1/* 2 * New-style decoder for i386 instructions 3 * 4 * Copyright (c) 2022 Red Hat, Inc. 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This library is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2.1 of the License, or (at your option) any later version. 12 * 13 * This library is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22/* 23 * The decoder is mostly based on tables copied from the Intel SDM. As 24 * a result, most operand load and writeback is done entirely in common 25 * table-driven code using the same operand type (X86_TYPE_*) and 26 * size (X86_SIZE_*) codes used in the manual. There are a few differences 27 * though. 28 * 29 * Operand sizes 30 * ------------- 31 * 32 * The manual lists d64 ("cannot encode 32-bit size in 64-bit mode") and f64 33 * ("cannot encode 16-bit or 32-bit size in 64-bit mode") as modifiers of the 34 * "v" or "z" sizes. The decoder simply makes them separate operand sizes. 35 * 36 * The manual lists immediate far destinations as Ap (technically an implicit 37 * argument). The decoder splits them into two immediates, using "Ip" for 38 * the offset part (that comes first in the instruction stream) and "Iw" for 39 * the segment/selector part. The size of the offset is given by s->dflag 40 * and the instructions are illegal in 64-bit mode, so the choice of "Ip" 41 * is somewhat arbitrary; "Iv" or "Iz" would work just as well. 42 * 43 * Operand types 44 * ------------- 45 * 46 * For memory-only operands, if the emitter functions wants to rely on 47 * generic load and writeback, the decoder needs to know the type of the 48 * operand. Therefore, M is often replaced by the more specific EM and WM 49 * (respectively selecting an ALU operand, like the operand type E, or a 50 * vector operand like the operand type W). 51 * 52 * Immediates are almost always signed or masked away in helpers. Two 53 * common exceptions are IN/OUT and absolute jumps. For these, there is 54 * an additional custom operand type "I_unsigned". Alternatively, the 55 * mask could be applied (and the original sign-extended value would be 56 * optimized away by TCG) in the emitter function. 57 * 58 * Finally, a "nop" operand type is used for multi-byte NOPs. It accepts 59 * any value of mod including 11b (unlike M) but it does not try to 60 * interpret the operand (like M). 61 * 62 * Vector operands 63 * --------------- 64 * 65 * The main difference is that the V, U and W types are extended to 66 * cover MMX as well; if an instruction is like 67 * 68 * por Pq, Qq 69 * 66 por Vx, Hx, Wx 70 * 71 * only the second row is included and the instruction is marked as a 72 * valid MMX instruction. The MMX flag directs the decoder to rewrite 73 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing 74 * "x" to "q" if there is no prefix. 75 * 76 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x" 77 * if the difference is expressed via prefixes. Individual instructions 78 * are separated by prefix in the generator functions. 79 * 80 * There is a custom size "xh" used to address half of a SSE/AVX operand. 81 * This points to a 64-bit operand for SSE operations, 128-bit operand 82 * for 256-bit AVX operands, etc. It is used for conversion operations 83 * such as VCVTPH2PS or VCVTSS2SD. 84 * 85 * There are a couple cases in which instructions (e.g. MOVD) write the 86 * whole XMM or MM register but are established incorrectly in the manual 87 * as "d" or "q". These have to be fixed for the decoder to work correctly. 88 * 89 * VEX exception classes 90 * --------------------- 91 * 92 * Speaking about imprecisions in the manual, the decoder treats all 93 * exception-class 4 instructions as having an optional VEX prefix, and 94 * all exception-class 6 instructions as having a mandatory VEX prefix. 95 * This is true except for a dozen instructions; these are in exception 96 * class 4 but do not ignore the VEX.W bit (which does not even exist 97 * without a VEX prefix). These instructions are mostly listed in Intel's 98 * table 2-16, but with a few exceptions. 99 * 100 * The AMD manual has more precise subclasses for exceptions, and unlike Intel 101 * they list the VEX.W requirements in the exception classes as well (except 102 * when they don't). AMD describes class 6 as "AVX Mixed Memory Argument" 103 * without defining what a mixed memory argument is, but still use 4 as the 104 * primary exception class... except when they don't. 105 * 106 * The summary is: 107 * Intel AMD VEX.W note 108 * ------------------------------------------------------------------- 109 * vpblendd 4 4J 0 110 * vpblendvb 4 4E-X 0 (*) 111 * vpbroadcastq 6 6D 0 (+) 112 * vpermd/vpermps 4 4H 0 (§) 113 * vpermq/vpermpd 4 4H-1 1 (§) 114 * vpermilpd/vpermilps 4 6E 0 (^) 115 * vpmaskmovd 6 4K significant (^) 116 * vpsllv 4 4K significant 117 * vpsrav 4 4J 0 118 * vpsrlv 4 4K significant 119 * vtestps/vtestpd 4 4G 0 120 * 121 * (*) AMD lists VPBLENDVB as related to SSE4.1 PBLENDVB, which may 122 * explain why it is considered exception class 4. However, 123 * Intel says that VEX-only instructions should be in class 6... 