const X86OpEntry opcodes_0F10_reg[4] = { 924 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ 925 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ 926 X86_OP_ENTRY3(VMOVSS, V,x, H,x, W,x, vex5), 927 X86_OP_ENTRY3(VMOVLPx, V,x, H,x, W,x, vex5), /* MOVSD */ 928 }; 929 930 static const X86OpEntry opcodes_0F10_mem[4] = { 931 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ 932 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ 933 X86_OP_ENTRY3(VMOVSS_ld, V,x, H,x, M,ss, vex5), 934 X86_OP_ENTRY3(VMOVSD_ld, V,x, H,x, M,sd, vex5), 935 }; 936 937 if ((get_modrm(s, env) >> 6) == 3) { 938 *entry = *decode_by_prefix(s, opcodes_0F10_reg); 939 } else { 940 *entry = *decode_by_prefix(s, opcodes_0F10_mem); 941 } 942} 943 944static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 945{ 946 static const X86OpEntry opcodes_0F11_reg[4] = { 947 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ 948 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ 949 X86_OP_ENTRY3(VMOVSS, W,x, H,x, V,x, vex5), 950 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, V,q, vex5), /* MOVSD */ 951 }; 952 953 static const X86OpEntry opcodes_0F11_mem[4] = { 954 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ 955 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ 956 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex5), 957 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */ 958 }; 959 960 if ((get_modrm(s, env) >> 6) == 3) { 961 *entry = *decode_by_prefix(s, opcodes_0F11_reg); 962 } else { 963 *entry = *decode_by_prefix(s, opcodes_0F11_mem); 964 } 965} 966 967static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 968{ 969 static const X86OpEntry opcodes_0F12_mem[4] = { 970 /* 971 * Use dq for operand for compatibility with gen_MOVSD and 972 * to allow VEX128 only. 973 */ 974 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPS */ 975 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPD */ 976 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), 977 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */ 978 }; 979 static const X86OpEntry opcodes_0F12_reg[4] = { 980 X86_OP_ENTRY3(VMOVHLPS, V,dq, H,dq, U,dq, vex7), 981 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, U,q, vex5), /* MOVLPD */ 982 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), 983 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, U,x, vex5 cpuid(SSE3)), 984 }; 985 986 if ((get_modrm(s, env) >> 6) == 3) { 987 *entry = *decode_by_prefix(s, opcodes_0F12_reg); 988 } else { 989 *entry = *decode_by_prefix(s, opcodes_0F12_mem); 990 if ((s->prefix & PREFIX_REPNZ) && s->vex_l) { 991 entry->s2 = X86_SIZE_qq; 992 } 993 } 994} 995 996static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 997{ 998 static const X86OpEntry opcodes_0F16_mem[4] = { 999 /* 1000 * Operand 1 technically only reads the low 64 bits, but uses dq so that 1001 * it is easier to check for op0 == op1 in an endianness-neutral manner. 1002 */ 1003 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPS */ 1004 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPD */ 1005 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), 1006 {}, 1007 }; 1008 static const X86OpEntry opcodes_0F16_reg[4] = { 1009 /* Same as above, operand 1 could be Hq if it wasn't for big-endian. */ 1010 X86_OP_ENTRY3(VMOVLHPS, V,dq, H,dq, U,q, vex7), 1011 X86_OP_ENTRY3(VMOVHPx, V,x, H,x, U,x, vex5), /* MOVHPD */ 1012 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), 1013 {}, 1014 }; 1015 1016 if ((get_modrm(s, env) >> 6) == 3) { 1017 *entry = *decode_by_prefix(s, opcodes_0F16_reg); 1018 } else { 1019 *entry = *decode_by_prefix(s, opcodes_0F16_mem); 1020 } 1021} 1022 1023static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1024{ 1025 static const X86OpEntry opcodes_0F2A[4] = { 1026 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), 1027 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), 1028 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), 1029 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), 1030 }; 1031 *entry = *decode_by_prefix(s, opcodes_0F2A); 1032} 1033 1034static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1035{ 1036 static const X86OpEntry opcodes_0F2B[4] = { 1037 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPS */ 1038 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPD */ 1039 /* AMD extensions */ 1040 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */ 1041 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */ 1042 }; 1043 1044 *entry = *decode_by_prefix(s, opcodes_0F2B); 1045} 1046 1047static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1048{ 1049 static const X86OpEntry opcodes_0F2C[4] = { 1050 /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit. */ 1051 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,q), 1052 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,dq), 1053 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,ss, vex3), 1054 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,sd, vex3), 1055 }; 1056 *entry = *decode_by_prefix(s, opcodes_0F2C); 1057} 1058 1059static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1060{ 1061 static const X86OpEntry opcodes_0F2D[4] = { 1062 /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit. */ 1063 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,q), 1064 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,dq), 1065 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,ss, vex3), 1066 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,sd, vex3), 1067 }; 1068 *entry = *decode_by_prefix(s, opcodes_0F2D); 1069} 1070 1071static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1072{ 1073 /* 1074 * VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD 1075 * respectively. Scalar values usually are associated with 0xF2 and 0xF3, for 1076 * which X86_VEX_REPScalar exists, but here it has to be decoded by hand. 1077 */ 1078 entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss); 1079 entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI); 1080} 1081 1082static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1083{ 1084 if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) { 1085 entry->op1 = X86_TYPE_None; 1086 entry->s1 = X86_SIZE_None; 1087 } 1088 switch (*b) { 1089 case 0x51: entry->gen = gen_VSQRT; break; 1090 case 0x52: entry->gen = gen_VRSQRT; break; 1091 case 0x53: entry->gen = gen_VRCP; break; 1092 } 1093} 1094 1095static void decode_0F5A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1096{ 1097 static const X86OpEntry opcodes_0F5A[4] = { 1098 X86_OP_ENTRY2(VCVTPS2PD, V,x, W,xh, vex2), /* VCVTPS2PD */ 1099 X86_OP_ENTRY2(VCVTPD2PS, V,x, W,x, vex2), /* VCVTPD2PS */ 1100 X86_OP_ENTRY3(VCVTSS2SD, V,x, H,x, W,x, vex2_rep3), /* VCVTSS2SD */ 1101 X86_OP_ENTRY3(VCVTSD2SS, V,x, H,x, W,x, vex2_rep3), /* VCVTSD2SS */ 1102 }; 1103 *entry = *decode_by_prefix(s, opcodes_0F5A); 1104} 1105 1106static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1107{ 1108 static const X86OpEntry opcodes_0F5B[4] = { 1109 X86_OP_ENTRY2(VCVTDQ2PS, V,x, W,x, vex2), 1110 X86_OP_ENTRY2(VCVTPS2DQ, V,x, W,x, vex2), 1111 X86_OP_ENTRY2(VCVTTPS2DQ, V,x, W,x, vex2), 1112 {}, 1113 }; 1114 *entry = *decode_by_prefix(s, opcodes_0F5B); 1115} 1116 1117static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1118{ 1119 static const X86OpEntry opcodes_0FE6[4] = { 1120 {}, 1121 X86_OP_ENTRY2(VCVTTPD2DQ, V,x, W,x, vex2), 1122 X86_OP_ENTRY2(VCVTDQ2PD, V,x, W,x, vex5), 1123 X86_OP_ENTRY2(VCVTPD2DQ, V,x, W,x, vex2), 1124 }; 1125 *entry = *decode_by_prefix(s, opcodes_0FE6); 1126} 1127 1128/* 1129 * These ignore the mod bits (assume (modrm&0xc0)==0xc0), so group the 1130 * pre-decode tweak here for all MOVs from/to CR and DR. 1131 * 1132 * AMD documentation (24594.pdf) and testing of Intel 386 and 486 1133 * processors all show that the mod bits are assumed to be 1's, 1134 * regardless of actual values. 1135 */ 1136static void decode_MOV_CR_DR(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1137{ 1138 /* 1139 */ 1140 get_modrm(s, env); 1141 s->modrm |= 0xC0; 1142 1143 entry->gen = gen_MOV; 1144} 1145 1146static const X86OpEntry opcodes_0F[256] = { 1147 [0x00] = X86_OP_ENTRY1(multi0F, nop,v, nolea), /* unconverted */ 1148 [0x01] = X86_OP_ENTRY1(multi0F, nop,v, nolea), /* unconverted */ 1149 [0x02] = X86_OP_ENTRYwr(LAR, G,v, E,w, chk(prot)), 1150 [0x03] = X86_OP_ENTRYwr(LSL, G,v, E,w, chk(prot)), 1151 [0x05] = X86_OP_ENTRY0(SYSCALL, chk(o64_intel)), 1152 [0x06] = X86_OP_ENTRY0(CLTS, chk(cpl0) svm(WRITE_CR0)), 1153 [0x07] = X86_OP_ENTRY0(SYSRET, chk3(o64_intel, prot, cpl0)), 1154 1155 [0x10] = X86_OP_GROUP0(0F10), 1156 [0x11] = X86_OP_GROUP0(0F11), 1157 [0x12] = X86_OP_GROUP0(0F12), 1158 [0x13] = X86_OP_ENTRY3(VMOVLPx_st, M,q, None,None, V,q, vex5 p_00_66), 1159 [0x14] = X86_OP_ENTRY3(VUNPCKLPx, V,x, H,x, W,x, vex4 p_00_66), 1160 [0x15] = X86_OP_ENTRY3(VUNPCKHPx, V,x, H,x, W,x, vex4 p_00_66), 1161 [0x16] = X86_OP_GROUP0(0F16), 1162 /* Incorrectly listed as Mq,Vq in the manual */ 1163 [0x17] = X86_OP_ENTRY3(VMOVHPx_st, M,q, None,None, V,dq, vex5 p_00_66), 1164 1165 /* 1166 * Incorrectly listed as using "d" operand type in the manual. In reality 1167 * there's no 16-bit version (like y) and it does not use REX.W (like d64). 