1/* 2 * New-style decoder for i386 instructions 3 * 4 * Copyright (c) 2022 Red Hat, Inc. 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This library is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2.1 of the License, or (at your option) any later version. 12 * 13 * This library is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22/* 23 * The decoder is mostly based on tables copied from the Intel SDM. As 24 * a result, most operand load and writeback is done entirely in common 25 * table-driven code using the same operand type (X86_TYPE_*) and 26 * size (X86_SIZE_*) codes used in the manual. 27 * 28 * The main difference is that the V, U and W types are extended to 29 * cover MMX as well; if an instruction is like 30 * 31 * por Pq, Qq 32 * 66 por Vx, Hx, Wx 33 * 34 * only the second row is included and the instruction is marked as a 35 * valid MMX instruction. The MMX flag directs the decoder to rewrite 36 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing 37 * "x" to "q" if there is no prefix. 38 * 39 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x" 40 * if the difference is expressed via prefixes. Individual instructions 41 * are separated by prefix in the generator functions. 42 * 43 * There are a couple cases in which instructions (e.g. MOVD) write the 44 * whole XMM or MM register but are established incorrectly in the manual 45 * as "d" or "q". These have to be fixed for the decoder to work correctly. 46 */ 47 48#define X86_OP_NONE { 0 }, 49 50#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ 51 .decode = glue(decode_, op), \ 52 .op0 = glue(X86_TYPE_, op0_), \ 53 .s0 = glue(X86_SIZE_, s0_), \ 54 .op1 = glue(X86_TYPE_, op1_), \ 55 .s1 = glue(X86_SIZE_, s1_), \ 56 .op2 = glue(X86_TYPE_, op2_), \ 57 .s2 = glue(X86_SIZE_, s2_), \ 58 .is_decode = true, \ 59 ## __VA_ARGS__ \ 60} 61 62#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \ 63 X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) 64#define X86_OP_GROUP0(op, ...) \ 65 X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__) 66 67#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ 68 .gen = glue(gen_, op), \ 69 .op0 = glue(X86_TYPE_, op0_), \ 70 .s0 = glue(X86_SIZE_, s0_), \ 71 .op1 = glue(X86_TYPE_, op1_), \ 72 .s1 = glue(X86_SIZE_, s1_), \ 73 .op2 = glue(X86_TYPE_, op2_), \ 74 .s2 = glue(X86_SIZE_, s2_), \ 75 ## __VA_ARGS__ \ 76} 77 78#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \ 79 X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \ 80 .op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \ 81 ## __VA_ARGS__) 82 83#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \ 84 X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) 85#define X86_OP_ENTRYw(op, op0, s0, ...) \ 86 X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__) 87#define X86_OP_ENTRYr(op, op0, s0, ...) \ 88 X86_OP_ENTRY3(op, None, None, None, None, op0, s0, ## __VA_ARGS__) 89#define X86_OP_ENTRY0(op, ...) \ 90 X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__) 91 92#define cpuid(feat) .cpuid = X86_FEAT_##feat, 93#define i64 .special = X86_SPECIAL_i64, 94#define o64 .special = X86_SPECIAL_o64, 95#define xchg .special = X86_SPECIAL_Locked, 96#define mmx .special = X86_SPECIAL_MMX, 97#define zext0 .special = X86_SPECIAL_ZExtOp0, 98#define zext2 .special = X86_SPECIAL_ZExtOp2, 99#define avx_movx .special = X86_SPECIAL_AVXExtMov, 100 101#define vex1 .vex_class = 1, 102#define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar, 103#define vex2 .vex_class = 2, 104#define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar, 105#define vex3 .vex_class = 3, 106#define vex4 .vex_class = 4, 107#define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned, 108#define vex5 .vex_class = 5, 109#define vex6 .vex_class = 6, 110#define vex7 .vex_class = 7, 111#define vex8 .vex_class = 8, 112#define vex11 .vex_class = 11, 113#define vex12 .vex_class = 12, 114#define vex13 .vex_class = 13, 115 116#define avx2_256 .vex_special = X86_VEX_AVX2_256, 117 118#define P_00 1 119#define P_66 (1 << PREFIX_DATA) 120#define P_F3 (1 << PREFIX_REPZ) 121#define P_F2 (1 << PREFIX_REPNZ) 122 123#define p_00 .valid_prefix = P_00, 124#define p_66 .valid_prefix = P_66, 125#define p_f3 .valid_prefix = P_F3, 126#define p_f2 .valid_prefix = P_F2, 127#define p_00_66 .valid_prefix = P_00 | P_66, 128#define p_00_f3 .valid_prefix = P_00 | P_F3, 129#define p_66_f2 .valid_prefix = P_66 | P_F2, 130#define p_00_66_f3 .valid_prefix = P_00 | P_66 | P_F3, 131#define p_66_f3_f2 .valid_prefix = P_66 | P_F3 | P_F2, 132#define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2, 133 134static uint8_t get_modrm(DisasContext *s, CPUX86State *env) 135{ 136 if (!s->has_modrm) { 137 s->modrm = x86_ldub_code(env, s); 138 s->has_modrm = true; 139 } 140 return s->modrm; 141} 142 143static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4]) 144{ 145 if (s->prefix & PREFIX_REPNZ) { 146 return &entries[3]; 147 } else if (s->prefix & PREFIX_REPZ) { 148 return &entries[2]; 149 } else if (s->prefix & PREFIX_DATA) { 150 return &entries[1]; 151 } else { 152 return &entries[0]; 153 } 154} 155 156static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 157{ 158 /* only includes ldmxcsr and stmxcsr, because they have AVX variants. */ 159 static const X86OpEntry group15_reg[8] = { 160 }; 161 162 static const X86OpEntry group15_mem[8] = { 163 [2] = X86_OP_ENTRYr(LDMXCSR, E,d, vex5), 164 [3] = X86_OP_ENTRYw(STMXCSR, E,d, vex5), 165 }; 166 167 uint8_t modrm = get_modrm(s, env); 168 if ((modrm >> 6) == 3) { 169 *entry = group15_reg[(modrm >> 3) & 7]; 170 } else { 171 *entry = group15_mem[(modrm >> 3) & 7]; 172 } 173} 174 175static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 176{ 177 static const X86GenFunc group17_gen[8] = { 178 NULL, gen_BLSR, gen_BLSMSK, gen_BLSI, 179 }; 180 int op = (get_modrm(s, env) >> 3) & 7; 181 entry->gen = group17_gen[op]; 182} 183 184static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 185{ 186 static const X86OpEntry opcodes_group12[8] = { 187 {}, 188 {}, 189 X86_OP_ENTRY3(PSRLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 190 {}, 191 X86_OP_ENTRY3(PSRAW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 192 {}, 193 X86_OP_ENTRY3(PSLLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 194 {}, 195 }; 196 197 int op = (get_modrm(s, env) >> 3) & 7; 198 *entry = opcodes_group12[op]; 199} 200 201static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 202{ 203 static const X86OpEntry opcodes_group13[8] = { 204 {}, 205 {}, 206 X86_OP_ENTRY3(PSRLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 207 {}, 208 X86_OP_ENTRY3(PSRAD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 209 {}, 210 X86_OP_ENTRY3(PSLLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 211 {}, 212 }; 213 214 int op = (get_modrm(s, env) >> 3) & 7; 215 *entry = opcodes_group13[op]; 216} 217 218static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 219{ 220 static const X86OpEntry opcodes_group14[8] = { 221 /* grp14 */ 222 {}, 223 {}, 224 X86_OP_ENTRY3(PSRLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 225 X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), 226 {}, 227 {}, 228 X86_OP_ENTRY3(PSLLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 229 X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), 230 }; 231 232 int op = (get_modrm(s, env) >> 3) & 7; 233 *entry = opcodes_group14[op]; 234} 235 236static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 237{ 238 static const X86OpEntry opcodes_0F6F[4] = { 239 X86_OP_ENTRY3(MOVDQ, P,q, None,None, Q,q, vex1 mmx), /* movq */ 240 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1), /* movdqa */ 241 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* movdqu */ 242 {}, 243 }; 244 *entry = *decode_by_prefix(s, opcodes_0F6F); 245} 246 247static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 248{ 249 static const X86OpEntry pshufw[4] = { 250 X86_OP_ENTRY3(PSHUFW, P,q, Q,q, I,b, vex4 mmx), 251 X86_OP_ENTRY3(PSHUFD, V,x, W,x, I,b, vex4 avx2_256), 252 X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256), 253 X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256), 254 }; 255 256 *entry = *decode_by_prefix(s, pshufw); 257} 258 259static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 260{ 261 if (!