124 * 125 * (+) Not found in Intel's table 2-16 126 * 127 * (§) 4H and 4H-1 do not mention VEX.W requirements, which are 128 * however present in the description of the instruction 129 * 130 * (^) these are the two cases in which Intel and AMD disagree on the 131 * primary exception class 132 */ 133 134#define X86_OP_NONE { 0 }, 135 136#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ 137 .decode = glue(decode_, op), \ 138 .op0 = glue(X86_TYPE_, op0_), \ 139 .s0 = glue(X86_SIZE_, s0_), \ 140 .op1 = glue(X86_TYPE_, op1_), \ 141 .s1 = glue(X86_SIZE_, s1_), \ 142 .op2 = glue(X86_TYPE_, op2_), \ 143 .s2 = glue(X86_SIZE_, s2_), \ 144 .is_decode = true, \ 145 ## __VA_ARGS__ \ 146} 147 148#define X86_OP_GROUP1(op, op0, s0, ...) \ 149 X86_OP_GROUP3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__) 150#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \ 151 X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) 152#define X86_OP_GROUPw(op, op0, s0, ...) \ 153 X86_OP_GROUP3(op, op0, s0, None, None, None, None, ## __VA_ARGS__) 154#define X86_OP_GROUP0(op, ...) \ 155 X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__) 156 157#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ 158 .gen = glue(gen_, op), \ 159 .op0 = glue(X86_TYPE_, op0_), \ 160 .s0 = glue(X86_SIZE_, s0_), \ 161 .op1 = glue(X86_TYPE_, op1_), \ 162 .s1 = glue(X86_SIZE_, s1_), \ 163 .op2 = glue(X86_TYPE_, op2_), \ 164 .s2 = glue(X86_SIZE_, s2_), \ 165 ## __VA_ARGS__ \ 166} 167 168#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \ 169 X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \ 170 .op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \ 171 ## __VA_ARGS__) 172 173/* 174 * Short forms that are mostly useful for ALU opcodes and other 175 * one-byte opcodes. For vector instructions it is usually 176 * clearer to write all three operands explicitly, because the 177 * corresponding gen_* function will use OP_PTRn rather than s->T0 178 * and s->T1. 179 */ 180#define X86_OP_ENTRYrr(op, op0, s0, op1, s1, ...) \ 181 X86_OP_ENTRY3(op, None, None, op0, s0, op1, s1, ## __VA_ARGS__) 182#define X86_OP_ENTRYwr(op, op0, s0, op1, s1, ...) \ 183 X86_OP_ENTRY3(op, op0, s0, None, None, op1, s1, ## __VA_ARGS__) 184#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \ 185 X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) 186#define X86_OP_ENTRYw(op, op0, s0, ...) \ 187 X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__) 188#define X86_OP_ENTRYr(op, op0, s0, ...) \ 189 X86_OP_ENTRY3(op, None, None, None, None, op0, s0, ## __VA_ARGS__) 190#define X86_OP_ENTRY1(op, op0, s0, ...) \ 191 X86_OP_ENTRY3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__) 192#define X86_OP_ENTRY0(op, ...) \ 193 X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__) 194 195#define cpuid(feat) .cpuid = X86_FEAT_##feat, 196#define noseg .special = X86_SPECIAL_NoSeg, 197#define xchg .special = X86_SPECIAL_Locked, 198#define lock .special = X86_SPECIAL_HasLock, 199#define mmx .special = X86_SPECIAL_MMX, 200#define op0_Rd .special = X86_SPECIAL_Op0_Rd, 201#define op2_Ry .special = X86_SPECIAL_Op2_Ry, 202#define avx_movx .special = X86_SPECIAL_AVXExtMov, 203#define sextT0 .special = X86_SPECIAL_SExtT0, 204#define zextT0 .special = X86_SPECIAL_ZExtT0, 205#define op0_Mw .special = X86_SPECIAL_Op0_Mw, 206 207#define vex1 .vex_class = 1, 208#define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar, 209#define vex2 .vex_class = 2, 210#define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar, 211#define vex3 .vex_class = 3, 212#define vex4 .vex_class = 4, 213#define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned, 214#define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar, 215#define vex5 .vex_class = 5, 216#define vex6 .vex_class = 6, 217#define vex7 .vex_class = 7, 218#define vex8 .vex_class = 8, 219#define vex11 .vex_class = 11, 220#define vex12 .vex_class = 12, 221#define vex13 .vex_class = 13, 222 223#define chk(a) .check = X86_CHECK_##a, 224#define svm(a) .intercept = SVM_EXIT_##a, 225 226#define avx2_256 .vex_special = X86_VEX_AVX2_256, 227 228#define P_00 1 229#define P_66 (1 << PREFIX_DATA) 230#define P_F3 (1 << PREFIX_REPZ) 231#define P_F2 (1 << PREFIX_REPNZ) 232 233#define p_00 .valid_prefix = P_00, 234#define p_66 .valid_prefix = P_66, 235#define p_f3 .valid_prefix = P_F3, 236#define p_f2 .valid_prefix = P_F2, 237#define p_00_66 .valid_prefix = P_00 | P_66, 238#define p_00_f3 .valid_prefix = P_00 | P_F3, 239#define p_66_f2 .valid_prefix = P_66 | P_F2, 240#define p_00_66_f3 .valid_prefix = P_00 | P_66 | P_F3, 241#define p_66_f3_f2 .valid_prefix = P_66 | P_F3 | P_F2, 242#define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2, 243 244#define UNKNOWN_OPCODE ((X86OpEntry) {}) 245 246static uint8_t get_modrm(DisasContext *s, CPUX86State *env) 247{ 248 if (!s->has_modrm) { 249 s->modrm = x86_ldub_code(env, s); 250 s->has_modrm = true; 251 } 252 return s->modrm; 253} 254 255static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4]) 256{ 257 if (s->prefix & PREFIX_REPNZ) { 258 return &entries[3]; 259 } else if (s->prefix & PREFIX_REPZ) { 260 return &entries[2]; 261 } else if (s->prefix & PREFIX_DATA) { 262 return &entries[1]; 263 } else { 264 return &entries[0]; 265 } 266} 267 268static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 269{ 270 /* only includes ldmxcsr and stmxcsr, because they have AVX variants. */ 271 static const X86OpEntry group15_reg[8] = { 272 }; 273 274 static const X86OpEntry group15_mem[8] = { 275 [2] = X86_OP_ENTRYr(LDMXCSR, E,d, vex5 chk(VEX128)), 276 [3] = X86_OP_ENTRYw(STMXCSR, E,d, vex5 chk(VEX128)), 277 }; 278 279 uint8_t modrm = get_modrm(s, env); 280 if ((modrm >> 6) == 3) { 281 *entry = group15_reg[(modrm >> 3) & 7]; 282 } else { 283 *entry = group15_mem[(modrm >> 3) & 7]; 284 } 285} 286 287static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 288{ 289 static const X86GenFunc group17_gen[8] = { 290 NULL, gen_BLSR, gen_BLSMSK, gen_BLSI, 291 }; 292 int op = (get_modrm(s, env) >> 3) & 7; 293 entry->gen = group17_gen[op]; 294} 295 296static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 