1168 */ 1169 [0x20] = X86_OP_GROUPwr(MOV_CR_DR, R,y_d64, C,y_d64, chk(cpl0) svm(READ_CR0)), 1170 [0x21] = X86_OP_GROUPwr(MOV_CR_DR, R,y_d64, D,y_d64, chk(cpl0) svm(READ_DR0)), 1171 [0x22] = X86_OP_GROUPwr(MOV_CR_DR, C,y_d64, R,y_d64, zextT0 chk(cpl0) svm(WRITE_CR0)), 1172 [0x23] = X86_OP_GROUPwr(MOV_CR_DR, D,y_d64, R,y_d64, zextT0 chk(cpl0) svm(WRITE_DR0)), 1173 1174 [0x30] = X86_OP_ENTRY0(WRMSR, chk(cpl0)), 1175 [0x31] = X86_OP_ENTRY0(RDTSC), 1176 [0x32] = X86_OP_ENTRY0(RDMSR, chk(cpl0)), 1177 [0x33] = X86_OP_ENTRY0(RDPMC), 1178 [0x34] = X86_OP_ENTRY0(SYSENTER, chk2(i64_amd, prot_or_vm86)), 1179 [0x35] = X86_OP_ENTRY0(SYSEXIT, chk3(i64_amd, prot, cpl0)), 1180 1181 [0x40] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1182 [0x41] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1183 [0x42] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1184 [0x43] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1185 [0x44] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1186 [0x45] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1187 [0x46] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1188 [0x47] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1189 1190 [0x50] = X86_OP_ENTRY3(MOVMSK, G,y, None,None, U,x, vex7 p_00_66), 1191 [0x51] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */ 1192 [0x52] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */ 1193 [0x53] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */ 1194 [0x54] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 p_00_66), /* vand */ 1195 [0x55] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 p_00_66), /* vandn */ 1196 [0x56] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 p_00_66), /* vor */ 1197 [0x57] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 p_00_66), /* vxor */ 1198 1199 [0x60] = X86_OP_ENTRY3(PUNPCKLBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1200 [0x61] = X86_OP_ENTRY3(PUNPCKLWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1201 [0x62] = X86_OP_ENTRY3(PUNPCKLDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1202 [0x63] = X86_OP_ENTRY3(PACKSSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1203 [0x64] = X86_OP_ENTRY3(PCMPGTB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1204 [0x65] = X86_OP_ENTRY3(PCMPGTW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1205 [0x66] = X86_OP_ENTRY3(PCMPGTD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1206 [0x67] = X86_OP_ENTRY3(PACKUSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1207 1208 [0x70] = X86_OP_GROUP0(0F70), 1209 [0x71] = X86_OP_GROUP0(group12), 1210 [0x72] = X86_OP_GROUP0(group13), 1211 [0x73] = X86_OP_GROUP0(group14), 1212 [0x74] = X86_OP_ENTRY3(PCMPEQB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1213 [0x75] = X86_OP_ENTRY3(PCMPEQW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1214 [0x76] = X86_OP_ENTRY3(PCMPEQD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1215 [0x77] = X86_OP_GROUP0(0F77), 1216 1217 [0x80] = X86_OP_ENTRYr(Jcc, J,z_f64), 1218 [0x81] = X86_OP_ENTRYr(Jcc, J,z_f64), 1219 [0x82] = X86_OP_ENTRYr(Jcc, J,z_f64), 1220 [0x83] = X86_OP_ENTRYr(Jcc, J,z_f64), 1221 [0x84] = X86_OP_ENTRYr(Jcc, J,z_f64), 1222 [0x85] = X86_OP_ENTRYr(Jcc, J,z_f64), 1223 [0x86] = X86_OP_ENTRYr(Jcc, J,z_f64), 1224 [0x87] = X86_OP_ENTRYr(Jcc, J,z_f64), 1225 1226 [0x90] = X86_OP_ENTRYw(SETcc, E,b), 1227 [0x91] = X86_OP_ENTRYw(SETcc, E,b), 1228 [0x92] = X86_OP_ENTRYw(SETcc, E,b), 1229 [0x93] = X86_OP_ENTRYw(SETcc, E,b), 1230 [0x94] = X86_OP_ENTRYw(SETcc, E,b), 1231 [0x95] = X86_OP_ENTRYw(SETcc, E,b), 1232 [0x96] = X86_OP_ENTRYw(SETcc, E,b), 1233 [0x97] = X86_OP_ENTRYw(SETcc, E,b), 1234 1235 [0xa0] = X86_OP_ENTRYr(PUSH, FS, w), 1236 [0xa1] = X86_OP_ENTRYw(POP, FS, w), 1237 [0xa2] = X86_OP_ENTRY0(CPUID), 1238 [0xa3] = X86_OP_ENTRYrr(BT, E,v, G,v, btEvGv), 1239 [0xa4] = X86_OP_ENTRY4(SHLD, E,v, 2op,v, G,v), 1240 [0xa5] = X86_OP_ENTRY3(SHLD, E,v, 2op,v, G,v), 1241 1242 [0xb0] = X86_OP_ENTRY2(CMPXCHG,E,b, G,b, lock), 1243 [0xb1] = X86_OP_ENTRY2(CMPXCHG,E,v, G,v, lock), 1244 [0xb2] = X86_OP_ENTRY3(LSS, G,v, EM,p, None, None), 1245 [0xb3] = X86_OP_ENTRY2(BTR, E,v, G,v, btEvGv), 1246 [0xb4] = X86_OP_ENTRY3(LFS, G,v, EM,p, None, None), 1247 [0xb5] = X86_OP_ENTRY3(LGS, G,v, EM,p, None, None), 1248 [0xb6] = X86_OP_ENTRY3(MOV, G,v, E,b, None, None, zextT0), /* MOVZX */ 1249 [0xb7] = X86_OP_ENTRY3(MOV, G,v, E,w, None, None, zextT0), /* MOVZX */ 1250 1251 [0xc0] = X86_OP_ENTRY2(XADD, E,b, G,b, lock), 1252 [0xc1] = X86_OP_ENTRY2(XADD, E,v, G,v, lock), 1253 [0xc2] = X86_OP_ENTRY4(VCMP, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1254 [0xc3] = X86_OP_ENTRY3(MOV, EM,y,G,y, None,None, cpuid(SSE2)), /* MOVNTI */ 1255 [0xc4] = X86_OP_ENTRY4(PINSRW, V,dq,H,dq,E,w, vex5 mmx p_00_66), 1256 [0xc5] = X86_OP_ENTRY3(PEXTRW, G,d, U,dq,I,b, vex5 mmx p_00_66), 1257 [0xc6] = X86_OP_ENTRY4(VSHUF, V,x, H,x, W,x, vex4 p_00_66), 1258 [0xc7] = X86_OP_GROUP0(group9), 1259 1260 [0xd0] = X86_OP_ENTRY3(VADDSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 1261 [0xd1] = X86_OP_ENTRY3(PSRLW_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1262 [0xd2] = X86_OP_ENTRY3(PSRLD_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1263 [0xd3] = X86_OP_ENTRY3(PSRLQ_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1264 [0xd4] = X86_OP_ENTRY3(PADDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1265 [0xd5] = X86_OP_ENTRY3(PMULLW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1266 [0xd6] = X86_OP_GROUP0(0FD6), 1267 [0xd7] = X86_OP_ENTRY3(PMOVMSKB, G,d, None,None, U,x, vex7 mmx avx2_256 p_00_66), 1268 1269 [0xe0] = X86_OP_ENTRY3(PAVGB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1270 [0xe1] = X86_OP_ENTRY3(PSRAW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1271 [0xe2] = X86_OP_ENTRY3(PSRAD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1272 [0xe3] = X86_OP_ENTRY3(PAVGW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1273 [0xe4] = X86_OP_ENTRY3(PMULHUW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1274 [0xe5] = X86_OP_ENTRY3(PMULHW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1275 [0xe6] = X86_OP_GROUP0(0FE6), 1276 [0xe7] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */ 1277 1278 [0xf0] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex4_unal cpuid(SSE3) p_f2), /* LDDQU */ 1279 [0xf1] = X86_OP_ENTRY3(PSLLW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1280 [0xf2] = X86_OP_ENTRY3(PSLLD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1281 [0xf3] = X86_OP_ENTRY3(PSLLQ_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1282 [0xf4] = X86_OP_ENTRY3(PMULUDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1283 [0xf5] = X86_OP_ENTRY3(PMADDWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1284 [0xf6] = X86_OP_ENTRY3(PSADBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1285 [0xf7] = X86_OP_ENTRY3(MASKMOV, None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66), 1286 1287 [0x08] = X86_OP_ENTRY0(NOP, svm(INVD)), 1288 [0x09] = X86_OP_ENTRY0(NOP, svm(WBINVD)), 1289 [0x0b] = X86_OP_ENTRY0(UD), /* UD2 */ 1290 [0x0d] = X86_OP_ENTRY1(NOP, M,v), /* 3DNow! prefetch */ 1291 [0x0e] = X86_OP_ENTRY0(EMMS, cpuid(3DNOW)), /* femms */ 1292 /* 1293 * 3DNow!'s opcode byte comes *after* modrm and displacements, making it 1294 * more like an Ib operand. Dispatch to the right helper in a single gen_* 1295 * function. 