(s->prefix & PREFIX_VEX)) { 262 entry->gen = gen_EMMS; 263 } else if (!s->vex_l) { 264 entry->gen = gen_VZEROUPPER; 265 entry->vex_class = 8; 266 } else { 267 entry->gen = gen_VZEROALL; 268 entry->vex_class = 8; 269 } 270} 271 272static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 273{ 274 static const X86OpEntry opcodes_0F78[4] = { 275 {}, 276 X86_OP_ENTRY3(EXTRQ_i, V,x, None,None, I,w, cpuid(SSE4A)), 277 {}, 278 X86_OP_ENTRY3(INSERTQ_i, V,x, U,x, I,w, cpuid(SSE4A)), 279 }; 280 *entry = *decode_by_prefix(s, opcodes_0F78); 281} 282 283static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 284{ 285 if (s->prefix & PREFIX_REPNZ) { 286 entry->gen = gen_INSERTQ_r; 287 } else if (s->prefix & PREFIX_DATA) { 288 entry->gen = gen_EXTRQ_r; 289 } else { 290 entry->gen = NULL; 291 }; 292} 293 294static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 295{ 296 static const X86OpEntry opcodes_0F7E[4] = { 297 X86_OP_ENTRY3(MOVD_from, E,y, None,None, P,y, vex5 mmx), 298 X86_OP_ENTRY3(MOVD_from, E,y, None,None, V,y, vex5), 299 X86_OP_ENTRY3(MOVQ, V,x, None,None, W,q, vex5), /* wrong dest Vy on SDM! */ 300 {}, 301 }; 302 *entry = *decode_by_prefix(s, opcodes_0F7E); 303} 304 305static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 306{ 307 static const X86OpEntry opcodes_0F7F[4] = { 308 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx), /* movq */ 309 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1), /* movdqa */ 310 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4_unal), /* movdqu */ 311 {}, 312 }; 313 *entry = *decode_by_prefix(s, opcodes_0F7F); 314} 315 316static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 317{ 318 static const X86OpEntry movq[4] = { 319 {}, 320 X86_OP_ENTRY3(MOVQ, W,x, None, None, V,q, vex5), 321 X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q), 322 X86_OP_ENTRY3(MOVq_dq, P,q, None, None, U,q), 323 }; 324 325 *entry = *decode_by_prefix(s, movq); 326} 327 328static const X86OpEntry opcodes_0F38_00toEF[240] = { 329 [0x00] = X86_OP_ENTRY3(PSHUFB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 330 [0x01] = X86_OP_ENTRY3(PHADDW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 331 [0x02] = X86_OP_ENTRY3(PHADDD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 332 [0x03] = X86_OP_ENTRY3(PHADDSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 333 [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 334 [0x05] = X86_OP_ENTRY3(PHSUBW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 335 [0x06] = X86_OP_ENTRY3(PHSUBD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 336 [0x07] = X86_OP_ENTRY3(PHSUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 337 338 [0x10] = X86_OP_ENTRY2(PBLENDVB, V,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 339 [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x, W,ph, vex11 cpuid(F16C) p_66), 340 [0x14] = X86_OP_ENTRY2(BLENDVPS, V,x, W,x, vex4 cpuid(SSE41) p_66), 341 [0x15] = X86_OP_ENTRY2(BLENDVPD, V,x, W,x, vex4 cpuid(SSE41) p_66), 342 /* Listed incorrectly as type 4 */ 343 [0x16] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), 344 [0x17] = X86_OP_ENTRY3(VPTEST, None,None, V,x, W,x, vex4 cpuid(SSE41) p_66), 345 346 /* 347 * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed 348 * as 128-bit only in 2-17. 349 */ 350 [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 351 [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 352 [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 353 [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 354 [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 355 [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 356 357 /* Same as PMOVSX. */ 358 [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 359 [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 360 [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 361 [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 362 [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 363 [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 364 [0x36] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), 365 [0x37] = X86_OP_ENTRY3(PCMPGTQ, V,x, H,x, W,x, vex4 cpuid(SSE42) avx2_256 p_66), 366 367 [0x40] = X86_OP_ENTRY3(PMULLD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 368 [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66), 369 /* Listed incorrectly as type 4 */ 370 [0x45] = X86_OP_ENTRY3(VPSRLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 371 [0x46] = X86_OP_ENTRY3(VPSRAV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 372 [0x47] = X86_OP_ENTRY3(VPSLLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 373 374 [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */ 375 [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */ 376 [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vgatherdps/d */ 377 [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vgatherqps/d */ 378 379 /* Should be exception type 2 but they do not have legacy SSE equivalents? */ 380 [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 381 [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 382 383 [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 384 [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 385 386 [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 387 [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 388 389 [0x08] = X86_OP_ENTRY3(PSIGNB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 390 [0x09] = X86_OP_ENTRY3(PSIGNW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 391 [0x0a] = X86_OP_ENTRY3(PSIGND, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 392 [0x0b] = X86_OP_ENTRY3(PMULHRSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 393 [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x, H,x, W,x, vex4 cpuid(AVX) p_00_66), 394 [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x, H,x, W,x, vex4 cpuid(AVX) p_66), 395 [0x0e] = X86_OP_ENTRY3(VTESTPS, None,None, V,x, W,x, vex4 cpuid(AVX) p_66), 396 [0x0f] = X86_OP_ENTRY3(VTESTPD, None,None, V,x, W,x, vex4 cpuid(AVX) p_66), 397 398 [0x18] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX) p_66), /* vbroadcastss */ 399 [0x19] = X86_OP_ENTRY3(VPBROADCASTQ, V,qq, None,None, W,q, vex6 cpuid(AVX) p_66), /* vbroadcastsd */ 400 [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX) p_66), 401 [0x1c] = X86_OP_ENTRY3(PABSB, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 402 [0x1d] = X86_OP_ENTRY3(PABSW, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 403 [0x1e] = X86_OP_ENTRY3(PABSD, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 404 405 [0x28] = X86_OP_ENTRY3(PMULDQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 406 [0x29] = X86_OP_ENTRY3(PCMPEQQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 407 [0x2a] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */ 408 [0x2b] = X86_OP_ENTRY3(VPACKUSDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 409 [0x2c] = X86_OP_ENTRY3(VMASKMOVPS, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66), 410 [0x2d] = X86_OP_ENTRY3(VMASKMOVPD, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66), 411 /* Incorrectly listed as Mx,Hx,Vx in the manual */ 412 [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66), 413 [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66), 414 415 [0x38] = X86_OP_ENTRY3(PMINSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 416 [0x39] = X86_OP_ENTRY3(PMINSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 417 [0x3a] = X86_OP_ENTRY3(PMINUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 418 [0x3b] = X86_OP_ENTRY3(PMINUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 419 [0x3c] = X86_OP_ENTRY3(PMAXSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 420 [0x3d] = X86_OP_ENTRY3(PMAXSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 421 [0x3e] = X86_OP_ENTRY3(PMAXUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 422 [0x3f] = X86_OP_ENTRY3(PMAXUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 