297{ 298 static const X86OpEntry opcodes_group12[8] = { 299 {}, 300 {}, 301 X86_OP_ENTRY3(PSRLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 302 {}, 303 X86_OP_ENTRY3(PSRAW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 304 {}, 305 X86_OP_ENTRY3(PSLLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 306 {}, 307 }; 308 309 int op = (get_modrm(s, env) >> 3) & 7; 310 *entry = opcodes_group12[op]; 311} 312 313static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 314{ 315 static const X86OpEntry opcodes_group13[8] = { 316 {}, 317 {}, 318 X86_OP_ENTRY3(PSRLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 319 {}, 320 X86_OP_ENTRY3(PSRAD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 321 {}, 322 X86_OP_ENTRY3(PSLLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 323 {}, 324 }; 325 326 int op = (get_modrm(s, env) >> 3) & 7; 327 *entry = opcodes_group13[op]; 328} 329 330static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 331{ 332 static const X86OpEntry opcodes_group14[8] = { 333 /* grp14 */ 334 {}, 335 {}, 336 X86_OP_ENTRY3(PSRLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 337 X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), 338 {}, 339 {}, 340 X86_OP_ENTRY3(PSLLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 341 X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), 342 }; 343 344 int op = (get_modrm(s, env) >> 3) & 7; 345 *entry = opcodes_group14[op]; 346} 347 348static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 349{ 350 static const X86OpEntry opcodes_0F6F[4] = { 351 X86_OP_ENTRY3(MOVDQ, P,q, None,None, Q,q, vex5 mmx), /* movq */ 352 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1), /* movdqa */ 353 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* movdqu */ 354 {}, 355 }; 356 *entry = *decode_by_prefix(s, opcodes_0F6F); 357} 358 359static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 360{ 361 static const X86OpEntry pshufw[4] = { 362 X86_OP_ENTRY3(PSHUFW, P,q, Q,q, I,b, vex4 mmx), 363 X86_OP_ENTRY3(PSHUFD, V,x, W,x, I,b, vex4 avx2_256), 364 X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256), 365 X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256), 366 }; 367 368 *entry = *decode_by_prefix(s, pshufw); 369} 370 371static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 372{ 373 if (!(s->prefix & PREFIX_VEX)) { 374 entry->gen = gen_EMMS; 375 } else if (!s->vex_l) { 376 entry->gen = gen_VZEROUPPER; 377 entry->vex_class = 8; 378 } else { 379 entry->gen = gen_VZEROALL; 380 entry->vex_class = 8; 381 } 382} 383 384static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 385{ 386 static const X86OpEntry opcodes_0F78[4] = { 387 {}, 388 X86_OP_ENTRY3(EXTRQ_i, V,x, None,None, I,w, cpuid(SSE4A)), /* AMD extension */ 389 {}, 390 X86_OP_ENTRY3(INSERTQ_i, V,x, U,x, I,w, cpuid(SSE4A)), /* AMD extension */ 391 }; 392 *entry = *decode_by_prefix(s, opcodes_0F78); 393} 394 395static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 396{ 397 if (s->prefix & PREFIX_REPNZ) { 398 entry->gen = gen_INSERTQ_r; /* AMD extension */ 399 } else if (s->prefix & PREFIX_DATA) { 400 entry->gen = gen_EXTRQ_r; /* AMD extension */ 401 } else { 402 entry->gen = NULL; 403 }; 404} 405 406static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 407{ 408 static const X86OpEntry opcodes_0F7E[4] = { 409 X86_OP_ENTRY3(MOVD_from, E,y, None,None, P,y, vex5 mmx), 410 X86_OP_ENTRY3(MOVD_from, E,y, None,None, V,y, vex5), 411 X86_OP_ENTRY3(MOVQ, V,x, None,None, W,q, vex5), /* wrong dest Vy on SDM! */ 412 {}, 413 }; 414 *entry = *decode_by_prefix(s, opcodes_0F7E); 415} 416 417static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 418{ 419 static const X86OpEntry opcodes_0F7F[4] = { 420 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex5 mmx), /* movq */ 421 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1), /* movdqa */ 422 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4_unal), /* movdqu */ 423 {}, 424 }; 425 *entry = *decode_by_prefix(s, opcodes_0F7F); 426} 427 428static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 429{ 430 static const X86OpEntry movq[4] = { 431 {}, 432 X86_OP_ENTRY3(MOVQ, W,x, None, None, V,q, vex5), 433 X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q), 434 X86_OP_ENTRY3(MOVq_dq, P,q, None, None, U,q), 435 }; 436 437 *entry = *decode_by_prefix(s, movq); 438} 439 440static const X86OpEntry opcodes_0F38_00toEF[240] = { 441 [0x00] = X86_OP_ENTRY3(PSHUFB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 442 [0x01] = X86_OP_ENTRY3(PHADDW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 443 [0x02] = X86_OP_ENTRY3(PHADDD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 444 [0x03] = X86_OP_ENTRY3(PHADDSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 445 [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 446 [0x05] = X86_OP_ENTRY3(PHSUBW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 447 [0x06] = X86_OP_ENTRY3(PHSUBD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 448 [0x07] = X86_OP_ENTRY3(PHSUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 449 450 [0x10] = X86_OP_ENTRY2(PBLENDVB, V,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 451 [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x, W,xh, vex11 chk(W0) cpuid(F16C) p_66), 452 [0x14] = X86_OP_ENTRY2(BLENDVPS, V,x, W,x, vex4 cpuid(SSE41) p_66), 453 [0x15] = X86_OP_ENTRY2(BLENDVPD, V,x, W,x, vex4 cpuid(SSE41) p_66), 454 /* Listed incorrectly as type 4 */ 455 [0x16] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), /* vpermps */ 456 [0x17] = X86_OP_ENTRY3(VPTEST, None,None, V,x, W,x, vex4 cpuid(SSE41) p_66), 457 458 /* 459 * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed 460 * as 128-bit only in 2-17. 