1296 */ 1297 [0x0f] = X86_OP_ENTRY3(3dnow, P,q, Q,q, I,b, cpuid(3DNOW)), 1298 1299 [0x18] = X86_OP_ENTRY1(NOP, nop,v), /* prefetch/reserved NOP */ 1300 [0x19] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ 1301 [0x1a] = X86_OP_ENTRY1(multi0F, nop,v, nolea), /* unconverted MPX */ 1302 [0x1b] = X86_OP_ENTRY1(multi0F, nop,v, nolea), /* unconverted MPX */ 1303 [0x1c] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ 1304 [0x1d] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ 1305 [0x1e] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ 1306 [0x1f] = X86_OP_ENTRY1(NOP, nop,v), /* NOP/reserved NOP */ 1307 1308 [0x28] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1 p_00_66), /* MOVAPS */ 1309 [0x29] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 p_00_66), /* MOVAPS */ 1310 [0x2A] = X86_OP_GROUP0(0F2A), 1311 [0x2B] = X86_OP_GROUP0(0F2B), 1312 [0x2C] = X86_OP_GROUP0(0F2C), 1313 [0x2D] = X86_OP_GROUP0(0F2D), 1314 [0x2E] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VUCOMISS/SD */ 1315 [0x2F] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VCOMISS/SD */ 1316 1317 [0x38] = X86_OP_GROUP0(0F38), 1318 [0x3a] = X86_OP_GROUP0(0F3A), 1319 1320 [0x48] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1321 [0x49] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1322 [0x4a] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1323 [0x4b] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1324 [0x4c] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1325 [0x4d] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1326 [0x4e] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1327 [0x4f] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1328 1329 [0x58] = X86_OP_ENTRY3(VADD, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1330 [0x59] = X86_OP_ENTRY3(VMUL, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1331 [0x5a] = X86_OP_GROUP0(0F5A), 1332 [0x5b] = X86_OP_GROUP0(0F5B), 1333 [0x5c] = X86_OP_ENTRY3(VSUB, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1334 [0x5d] = X86_OP_ENTRY3(VMIN, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1335 [0x5e] = X86_OP_ENTRY3(VDIV, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1336 [0x5f] = X86_OP_ENTRY3(VMAX, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1337 1338 [0x68] = X86_OP_ENTRY3(PUNPCKHBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1339 [0x69] = X86_OP_ENTRY3(PUNPCKHWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1340 [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1341 [0x6b] = X86_OP_ENTRY3(PACKSSDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1342 [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), 1343 [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), 1344 [0x6e] = X86_OP_ENTRY3(MOVD_to, V,x, None,None, E,y, vex5 mmx p_00_66), /* wrong dest Vy on SDM! */ 1345 [0x6f] = X86_OP_GROUP0(0F6F), 1346 1347 [0x78] = X86_OP_GROUP0(0F78), 1348 [0x79] = X86_OP_GROUP2(0F79, V,x, U,x, cpuid(SSE4A)), 1349 [0x7c] = X86_OP_ENTRY3(VHADD, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 1350 [0x7d] = X86_OP_ENTRY3(VHSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 1351 [0x7e] = X86_OP_GROUP0(0F7E), 1352 [0x7f] = X86_OP_GROUP0(0F7F), 1353 1354 [0x88] = X86_OP_ENTRYr(Jcc, J,z_f64), 1355 [0x89] = X86_OP_ENTRYr(Jcc, J,z_f64), 1356 [0x8a] = X86_OP_ENTRYr(Jcc, J,z_f64), 1357 [0x8b] = X86_OP_ENTRYr(Jcc, J,z_f64), 1358 [0x8c] = X86_OP_ENTRYr(Jcc, J,z_f64), 1359 [0x8d] = X86_OP_ENTRYr(Jcc, J,z_f64), 1360 [0x8e] = X86_OP_ENTRYr(Jcc, J,z_f64), 1361 [0x8f] = X86_OP_ENTRYr(Jcc, J,z_f64), 1362 1363 [0x98] = X86_OP_ENTRYw(SETcc, E,b), 1364 [0x99] = X86_OP_ENTRYw(SETcc, E,b), 1365 [0x9a] = X86_OP_ENTRYw(SETcc, E,b), 1366 [0x9b] = X86_OP_ENTRYw(SETcc, E,b), 1367 [0x9c] = X86_OP_ENTRYw(SETcc, E,b), 1368 [0x9d] = X86_OP_ENTRYw(SETcc, E,b), 1369 [0x9e] = X86_OP_ENTRYw(SETcc, E,b), 1370 [0x9f] = X86_OP_ENTRYw(SETcc, E,b), 1371 1372 [0xa8] = X86_OP_ENTRYr(PUSH, GS, w), 1373 [0xa9] = X86_OP_ENTRYw(POP, GS, w), 1374 [0xaa] = X86_OP_ENTRY0(RSM, chk(smm) svm(RSM)), 1375 [0xab] = X86_OP_ENTRY2(BTS, E,v, G,v, btEvGv), 1376 [0xac] = X86_OP_ENTRY4(SHRD, E,v, 2op,v, G,v), 1377 [0xad] = X86_OP_ENTRY3(SHRD, E,v, 2op,v, G,v), 1378 [0xae] = X86_OP_GROUP0(group15), 1379 /* 1380 * It's slightly more efficient to put Ev operand in T0 and allow gen_IMUL3 1381 * to assume sextT0. Multiplication is commutative anyway. 1382 */ 1383 [0xaf] = X86_OP_ENTRY3(IMUL3, G,v, E,v, 2op,v, sextT0), 1384 1385 [0xb8] = X86_OP_GROUP0(0FB8), 1386 /* decoded as modrm, which is visible as a difference between page fault and #UD */ 1387 [0xb9] = X86_OP_ENTRYr(UD, nop,v), /* UD1 */ 1388 [0xba] = X86_OP_GROUP2(group8, E,v, I,b), 1389 [0xbb] = X86_OP_ENTRY2(BTC, E,v, G,v, btEvGv), 1390 [0xbc] = X86_OP_GROUP0(0FBC), 1391 [0xbd] = X86_OP_GROUP0(0FBD), 1392 [0xbe] = X86_OP_ENTRY3(MOV, G,v, E,b, None, None, sextT0), /* MOVSX */ 1393 [0xbf] = X86_OP_ENTRY3(MOV, G,v, E,w, None, None, sextT0), /* MOVSX */ 1394 1395 [0xc8] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1396 [0xc9] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1397 [0xca] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1398 [0xcb] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1399 [0xcc] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1400 [0xcd] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1401 [0xce] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1402 [0xcf] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1403 1404 /* Incorrectly missing from 2-17 */ 1405 [0xd8] = X86_OP_ENTRY3(PSUBUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1406 [0xd9] = X86_OP_ENTRY3(PSUBUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1407 [0xda] = X86_OP_ENTRY3(PMINUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1408 [0xdb] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1409 [0xdc] = X86_OP_ENTRY3(PADDUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1410 [0xdd] = X86_OP_ENTRY3(PADDUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1411 [0xde] = X86_OP_ENTRY3(PMAXUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1412 [0xdf] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1413 1414 [0xe8] = X86_OP_ENTRY3(PSUBSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1415 [0xe9] = X86_OP_ENTRY3(PSUBSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1416 [0xea] = X86_OP_ENTRY3(PMINSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1417 [0xeb] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1418 [0xec] = X86_OP_ENTRY3(PADDSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1419 [0xed] = X86_OP_ENTRY3(PADDSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1420 [0xee] = X86_OP_ENTRY3(PMAXSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1421 [0xef] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1422 1423 [0xf8] = X86_OP_ENTRY3(PSUBB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1424 [0xf9] = X86_OP_ENTRY3(PSUBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1425 [0xfa] = X86_OP_ENTRY3(PSUBD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1426 [0xfb] = X86_OP_ENTRY3(PSUBQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1427 [0xfc] = X86_OP_ENTRY3(PADDB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1428 [0xfd] = X86_OP_ENTRY3(PADDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1429 [0xfe] = X86_OP_ENTRY3(PADDD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1430 [0xff] = X86_OP_ENTRYr(UD, nop,v), /* UD0 */ 1431}; 1432 1433static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1434{ 1435 *entry = opcodes_0F[*b]; 1436} 1437 1438static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1439{ 1440 *b = x86_ldub_code(env, s); 1441 do_decode_0F(s, env, entry, b); 1442} 1443 1444static void decode_63(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1445{ 1446 static const X86OpEntry arpl = X86_OP_ENTRY2(ARPL, E,w, G,w, chk(prot)); 1447 static const X86OpEntry mov = X86_OP_ENTRY3(MOV, G,v, E,v, None, None); 1448 static const X86OpEntry movsxd = X86_OP_ENTRY3(MOV, G,v, E,d, None, None, sextT0); 1449 if (!CODE64(s)) { 1450 *entry = arpl; 1451 } else if (REX_W(s)) { 1452 *entry = movsxd; 1453 } else { 1454 *entry = mov; 1455 } 1456} 1457 1458static void decode_group1(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1459{ 1460 static const X86GenFunc group1_gen[8] = { 1461 gen_ADD, gen_OR, gen_ADC, gen_SBB, gen_AND, gen_SUB, gen_XOR, gen_SUB, 1462 }; 1463 int op = (get_modrm(s, env) >> 3) & 7; 1464 entry->gen = group1_gen[op]; 1465 1466 if (op == 7) { 1467 /* prevent writeback for CMP */ 1468 entry->op1 = entry->op0; 1469 entry->op0 = X86_TYPE_None; 1470 entry->s0 = X86_SIZE_None; 1471 } else { 1472 entry->special = X86_SPECIAL_HasLock; 1473 } 1474} 1475 1476static void decode_group1A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1477{ 1478 int op = (get_modrm(s, env) >> 3) & 7; 1479 if (op != 0) { 1480 /* could be XOP prefix too */ 1481 *entry = UNKNOWN_OPCODE; 1482 } else { 1483 entry->gen = gen_POP; 1484 /* The address must use the value of ESP after the pop. */ 1485 s->popl_esp_hack = 1 << mo_pushpop(s, s->dflag); 1486 } 1487} 1488 1489static void decode_group2(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1490{ 1491 static const X86GenFunc group2_gen[8] = { 1492 gen_ROL, gen_ROR, gen_RCL, gen_RCR, 1493 gen_SHL, gen_SHR, gen_SHL /* SAL, undocumented */, gen_SAR, 1494 }; 1495 int op = (get_modrm(s, env) >> 3) & 7; 1496 entry->gen = group2_gen[op]; 1497 if (op == 7) { 1498 entry->special = X86_SPECIAL_SExtT0; 1499 } else { 1500 entry->special = X86_SPECIAL_ZExtT0; 1501 } 1502} 1503 1504static void decode_group3(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1505{ 1506 static const X86OpEntry opcodes_grp3[16] = { 1507 /* 0xf6 */ 1508 [0x00] = X86_OP_ENTRYrr(AND, E,b, I,b), 1509 [0x02] = X86_OP_ENTRY1(NOT, E,b, lock), 1510 [0x03] = X86_OP_ENTRY1(NEG, E,b, lock), 1511 [0x04] = X86_OP_ENTRYrr(MUL, E,b, 0,b, zextT0), 1512 [0x05] = X86_OP_ENTRYrr(IMUL,E,b, 0,b, sextT0), 1513 [0x06] = X86_OP_ENTRYr(DIV, E,b), 1514 [0x07] = X86_OP_ENTRYr(IDIV, E,b), 1515 1516 /* 0xf7 */ 1517 [0x08] = X86_OP_ENTRYrr(AND, E,v, I,z), 1518 [0x0a] = X86_OP_ENTRY1(NOT, E,v, lock), 1519 [0x0b] = X86_OP_ENTRY1(NEG, E,v, lock), 1520 [0x0c] = X86_OP_ENTRYrr(MUL, E,v, 0,v, zextT0), 1521 [0x0d] = X86_OP_ENTRYrr(IMUL,E,v, 0,v, sextT0), 1522 [0x0e] = X86_OP_ENTRYr(DIV, E,v), 1523 [0x0f] = X86_OP_ENTRYr(IDIV, E,v), 1524 }; 1525 1526 int w = (*b & 1); 1527 int reg = (get_modrm(s, env) >> 3) & 7; 1528 1529 *entry = opcodes_grp3[(w << 3) | reg]; 1530} 1531 1532static void decode_group4_5(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1533{ 1534 static const X86OpEntry opcodes_grp4_5[16] = { 1535 /* 0xfe */ 1536 [0x00] = X86_OP_ENTRY1(INC, E,b, lock), 1537 [0x01] = X86_OP_ENTRY1(DEC, E,b, lock), 1538 1539 /* 0xff */ 1540 [0x08] = X86_OP_ENTRY1(INC, E,v, lock), 1541 [0x09] = X86_OP_ENTRY1(DEC, E,v, lock), 1542 [0x0a] = X86_OP_ENTRYr(CALL_m, E,f64, zextT0), 1543 [0x0b] = X86_OP_ENTRYr(CALLF_m, M,p), 1544 [0x0c] = X86_OP_ENTRYr(JMP_m, E,f64, zextT0), 1545 [0x0d] = X86_OP_ENTRYr(JMPF_m, M,p), 1546 [0x0e] = X86_OP_ENTRYr(PUSH, E,d64), 1547 }; 1548 1549 int w = (*b & 1); 1550 int reg = (get_modrm(s, env) >> 3) & 7; 1551 1552 *entry = opcodes_grp4_5[(w << 3) | reg]; 1553} 1554 1555 1556static void decode_group11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1557{ 1558 int op = (get_modrm(s, env) >> 3) & 7; 1559 if (op != 0) { 1560 *entry = UNKNOWN_OPCODE; 1561 } else { 1562 entry->gen = gen_MOV; 1563 } 1564} 1565 1566static void decode_90(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1567{ 1568 static X86OpEntry pause = X86_OP_ENTRY0(PAUSE, svm(PAUSE)); 1569 static X86OpEntry nop = X86_OP_ENTRY0(NOP); 1570 static X86OpEntry xchg_ax = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v); 1571 1572 if (REX_B(s)) { 1573 *entry = xchg_ax; 1574 } else { 1575 *entry = (s->prefix & PREFIX_REPZ) ? pause : nop; 1576 } 1577} 1578 1579static const X86OpEntry opcodes_root[256] = { 1580 [0x00] = X86_OP_ENTRY2(ADD, E,b, G,b, lock), 1581 [0x01] = X86_OP_ENTRY2(ADD, E,v, G,v, lock), 1582 [0x02] = X86_OP_ENTRY2(ADD, G,b, E,b, lock), 1583 [0x03] = X86_OP_ENTRY2(ADD, G,v, E,v, lock), 1584 [0x04] = X86_OP_ENTRY2(ADD, 0,b, I,b, lock), /* AL, Ib */ 1585 [0x05] = X86_OP_ENTRY2(ADD, 0,v, I,z, lock), /* rAX, Iz */ 1586 [0x06] = X86_OP_ENTRYr(PUSH, ES, w, chk(i64)), 1587 [0x07] = X86_OP_ENTRYw(POP, ES, w, chk(i64)), 1588 1589 [0x10] = X86_OP_ENTRY2(ADC, E,b, G,b, lock), 1590 [0x11] = X86_OP_ENTRY2(ADC, E,v, G,v, lock), 1591 [0x12] = X86_OP_ENTRY2(ADC, G,b, E,b, lock), 1592 [0x13] = X86_OP_ENTRY2(ADC, G,v, E,v, lock), 1593 [0x14] = X86_OP_ENTRY2(ADC, 0,b, I,b, lock), /* AL, Ib */ 1594 [0x15] = X86_OP_ENTRY2(ADC, 0,v, I,z, lock), /* rAX, Iz */ 1595 [0x16] = X86_OP_ENTRYr(PUSH, SS, w, chk(i64)), 1596 [0x17] = X86_OP_ENTRYw(POP, SS, w, chk(i64)), 1597 1598 [0x20] = X86_OP_ENTRY2(AND, E,b, G,b, lock), 1599 [0x21] = X86_OP_ENTRY2(AND, E,v, G,v, lock), 1600 [0x22] = X86_OP_ENTRY2(AND, G,b, E,b, lock), 1601 [0x23] = X86_OP_ENTRY2(AND, G,v, E,v, lock), 1602 [0x24] = X86_OP_ENTRY2(AND, 0,b, I,b, lock), /* AL, Ib */ 1603 [0x25] = X86_OP_ENTRY2(AND, 0,v, I,z, lock), /* rAX, Iz */ 1604 [0x26] = {}, 1605 [0x27] = X86_OP_ENTRY0(DAA, chk(i64)), 1606 1607 [0x30] = X86_OP_ENTRY2(XOR, E,b, G,b, lock), 1608 [0x31] = X86_OP_ENTRY2(XOR, E,v, G,v, lock), 1609 [0x32] = X86_OP_ENTRY2(XOR, G,b, E,b, lock), 1610 [0x33] = X86_OP_ENTRY2(XOR, G,v, E,v, lock), 1611 [0x34] = X86_OP_ENTRY2(XOR, 0,b, I,b, lock), /* AL, Ib */ 1612 [0x35] = X86_OP_ENTRY2(XOR, 0,v, I,z, lock), /* rAX, Iz */ 1613 [0x36] = {}, 1614 [0x37] = X86_OP_ENTRY0(AAA, chk(i64)), 1615 1616 [0x40] = X86_OP_ENTRY1(INC, 0,v, chk(i64)), 1617 [0x41] = X86_OP_ENTRY1(INC, 1,v, chk(i64)), 1618 [0x42] = X86_OP_ENTRY1(INC, 2,v, chk(i64)), 1619 [0x43] = X86_OP_ENTRY1(INC, 3,v, chk(i64)), 1620 [0x44] = X86_OP_ENTRY1(INC, 4,v, chk(i64)), 1621 [0x45] = X86_OP_ENTRY1(INC, 5,v, chk(i64)), 1622 [0x46] = X86_OP_ENTRY1(INC, 6,v, chk(i64)), 1623 [0x47] = X86_OP_ENTRY1(INC, 7,v, chk(i64)), 1624 1625 [0x50] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1626 [0x51] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1627 [0x52] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1628 [0x53] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1629 [0x54] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1630 [0x55] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1631 [0x56] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1632 [0x57] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1633 1634 [0x60] = X86_OP_ENTRY0(PUSHA, chk(i64)), 1635 [0x61] = X86_OP_ENTRY0(POPA, chk(i64)), 1636 [0x62] = X86_OP_ENTRYrr(BOUND, G,v, M,a, chk(i64)), 1637 [0x63] = X86_OP_GROUP0(63), 1638 [0x64] = {}, 1639 [0x65] = {}, 1640 [0x66] = {}, 1641 [0x67] = {}, 1642 1643 [0x70] = X86_OP_ENTRYr(Jcc, J,b), 1644 [0x71] = X86_OP_ENTRYr(Jcc, J,b), 1645 [0x72] = X86_OP_ENTRYr(Jcc, J,b), 1646 [0x73] = X86_OP_ENTRYr(Jcc, J,b), 1647 [0x74] = X86_OP_ENTRYr(Jcc, J,b), 1648 [0x75] = X86_OP_ENTRYr(Jcc, J,b), 1649 [0x76] = X86_OP_ENTRYr(Jcc, J,b), 1650 [0x77] = X86_OP_ENTRYr(Jcc, J,b), 1651 1652 [0x80] = X86_OP_GROUP2(group1, E,b, I,b), 1653 [0x81] = X86_OP_GROUP2(group1, E,v, I,z), 1654 [0x82] = X86_OP_GROUP2(group1, E,b, I,b, chk(i64)), 1655 [0x83] = X86_OP_GROUP2(group1, E,v, I,b), 1656 [0x84] = X86_OP_ENTRYrr(AND, E,b, G,b), 1657 [0x85] = X86_OP_ENTRYrr(AND, E,v, G,v), 1658 [0x86] = X86_OP_ENTRY2(XCHG, E,b, G,b, xchg), 1659 [0x87] = X86_OP_ENTRY2(XCHG, E,v, G,v, xchg), 1660 1661 [0x90] = X86_OP_GROUP0(90), 1662 [0x91] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1663 [0x92] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1664 [0x93] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1665 [0x94] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1666 [0x95] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1667 [0x96] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1668 [0x97] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1669 1670 [0xA0] = X86_OP_ENTRY3(MOV, 0,b, O,b, None, None), /* AL, Ob */ 1671 [0xA1] = X86_OP_ENTRY3(MOV, 0,v, O,v, None, None), /* rAX, Ov */ 1672 [0xA2] = X86_OP_ENTRY3(MOV, O,b, 0,b, None, None), /* Ob, AL */ 1673 [0xA3] = X86_OP_ENTRY3(MOV, O,v, 0,v, None, None), /* Ov, rAX */ 1674 [0xA4] = X86_OP_ENTRYrr(MOVS, Y,b, X,b), 1675 [0xA5] = X86_OP_ENTRYrr(MOVS, Y,v, X,v), 1676 [0xA6] = X86_OP_ENTRYrr(CMPS, Y,b, X,b), 1677 [0xA7] = X86_OP_ENTRYrr(CMPS, Y,v, X,v), 1678 1679 [0xB0] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1680 [0xB1] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1681 [0xB2] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1682 [0xB3] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1683 [0xB4] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1684 [0xB5] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1685 [0xB6] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1686 [0xB7] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1687 1688 [0xC0] = X86_OP_GROUP2(group2, E,b, I,b), 1689 [0xC1] = X86_OP_GROUP2(group2, E,v, I,b), 1690 [0xC2] = X86_OP_ENTRYr(RET, I,w), 1691 [0xC3] = X86_OP_ENTRY0(RET), 1692 [0xC4] = X86_OP_ENTRY3(LES, G,z, EM,p, None, None, chk(i64)), 1693 [0xC5] = X86_OP_ENTRY3(LDS, G,z, EM,p, None, None, chk(i64)), 1694 [0xC6] = X86_OP_GROUP3(group11, E,b, I,b, None, None), /* reg=000b */ 1695 [0xC7] = X86_OP_GROUP3(group11, E,v, I,z, None, None), /* reg=000b */ 1696 1697 [0xD0] = X86_OP_GROUP1(group2, E,b), 1698 [0xD1] = X86_OP_GROUP1(group2, E,v), 1699 [0xD2] = X86_OP_GROUP2(group2, E,b, 1,b), /* CL */ 1700 [0xD3] = X86_OP_GROUP2(group2, E,v, 1,b), /* CL */ 1701 [0xD4] = X86_OP_ENTRY2(AAM, 0,w, I,b), 1702 [0xD5] = X86_OP_ENTRY2(AAD, 0,w, I,b), 1703 [0xD6] = X86_OP_ENTRYw(SALC, 0,b), 1704 [0xD7] = X86_OP_ENTRY1(XLAT, 0,b, zextT0), /* AL read/written */ 1705 1706 [0xE0] = X86_OP_ENTRYr(LOOPNE, J,b), /* implicit: CX with aflag size */ 1707 [0xE1] = X86_OP_ENTRYr(LOOPE, J,b), /* implicit: CX with aflag size */ 1708 [0xE2] = X86_OP_ENTRYr(LOOP, J,b), /* implicit: CX with aflag size */ 1709 [0xE3] = X86_OP_ENTRYr(JCXZ, J,b), /* implicit: CX with aflag size */ 1710 [0xE4] = X86_OP_ENTRYwr(IN, 0,b, I_unsigned,b), /* AL */ 1711 [0xE5] = X86_OP_ENTRYwr(IN, 0,z, I_unsigned,b), /* AX/EAX */ 1712 [0xE6] = X86_OP_ENTRYrr(OUT, 0,b, I_unsigned,b), /* AL */ 1713 [0xE7] = X86_OP_ENTRYrr(OUT, 0,z, I_unsigned,b), /* AX/EAX */ 1714 1715 [0xF1] = X86_OP_ENTRY0(INT1, svm(ICEBP)), 1716 [0xF4] = X86_OP_ENTRY0(HLT, chk(cpl0) svm(HLT)), 1717 [0xF5] = X86_OP_ENTRY0(CMC), 1718 [0xF6] = X86_OP_GROUP1(group3, E,b), 1719 [0xF7] = X86_OP_GROUP1(group3, E,v), 1720 1721 [0x08] = X86_OP_ENTRY2(OR, E,b, G,b, lock), 1722 [0x09] = X86_OP_ENTRY2(OR, E,v, G,v, lock), 1723 [0x0A] = X86_OP_ENTRY2(OR, G,b, E,b, lock), 1724 [0x0B] = X86_OP_ENTRY2(OR, G,v, E,v, lock), 1725 [0x0C] = X86_OP_ENTRY2(OR, 0,b, I,b, lock), /* AL, Ib */ 1726 [0x0D] = X86_OP_ENTRY2(OR, 0,v, I,z, lock), /* rAX, Iz */ 1727 [0x0E] = X86_OP_ENTRYr(PUSH, CS, w, chk(i64)), 1728 [0x0F] = X86_OP_GROUP0(0F), 1729 1730 [0x18] = X86_OP_ENTRY2(SBB, E,b, G,b, lock), 1731 [0x19] = X86_OP_ENTRY2(SBB, E,v, G,v, lock), 1732 [0x1A] = X86_OP_ENTRY2(SBB, G,b, E,b, lock), 1733 [0x1B] = X86_OP_ENTRY2(SBB, G,v, E,v, lock), 1734 [0x1C] = X86_OP_ENTRY2(SBB, 0,b, I,b, lock), /* AL, Ib */ 1735 [0x1D] = X86_OP_ENTRY2(SBB, 0,v, I,z, lock), /* rAX, Iz */ 1736 [0x1E] = X86_OP_ENTRYr(PUSH, DS, w, chk(i64)), 1737 [0x1F] = X86_OP_ENTRYw(POP, DS, w, chk(i64)), 1738 1739 [0x28] = X86_OP_ENTRY2(SUB, E,b, G,b, lock), 1740 [0x29] = X86_OP_ENTRY2(SUB, E,v, G,v, lock), 1741 [0x2A] = X86_OP_ENTRY2(SUB, G,b, E,b, lock), 1742 [0x2B] = X86_OP_ENTRY2(SUB, G,v, E,v, lock), 1743 [0x2C] = X86_OP_ENTRY2(SUB, 0,b, I,b, lock), /* AL, Ib */ 1744 [0x2D] = X86_OP_ENTRY2(SUB, 0,v, I,z, lock), /* rAX, Iz */ 1745 [0x2E] = {}, 1746 [0x2F] = X86_OP_ENTRY0(DAS, chk(i64)), 1747 1748 [0x38] = X86_OP_ENTRYrr(SUB, E,b, G,b), 1749 [0x39] = X86_OP_ENTRYrr(SUB, E,v, G,v), 1750 [0x3A] = X86_OP_ENTRYrr(SUB, G,b, E,b), 1751 [0x3B] = X86_OP_ENTRYrr(SUB, G,v, E,v), 1752 [0x3C] = X86_OP_ENTRYrr(SUB, 0,b, I,b), /* AL, Ib */ 1753 [0x3D] = X86_OP_ENTRYrr(SUB, 0,v, I,z), /* rAX, Iz */ 1754 [0x3E] = {}, 1755 [0x3F] = X86_OP_ENTRY0(AAS, chk(i64)), 1756 1757 [0x48] = X86_OP_ENTRY1(DEC, 0,v, chk(i64)), 1758 [0x49] = X86_OP_ENTRY1(DEC, 1,v, chk(i64)), 1759 [0x4A] = X86_OP_ENTRY1(DEC, 2,v, chk(i64)), 1760 [0x4B] = X86_OP_ENTRY1(DEC, 3,v, chk(i64)), 1761 [0x4C] = X86_OP_ENTRY1(DEC, 4,v, chk(i64)), 1762 [0x4D] = X86_OP_ENTRY1(DEC, 5,v, chk(i64)), 1763 [0x4E] = X86_OP_ENTRY1(DEC, 6,v, chk(i64)), 1764 [0x4F] = X86_OP_ENTRY1(DEC, 7,v, chk(i64)), 1765 1766 [0x58] = X86_OP_ENTRYw(POP, LoBits,d64), 1767 [0x59] = X86_OP_ENTRYw(POP, LoBits,d64), 1768 [0x5A] = X86_OP_ENTRYw(POP, LoBits,d64), 1769 [0x5B] = X86_OP_ENTRYw(POP, LoBits,d64), 1770 [0x5C] = X86_OP_ENTRYw(POP, LoBits,d64), 1771 [0x5D] = X86_OP_ENTRYw(POP, LoBits,d64), 1772 [0x5E] = X86_OP_ENTRYw(POP, LoBits,d64), 1773 [0x5F] = X86_OP_ENTRYw(POP, LoBits,d64), 1774 1775 [0x68] = X86_OP_ENTRYr(PUSH, I,z), 1776 [0x69] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,z, sextT0), 1777 [0x6A] = X86_OP_ENTRYr(PUSH, I,b), 1778 [0x6B] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,b, sextT0), 1779 [0x6C] = X86_OP_ENTRYrr(INS, Y,b, 2,w), /* DX */ 1780 [0x6D] = X86_OP_ENTRYrr(INS, Y,z, 2,w), /* DX */ 1781 [0x6E] = X86_OP_ENTRYrr(OUTS, X,b, 2,w), /* DX */ 1782 [0x6F] = X86_OP_ENTRYrr(OUTS, X,z, 2,w), /* DX */ 1783 1784 [0x78] = X86_OP_ENTRYr(Jcc, J,b), 1785 [0x79] = X86_OP_ENTRYr(Jcc, J,b), 1786 [0x7A] = X86_OP_ENTRYr(Jcc, J,b), 1787 [0x7B] = X86_OP_ENTRYr(Jcc, J,b), 1788 [0x7C] = X86_OP_ENTRYr(Jcc, J,b), 1789 [0x7D] = X86_OP_ENTRYr(Jcc, J,b), 1790 [0x7E] = X86_OP_ENTRYr(Jcc, J,b), 1791 [0x7F] = X86_OP_ENTRYr(Jcc, J,b), 1792 1793 [0x88] = X86_OP_ENTRYwr(MOV, E,b, G,b), 1794 [0x89] = X86_OP_ENTRYwr(MOV, E,v, G,v), 1795 [0x8A] = X86_OP_ENTRYwr(MOV, G,b, E,b), 1796 [0x8B] = X86_OP_ENTRYwr(MOV, G,v, E,v), 1797 /* Missing in Table A-2: memory destination is always 16-bit. */ 1798 [0x8C] = X86_OP_ENTRYwr(MOV, E,v, S,w, op0_Mw), 1799 [0x8D] = X86_OP_ENTRYwr(LEA, G,v, M,v, nolea), 1800 [0x8E] = X86_OP_ENTRYwr(MOV, S,w, E,w), 1801 [0x8F] = X86_OP_GROUPw(group1A, E,d64), 1802 1803 [0x98] = X86_OP_ENTRY1(CBW, 0,v), /* rAX */ 1804 [0x99] = X86_OP_ENTRYwr(CWD, 2,v, 0,v), /* rDX, rAX */ 1805 [0x9A] = X86_OP_ENTRYrr(CALLF, I_unsigned,p, I_unsigned,w, chk(i64)), 1806 [0x9B] = X86_OP_ENTRY0(WAIT), 1807 [0x9C] = X86_OP_ENTRY0(PUSHF, chk(vm86_iopl) svm(PUSHF)), 1808 [0x9D] = X86_OP_ENTRY0(POPF, chk(vm86_iopl) svm(POPF)), 1809 [0x9E] = X86_OP_ENTRY0(SAHF), 1810 [0x9F] = X86_OP_ENTRY0(LAHF), 1811 1812 [0xA8] = X86_OP_ENTRYrr(AND, 0,b, I,b), /* AL, Ib */ 1813 [0xA9] = X86_OP_ENTRYrr(AND, 0,v, I,z), /* rAX, Iz */ 1814 [0xAA] = X86_OP_ENTRYwr(STOS, Y,b, 0,b), 1815 [0xAB] = X86_OP_ENTRYwr(STOS, Y,v, 0,v), 1816 /* Manual writeback because REP LODS (!) has to write EAX/RAX after every LODS. */ 1817 [0xAC] = X86_OP_ENTRYr(LODS, X,b), 1818 [0xAD] = X86_OP_ENTRYr(LODS, X,v), 1819 [0xAE] = X86_OP_ENTRYrr(SCAS, 0,b, Y,b), 1820 [0xAF] = X86_OP_ENTRYrr(SCAS, 0,v, Y,v), 1821 1822 [0xB8] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), 1823 [0xB9] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), 1824 [0xBA] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), 1825 [0xBB] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), 1826 [0xBC] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), 1827 [0xBD] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), 1828 [0xBE] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), 1829 [0xBF] = X86_OP_ENTRYwr(MOV, LoBits,v, I,v), 1830 1831 [0xC8] = X86_OP_ENTRYrr(ENTER, I,w, I,b), 1832 [0xC9] = X86_OP_ENTRY1(LEAVE, A,d64), 1833 [0xCA] = X86_OP_ENTRYr(RETF, I,w), 1834 [0xCB] = X86_OP_ENTRY0(RETF), 1835 [0xCC] = X86_OP_ENTRY0(INT3), 1836 [0xCD] = X86_OP_ENTRYr(INT, I,b, chk(vm86_iopl)), 1837 [0xCE] = X86_OP_ENTRY0(INTO), 1838 [0xCF] = X86_OP_ENTRY0(IRET, chk(vm86_iopl) svm(IRET)), 1839 1840 /* 1841 * x87 is nolea because it needs the address without segment base, 1842 * in order to store it in fdp. 1843 */ 1844 [0xD8] = X86_OP_ENTRY1(x87, nop,v, nolea), 1845 [0xD9] = X86_OP_ENTRY1(x87, nop,v, nolea), 1846 [0xDA] = X86_OP_ENTRY1(x87, nop,v, nolea), 1847 [0xDB] = X86_OP_ENTRY1(x87, nop,v, nolea), 1848 [0xDC] = X86_OP_ENTRY1(x87, nop,v, nolea), 1849 [0xDD] = X86_OP_ENTRY1(x87, nop,v, nolea), 1850 [0xDE] = X86_OP_ENTRY1(x87, nop,v, nolea), 1851 [0xDF] = X86_OP_ENTRY1(x87, nop,v, nolea), 1852 1853 [0xE8] = X86_OP_ENTRYr(CALL, J,z_f64), 1854 [0xE9] = X86_OP_ENTRYr(JMP, J,z_f64), 1855 [0xEA] = X86_OP_ENTRYrr(JMPF, I_unsigned,p, I_unsigned,w, chk(i64)), 1856 [0xEB] = X86_OP_ENTRYr(JMP, J,b), 1857 [0xEC] = X86_OP_ENTRYwr(IN, 0,b, 2,w), /* AL, DX */ 1858 [0xED] = X86_OP_ENTRYwr(IN, 0,z, 2,w), /* AX/EAX, DX */ 1859 [0xEE] = X86_OP_ENTRYrr(OUT, 0,b, 2,w), /* DX, AL */ 1860 [0xEF] = X86_OP_ENTRYrr(OUT, 0,z, 2,w), /* DX, AX/EAX */ 1861 1862 [0xF8] = X86_OP_ENTRY0(CLC), 1863 [0xF9] = X86_OP_ENTRY0(STC), 1864 [0xFA] = X86_OP_ENTRY0(CLI, chk(iopl)), 1865 [0xFB] = X86_OP_ENTRY0(STI, chk(iopl)), 1866 [0xFC] = X86_OP_ENTRY0(CLD), 1867 [0xFD] = X86_OP_ENTRY0(STD), 1868 [0xFE] = X86_OP_GROUP1(group4_5, E,b), 1869 [0xFF] = X86_OP_GROUP1(group4_5, E,v), 1870}; 1871 1872#undef mmx 1873#undef vex1 1874#undef vex2 1875#undef vex3 1876#undef vex4 1877#undef vex4_unal 1878#undef vex5 1879#undef vex6 1880#undef vex7 1881#undef vex8 1882#undef vex11 1883#undef vex12 1884#undef vex13 1885 1886/* 1887 * Decode the fixed part of the opcode and place the last 1888 * in b. 1889 */ 1890static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1891{ 1892 *entry = opcodes_root[*b]; 1893} 1894 1895 1896static int decode_modrm(DisasContext *s, CPUX86State *env, 1897 X86DecodedInsn *decode, X86DecodedOp *op) 1898{ 1899 int modrm = get_modrm(s, env); 1900 if ((modrm >> 6) == 3) { 1901 op->n = (modrm & 7); 1902 if (op->unit != X86_OP_MMX) { 1903 op->n |= REX_B(s); 1904 } 1905 } else { 1906 op->has_ea = true; 1907 op->n = -1; 1908 decode->mem = gen_lea_modrm_0(env, s, modrm, 1909 decode->e.vex_class == 12); 1910 } 1911 return modrm; 1912} 1913 1914static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot) 1915{ 1916 switch (size) { 1917 case X86_SIZE_b: /* byte */ 1918 *ot = MO_8; 1919 return true; 1920 1921 case X86_SIZE_d: /* 32-bit */ 1922 case X86_SIZE_ss: /* SSE/AVX scalar single precision */ 1923 *ot = MO_32; 1924 return true; 1925 1926 case X86_SIZE_p: /* Far pointer, return offset size */ 1927 case X86_SIZE_s: /* Descriptor, return offset size */ 1928 case X86_SIZE_v: /* 16/32/64-bit, based on operand size */ 1929 *ot = s->dflag; 1930 return true; 1931 1932 case X86_SIZE_pi: /* MMX */ 1933 case X86_SIZE_q: /* 64-bit */ 1934 case X86_SIZE_sd: /* SSE/AVX scalar double precision */ 1935 *ot = MO_64; 1936 return true; 1937 1938 case X86_SIZE_w: /* 16-bit */ 1939 *ot = MO_16; 1940 return true; 1941 1942 case X86_SIZE_y: /* 32/64-bit, based on operand size */ 1943 *ot = s->dflag == MO_16 ? MO_32 : s->dflag; 1944 return true; 1945 1946 case X86_SIZE_y_d64: /* Full (not 16-bit) register access */ 1947 *ot = CODE64(s) ? MO_64 : MO_32; 1948 return true; 1949 1950 case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */ 1951 *ot = s->dflag == MO_16 ? MO_16 : MO_32; 1952 return true; 1953 1954 case X86_SIZE_z_f64: /* 32-bit for 32-bit operand size or 64-bit mode, else 16-bit */ 1955 *ot = !CODE64(s) && s->dflag == MO_16 ? MO_16 : MO_32; 1956 return true; 1957 1958 case X86_SIZE_dq: /* SSE/AVX 128-bit */ 1959 if (e->special == X86_SPECIAL_MMX && 1960 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1961 *ot = MO_64; 1962 return true; 1963 } 1964 if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) { 1965 return false; 1966 } 1967 *ot = MO_128; 1968 return true; 1969 1970 case X86_SIZE_qq: /* AVX 256-bit */ 1971 if (!s->vex_l) { 1972 return false; 1973 } 1974 *ot = MO_256; 1975 return true; 1976 1977 case X86_SIZE_x: /* 128/256-bit, based on operand size */ 1978 if (e->special == X86_SPECIAL_MMX && 1979 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1980 *ot = MO_64; 1981 return true; 1982 } 1983 /* fall through */ 1984 case X86_SIZE_ps: /* SSE/AVX packed single precision */ 1985 case X86_SIZE_pd: /* SSE/AVX packed double precision */ 1986 *ot = s->vex_l ? MO_256 : MO_128; 1987 return true; 1988 1989 case X86_SIZE_xh: /* SSE/AVX packed half register */ 1990 *ot = s->vex_l ? MO_128 : MO_64; 1991 return true; 1992 1993 case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */ 1994 *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag; 1995 return true; 1996 1997 case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */ 1998 *ot = CODE64(s) ? MO_64 : s->dflag; 1999 return true; 2000 2001 default: 2002 *ot = -1; 2003 return true; 2004 } 2005} 2006 2007static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, 2008 X86DecodedOp *op, X86OpType type, int b) 2009{ 2010 int modrm; 2011 2012 switch (type) { 2013 case X86_TYPE_None: /* Implicit or absent */ 2014 case X86_TYPE_A: /* Implicit */ 2015 case X86_TYPE_F: /* EFLAGS/RFLAGS */ 2016 case X86_TYPE_X: /* string source */ 2017 case X86_TYPE_Y: /* string destination */ 2018 break; 2019 2020 case X86_TYPE_B: /* VEX.vvvv selects a GPR */ 2021 op->unit = X86_OP_INT; 2022 op->n = s->vex_v; 2023 break; 2024 2025 case X86_TYPE_C: /* REG in the modrm byte selects a control register */ 2026 op->unit = X86_OP_CR; 2027 op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s); 2028 if (op->n == 0 && (s->prefix & PREFIX_LOCK) && 2029 (s->cpuid_ext3_features & CPUID_EXT3_CR8LEG)) { 2030 op->n = 8; 2031 s->prefix &= ~PREFIX_LOCK; 2032 } 2033 if (op->n != 0 && op->n != 2 && op->n != 3 && op->n != 4 && op->n != 8) { 2034 return false; 2035 } 2036 if (decode->e.intercept) { 2037 decode->e.intercept += op->n; 2038 } 2039 break; 2040 2041 case X86_TYPE_D: /* REG in the modrm byte selects a debug register */ 2042 op->unit = X86_OP_DR; 2043 op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s); 2044 if (op->n >= 8) { 2045 /* 2046 * illegal opcode. The DR4 and DR5 case is checked in the generated 2047 * code instead, to save on hflags bits. 2048 */ 2049 return false; 2050 } 2051 if (decode->e.intercept) { 2052 decode->e.intercept += op->n; 2053 } 2054 break; 2055 2056 case X86_TYPE_G: /* REG in the modrm byte selects a GPR */ 2057 op->unit = X86_OP_INT; 2058 goto get_reg; 2059 2060 case X86_TYPE_S: /* reg selects a segment register */ 2061 op->unit = X86_OP_SEG; 2062 op->n = (get_modrm(s, env) >> 3) & 7; 2063 /* Values outside [CDEFGS]S, as well as storing to CS, are invalid. */ 2064 if (op->n >= 6 || (op->n == R_CS && op == &decode->op[0])) { 2065 return false; 2066 } 2067 break; 2068 2069 case X86_TYPE_P: 2070 op->unit = X86_OP_MMX; 2071 goto get_reg; 2072 2073 case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */ 2074 if (decode->e.special == X86_SPECIAL_MMX && 2075 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 2076 op->unit = X86_OP_MMX; 2077 } else { 2078 op->unit = X86_OP_SSE; 2079 } 2080 get_reg: 2081 op->n = ((get_modrm(s, env) >> 3) & 7); 2082 if (op->unit != X86_OP_MMX) { 2083 op->n |= REX_R(s); 2084 } 2085 break; 2086 2087 case X86_TYPE_E: /* ALU modrm operand */ 2088 op->unit = X86_OP_INT; 2089 goto get_modrm; 2090 2091 case X86_TYPE_Q: /* MMX modrm operand */ 2092 op->unit = X86_OP_MMX; 2093 goto get_modrm; 2094 2095 case X86_TYPE_W: /* XMM/YMM modrm operand */ 2096 if (decode->e.special == X86_SPECIAL_MMX && 2097 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 2098 op->unit = X86_OP_MMX; 2099 } else { 2100 op->unit = X86_OP_SSE; 2101 } 2102 goto get_modrm; 2103 2104 case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */ 2105 op->unit = X86_OP_MMX; 2106 goto get_modrm_reg; 2107 2108 case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */ 2109 if (decode->e.special == X86_SPECIAL_MMX && 2110 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 2111 op->unit = X86_OP_MMX; 2112 } else { 2113 op->unit = X86_OP_SSE; 2114 } 2115 goto get_modrm_reg; 2116 2117 case X86_TYPE_R: /* R/M in the modrm byte selects a register */ 2118 op->unit = X86_OP_INT; 2119 get_modrm_reg: 2120 modrm = get_modrm(s, env); 2121 if ((modrm >> 6) != 3) { 2122 return false; 2123 } 2124 goto get_modrm; 2125 2126 case X86_TYPE_WM: /* modrm byte selects an XMM/YMM memory operand */ 2127 op->unit = X86_OP_SSE; 2128 goto get_modrm_mem; 2129 2130 case X86_TYPE_EM: /* modrm byte selects an ALU memory operand */ 2131 op->unit = X86_OP_INT; 2132 /* fall through */ 2133 case X86_TYPE_M: /* modrm byte selects a memory operand */ 2134 get_modrm_mem: 2135 modrm = get_modrm(s, env); 2136 if ((modrm >> 6) == 3) { 2137 return false; 2138 } 2139 /* fall through */ 2140 case X86_TYPE_nop: /* modrm operand decoded but not fetched */ 2141 get_modrm: 2142 decode_modrm(s, env, decode, op); 2143 break; 2144 2145 case X86_TYPE_O: /* Absolute address encoded in the instruction */ 2146 op->unit = X86_OP_INT; 2147 op->has_ea = true; 2148 op->n = -1; 2149 decode->mem = (AddressParts) { 2150 .def_seg = R_DS, 2151 .base = -1, 2152 .index = -1, 2153 .disp = insn_get_addr(env, s, s->aflag) 2154 }; 2155 break; 2156 2157 case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */ 2158 if ((s->prefix & PREFIX_VEX)) { 2159 op->unit = X86_OP_SSE; 2160 op->n = s->vex_v; 2161 break; 2162 } 2163 if (op == &decode->op[0]) { 2164 /* shifts place the destination in VEX.vvvv, use modrm */ 2165 return decode_op(s, env, decode, op, decode->e.op1, b); 2166 } else { 2167 return decode_op(s, env, decode, op, decode->e.op0, b); 2168 } 2169 2170 case X86_TYPE_I: /* Immediate */ 2171 case X86_TYPE_J: /* Relative offset for a jump */ 2172 op->unit = X86_OP_IMM; 2173 decode->immediate = op->imm = insn_get_signed(env, s, op->ot); 2174 break; 2175 2176 case X86_TYPE_I_unsigned: /* Immediate */ 2177 op->unit = X86_OP_IMM; 2178 decode->immediate = op->imm = insn_get(env, s, op->ot); 2179 break; 2180 2181 case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */ 2182 op->n = insn_get(env, s, op->ot) >> 4; 2183 break; 2184 2185 case X86_TYPE_2op: 2186 *op = decode->op[0]; 2187 break; 2188 2189 case X86_TYPE_LoBits: 2190 op->n = (b & 7) | REX_B(s); 2191 op->unit = X86_OP_INT; 2192 break; 2193 2194 case X86_TYPE_0 ... X86_TYPE_7: 2195 op->n = type - X86_TYPE_0; 2196 op->unit = X86_OP_INT; 2197 break; 2198 2199 case X86_TYPE_ES ... X86_TYPE_GS: 2200 op->n = type - X86_TYPE_ES; 2201 op->unit = X86_OP_SEG; 2202 break; 2203 } 2204 2205 return true; 2206} 2207 2208static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e) 2209{ 2210 uint16_t sse_prefixes; 2211 2212 if (!e->valid_prefix) { 2213 return true; 2214 } 2215 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { 2216 /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66. */ 2217 s->prefix &= ~PREFIX_DATA; 2218 } 2219 2220 /* Now, either zero or one bit is set in sse_prefixes. */ 2221 sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA); 2222 return e->valid_prefix & (1 << sse_prefixes); 2223} 2224 2225static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func, 2226 X86DecodedInsn *decode) 2227{ 2228 X86OpEntry *e = &decode->e; 2229 2230 decode_func(s, env, e, &decode->b); 2231 while (e->is_decode) { 2232 e->is_decode = false; 2233 e->decode(s, env, e, &decode->b); 2234 } 2235 2236 if (!validate_sse_prefix(s, e)) { 2237 return false; 2238 } 2239 2240 /* First compute size of operands in order to initialize s->rip_offset. */ 2241 if (e->op0 != X86_TYPE_None) { 2242 if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) { 2243 return false; 2244 } 2245 if (e->op0 == X86_TYPE_I) { 2246 s->rip_offset += 1 << decode->op[0].ot; 2247 } 2248 } 2249 if (e->op1 != X86_TYPE_None) { 2250 if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) { 2251 return false; 2252 } 2253 if (e->op1 == X86_TYPE_I) { 2254 s->rip_offset += 1 << decode->op[1].ot; 2255 } 2256 } 2257 if (e->op2 != X86_TYPE_None) { 2258 if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) { 2259 return false; 2260 } 2261 if (e->op2 == X86_TYPE_I) { 2262 s->rip_offset += 1 << decode->op[2].ot; 2263 } 2264 } 2265 if (e->op3 != X86_TYPE_None) { 2266 /* 2267 * A couple instructions actually use the extra immediate byte for an Lx 2268 * register operand; those are handled in the gen_* functions as one off. 2269 */ 2270 assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b); 2271 s->rip_offset += 1; 2272 } 2273 2274 if (e->op0 != X86_TYPE_None && 2275 !