423 424 [0x58] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX2) p_66), 425 [0x59] = X86_OP_ENTRY3(VPBROADCASTQ, V,x, None,None, W,q, vex6 cpuid(AVX2) p_66), 426 [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX2) p_66), 427 428 [0x78] = X86_OP_ENTRY3(VPBROADCASTB, V,x, None,None, W,b, vex6 cpuid(AVX2) p_66), 429 [0x79] = X86_OP_ENTRY3(VPBROADCASTW, V,x, None,None, W,w, vex6 cpuid(AVX2) p_66), 430 431 [0x8c] = X86_OP_ENTRY3(VPMASKMOV, V,x, H,x, WM,x, vex6 cpuid(AVX2) p_66), 432 [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x, V,x, H,x, vex6 cpuid(AVX2) p_66), 433 434 /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */ 435 [0x98] = X86_OP_ENTRY3(VFMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 436 [0x99] = X86_OP_ENTRY3(VFMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 437 [0x9a] = X86_OP_ENTRY3(VFMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 438 [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 439 [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 440 [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 441 [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 442 [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 443 444 [0xa8] = X86_OP_ENTRY3(VFMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 445 [0xa9] = X86_OP_ENTRY3(VFMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 446 [0xaa] = X86_OP_ENTRY3(VFMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 447 [0xab] = X86_OP_ENTRY3(VFMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 448 [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 449 [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 450 [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 451 [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 452 453 [0xb8] = X86_OP_ENTRY3(VFMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 454 [0xb9] = X86_OP_ENTRY3(VFMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 455 [0xba] = X86_OP_ENTRY3(VFMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 456 [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 457 [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 458 [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 459 [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 460 [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 461 462 [0xdb] = X86_OP_ENTRY3(VAESIMC, V,dq, None,None, W,dq, vex4 cpuid(AES) p_66), 463 [0xdc] = X86_OP_ENTRY3(VAESENC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 464 [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 465 [0xde] = X86_OP_ENTRY3(VAESDEC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 466 [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 467}; 468 469/* five rows for no prefix, 66, F3, F2, 66+F2 */ 470static const X86OpEntry opcodes_0F38_F0toFF[16][5] = { 471 [0] = { 472 X86_OP_ENTRY3(MOVBE, G,y, M,y, None,None, cpuid(MOVBE)), 473 X86_OP_ENTRY3(MOVBE, G,w, M,w, None,None, cpuid(MOVBE)), 474 {}, 475 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), 476 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), 477 }, 478 [1] = { 479 X86_OP_ENTRY3(MOVBE, M,y, G,y, None,None, cpuid(MOVBE)), 480 X86_OP_ENTRY3(MOVBE, M,w, G,w, None,None, cpuid(MOVBE)), 481 {}, 482 X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)), 483 X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)), 484 }, 485 [2] = { 486 X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)), 487 {}, 488 {}, 489 {}, 490 {}, 491 }, 492 [3] = { 493 X86_OP_GROUP3(group17, B,y, E,y, None,None, vex13 cpuid(BMI1)), 494 {}, 495 {}, 496 {}, 497 {}, 498 }, 499 [5] = { 500 X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)), 501 {}, 502 X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 cpuid(BMI2)), 503 X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 cpuid(BMI2)), 504 {}, 505 }, 506 [6] = { 507 {}, 508 X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)), 509 X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)), 510 X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)), 511 {}, 512 }, 513 [7] = { 514 X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 cpuid(BMI1)), 515 X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)), 516 X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 cpuid(BMI1)), 517 X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 cpuid(BMI1)), 518 {}, 519 }, 520}; 521 522static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 523{ 524 *b = x86_ldub_code(env, s); 525 if (*b < 0xf0) { 526 *entry = opcodes_0F38_00toEF[*b]; 527 } else { 528 int row = 0; 529 if (s->prefix & PREFIX_REPZ) { 530 /* The REPZ (F3) prefix has priority over 66 */ 531 row = 2; 532 } else { 533 row += s->prefix & PREFIX_REPNZ ? 3 : 0; 534 row += s->prefix & PREFIX_DATA ? 1 : 0; 535 } 536 *entry = opcodes_0F38_F0toFF[*b & 15][row]; 537 } 538} 539 540static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 541{ 542 static const X86OpEntry 543 vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66), 544 vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d, vex5 cpuid(SSE41) p_66); 545 546 int modrm = get_modrm(s, env); 547 *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem; 548} 549 550static const X86OpEntry opcodes_0F3A[256] = { 551 /* 552 * These are VEX-only, but incorrectly listed in the manual as exception type 4. 553 * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256 554 * only. 555 */ 556 [0x00] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66), 557 [0x01] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66), /* VPERMPD */ 558 [0x02] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), /* VPBLENDD */ 559 [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66), 560 [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66), 561 [0x06] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66), 562 563 [0x14] = X86_OP_ENTRY3(PEXTRB, E,b, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66), 564 [0x15] = X86_OP_ENTRY3(PEXTRW, E,w, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66), 565 [0x16] = X86_OP_ENTRY3(PEXTR, E,y, V,dq, I,b, vex5 cpuid(SSE41) p_66), 566 [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d, V,dq, I,b, vex5 cpuid(SSE41) p_66), 567 [0x1d] = X86_OP_ENTRY3(VCVTPS2PH, W,ph, V,x, I,b, vex11 cpuid(F16C) p_66), 568 569 [0x20] = X86_OP_ENTRY4(PINSRB, V,dq, H,dq, E,b, vex5 cpuid(SSE41) zext2 p_66), 570 [0x21] = X86_OP_GROUP0(VINSERTPS), 571 [0x22] = X86_OP_ENTRY4(PINSR, V,dq, H,dq, E,y, vex5 cpuid(SSE41) p_66), 572 573 [0x40] = X86_OP_ENTRY4(VDDPS, V,x, H,x, W,x, vex2 cpuid(SSE41) p_66), 574 [0x41] = X86_OP_ENTRY4(VDDPD, V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66), 575 [0x42] = X86_OP_ENTRY4(VMPSADBW, V,x, H,x, W,x, vex2 cpuid(SSE41) avx2_256 p_66), 576 [0x44] = X86_OP_ENTRY4(PCLMULQDQ, V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66), 577 [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), 578 579 [0x60] = X86_OP_ENTRY4(PCMPESTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 580 [0x61] = X86_OP_ENTRY4(PCMPESTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 581 [0x62] = X86_OP_ENTRY4(PCMPISTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 582 [0x63] = X86_OP_ENTRY4(PCMPISTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 583 584 [0x08] = X86_OP_ENTRY3(VROUNDPS, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), 585 [0x09] = X86_OP_ENTRY3(VROUNDPD, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), 586 /* 587 * Not listed as four operand in the manual. Also writes and reads 128-bits 588 * from the first two operands due to the V operand picking higher entries of 589 * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect. 590 * For other unary operations such as VSQRTSx this is hidden by the "REPScalar" 591 * value of vex_special, because the table lists the operand types of VSQRTPx. 