461 */ 462 [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 463 [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 464 [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 465 [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 466 [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 467 [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 468 469 /* Same as PMOVSX. */ 470 [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 471 [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 472 [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 473 [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 474 [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 475 [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 476 [0x36] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), 477 [0x37] = X86_OP_ENTRY3(PCMPGTQ, V,x, H,x, W,x, vex4 cpuid(SSE42) avx2_256 p_66), 478 479 [0x40] = X86_OP_ENTRY3(PMULLD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 480 [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66), 481 /* Listed incorrectly as type 4 */ 482 [0x45] = X86_OP_ENTRY3(VPSRLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 483 [0x46] = X86_OP_ENTRY3(VPSRAV, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX2) p_66), 484 [0x47] = X86_OP_ENTRY3(VPSLLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 485 486 [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */ 487 [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */ 488 [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vgatherdps/d */ 489 [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vgatherqps/d */ 490 491 /* Should be exception type 2 but they do not have legacy SSE equivalents? */ 492 [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 493 [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 494 495 [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 496 [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 497 498 [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 499 [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 500 501 [0x08] = X86_OP_ENTRY3(PSIGNB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 502 [0x09] = X86_OP_ENTRY3(PSIGNW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 503 [0x0a] = X86_OP_ENTRY3(PSIGND, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 504 [0x0b] = X86_OP_ENTRY3(PMULHRSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 505 /* Listed incorrectly as type 4 */ 506 [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_00_66), 507 [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 508 [0x0e] = X86_OP_ENTRY3(VTESTPS, None,None, V,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 509 [0x0f] = X86_OP_ENTRY3(VTESTPD, None,None, V,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 510 511 [0x18] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastss */ 512 [0x19] = X86_OP_ENTRY3(VPBROADCASTQ, V,qq, None,None, W,q, vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastsd */ 513 [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX) p_66), 514 [0x1c] = X86_OP_ENTRY3(PABSB, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 515 [0x1d] = X86_OP_ENTRY3(PABSW, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 516 [0x1e] = X86_OP_ENTRY3(PABSD, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 517 518 [0x28] = X86_OP_ENTRY3(PMULDQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 519 [0x29] = X86_OP_ENTRY3(PCMPEQQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 520 [0x2a] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */ 521 [0x2b] = X86_OP_ENTRY3(VPACKUSDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 522 [0x2c] = X86_OP_ENTRY3(VMASKMOVPS, V,x, H,x, WM,x, vex6 chk(W0) cpuid(AVX) p_66), 523 [0x2d] = X86_OP_ENTRY3(VMASKMOVPD, V,x, H,x, WM,x, vex6 chk(W0) cpuid(AVX) p_66), 524 /* Incorrectly listed as Mx,Hx,Vx in the manual */ 525 [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x, H,x, vex6 chk(W0) cpuid(AVX) p_66), 526 [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x, H,x, vex6 chk(W0) cpuid(AVX) p_66), 527 528 [0x38] = X86_OP_ENTRY3(PMINSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 529 [0x39] = X86_OP_ENTRY3(PMINSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 530 [0x3a] = X86_OP_ENTRY3(PMINUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 531 [0x3b] = X86_OP_ENTRY3(PMINUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 532 [0x3c] = X86_OP_ENTRY3(PMAXSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 533 [0x3d] = X86_OP_ENTRY3(PMAXSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 534 [0x3e] = X86_OP_ENTRY3(PMAXUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 535 [0x3f] = X86_OP_ENTRY3(PMAXUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 536 537 /* VPBROADCASTQ not listed as W0 in table 2-16 */ 538 [0x58] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 chk(W0) cpuid(AVX2) p_66), 539 [0x59] = X86_OP_ENTRY3(VPBROADCASTQ, V,x, None,None, W,q, vex6 chk(W0) cpuid(AVX2) p_66), 540 [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX2) p_66), 541 542 [0x78] = X86_OP_ENTRY3(VPBROADCASTB, V,x, None,None, W,b, vex6 chk(W0) cpuid(AVX2) p_66), 543 [0x79] = X86_OP_ENTRY3(VPBROADCASTW, V,x, None,None, W,w, vex6 chk(W0) cpuid(AVX2) p_66), 544 545 [0x8c] = X86_OP_ENTRY3(VPMASKMOV, V,x, H,x, WM,x, vex6 cpuid(AVX2) p_66), 546 [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x, V,x, H,x, vex6 cpuid(AVX2) p_66), 547 548 /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */ 549 [0x98] = X86_OP_ENTRY3(VFMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 550 [0x99] = X86_OP_ENTRY3(VFMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 551 [0x9a] = X86_OP_ENTRY3(VFMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 552 [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 553 [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 554 [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 555 [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 556 [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 557 558 [0xa8] = X86_OP_ENTRY3(VFMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 559 [0xa9] = X86_OP_ENTRY3(VFMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 560 [0xaa] = X86_OP_ENTRY3(VFMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 561 [0xab] = X86_OP_ENTRY3(VFMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 562 [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 563 [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 564 [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 565 [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 566 567 [0xb8] = X86_OP_ENTRY3(VFMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 568 [0xb9] = X86_OP_ENTRY3(VFMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 569 [0xba] = X86_OP_ENTRY3(VFMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 570 [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 571 [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 572 [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 573 [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 574 [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 575 576 [0xc8] = X86_OP_ENTRY2(SHA1NEXTE, V,dq, W,dq, cpuid(SHA_NI)), 577 [0xc9] = X86_OP_ENTRY2(SHA1MSG1, V,dq, W,dq, cpuid(SHA_NI)), 578 [0xca] = X86_OP_ENTRY2(SHA1MSG2, V,dq, W,dq, cpuid(SHA_NI)), 579 [0xcb] = X86_OP_ENTRY2(SHA256RNDS2, V,dq, W,dq, cpuid(SHA_NI)), 580 [0xcc] = X86_OP_ENTRY2(SHA256MSG1, V,dq, W,dq, cpuid(SHA_NI)), 581 [0xcd] = X86_OP_ENTRY2(SHA256MSG2, V,dq, W,dq, cpuid(SHA_NI)), 582 583 [0xdb] = X86_OP_ENTRY3(VAESIMC, V,dq, None,None, W,dq, vex4 cpuid(AES) p_66), 584 [0xdc] = X86_OP_ENTRY3(VAESENC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 585 [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 586 [0xde] = X86_OP_ENTRY3(VAESDEC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 587 [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 588 589 /* 590 * REG selects srcdest2 operand, VEX.vvvv selects src3. VEX class not found 591 * in manual, assumed to be 13 from the VEX.L0 constraint. 592 */ 593 [0xe0] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 594 [0xe1] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 595 [0xe2] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 596 [0xe3] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 597 [0xe4] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 598 [0xe5] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 599 [0xe6] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 600 [0xe7] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 601 602 [0xe8] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 603 [0xe9] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 604 [0xea] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 605 [0xeb] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 606 [0xec] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 607 [0xed] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 608 [0xee] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 609 [0xef] = X86_OP_ENTRY3(CMPccXADD, M,y, G,y, B,y, vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66), 610}; 611 612/* five rows for no prefix, 66, F3, F2, 66+F2 */ 613static const X86OpEntry opcodes_0F38_F0toFF[16][5] = { 614 [0] = { 615 X86_OP_ENTRY3(MOVBE, G,y, M,y, None,None, cpuid(MOVBE)), 616 X86_OP_ENTRY3(MOVBE, G,w, M,w, None,None, cpuid(MOVBE)), 617 {}, 618 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), 619 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), 620 }, 621 [1] = { 622 X86_OP_ENTRY3(MOVBE, M,y, G,y, None,None, cpuid(MOVBE)), 623 X86_OP_ENTRY3(MOVBE, M,w, G,w, None,None, cpuid(MOVBE)), 624 {}, 625 X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)), 626 X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)), 627 }, 628 [2] = { 629 X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)), 630 {}, 631 {}, 632 {}, 633 {}, 634 }, 635 [3] = { 636 X86_OP_GROUP3(group17, B,y, E,y, None,None, vex13 cpuid(BMI1)), 637 {}, 638 {}, 639 {}, 640 {}, 641 }, 642 [5] = { 643 X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)), 644 {}, 645 X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)), 646 X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)), 647 {}, 648 }, 649 [6] = { 650 {}, 651 X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)), 652 X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)), 653 X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)), 654 {}, 655 }, 656 [7] = { 657 X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)), 658 X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)), 659 X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 sextT0 cpuid(BMI1)), 660 X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)), 661 {}, 662 }, 663}; 664 665static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 666{ 667 *b = x86_ldub_code(env, s); 668 if (*b < 0xf0) { 669 *entry = opcodes_0F38_00toEF[*b]; 670 } else { 671 int row = 0; 672 if (s->prefix & PREFIX_REPZ) { 673 /* The REPZ (F3) prefix has priority over 66 */ 674 row = 2; 675 } else { 676 row += s->prefix & PREFIX_REPNZ ? 