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) { 2276 return false; 2277 } 2278 2279 if (e->op1 != X86_TYPE_None && 2280 !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) { 2281 return false; 2282 } 2283 2284 if (e->op2 != X86_TYPE_None && 2285 !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) { 2286 return false; 2287 } 2288 2289 if (e->op3 != X86_TYPE_None) { 2290 decode->immediate = insn_get_signed(env, s, MO_8); 2291 } 2292 2293 return true; 2294} 2295 2296static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid) 2297{ 2298 switch (cpuid) { 2299 case X86_FEAT_None: 2300 return true; 2301 case X86_FEAT_CMOV: 2302 return (s->cpuid_features & CPUID_CMOV); 2303 case X86_FEAT_CLFLUSH: 2304 return (s->cpuid_features & CPUID_CLFLUSH); 2305 case X86_FEAT_CX8: 2306 return (s->cpuid_features & CPUID_CX8); 2307 case X86_FEAT_FXSR: 2308 return (s->cpuid_features & CPUID_FXSR); 2309 case X86_FEAT_CX16: 2310 return (s->cpuid_ext_features & CPUID_EXT_CX16); 2311 case X86_FEAT_F16C: 2312 return (s->cpuid_ext_features & CPUID_EXT_F16C); 2313 case X86_FEAT_FMA: 2314 return (s->cpuid_ext_features & CPUID_EXT_FMA); 2315 case X86_FEAT_MOVBE: 2316 return (s->cpuid_ext_features & CPUID_EXT_MOVBE); 2317 case X86_FEAT_PCLMULQDQ: 2318 return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ); 2319 case X86_FEAT_POPCNT: 2320 return (s->cpuid_ext_features & CPUID_EXT_POPCNT); 2321 case X86_FEAT_SSE: 2322 return (s->cpuid_features & CPUID_SSE); 2323 case X86_FEAT_SSE2: 2324 return (s->cpuid_features & CPUID_SSE2); 2325 case X86_FEAT_SSE3: 2326 return (s->cpuid_ext_features & CPUID_EXT_SSE3); 2327 case X86_FEAT_SSSE3: 2328 return (s->cpuid_ext_features & CPUID_EXT_SSSE3); 2329 case X86_FEAT_SSE41: 2330 return (s->cpuid_ext_features & CPUID_EXT_SSE41); 2331 case X86_FEAT_SSE42: 2332 return (s->cpuid_ext_features & CPUID_EXT_SSE42); 2333 case X86_FEAT_AES: 2334 if (!(s->cpuid_ext_features & CPUID_EXT_AES)) { 2335 return false; 2336 } else if (!(s->prefix & PREFIX_VEX)) { 2337 return true; 2338 } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) { 2339 return false; 2340 } else { 2341 return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES); 2342 } 2343 2344 case X86_FEAT_AVX: 2345 return (s->cpuid_ext_features & CPUID_EXT_AVX); 2346 case X86_FEAT_XSAVE: 2347 return (s->cpuid_ext_features & CPUID_EXT_XSAVE); 2348 2349 case X86_FEAT_3DNOW: 2350 return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW); 2351 case X86_FEAT_SSE4A: 2352 return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A); 2353 2354 case X86_FEAT_ADX: 2355 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX); 2356 case X86_FEAT_BMI1: 2357 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1); 2358 case X86_FEAT_BMI2: 2359 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2); 2360 case X86_FEAT_AVX2: 2361 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2); 2362 case X86_FEAT_CLFLUSHOPT: 2363 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_CLFLUSHOPT); 2364 case X86_FEAT_CLWB: 2365 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_CLWB); 2366 case X86_FEAT_FSGSBASE: 2367 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_FSGSBASE); 2368 case X86_FEAT_SHA_NI: 2369 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SHA_NI); 2370 2371 case X86_FEAT_CMPCCXADD: 2372 return (s->cpuid_7_1_eax_features & CPUID_7_1_EAX_CMPCCXADD); 2373 2374 case X86_FEAT_XSAVEOPT: 2375 return (s->cpuid_xsave_features & CPUID_XSAVE_XSAVEOPT); 2376 } 2377 g_assert_not_reached(); 2378} 2379 2380static bool validate_vex(DisasContext *s, X86DecodedInsn *decode) 2381{ 2382 X86OpEntry *e = &decode->e; 2383 2384 switch (e->vex_special) { 2385 case X86_VEX_REPScalar: 2386 /* 2387 * Instructions which differ between 00/66 and F2/F3 in the 2388 * exception classification and the size of the memory operand. 2389 */ 2390 assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4); 2391 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { 2392 e->vex_class = e->vex_class < 4 ? 3 : 5; 2393 if (s->vex_l) { 2394 goto illegal; 2395 } 2396 assert(decode->e.s2 == X86_SIZE_x); 2397 if (decode->op[2].has_ea) { 2398 decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64; 2399 } 2400 } 2401 break; 2402 2403 case X86_VEX_SSEUnaligned: 2404 /* handled in sse_needs_alignment. */ 2405 break; 2406 2407 case X86_VEX_AVX2_256: 2408 if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) { 2409 goto illegal; 2410 } 2411 } 2412 2413 switch (e->vex_class) { 2414 case 0: 2415 if (s->prefix & PREFIX_VEX) { 2416 goto illegal; 2417 } 2418 return true; 2419 case 1: 2420 case 2: 2421 case 3: 2422 case 4: 2423 case 5: 2424 case 7: 2425 if (s->prefix & PREFIX_VEX) { 2426 if (!(s->flags & HF_AVX_EN_MASK)) { 2427 goto illegal; 2428 } 2429 } else if (e->special != X86_SPECIAL_MMX || 2430 (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { 2431 if (!(s->flags & HF_OSFXSR_MASK)) { 2432 goto illegal; 2433 } 2434 } 2435 break; 2436 case 12: 2437 /* Must have a VSIB byte and no address prefix. */ 2438 assert(s->has_modrm); 2439 if ((s->modrm & 7) != 4 || s->aflag == MO_16) { 2440 goto illegal; 2441 } 2442 2443 /* Check no overlap between registers. */ 2444 if (!decode->op[0].has_ea && 2445 (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) { 2446 goto illegal; 2447 } 2448 assert(!decode->op[1].has_ea); 2449 if (decode->op[1].n == decode->mem.index) { 2450 goto illegal; 2451 } 2452 if (!decode->op[2].has_ea && 2453 (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) { 2454 goto illegal; 2455 } 2456 /* fall through */ 2457 case 6: 2458 case 11: 2459 if (!(s->prefix & PREFIX_VEX)) { 2460 goto illegal; 2461 } 2462 if (!(s->flags & HF_AVX_EN_MASK)) { 2463 goto illegal; 2464 } 2465 break; 2466 case 8: 2467 /* Non-VEX case handled in decode_0F77. */ 2468 assert(s->prefix & PREFIX_VEX); 2469 if (!(s->flags & HF_AVX_EN_MASK)) { 2470 goto illegal; 2471 } 2472 break; 2473 case 13: 2474 if (!(s->prefix & PREFIX_VEX)) { 2475 goto illegal; 2476 } 2477 if (s->vex_l) { 2478 goto illegal; 2479 } 2480 /* All integer instructions use VEX.vvvv, so exit. */ 2481 return true; 2482 } 2483 2484 if (s->vex_v != 0 && 2485 e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B && 2486 e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B && 2487 e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) { 2488 goto illegal; 2489 } 2490 2491 if (s->flags & HF_TS_MASK) { 2492 goto nm_exception; 2493 } 2494 if (s->flags & HF_EM_MASK) { 2495 goto illegal; 2496 } 2497 2498 if (e->check) { 2499 if (e->check & X86_CHECK_VEX128) { 2500 if (s->vex_l) { 2501 goto illegal; 2502 } 2503 } 2504 if (e->check & X86_CHECK_W0) { 2505 if (s->vex_w) { 2506 goto illegal; 2507 } 2508 } 2509 if (e->check & X86_CHECK_W1) { 2510 if (!s->vex_w) { 2511 goto illegal; 2512 } 2513 } 2514 } 2515 return true; 2516 2517nm_exception: 2518 gen_NM_exception(s); 2519 return false; 2520illegal: 2521 gen_illegal_opcode(s); 2522 return false; 2523} 2524 2525/* 2526 * Convert one instruction. s->base.is_jmp is set if the translation must 2527 * be stopped. 2528 */ 2529static void disas_insn(DisasContext *s, CPUState *cpu) 2530{ 2531 CPUX86State *env = cpu_env(cpu); 2532 X86DecodedInsn decode; 2533 X86DecodeFunc decode_func = decode_root; 2534 bool accept_lock = false; 2535 uint8_t cc_live, b; 2536 2537 s->pc = s->base.pc_next; 2538 s->override = -1; 2539 s->popl_esp_hack = 0; 2540#ifdef TARGET_X86_64 2541 s->rex_r = 0; 2542 s->rex_x = 0; 2543 s->rex_b = 0; 2544#endif 2545 s->rip_offset = 0; /* for relative ip address */ 2546 s->vex_l = 0; 2547 s->vex_v = 0; 2548 s->vex_w = false; 2549 s->has_modrm = false; 2550 s->prefix = 0; 2551 2552 next_byte:; 2553#ifdef TARGET_X86_64 2554 /* clear any REX prefix followed by other prefixes. */ 2555 int rex; 2556 rex = -1; 2557 next_byte_rex: 2558#endif 2559 b = x86_ldub_code(env, s); 2560 2561 /* Collect prefixes. */ 2562 switch (b) { 2563 case 0xf3: 2564 s->prefix |= PREFIX_REPZ; 2565 s->prefix &= ~PREFIX_REPNZ; 2566 goto next_byte; 2567 case 0xf2: 2568 s->prefix |= PREFIX_REPNZ; 2569 s->prefix &= ~PREFIX_REPZ; 2570 goto next_byte; 2571 case 0xf0: 2572 s->prefix |= PREFIX_LOCK; 2573 goto next_byte; 2574 case 0x2e: 2575 s->override = R_CS; 2576 goto next_byte; 2577 case 0x36: 2578 s->override = R_SS; 2579 goto next_byte; 2580 case 0x3e: 2581 s->override = R_DS; 2582 goto next_byte; 2583 case 0x26: 2584 s->override = R_ES; 2585 goto next_byte; 2586 case 0x64: 2587 s->override = R_FS; 2588 goto next_byte; 2589 case 0x65: 2590 s->override = R_GS; 2591 goto next_byte; 2592 case 0x66: 2593 s->prefix |= PREFIX_DATA; 2594 goto next_byte; 2595 case 0x67: 2596 s->prefix |= PREFIX_ADR; 2597 goto next_byte; 2598#ifdef TARGET_X86_64 2599 case 0x40 ... 