592 */ 593 [0x0a] = X86_OP_ENTRY4(VROUNDSS, V,x, H,x, W,ss, vex3 cpuid(SSE41) p_66), 594 [0x0b] = X86_OP_ENTRY4(VROUNDSD, V,x, H,x, W,sd, vex3 cpuid(SSE41) p_66), 595 [0x0c] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), 596 [0x0d] = X86_OP_ENTRY4(VBLENDPD, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), 597 [0x0e] = X86_OP_ENTRY4(VPBLENDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 598 [0x0f] = X86_OP_ENTRY4(PALIGNR, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 599 600 [0x18] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66), 601 [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX) p_66), 602 603 [0x38] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), 604 [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX2) p_66), 605 606 /* Listed incorrectly as type 4 */ 607 [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x, H,x, W,x, vex6 cpuid(AVX) p_66), 608 [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x, H,x, W,x, vex6 cpuid(AVX) p_66), 609 [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x, H,x, W,x, vex6 cpuid(AVX) p_66 avx2_256), 610 611 [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b, vex4 cpuid(AES) p_66), 612 613 [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2), 614}; 615 616static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 617{ 618 *b = x86_ldub_code(env, s); 619 *entry = opcodes_0F3A[*b]; 620} 621 622/* 623 * There are some mistakes in the operands in the manual, and the load/store/register 624 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and 625 * efficiency of implementation rather than copying what the manual says. 626 * 627 * In particular: 628 * 629 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b, 630 * but this is not mentioned in the tables. 631 * 632 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their 633 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high 634 * quadword of the V operand. 635 */ 636static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 637{ 638 static const X86OpEntry opcodes_0F10_reg[4] = { 639 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ 640 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ 641 X86_OP_ENTRY3(VMOVSS, V,x, H,x, W,x, vex4), 642 X86_OP_ENTRY3(VMOVLPx, V,x, H,x, W,x, vex4), /* MOVSD */ 643 }; 644 645 static const X86OpEntry opcodes_0F10_mem[4] = { 646 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ 647 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ 648 X86_OP_ENTRY3(VMOVSS_ld, V,x, H,x, M,ss, vex4), 649 X86_OP_ENTRY3(VMOVSD_ld, V,x, H,x, M,sd, vex4), 650 }; 651 652 if ((get_modrm(s, env) >> 6) == 3) { 653 *entry = *decode_by_prefix(s, opcodes_0F10_reg); 654 } else { 655 *entry = *decode_by_prefix(s, opcodes_0F10_mem); 656 } 657} 658 659static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 660{ 661 static const X86OpEntry opcodes_0F11_reg[4] = { 662 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPS */ 663 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPD */ 664 X86_OP_ENTRY3(VMOVSS, W,x, H,x, V,x, vex4), 665 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, V,q, vex4), /* MOVSD */ 666 }; 667 668 static const X86OpEntry opcodes_0F11_mem[4] = { 669 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPS */ 670 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVPD */ 671 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4), 672 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4), /* MOVSD */ 673 }; 674 675 if ((get_modrm(s, env) >> 6) == 3) { 676 *entry = *decode_by_prefix(s, opcodes_0F11_reg); 677 } else { 678 *entry = *decode_by_prefix(s, opcodes_0F11_mem); 679 } 680} 681 682static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 683{ 684 static const X86OpEntry opcodes_0F12_mem[4] = { 685 /* 686 * Use dq for operand for compatibility with gen_MOVSD and 687 * to allow VEX128 only. 688 */ 689 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex4), /* MOVLPS */ 690 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex4), /* MOVLPD */ 691 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), 692 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, WM,q, vex4 cpuid(SSE3)), /* qq if VEX.256 */ 693 }; 694 static const X86OpEntry opcodes_0F12_reg[4] = { 695 X86_OP_ENTRY3(VMOVHLPS, V,dq, H,dq, U,dq, vex4), 696 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, U,q, vex4), /* MOVLPD */ 697 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), 698 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), 699 }; 700 701 if ((get_modrm(s, env) >> 6) == 3) { 702 *entry = *decode_by_prefix(s, opcodes_0F12_reg); 703 } else { 704 *entry = *decode_by_prefix(s, opcodes_0F12_mem); 705 if ((s->prefix & PREFIX_REPNZ) && s->vex_l) { 706 entry->s2 = X86_SIZE_qq; 707 } 708 } 709} 710 711static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 712{ 713 static const X86OpEntry opcodes_0F16_mem[4] = { 714 /* 715 * Operand 1 technically only reads the low 64 bits, but uses dq so that 716 * it is easier to check for op0 == op1 in an endianness-neutral manner. 717 */ 718 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex4), /* MOVHPS */ 719 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex4), /* MOVHPD */ 720 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), 721 {}, 722 }; 723 static const X86OpEntry opcodes_0F16_reg[4] = { 724 /* Same as above, operand 1 could be Hq if it wasn't for big-endian. */ 725 X86_OP_ENTRY3(VMOVLHPS, V,dq, H,dq, U,q, vex4), 726 X86_OP_ENTRY3(VMOVHPx, V,x, H,x, U,x, vex4), /* MOVHPD */ 727 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), 728 {}, 729 }; 730 731 if ((get_modrm(s, env) >> 6) == 3) { 732 *entry = *decode_by_prefix(s, opcodes_0F16_reg); 733 } else { 734 *entry = *decode_by_prefix(s, opcodes_0F16_mem); 735 } 736} 737 738static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 739{ 740 static const X86OpEntry opcodes_0F2A[4] = { 741 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), 742 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), 743 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), 744 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), 745 }; 746 *entry = *decode_by_prefix(s, opcodes_0F2A); 747} 748 749static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 750{ 751 static const X86OpEntry opcodes_0F2B[4] = { 752 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex4), /* MOVNTPS */ 753 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex4), /* MOVNTPD */ 754 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */ 755 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */ 756 }; 757 758 *entry = *decode_by_prefix(s, opcodes_0F2B); 759} 760 761static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 762{ 763 static const X86OpEntry opcodes_0F2C[4] = { 764 /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit. */ 765 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,q), 766 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,dq), 767 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,ss, vex3), 768 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,sd, vex3), 769 }; 770 *entry = *decode_by_prefix(s, opcodes_0F2C); 771} 772 773static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 774{ 775 static const X86OpEntry opcodes_0F2D[4] = { 776 /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit. */ 777 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,q), 778 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,dq), 779 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,ss, vex3), 780 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,sd, vex3), 781 }; 782 *entry = *decode_by_prefix(s, opcodes_0F2D); 783} 784 785static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 786{ 787 if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) { 788 entry->op1 = X86_TYPE_None; 789 entry->s1 = X86_SIZE_None; 790 } 791 switch (*b) { 792 case 0x51: entry->gen = gen_VSQRT; break; 793 case 0x52: entry->gen = gen_VRSQRT; break; 794 case 0x53: entry->gen = gen_VRCP; break; 795 case 0x5A: entry->gen = gen_VCVTfp2fp; break; 796 } 797} 798 799static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 800{ 801 static const X86OpEntry opcodes_0F5B[4] = { 802 X86_OP_ENTRY2(VCVTDQ2PS, V,x, W,x, vex2), 803 X86_OP_ENTRY2(VCVTPS2DQ, V,x, W,x, vex2), 804 X86_OP_ENTRY2(VCVTTPS2DQ, V,x, W,x, vex2), 805 {}, 806 }; 807 *entry = *decode_by_prefix(s, opcodes_0F5B); 808} 809 810static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 811{ 812 static const X86OpEntry opcodes_0FE6[4] = { 813 {}, 814 X86_OP_ENTRY2(VCVTTPD2DQ, V,x, W,x, vex2), 815 X86_OP_ENTRY2(VCVTDQ2PD, V,x, W,x, vex2), 816 X86_OP_ENTRY2(VCVTPD2DQ, V,x, W,x, vex2), 817 }; 818 *entry = *decode_by_prefix(s, opcodes_0FE6); 819} 820 821static const X86OpEntry opcodes_0F[256] = { 822 [0x0E] = X86_OP_ENTRY0(EMMS, cpuid(3DNOW)), /* femms */ 823 /* 824 * 3DNow!'s opcode byte comes *after* modrm and displacements, making it 825 * more like an Ib operand. Dispatch to the right helper in a single gen_* 826 * function. 