3 : 0; 677 row += s->prefix & PREFIX_DATA ? 1 : 0; 678 } 679 *entry = opcodes_0F38_F0toFF[*b & 15][row]; 680 } 681} 682 683static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 684{ 685 static const X86OpEntry 686 vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66), 687 vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d, vex5 cpuid(SSE41) p_66); 688 689 int modrm = get_modrm(s, env); 690 *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem; 691} 692 693static const X86OpEntry opcodes_0F3A[256] = { 694 /* 695 * These are VEX-only, but incorrectly listed in the manual as exception type 4. 696 * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256 697 * only. 698 */ 699 [0x00] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 chk(W1) cpuid(AVX2) p_66), 700 [0x01] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 chk(W1) cpuid(AVX2) p_66), /* VPERMPD */ 701 [0x02] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX2) p_66), /* VPBLENDD */ 702 [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x, W,x, I,b, vex6 chk(W0) cpuid(AVX) p_66), 703 [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x, W,x, I,b, vex6 chk(W0) cpuid(AVX) p_66), 704 [0x06] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66), 705 706 [0x14] = X86_OP_ENTRY3(PEXTRB, E,b, V,dq, I,b, vex5 cpuid(SSE41) op0_Rd p_66), 707 [0x15] = X86_OP_ENTRY3(PEXTRW, E,w, V,dq, I,b, vex5 cpuid(SSE41) op0_Rd p_66), 708 [0x16] = X86_OP_ENTRY3(PEXTR, E,y, V,dq, I,b, vex5 cpuid(SSE41) p_66), 709 [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d, V,dq, I,b, vex5 cpuid(SSE41) p_66), 710 [0x1d] = X86_OP_ENTRY3(VCVTPS2PH, W,xh, V,x, I,b, vex11 chk(W0) cpuid(F16C) p_66), 711 712 [0x20] = X86_OP_ENTRY4(PINSRB, V,dq, H,dq, E,b, vex5 cpuid(SSE41) op2_Ry p_66), 713 [0x21] = X86_OP_GROUP0(VINSERTPS), 714 [0x22] = X86_OP_ENTRY4(PINSR, V,dq, H,dq, E,y, vex5 cpuid(SSE41) p_66), 715 716 [0x40] = X86_OP_ENTRY4(VDDPS, V,x, H,x, W,x, vex2 cpuid(SSE41) p_66), 717 [0x41] = X86_OP_ENTRY4(VDDPD, V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66), 718 [0x42] = X86_OP_ENTRY4(VMPSADBW, V,x, H,x, W,x, vex2 cpuid(SSE41) avx2_256 p_66), 719 [0x44] = X86_OP_ENTRY4(PCLMULQDQ, V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66), 720 [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), 721 722 [0x60] = X86_OP_ENTRY4(PCMPESTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 723 [0x61] = X86_OP_ENTRY4(PCMPESTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 724 [0x62] = X86_OP_ENTRY4(PCMPISTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 725 [0x63] = X86_OP_ENTRY4(PCMPISTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 726 727 [0x08] = X86_OP_ENTRY3(VROUNDPS, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), 728 [0x09] = X86_OP_ENTRY3(VROUNDPD, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), 729 /* 730 * Not listed as four operand in the manual. Also writes and reads 128-bits 731 * from the first two operands due to the V operand picking higher entries of 732 * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect. 733 * For other unary operations such as VSQRTSx this is hidden by the "REPScalar" 734 * value of vex_special, because the table lists the operand types of VSQRTPx. 735 */ 736 [0x0a] = X86_OP_ENTRY4(VROUNDSS, V,x, H,x, W,ss, vex3 cpuid(SSE41) p_66), 737 [0x0b] = X86_OP_ENTRY4(VROUNDSD, V,x, H,x, W,sd, vex3 cpuid(SSE41) p_66), 738 [0x0c] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), 739 [0x0d] = X86_OP_ENTRY4(VBLENDPD, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), 740 [0x0e] = X86_OP_ENTRY4(VPBLENDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 741 [0x0f] = X86_OP_ENTRY4(PALIGNR, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 742 743 [0x18] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66), 744 [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 chk(W0) cpuid(AVX) p_66), 745 746 [0x38] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66), 747 [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 chk(W0) cpuid(AVX2) p_66), 748 749 /* Listed incorrectly as type 4 */ 750 [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 751 [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66), 752 [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x, H,x, W,x, vex6 chk(W0) cpuid(AVX) p_66 avx2_256), 753 754 [0xcc] = X86_OP_ENTRY3(SHA1RNDS4, V,dq, W,dq, I,b, cpuid(SHA_NI)), 755 756 [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b, vex4 cpuid(AES) p_66), 757 758 [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2), 759}; 760 761static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 762{ 763 *b = x86_ldub_code(env, s); 764 *entry = opcodes_0F3A[*b]; 765} 766 767/* 768 * There are some mistakes in the operands in the manual, and the load/store/register 769 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and 770 * efficiency of implementation rather than copying what the manual says. 771 * 772 * In particular: 773 * 774 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b, 775 * but this is not mentioned in the tables. 776 * 777 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their 778 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high 779 * quadword of the V operand. 