0x4f: 2600 if (CODE64(s)) { 2601 /* 2602 * REX prefix; ignored unless it is the last prefix, so 2603 * for now just stash it 2604 */ 2605 rex = b; 2606 goto next_byte_rex; 2607 } 2608 break; 2609#endif 2610 case 0xc5: /* 2-byte VEX */ 2611 case 0xc4: /* 3-byte VEX */ 2612 /* 2613 * VEX prefixes cannot be used except in 32-bit mode. 2614 * Otherwise the instruction is LES or LDS. 2615 */ 2616 if (CODE32(s) && !VM86(s)) { 2617 static const int pp_prefix[4] = { 2618 0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ 2619 }; 2620 int vex3, vex2 = x86_ldub_code(env, s); 2621 2622 if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) { 2623 /* 2624 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b, 2625 * otherwise the instruction is LES or LDS. 2626 */ 2627 s->pc--; /* rewind the advance_pc() x86_ldub_code() did */ 2628 break; 2629 } 2630 2631 /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */ 2632 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ 2633 | PREFIX_LOCK | PREFIX_DATA)) { 2634 goto illegal_op; 2635 } 2636#ifdef TARGET_X86_64 2637 if (rex != -1) { 2638 goto illegal_op; 2639 } 2640 s->rex_r = (~vex2 >> 4) & 8; 2641#endif 2642 if (b == 0xc5) { 2643 /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */ 2644 vex3 = vex2; 2645 decode_func = decode_0F; 2646 } else { 2647 /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */ 2648 vex3 = x86_ldub_code(env, s); 2649#ifdef TARGET_X86_64 2650 s->rex_x = (~vex2 >> 3) & 8; 2651 s->rex_b = (~vex2 >> 2) & 8; 2652#endif 2653 s->vex_w = (vex3 >> 7) & 1; 2654 switch (vex2 & 0x1f) { 2655 case 0x01: /* Implied 0f leading opcode bytes. */ 2656 decode_func = decode_0F; 2657 break; 2658 case 0x02: /* Implied 0f 38 leading opcode bytes. */ 2659 decode_func = decode_0F38; 2660 break; 2661 case 0x03: /* Implied 0f 3a leading opcode bytes. */ 2662 decode_func = decode_0F3A; 2663 break; 2664 default: /* Reserved for future use. */ 2665 goto unknown_op; 2666 } 2667 } 2668 s->vex_v = (~vex3 >> 3) & 0xf; 2669 s->vex_l = (vex3 >> 2) & 1; 2670 s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX; 2671 } 2672 break; 2673 default: 2674 break; 2675 } 2676 2677 /* Post-process prefixes. */ 2678 if (CODE64(s)) { 2679#ifdef TARGET_X86_64 2680 if (rex != -1) { 2681 s->prefix |= PREFIX_REX; 2682 s->vex_w = (rex >> 3) & 1; 2683 s->rex_r = (rex & 0x4) << 1; 2684 s->rex_x = (rex & 0x2) << 2; 2685 s->rex_b = (rex & 0x1) << 3; 2686 } 2687#endif 2688 2689 /* 2690 * In 64-bit mode, the default data size is 32-bit. Select 64-bit 2691 * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence 2692 * over 0x66 if both are present. 2693 */ 2694 s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32); 2695 /* In 64-bit mode, 0x67 selects 32-bit addressing. */ 2696 s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64); 2697 } else { 2698 /* In 16/32-bit mode, 0x66 selects the opposite data size. */ 2699 if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) { 2700 s->dflag = MO_32; 2701 } else { 2702 s->dflag = MO_16; 2703 } 2704 /* In 16/32-bit mode, 0x67 selects the opposite addressing. */ 2705 if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) { 2706 s->aflag = MO_32; 2707 } else { 2708 s->aflag = MO_16; 2709 } 2710 } 2711 2712 memset(&decode, 0, sizeof(decode)); 2713 decode.cc_op = -1; 2714 decode.b = b; 2715 if (!decode_insn(s, env, decode_func, &decode)) { 2716 goto illegal_op; 2717 } 2718 if (!decode.e.gen) { 2719 goto unknown_op; 2720 } 2721 2722 if (!has_cpuid_feature(s, decode.e.cpuid)) { 2723 goto illegal_op; 2724 } 2725 2726 /* Checks that result in #UD come first. */ 2727 if (decode.e.check) { 2728 if (CODE64(s)) { 2729 if (decode.e.check & X86_CHECK_i64) { 2730 goto illegal_op; 2731 } 2732 if ((decode.e.check & X86_CHECK_i64_amd) && !IS_INTEL_CPU(env)) { 2733 goto illegal_op; 2734 } 2735 } else { 2736 if (decode.e.check & X86_CHECK_o64) { 2737 goto illegal_op; 2738 } 2739 if ((decode.e.check & X86_CHECK_o64_intel) && IS_INTEL_CPU(env)) { 2740 goto illegal_op; 2741 } 2742 } 2743 if (decode.e.check & X86_CHECK_prot_or_vm86) { 2744 if (!PE(s)) { 2745 goto illegal_op; 2746 } 2747 } 2748 if (decode.e.check & X86_CHECK_no_vm86) { 2749 if (VM86(s)) { 2750 goto illegal_op; 2751 } 2752 } 2753 } 2754 2755 switch (decode.e.special) { 2756 case X86_SPECIAL_None: 2757 break; 2758 2759 case X86_SPECIAL_Locked: 2760 if (decode.op[0].has_ea) { 2761 s->prefix |= PREFIX_LOCK; 2762 } 2763 /* fallthrough */ 2764 case X86_SPECIAL_HasLock: 2765 case X86_SPECIAL_BitTest: 2766 accept_lock = decode.op[0].has_ea; 2767 break; 2768 2769 case X86_SPECIAL_Op0_Rd: 2770 assert(decode.op[0].unit == X86_OP_INT); 2771 if (!decode.op[0].has_ea) { 2772 decode.op[0].ot = MO_32; 2773 } 2774 break; 2775 2776 case X86_SPECIAL_Op2_Ry: 2777 assert(decode.op[2].unit == X86_OP_INT); 2778 if (!decode.op[2].has_ea) { 2779 decode.op[2].ot = s->dflag == MO_16 ? MO_32 : s->dflag; 2780 } 2781 break; 2782 2783 case X86_SPECIAL_AVXExtMov: 2784 if (!decode.op[2].has_ea) { 2785 decode.op[2].ot = s->vex_l ? MO_256 : MO_128; 2786 } else if (s->vex_l) { 2787 decode.op[2].ot++; 2788 } 2789 break; 2790 2791 case X86_SPECIAL_SExtT0: 2792 case X86_SPECIAL_ZExtT0: 2793 /* Handled in gen_load. */ 2794 assert(decode.op[1].unit == X86_OP_INT); 2795 break; 2796 2797 case X86_SPECIAL_Op0_Mw: 2798 assert(decode.op[0].unit == X86_OP_INT); 2799 if (decode.op[0].has_ea) { 2800 decode.op[0].ot = MO_16; 2801 } 2802 break; 2803 2804 default: 2805 break; 2806 } 2807 2808 if ((s->prefix & PREFIX_LOCK) && !accept_lock) { 2809 goto illegal_op; 2810 } 2811 2812 if (!validate_vex(s, &decode)) { 2813 return; 2814 } 2815 2816 /* 2817 * Checks that result in #GP or VMEXIT come second. Intercepts are 2818 * generally checked after non-memory exceptions (i.e. after all 2819 * exceptions if there is no memory operand). Exceptions are 2820 * vm86 checks (INTn, IRET, PUSHF/POPF), RSM and XSETBV (!). 2821 * 2822 * XSETBV will check for CPL0 in the gen_* function instead of using chk(). 2823 */ 2824 if (decode.e.check & X86_CHECK_cpl0) { 2825 if (CPL(s) != 0) { 2826 goto gp_fault; 2827 } 2828 } 2829 if (decode.e.has_intercept && unlikely(GUEST(s))) { 2830 gen_helper_svm_check_intercept(tcg_env, 2831 tcg_constant_i32(decode.e.intercept)); 2832 } 2833 if (decode.e.check) { 2834 if ((decode.e.check & X86_CHECK_smm) && !(s->flags & HF_SMM_MASK)) { 2835 goto illegal_op; 2836 } 2837 if ((decode.e.check & X86_CHECK_vm86_iopl) && VM86(s)) { 2838 if (IOPL(s) < 3) { 2839 goto gp_fault; 2840 } 2841 } else if (decode.e.check & X86_CHECK_cpl_iopl) { 2842 if (IOPL(s) < CPL(s)) { 2843 goto gp_fault; 2844 } 2845 } 2846 } 2847 2848 if (decode.e.special == X86_SPECIAL_MMX && 2849 !(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { 2850 gen_helper_enter_mmx(tcg_env); 2851 } 2852 2853 if (decode.e.special != X86_SPECIAL_NoLoadEA && 2854 (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea)) { 2855 gen_lea_modrm(s, &decode); 2856 } 2857 if (s->prefix & PREFIX_LOCK) { 2858 assert(decode.op[0].has_ea && !decode.op[2].has_ea); 2859 gen_load(s, &decode, 2, s->T1); 2860 decode.e.gen(s, &decode); 2861 } else { 2862 if (decode.op[0].unit == X86_OP_MMX) { 2863 compute_mmx_offset(&decode.op[0]); 2864 } else if (decode.op[0].unit == X86_OP_SSE) { 2865 compute_xmm_offset(&decode.op[0]); 2866 } 2867 gen_load(s, &decode, 1, s->T0); 2868 gen_load(s, &decode, 2, s->T1); 2869 decode.e.gen(s, &decode); 2870 gen_writeback(s, &decode, 0, s->T0); 2871 } 2872 2873 /* 2874 * Write back flags after last memory access. Some older ALU instructions, as 2875 * well as SSE instructions, write flags in the gen_* function, but that can 2876 * cause incorrect tracking of CC_OP for instructions that write to both memory 2877 * and flags. 2878 */ 2879 if (decode.cc_op != -1) { 2880 if (decode.cc_dst) { 2881 tcg_gen_mov_tl(cpu_cc_dst, decode.cc_dst); 2882 } 2883 if (decode.cc_src) { 2884 tcg_gen_mov_tl(cpu_cc_src, decode.cc_src); 2885 } 2886 if (decode.cc_src2) { 2887 tcg_gen_mov_tl(cpu_cc_src2, decode.cc_src2); 2888 } 2889 if (decode.cc_op == CC_OP_DYNAMIC) { 2890 tcg_gen_mov_i32(cpu_cc_op, decode.cc_op_dynamic); 2891 } 2892 set_cc_op(s, decode.cc_op); 2893 cc_live = cc_op_live(decode.cc_op); 2894 } else { 2895 cc_live = 0; 2896 } 2897 if (decode.cc_op != CC_OP_DYNAMIC) { 2898 assert(!decode.cc_op_dynamic); 2899 assert(!!decode.cc_dst == !!(cc_live & USES_CC_DST)); 2900 assert(!!decode.cc_src == !!(cc_live & USES_CC_SRC)); 2901 assert(!!decode.cc_src2 == !!(cc_live & USES_CC_SRC2)); 2902 } 2903 2904 return; 2905 gp_fault: 2906 gen_exception_gpf(s); 2907 return; 2908 illegal_op: 2909 gen_illegal_opcode(s); 2910 return; 2911 unknown_op: 2912 gen_unknown_opcode(env, s); 2913} 2914