827 */ 828 [0x0F] = X86_OP_ENTRY3(3dnow, P,q, Q,q, I,b, cpuid(3DNOW)), 829 830 [0x10] = X86_OP_GROUP0(0F10), 831 [0x11] = X86_OP_GROUP0(0F11), 832 [0x12] = X86_OP_GROUP0(0F12), 833 [0x13] = X86_OP_ENTRY3(VMOVLPx_st, M,q, None,None, V,q, vex4 p_00_66), 834 [0x14] = X86_OP_ENTRY3(VUNPCKLPx, V,x, H,x, W,x, vex4 p_00_66), 835 [0x15] = X86_OP_ENTRY3(VUNPCKHPx, V,x, H,x, W,x, vex4 p_00_66), 836 [0x16] = X86_OP_GROUP0(0F16), 837 /* Incorrectly listed as Mq,Vq in the manual */ 838 [0x17] = X86_OP_ENTRY3(VMOVHPx_st, M,q, None,None, V,dq, vex4 p_00_66), 839 840 [0x50] = X86_OP_ENTRY3(MOVMSK, G,y, None,None, U,x, vex7 p_00_66), 841 [0x51] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 842 [0x52] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex5 p_00_f3), 843 [0x53] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex5 p_00_f3), 844 [0x54] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 p_00_66), /* vand */ 845 [0x55] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 p_00_66), /* vandn */ 846 [0x56] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 p_00_66), /* vor */ 847 [0x57] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 p_00_66), /* vxor */ 848 849 [0x60] = X86_OP_ENTRY3(PUNPCKLBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 850 [0x61] = X86_OP_ENTRY3(PUNPCKLWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 851 [0x62] = X86_OP_ENTRY3(PUNPCKLDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 852 [0x63] = X86_OP_ENTRY3(PACKSSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 853 [0x64] = X86_OP_ENTRY3(PCMPGTB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 854 [0x65] = X86_OP_ENTRY3(PCMPGTW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 855 [0x66] = X86_OP_ENTRY3(PCMPGTD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 856 [0x67] = X86_OP_ENTRY3(PACKUSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 857 858 [0x70] = X86_OP_GROUP0(0F70), 859 [0x71] = X86_OP_GROUP0(group12), 860 [0x72] = X86_OP_GROUP0(group13), 861 [0x73] = X86_OP_GROUP0(group14), 862 [0x74] = X86_OP_ENTRY3(PCMPEQB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 863 [0x75] = X86_OP_ENTRY3(PCMPEQW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 864 [0x76] = X86_OP_ENTRY3(PCMPEQD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 865 [0x77] = X86_OP_GROUP0(0F77), 866 867 [0x28] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1 p_00_66), /* MOVAPS */ 868 [0x29] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 p_00_66), /* MOVAPS */ 869 [0x2A] = X86_OP_GROUP0(0F2A), 870 [0x2B] = X86_OP_GROUP0(0F2B), 871 [0x2C] = X86_OP_GROUP0(0F2C), 872 [0x2D] = X86_OP_GROUP0(0F2D), 873 [0x2E] = X86_OP_ENTRY3(VUCOMI, None,None, V,x, W,x, vex4 p_00_66), 874 [0x2F] = X86_OP_ENTRY3(VCOMI, None,None, V,x, W,x, vex4 p_00_66), 875 876 [0x38] = X86_OP_GROUP0(0F38), 877 [0x3a] = X86_OP_GROUP0(0F3A), 878 879 [0x58] = X86_OP_ENTRY3(VADD, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 880 [0x59] = X86_OP_ENTRY3(VMUL, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 881 [0x5a] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex3 p_00_66_f3_f2), 882 [0x5b] = X86_OP_GROUP0(0F5B), 883 [0x5c] = X86_OP_ENTRY3(VSUB, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 884 [0x5d] = X86_OP_ENTRY3(VMIN, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 885 [0x5e] = X86_OP_ENTRY3(VDIV, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 886 [0x5f] = X86_OP_ENTRY3(VMAX, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 887 888 [0x68] = X86_OP_ENTRY3(PUNPCKHBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 889 [0x69] = X86_OP_ENTRY3(PUNPCKHWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 890 [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 891 [0x6b] = X86_OP_ENTRY3(PACKSSDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 892 [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), 893 [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), 894 [0x6e] = X86_OP_ENTRY3(MOVD_to, V,x, None,None, E,y, vex5 mmx p_00_66), /* wrong dest Vy on SDM! */ 895 [0x6f] = X86_OP_GROUP0(0F6F), 896 897 [0x78] = X86_OP_GROUP0(0F78), 898 [0x79] = X86_OP_GROUP2(0F79, V,x, U,x, cpuid(SSE4A)), 899 [0x7c] = X86_OP_ENTRY3(VHADD, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 900 [0x7d] = X86_OP_ENTRY3(VHSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 901 [0x7e] = X86_OP_GROUP0(0F7E), 902 [0x7f] = X86_OP_GROUP0(0F7F), 903 904 [0xae] = X86_OP_GROUP0(group15), 905 906 [0xc2] = X86_OP_ENTRY4(VCMP, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 907 [0xc4] = X86_OP_ENTRY4(PINSRW, V,dq,H,dq,E,w, vex5 mmx p_00_66), 908 [0xc5] = X86_OP_ENTRY3(PEXTRW, G,d, U,dq,I,b, vex5 mmx p_00_66), 909 [0xc6] = X86_OP_ENTRY4(VSHUF, V,x, H,x, W,x, vex4 p_00_66), 910 911 [0xd0] = X86_OP_ENTRY3(VADDSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 912 [0xd1] = X86_OP_ENTRY3(PSRLW_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 913 [0xd2] = X86_OP_ENTRY3(PSRLD_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 914 [0xd3] = X86_OP_ENTRY3(PSRLQ_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 915 [0xd4] = X86_OP_ENTRY3(PADDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 916 [0xd5] = X86_OP_ENTRY3(PMULLW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 917 [0xd6] = X86_OP_GROUP0(0FD6), 918 [0xd7] = X86_OP_ENTRY3(PMOVMSKB, G,d, None,None, U,x, vex7 mmx avx2_256 p_00_66), 919 920 [0xe0] = X86_OP_ENTRY3(PAVGB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 921 [0xe1] = X86_OP_ENTRY3(PSRAW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 922 [0xe2] = X86_OP_ENTRY3(PSRAD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 923 [0xe3] = X86_OP_ENTRY3(PAVGW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 924 [0xe4] = X86_OP_ENTRY3(PMULHUW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 925 [0xe5] = X86_OP_ENTRY3(PMULHW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 926 [0xe6] = X86_OP_GROUP0(0FE6), 927 [0xe7] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */ 928 929 [0xf0] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex4_unal cpuid(SSE3) p_f2), /* LDDQU */ 930 [0xf1] = X86_OP_ENTRY3(PSLLW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 931 [0xf2] = X86_OP_ENTRY3(PSLLD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 932 [0xf3] = X86_OP_ENTRY3(PSLLQ_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 933 [0xf4] = X86_OP_ENTRY3(PMULUDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 934 [0xf5] = X86_OP_ENTRY3(PMADDWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 935 [0xf6] = X86_OP_ENTRY3(PSADBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 936 [0xf7] = X86_OP_ENTRY3(MASKMOV, None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66), 937 938 /* Incorrectly missing from 2-17 */ 939 [0xd8] = X86_OP_ENTRY3(PSUBUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 940 [0xd9] = X86_OP_ENTRY3(PSUBUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 941 [0xda] = X86_OP_ENTRY3(PMINUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 942 [0xdb] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 943 [0xdc] = X86_OP_ENTRY3(PADDUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 944 [0xdd] = X86_OP_ENTRY3(PADDUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 945 [0xde] = X86_OP_ENTRY3(PMAXUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 946 [0xdf] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 947 948 [0xe8] = X86_OP_ENTRY3(PSUBSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 949 [0xe9] = X86_OP_ENTRY3(PSUBSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 950 [0xea] = X86_OP_ENTRY3(PMINSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 951 [0xeb] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 952 [0xec] = X86_OP_ENTRY3(PADDSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 953 [0xed] = X86_OP_ENTRY3(PADDSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 954 [0xee] = X86_OP_ENTRY3(PMAXSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 955 [0xef] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 956 957 [0xf8] = X86_OP_ENTRY3(PSUBB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 958 [0xf9] = X86_OP_ENTRY3(PSUBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 959 [0xfa] = X86_OP_ENTRY3(PSUBD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 960 [0xfb] = X86_OP_ENTRY3(PSUBQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 961 [0xfc] = X86_OP_ENTRY3(PADDB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 962 [0xfd] = X86_OP_ENTRY3(PADDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 963 [0xfe] = X86_OP_ENTRY3(PADDD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 964 /* 0xff = UD0 */ 965}; 966 967static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 968{ 969 *entry = opcodes_0F[*b]; 970} 971 972static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 973{ 974 *b = x86_ldub_code(env, s); 975 do_decode_0F(s, env, entry, b); 976} 977 978static const X86OpEntry opcodes_root[256] = { 979 [0x0F] = X86_OP_GROUP0(0F), 980}; 981 982#undef mmx 983#undef vex1 984#undef vex2 985#undef vex3 986#undef vex4 987#undef vex4_unal 988#undef vex5 989#undef vex6 990#undef vex7 991#undef vex8 992#undef vex11 993#undef vex12 994#undef vex13 995 996/* 997 * Decode the fixed part of the opcode and place the last 998 * in b. 999 */ 1000static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1001{ 1002 *entry = opcodes_root[*b]; 1003} 1004 1005 1006static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, 1007 X86DecodedOp *op, X86OpType type) 1008{ 1009 int modrm = get_modrm(s, env); 1010 if ((modrm >> 6) == 3) { 1011 if (s->prefix & PREFIX_LOCK) { 1012 decode->e.gen = gen_illegal; 1013 return 0xff; 1014 } 1015 op->n = (modrm & 7); 1016 if (type != X86_TYPE_Q && type != X86_TYPE_N) { 1017 op->n |= REX_B(s); 1018 } 1019 } else { 1020 op->has_ea = true; 1021 op->n = -1; 1022 decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env)); 1023 } 1024 return modrm; 1025} 1026 1027static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot) 1028{ 1029 switch (size) { 1030 case X86_SIZE_b: /* byte */ 1031 *ot = MO_8; 1032 return true; 1033 1034 case X86_SIZE_d: /* 32-bit */ 1035 case X86_SIZE_ss: /* SSE/AVX scalar single precision */ 1036 *ot = MO_32; 1037 return true; 1038 1039 case X86_SIZE_p: /* Far pointer, return offset size */ 1040 case X86_SIZE_s: /* Descriptor, return offset size */ 1041 case X86_SIZE_v: /* 16/32/64-bit, based on operand size */ 1042 *ot = s->dflag; 1043 return true; 1044 1045 case X86_SIZE_pi: /* MMX */ 1046 case X86_SIZE_q: /* 64-bit */ 1047 case X86_SIZE_sd: /* SSE/AVX scalar double precision */ 1048 *ot = MO_64; 1049 return true; 1050 1051 case X86_SIZE_w: /* 16-bit */ 1052 *ot = MO_16; 1053 return true; 1054 1055 case X86_SIZE_y: /* 32/64-bit, based on operand size */ 1056 *ot = s->dflag == MO_16 ? MO_32 : s->dflag; 1057 return true; 1058 1059 case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */ 1060 *ot = s->dflag == MO_16 ? MO_16 : MO_32; 1061 return true; 1062 1063 case X86_SIZE_dq: /* SSE/AVX 128-bit */ 1064 if (e->special == X86_SPECIAL_MMX && 1065 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1066 *ot = MO_64; 1067 return true; 1068 } 1069 if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) { 1070 return false; 1071 } 1072 *ot = MO_128; 1073 return true; 1074 1075 case X86_SIZE_qq: /* AVX 256-bit */ 1076 if (!s->vex_l) { 1077 return false; 1078 } 1079 *ot = MO_256; 1080 return true; 1081 1082 case X86_SIZE_x: /* 128/256-bit, based on operand size */ 1083 if (e->special == X86_SPECIAL_MMX && 1084 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1085 *ot = MO_64; 1086 return true; 1087 } 1088 /* fall through */ 1089 case X86_SIZE_ps: /* SSE/AVX packed single precision */ 1090 case X86_SIZE_pd: /* SSE/AVX packed double precision */ 1091 *ot = s->vex_l ? MO_256 : MO_128; 1092 return true; 1093 1094 case X86_SIZE_ph: /* SSE/AVX packed half precision */ 1095 *ot = s->vex_l ? MO_128 : MO_64; 1096 return true; 1097 1098 case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */ 1099 *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag; 1100 return true; 1101 1102 case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */ 1103 *ot = CODE64(s) ? MO_64 : s->dflag; 1104 return true; 1105 1106 default: 1107 *ot = -1; 1108 return true; 1109 } 1110} 1111 1112static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, 1113 X86DecodedOp *op, X86OpType type, int b) 1114{ 1115 int modrm; 1116 1117 switch (type) { 1118 case X86_TYPE_None: /* Implicit or absent */ 1119 case X86_TYPE_A: /* Implicit */ 1120 case X86_TYPE_F: /* EFLAGS/RFLAGS */ 1121 break; 1122 1123 case X86_TYPE_B: /* VEX.vvvv selects a GPR */ 1124 op->unit = X86_OP_INT; 1125 op->n = s->vex_v; 1126 break; 1127 1128 case X86_TYPE_C: /* REG in the modrm byte selects a control register */ 1129 op->unit = X86_OP_CR; 1130 goto get_reg; 1131 1132 case X86_TYPE_D: /* REG in the modrm byte selects a debug register */ 1133 op->unit = X86_OP_DR; 1134 goto get_reg; 1135 1136 case X86_TYPE_G: /* REG in the modrm byte selects a GPR */ 1137 op->unit = X86_OP_INT; 1138 goto get_reg; 1139 1140 case X86_TYPE_S: /* reg selects a segment register */ 1141 op->unit = X86_OP_SEG; 1142 goto get_reg; 1143 1144 case X86_TYPE_P: 1145 op->unit = X86_OP_MMX; 1146 goto get_reg; 1147 1148 case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */ 1149 if (decode->e.special == X86_SPECIAL_MMX && 1150 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1151 op->unit = X86_OP_MMX; 1152 } else { 1153 op->unit = X86_OP_SSE; 1154 } 1155 get_reg: 1156 op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s); 1157 break; 1158 1159 case X86_TYPE_E: /* ALU modrm operand */ 1160 op->unit = X86_OP_INT; 1161 goto get_modrm; 1162 1163 case X86_TYPE_Q: /* MMX modrm operand */ 1164 op->unit = X86_OP_MMX; 1165 goto get_modrm; 1166 1167 case X86_TYPE_W: /* XMM/YMM modrm operand */ 1168 if (decode->e.special == X86_SPECIAL_MMX && 1169 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1170 op->unit = X86_OP_MMX; 1171 } else { 1172 op->unit = X86_OP_SSE; 1173 } 1174 goto get_modrm; 1175 1176 case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */ 1177 op->unit = X86_OP_MMX; 1178 goto get_modrm_reg; 1179 1180 case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */ 1181 if (decode->e.special == X86_SPECIAL_MMX && 1182 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1183 op->unit = X86_OP_MMX; 1184 } else { 1185 op->unit = X86_OP_SSE; 1186 } 1187 goto get_modrm_reg; 1188 1189 case X86_TYPE_R: /* R/M in the modrm byte selects a register */ 1190 op->unit = X86_OP_INT; 1191 get_modrm_reg: 1192 modrm = get_modrm(s, env); 1193 if ((modrm >> 6) != 3) { 1194 return false; 1195 } 1196 goto get_modrm; 1197 1198 case X86_TYPE_WM: /* modrm byte selects an XMM/YMM memory operand */ 1199 op->unit = X86_OP_SSE; 1200 /* fall through */ 1201 case X86_TYPE_M: /* modrm byte selects a memory operand */ 1202 modrm = get_modrm(s, env); 1203 if ((modrm >> 6) == 3) { 1204 return false; 1205 } 1206 get_modrm: 1207 decode_modrm(s, env, decode, op, type); 1208 break; 1209 1210 case X86_TYPE_O: /* Absolute address encoded in the instruction */ 1211 op->unit = X86_OP_INT; 1212 op->has_ea = true; 1213 op->n = -1; 1214 decode->mem = (AddressParts) { 1215 .def_seg = R_DS, 1216 .base = -1, 1217 .index = -1, 1218 .disp = insn_get_addr(env, s, s->aflag) 1219 }; 1220 break; 1221 1222 case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */ 1223 if ((s->prefix & PREFIX_VEX)) { 1224 op->unit = X86_OP_SSE; 1225 op->n = s->vex_v; 