780 */ 781static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 782{ 783 static const X86OpEntry opcodes_0F10_reg[4] = { 784 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ 785 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ 786 X86_OP_ENTRY3(VMOVSS, V,x, H,x, W,x, vex5), 787 X86_OP_ENTRY3(VMOVLPx, V,x, H,x, W,x, vex5), /* MOVSD */ 788 }; 789 790 static const X86OpEntry opcodes_0F10_mem[4] = { 791 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ 792 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ 793 X86_OP_ENTRY3(VMOVSS_ld, V,x, H,x, M,ss, vex5), 794 X86_OP_ENTRY3(VMOVSD_ld, V,x, H,x, M,sd, vex5), 795 }; 796 797 if ((get_modrm(s, env) >> 6) == 3) { 798 *entry = *decode_by_prefix(s, opcodes_0F10_reg); 799 } else { 800 *entry = *decode_by_prefix(s, opcodes_0F10_mem); 801 } 802} 803 804static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 805{ 806 static const X86OpEntry opcodes_0F11_reg[4] = { 807 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ 808 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ 809 X86_OP_ENTRY3(VMOVSS, W,x, H,x, V,x, vex5), 810 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, V,q, vex5), /* MOVSD */ 811 }; 812 813 static const X86OpEntry opcodes_0F11_mem[4] = { 814 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ 815 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ 816 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex5), 817 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */ 818 }; 819 820 if ((get_modrm(s, env) >> 6) == 3) { 821 *entry = *decode_by_prefix(s, opcodes_0F11_reg); 822 } else { 823 *entry = *decode_by_prefix(s, opcodes_0F11_mem); 824 } 825} 826 827static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 828{ 829 static const X86OpEntry opcodes_0F12_mem[4] = { 830 /* 831 * Use dq for operand for compatibility with gen_MOVSD and 832 * to allow VEX128 only. 833 */ 834 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPS */ 835 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPD */ 836 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), 837 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */ 838 }; 839 static const X86OpEntry opcodes_0F12_reg[4] = { 840 X86_OP_ENTRY3(VMOVHLPS, V,dq, H,dq, U,dq, vex7), 841 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, U,q, vex5), /* MOVLPD */ 842 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), 843 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, U,x, vex5 cpuid(SSE3)), 844 }; 845 846 if ((get_modrm(s, env) >> 6) == 3) { 847 *entry = *decode_by_prefix(s, opcodes_0F12_reg); 848 } else { 849 *entry = *decode_by_prefix(s, opcodes_0F12_mem); 850 if ((s->prefix & PREFIX_REPNZ) && s->vex_l) { 851 entry->s2 = X86_SIZE_qq; 852 } 853 } 854} 855 856static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 857{ 858 static const X86OpEntry opcodes_0F16_mem[4] = { 859 /* 860 * Operand 1 technically only reads the low 64 bits, but uses dq so that 861 * it is easier to check for op0 == op1 in an endianness-neutral manner. 862 */ 863 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPS */ 864 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPD */ 865 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), 866 {}, 867 }; 868 static const X86OpEntry opcodes_0F16_reg[4] = { 869 /* Same as above, operand 1 could be Hq if it wasn't for big-endian. */ 870 X86_OP_ENTRY3(VMOVLHPS, V,dq, H,dq, U,q, vex7), 871 X86_OP_ENTRY3(VMOVHPx, V,x, H,x, U,x, vex5), /* MOVHPD */ 872 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), 873 {}, 874 }; 875 876 if ((get_modrm(s, env) >> 6) == 3) { 877 *entry = *decode_by_prefix(s, opcodes_0F16_reg); 878 } else { 879 *entry = *decode_by_prefix(s, opcodes_0F16_mem); 880 } 881} 882 883static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 884{ 885 static const X86OpEntry opcodes_0F2A[4] = { 886 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), 887 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), 888 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), 889 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), 890 }; 891 *entry = *decode_by_prefix(s, opcodes_0F2A); 892} 893 894static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 895{ 896 static const X86OpEntry opcodes_0F2B[4] = { 897 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPS */ 898 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPD */ 899 /* AMD extensions */ 900 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */ 901 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */ 902 }; 903 904 *entry = *decode_by_prefix(s, opcodes_0F2B); 905} 906 907static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 908{ 909 static const X86OpEntry opcodes_0F2C[4] = { 910 /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit. */ 911 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,q), 912 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,dq), 913 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,ss, vex3), 914 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,sd, vex3), 915 }; 916 *entry = *decode_by_prefix(s, opcodes_0F2C); 917} 918 919static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 920{ 921 static const X86OpEntry opcodes_0F2D[4] = { 922 /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit. */ 923 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,q), 924 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,dq), 925 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,ss, vex3), 926 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,sd, vex3), 927 }; 928 *entry = *decode_by_prefix(s, opcodes_0F2D); 929} 930 931static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 932{ 933 /* 934 * VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD 935 * respectively. Scalar values usually are associated with 0xF2 and 0xF3, for 