1226 break; 1227 } 1228 if (op == &decode->op[0]) { 1229 /* shifts place the destination in VEX.vvvv, use modrm */ 1230 return decode_op(s, env, decode, op, decode->e.op1, b); 1231 } else { 1232 return decode_op(s, env, decode, op, decode->e.op0, b); 1233 } 1234 1235 case X86_TYPE_I: /* Immediate */ 1236 op->unit = X86_OP_IMM; 1237 decode->immediate = insn_get_signed(env, s, op->ot); 1238 break; 1239 1240 case X86_TYPE_J: /* Relative offset for a jump */ 1241 op->unit = X86_OP_IMM; 1242 decode->immediate = insn_get_signed(env, s, op->ot); 1243 decode->immediate += s->pc - s->cs_base; 1244 if (s->dflag == MO_16) { 1245 decode->immediate &= 0xffff; 1246 } else if (!CODE64(s)) { 1247 decode->immediate &= 0xffffffffu; 1248 } 1249 break; 1250 1251 case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */ 1252 op->n = insn_get(env, s, op->ot) >> 4; 1253 break; 1254 1255 case X86_TYPE_X: /* string source */ 1256 op->n = -1; 1257 decode->mem = (AddressParts) { 1258 .def_seg = R_DS, 1259 .base = R_ESI, 1260 .index = -1, 1261 }; 1262 break; 1263 1264 case X86_TYPE_Y: /* string destination */ 1265 op->n = -1; 1266 decode->mem = (AddressParts) { 1267 .def_seg = R_ES, 1268 .base = R_EDI, 1269 .index = -1, 1270 }; 1271 break; 1272 1273 case X86_TYPE_2op: 1274 *op = decode->op[0]; 1275 break; 1276 1277 case X86_TYPE_LoBits: 1278 op->n = (b & 7) | REX_B(s); 1279 op->unit = X86_OP_INT; 1280 break; 1281 1282 case X86_TYPE_0 ... X86_TYPE_7: 1283 op->n = type - X86_TYPE_0; 1284 op->unit = X86_OP_INT; 1285 break; 1286 1287 case X86_TYPE_ES ... X86_TYPE_GS: 1288 op->n = type - X86_TYPE_ES; 1289 op->unit = X86_OP_SEG; 1290 break; 1291 } 1292 1293 return true; 1294} 1295 1296static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e) 1297{ 1298 uint16_t sse_prefixes; 1299 1300 if (!e->valid_prefix) { 1301 return true; 1302 } 1303 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { 1304 /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66. */ 1305 s->prefix &= ~PREFIX_DATA; 1306 } 1307 1308 /* Now, either zero or one bit is set in sse_prefixes. */ 1309 sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA); 1310 return e->valid_prefix & (1 << sse_prefixes); 1311} 1312 1313static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func, 1314 X86DecodedInsn *decode) 1315{ 1316 X86OpEntry *e = &decode->e; 1317 1318 decode_func(s, env, e, &decode->b); 1319 while (e->is_decode) { 1320 e->is_decode = false; 1321 e->decode(s, env, e, &decode->b); 1322 } 1323 1324 if (!validate_sse_prefix(s, e)) { 1325 return false; 1326 } 1327 1328 /* First compute size of operands in order to initialize s->rip_offset. */ 1329 if (e->op0 != X86_TYPE_None) { 1330 if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) { 1331 return false; 1332 } 1333 if (e->op0 == X86_TYPE_I) { 1334 s->rip_offset += 1 << decode->op[0].ot; 1335 } 1336 } 1337 if (e->op1 != X86_TYPE_None) { 1338 if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) { 1339 return false; 1340 } 1341 if (e->op1 == X86_TYPE_I) { 1342 s->rip_offset += 1 << decode->op[1].ot; 1343 } 1344 } 1345 if (e->op2 != X86_TYPE_None) { 1346 if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) { 1347 return false; 1348 } 1349 if (e->op2 == X86_TYPE_I) { 1350 s->rip_offset += 1 << decode->op[2].ot; 1351 } 1352 } 1353 if (e->op3 != X86_TYPE_None) { 1354 /* 1355 * A couple instructions actually use the extra immediate byte for an Lx 1356 * register operand; those are handled in the gen_* functions as one off. 1357 */ 1358 assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b); 1359 s->rip_offset += 1; 1360 } 1361 1362 if (e->op0 != X86_TYPE_None && 1363 !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) { 1364 return false; 1365 } 1366 1367 if (e->op1 != X86_TYPE_None && 1368 !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) { 1369 return false; 1370 } 1371 1372 if (e->op2 != X86_TYPE_None && 1373 !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) { 1374 return false; 1375 } 1376 1377 if (e->op3 != X86_TYPE_None) { 1378 decode->immediate = insn_get_signed(env, s, MO_8); 1379 } 1380 1381 return true; 1382} 1383 1384static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid) 1385{ 1386 switch (cpuid) { 1387 case X86_FEAT_None: 1388 return true; 1389 case X86_FEAT_F16C: 1390 return (s->cpuid_ext_features & CPUID_EXT_F16C); 1391 case X86_FEAT_FMA: 1392 return (s->cpuid_ext_features & CPUID_EXT_FMA); 1393 case X86_FEAT_MOVBE: 1394 return (s->cpuid_ext_features & CPUID_EXT_MOVBE); 1395 case X86_FEAT_PCLMULQDQ: 1396 return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ); 1397 case X86_FEAT_SSE: 1398 return (s->cpuid_ext_features & CPUID_SSE); 1399 case X86_FEAT_SSE2: 1400 return (s->cpuid_ext_features & CPUID_SSE2); 1401 case X86_FEAT_SSE3: 1402 return (s->cpuid_ext_features & CPUID_EXT_SSE3); 1403 case X86_FEAT_SSSE3: 1404 return (s->cpuid_ext_features & CPUID_EXT_SSSE3); 1405 case X86_FEAT_SSE41: 1406 return (s->cpuid_ext_features & CPUID_EXT_SSE41); 1407 case X86_FEAT_SSE42: 1408 return (s->cpuid_ext_features & CPUID_EXT_SSE42); 1409 case X86_FEAT_AES: 1410 if (!(s->cpuid_ext_features & CPUID_EXT_AES)) { 1411 return false; 1412 } else if (!(s->prefix & PREFIX_VEX)) { 1413 return true; 1414 } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) { 1415 return false; 1416 } else { 1417 return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES); 1418 } 1419 1420 case X86_FEAT_AVX: 1421 return (s->cpuid_ext_features & CPUID_EXT_AVX); 1422 1423 case X86_FEAT_3DNOW: 1424 return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW); 1425 case X86_FEAT_SSE4A: 1426 return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A); 1427 1428 case X86_FEAT_ADX: 1429 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX); 1430 case X86_FEAT_BMI1: 1431 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1); 1432 case X86_FEAT_BMI2: 1433 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2); 1434 case X86_FEAT_AVX2: 1435 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2); 1436 } 1437 g_assert_not_reached(); 1438} 1439 1440static bool validate_vex(DisasContext *s, X86DecodedInsn *decode) 1441{ 1442 X86OpEntry *e = &decode->e; 1443 1444 switch (e->vex_special) { 1445 case X86_VEX_REPScalar: 1446 /* 1447 * Instructions which differ between 00/66 and F2/F3 in the 1448 * exception classification and the size of the memory operand. 1449 */ 1450 assert(e->vex_class == 1 || e->vex_class == 2); 1451 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { 1452 e->vex_class = 3; 1453 if (s->vex_l) { 1454 goto illegal; 1455 } 1456 assert(decode->e.s2 == X86_SIZE_x); 1457 if (decode->op[2].has_ea) { 1458 decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64; 1459 } 1460 } 1461 break; 1462 1463 case X86_VEX_SSEUnaligned: 1464 /* handled in sse_needs_alignment. */ 1465 break; 1466 1467 case X86_VEX_AVX2_256: 1468 if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) { 1469 goto illegal; 1470 } 1471 } 1472 1473 /* TODO: instructions that require VEX.W=0 (Table 2-16) */ 1474 1475 switch (e->vex_class) { 1476 case 0: 1477 if (s->prefix & PREFIX_VEX) { 1478 goto illegal; 1479 } 1480 return true; 1481 case 1: 1482 case 2: 1483 case 3: 1484 case 4: 1485 case 5: 1486 case 7: 1487 if (s->prefix & PREFIX_VEX) { 1488 if (!(s->flags & HF_AVX_EN_MASK)) { 1489 goto illegal; 1490 } 1491 } else { 1492 if (!(s->flags & HF_OSFXSR_MASK)) { 1493 goto illegal; 1494 } 1495 } 1496 break; 1497 case 12: 1498 /* Must have a VSIB byte and no address prefix. */ 1499 assert(s->has_modrm); 1500 if ((s->modrm & 7) != 4 || s->aflag == MO_16) { 1501 goto illegal; 1502 } 1503 1504 /* Check no overlap between registers. */ 1505 if (!decode->op[0].has_ea && 1506 (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) { 1507 goto illegal; 1508 } 1509 assert(!decode->op[1].has_ea); 1510 if (decode->op[1].n == decode->mem.index) { 1511 goto illegal; 1512 } 1513 if (!decode->op[2].has_ea && 1514 (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) { 1515 goto illegal; 1516 } 1517 /* fall through */ 1518 case 6: 1519 case 11: 1520 if (!(s->prefix & PREFIX_VEX)) { 1521 goto illegal; 1522 } 1523 if (!(s->flags & HF_AVX_EN_MASK)) { 1524 goto illegal; 1525 } 1526 break; 1527 case 8: 1528 /* Non-VEX case handled in decode_0F77. */ 1529 assert(s->prefix & PREFIX_VEX); 1530 if (!(s->flags & HF_AVX_EN_MASK)) { 1531 goto illegal; 1532 } 1533 break; 1534 case 13: 1535 if (!(s->prefix & PREFIX_VEX)) { 1536 goto illegal; 1537 } 1538 if (s->vex_l) { 1539 goto illegal; 1540 } 1541 /* All integer instructions use VEX.vvvv, so exit. */ 1542 return true; 1543 } 1544 1545 if (s->vex_v != 0 && 1546 e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B && 1547 e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B && 1548 e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) { 1549 goto illegal; 1550 } 1551 1552 if (s->flags & HF_TS_MASK) { 1553 goto nm_exception; 1554 } 1555 if (s->flags & HF_EM_MASK) { 1556 goto illegal; 1557 } 1558 return true; 1559 1560nm_exception: 1561 gen_NM_exception(s); 1562 return false; 1563illegal: 1564 gen_illegal_opcode(s); 1565 return false; 1566} 1567 1568static void decode_temp_free(X86DecodedOp *op) 1569{ 1570 if (op->v_ptr) { 1571 tcg_temp_free_ptr(op->v_ptr); 1572 } 1573} 1574 1575static void decode_temps_free(X86DecodedInsn *decode) 1576{ 1577 decode_temp_free(&decode->op[0]); 1578 decode_temp_free(&decode->op[1]); 1579 decode_temp_free(&decode->op[2]); 1580} 1581 1582/* 1583 * Convert one instruction. s->base.is_jmp is set if the translation must 1584 * be stopped. 1585 */ 1586static void disas_insn_new(DisasContext *s, CPUState *cpu, int b) 1587{ 1588 CPUX86State *env = cpu->env_ptr; 1589 bool first = true; 1590 X86DecodedInsn decode; 1591 X86DecodeFunc decode_func = decode_root; 1592 1593 s->has_modrm = false; 1594 1595 next_byte: 1596 if (first) { 1597 first = false; 1598 } else { 1599 b = x86_ldub_code(env, s); 1600 } 1601 /* Collect prefixes. */ 1602 switch (b) { 1603 case 0xf3: 1604 s->prefix |= PREFIX_REPZ; 1605 s->prefix &= ~PREFIX_REPNZ; 1606 goto next_byte; 1607 case 0xf2: 1608 s->prefix |= PREFIX_REPNZ; 1609 s->prefix &= ~PREFIX_REPZ; 1610 goto next_byte; 1611 case 0xf0: 1612 s->prefix |= PREFIX_LOCK; 1613 goto next_byte; 1614 case 0x2e: 1615 s->override = R_CS; 1616 goto next_byte; 1617 case 0x36: 1618 s->override = R_SS; 1619 goto next_byte; 1620 case 0x3e: 1621 s->override = R_DS; 1622 goto next_byte; 1623 case 0x26: 1624 s->override = R_ES; 1625 goto next_byte; 1626 case 0x64: 1627 s->override = R_FS; 1628 goto next_byte; 1629 case 0x65: 1630 s->override = R_GS; 1631 goto next_byte; 1632 case 0x66: 1633 s->prefix |= PREFIX_DATA; 1634 goto next_byte; 1635 case 0x67: 1636 s->prefix |= PREFIX_ADR; 1637 goto next_byte; 1638#ifdef TARGET_X86_64 1639 case 0x40 ... 0x4f: 1640 if (CODE64(s)) { 1641 /* REX prefix */ 1642 s->prefix |= PREFIX_REX; 1643 s->vex_w = (b >> 3) & 1; 1644 s->rex_r = (b & 0x4) << 1; 1645 s->rex_x = (b & 0x2) << 2; 1646 s->rex_b = (b & 0x1) << 3; 1647 goto next_byte; 1648 } 1649 break; 1650#endif 1651 case 0xc5: /* 2-byte VEX */ 1652 case 0xc4: /* 3-byte VEX */ 1653 /* 1654 * VEX prefixes cannot be used except in 32-bit mode. 1655 * Otherwise the instruction is LES or LDS. 1656 */ 1657 if (CODE32(s) && !VM86(s)) { 1658 static const int pp_prefix[4] = { 1659 0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ 1660 }; 1661 int vex3, vex2 = x86_ldub_code(env, s); 1662 1663 if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) { 1664 /* 1665 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b, 1666 * otherwise the instruction is LES or LDS. 1667 */ 1668 s->pc--; /* rewind the advance_pc() x86_ldub_code() did */ 1669 break; 1670 } 1671 1672 /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */ 1673 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ 1674 | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) { 1675 goto illegal_op; 1676 } 1677#ifdef TARGET_X86_64 1678 s->rex_r = (~vex2 >> 4) & 8; 1679#endif 1680 if (b == 0xc5) { 1681 /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */ 1682 vex3 = vex2; 1683 decode_func = decode_0F; 1684 } else { 1685 /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */ 1686 vex3 = x86_ldub_code(env, s); 1687#ifdef TARGET_X86_64 1688 s->rex_x = (~vex2 >> 3) & 8; 1689 s->rex_b = (~vex2 >> 2) & 8; 1690#endif 1691 s->vex_w = (vex3 >> 7) & 1; 1692 switch (vex2 & 0x1f) { 1693 case 0x01: /* Implied 0f leading opcode bytes. */ 1694 decode_func = decode_0F; 1695 break; 1696 case 0x02: /* Implied 0f 38 leading opcode bytes. */ 1697 decode_func = decode_0F38; 1698 break; 1699 case 0x03: /* Implied 0f 3a leading opcode bytes. */ 1700 decode_func = decode_0F3A; 1701 break; 1702 default: /* Reserved for future use. */ 1703 goto unknown_op; 1704 } 1705 } 1706 s->vex_v = (~vex3 >> 3) & 0xf; 1707 s->vex_l = (vex3 >> 2) & 1; 1708 s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX; 1709 } 1710 break; 1711 default: 1712 if (b >= 0x100) { 1713 b -= 0x100; 1714 decode_func = do_decode_0F; 1715 } 1716 break; 1717 } 1718 1719 /* Post-process prefixes. */ 1720 if (CODE64(s)) { 1721 /* 1722 * In 64-bit mode, the default data size is 32-bit. Select 64-bit 1723 * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence 1724 * over 0x66 if both are present. 1725 */ 1726 s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32); 1727 /* In 64-bit mode, 0x67 selects 32-bit addressing. */ 1728 s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64); 1729 } else { 1730 /* In 16/32-bit mode, 0x66 selects the opposite data size. */ 1731 if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) { 1732 s->dflag = MO_32; 1733 } else { 1734 s->dflag = MO_16; 1735 } 1736 /* In 16/32-bit mode, 0x67 selects the opposite addressing. */ 1737 if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) { 1738 s->aflag = MO_32; 1739 } else { 1740 s->aflag = MO_16; 1741 } 1742 } 1743 1744 memset(&decode, 0, sizeof(decode)); 1745 decode.b = b; 1746 if (!decode_insn(s, env, decode_func, &decode)) { 1747 goto illegal_op; 1748 } 1749 if (!decode.e.gen) { 1750 goto unknown_op; 1751 } 1752 1753 if (!has_cpuid_feature(s, decode.e.cpuid)) { 1754 goto illegal_op; 1755 } 1756 1757 switch (decode.e.special) { 1758 case X86_SPECIAL_None: 1759 break; 1760 1761 case X86_SPECIAL_Locked: 1762 if (decode.op[0].has_ea) { 1763 s->prefix |= PREFIX_LOCK; 1764 } 1765 break; 1766 1767 case X86_SPECIAL_ProtMode: 1768 if (!PE(s) || VM86(s)) { 1769 goto illegal_op; 1770 } 1771 break; 1772 1773 case X86_SPECIAL_i64: 1774 if (CODE64(s)) { 1775 goto illegal_op; 1776 } 1777 break; 1778 case X86_SPECIAL_o64: 1779 if (!CODE64(s)) { 1780 goto illegal_op; 1781 } 1782 break; 1783 1784 case X86_SPECIAL_ZExtOp0: 1785 assert(decode.op[0].unit == X86_OP_INT); 1786 if (!decode.op[0].has_ea) { 1787 decode.op[0].ot = MO_32; 1788 } 1789 break; 1790 1791 case X86_SPECIAL_ZExtOp2: 1792 assert(decode.op[2].unit == X86_OP_INT); 1793 if (!decode.op[2].has_ea) { 1794 decode.op[2].ot = MO_32; 1795 } 1796 break; 1797 1798 case X86_SPECIAL_AVXExtMov: 1799 if (!decode.op[2].has_ea) { 1800 decode.op[2].ot = s->vex_l ? MO_256 : MO_128; 1801 } else if (s->vex_l) { 1802 decode.op[2].ot++; 1803 } 1804 break; 1805 1806 case X86_SPECIAL_MMX: 1807 if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { 1808 gen_helper_enter_mmx(cpu_env); 1809 } 1810 break; 1811 } 1812 1813 if (!validate_vex(s, &decode)) { 1814 return; 1815 } 1816 if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) { 1817 gen_load_ea(s, &decode.mem, decode.e.vex_class == 12); 1818 } 1819 if (s->prefix & PREFIX_LOCK) { 1820 if (decode.op[0].unit != X86_OP_INT || !decode.op[0].has_ea) { 1821 goto illegal_op; 1822 } 1823 gen_load(s, &decode, 2, s->T1); 1824 decode.e.gen(s, env, &decode); 1825 } else { 1826 if (decode.op[0].unit == X86_OP_MMX) { 1827 compute_mmx_offset(&decode.op[0]); 1828 } else if (decode.op[0].unit == X86_OP_SSE) { 1829 compute_xmm_offset(&decode.op[0]); 1830 } 1831 gen_load(s, &decode, 1, s->T0); 1832 gen_load(s, &decode, 2, s->T1); 1833 decode.e.gen(s, env, &decode); 1834 gen_writeback(s, &decode, 0, s->T0); 1835 } 1836 decode_temps_free(&decode); 1837 return; 1838 illegal_op: 1839 gen_illegal_opcode(s); 1840 return; 1841 unknown_op: 1842 gen_unknown_opcode(env, s); 1843} 1844