936 * which X86_VEX_REPScalar exists, but here it has to be decoded by hand. 937 */ 938 entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss); 939 entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI); 940} 941 942static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 943{ 944 if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) { 945 entry->op1 = X86_TYPE_None; 946 entry->s1 = X86_SIZE_None; 947 } 948 switch (*b) { 949 case 0x51: entry->gen = gen_VSQRT; break; 950 case 0x52: entry->gen = gen_VRSQRT; break; 951 case 0x53: entry->gen = gen_VRCP; break; 952 } 953} 954 955static void decode_0F5A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 956{ 957 static const X86OpEntry opcodes_0F5A[4] = { 958 X86_OP_ENTRY2(VCVTPS2PD, V,x, W,xh, vex2), /* VCVTPS2PD */ 959 X86_OP_ENTRY2(VCVTPD2PS, V,x, W,x, vex2), /* VCVTPD2PS */ 960 X86_OP_ENTRY3(VCVTSS2SD, V,x, H,x, W,x, vex2_rep3), /* VCVTSS2SD */ 961 X86_OP_ENTRY3(VCVTSD2SS, V,x, H,x, W,x, vex2_rep3), /* VCVTSD2SS */ 962 }; 963 *entry = *decode_by_prefix(s, opcodes_0F5A); 964} 965 966static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 967{ 968 static const X86OpEntry opcodes_0F5B[4] = { 969 X86_OP_ENTRY2(VCVTDQ2PS, V,x, W,x, vex2), 970 X86_OP_ENTRY2(VCVTPS2DQ, V,x, W,x, vex2), 971 X86_OP_ENTRY2(VCVTTPS2DQ, V,x, W,x, vex2), 972 {}, 973 }; 974 *entry = *decode_by_prefix(s, opcodes_0F5B); 975} 976 977static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 978{ 979 static const X86OpEntry opcodes_0FE6[4] = { 980 {}, 981 X86_OP_ENTRY2(VCVTTPD2DQ, V,x, W,x, vex2), 982 X86_OP_ENTRY2(VCVTDQ2PD, V,x, W,x, vex5), 983 X86_OP_ENTRY2(VCVTPD2DQ, V,x, W,x, vex2), 984 }; 985 *entry = *decode_by_prefix(s, opcodes_0FE6); 986} 987 988static const X86OpEntry opcodes_0F[256] = { 989 [0x0E] = X86_OP_ENTRY0(EMMS, cpuid(3DNOW)), /* femms */ 990 /* 991 * 3DNow!'s opcode byte comes *after* modrm and displacements, making it 992 * more like an Ib operand. Dispatch to the right helper in a single gen_* 993 * function. 994 */ 995 [0x0F] = X86_OP_ENTRY3(3dnow, P,q, Q,q, I,b, cpuid(3DNOW)), 996 997 [0x10] = X86_OP_GROUP0(0F10), 998 [0x11] = X86_OP_GROUP0(0F11), 999 [0x12] = X86_OP_GROUP0(0F12), 1000 [0x13] = X86_OP_ENTRY3(VMOVLPx_st, M,q, None,None, V,q, vex5 p_00_66), 1001 [0x14] = X86_OP_ENTRY3(VUNPCKLPx, V,x, H,x, W,x, vex4 p_00_66), 1002 [0x15] = X86_OP_ENTRY3(VUNPCKHPx, V,x, H,x, W,x, vex4 p_00_66), 1003 [0x16] = X86_OP_GROUP0(0F16), 1004 /* Incorrectly listed as Mq,Vq in the manual */ 1005 [0x17] = X86_OP_ENTRY3(VMOVHPx_st, M,q, None,None, V,dq, vex5 p_00_66), 1006 1007 [0x40] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1008 [0x41] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1009 [0x42] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1010 [0x43] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1011 [0x44] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1012 [0x45] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1013 [0x46] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1014 [0x47] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1015 1016 [0x50] = X86_OP_ENTRY3(MOVMSK, G,y, None,None, U,x, vex7 p_00_66), 1017 [0x51] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */ 1018 [0x52] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */ 1019 [0x53] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */ 1020 [0x54] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 p_00_66), /* vand */ 1021 [0x55] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 p_00_66), /* vandn */ 1022 [0x56] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 p_00_66), /* vor */ 1023 [0x57] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 p_00_66), /* vxor */ 1024 1025 [0x60] = X86_OP_ENTRY3(PUNPCKLBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1026 [0x61] = X86_OP_ENTRY3(PUNPCKLWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1027 [0x62] = X86_OP_ENTRY3(PUNPCKLDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1028 [0x63] = X86_OP_ENTRY3(PACKSSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1029 [0x64] = X86_OP_ENTRY3(PCMPGTB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1030 [0x65] = X86_OP_ENTRY3(PCMPGTW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1031 [0x66] = X86_OP_ENTRY3(PCMPGTD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1032 [0x67] = X86_OP_ENTRY3(PACKUSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1033 1034 [0x70] = X86_OP_GROUP0(0F70), 1035 [0x71] = X86_OP_GROUP0(group12), 1036 [0x72] = X86_OP_GROUP0(group13), 1037 [0x73] = X86_OP_GROUP0(group14), 1038 [0x74] = X86_OP_ENTRY3(PCMPEQB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1039 [0x75] = X86_OP_ENTRY3(PCMPEQW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1040 [0x76] = X86_OP_ENTRY3(PCMPEQD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1041 [0x77] = X86_OP_GROUP0(0F77), 1042 1043 [0x80] = X86_OP_ENTRYr(Jcc, J,z_f64), 1044 [0x81] = X86_OP_ENTRYr(Jcc, J,z_f64), 1045 [0x82] = X86_OP_ENTRYr(Jcc, J,z_f64), 1046 [0x83] = X86_OP_ENTRYr(Jcc, J,z_f64), 1047 [0x84] = X86_OP_ENTRYr(Jcc, J,z_f64), 1048 [0x85] = X86_OP_ENTRYr(Jcc, J,z_f64), 1049 [0x86] = X86_OP_ENTRYr(Jcc, J,z_f64), 1050 [0x87] = X86_OP_ENTRYr(Jcc, J,z_f64), 1051 1052 [0x90] = X86_OP_ENTRYw(SETcc, E,b), 1053 [0x91] = X86_OP_ENTRYw(SETcc, E,b), 1054 [0x92] = X86_OP_ENTRYw(SETcc, E,b), 1055 [0x93] = X86_OP_ENTRYw(SETcc, E,b), 1056 [0x94] = X86_OP_ENTRYw(SETcc, E,b), 1057 [0x95] = X86_OP_ENTRYw(SETcc, E,b), 1058 [0x96] = X86_OP_ENTRYw(SETcc, E,b), 1059 [0x97] = X86_OP_ENTRYw(SETcc, E,b), 1060 1061 [0xa0] = X86_OP_ENTRYr(PUSH, FS, w), 1062 [0xa1] = X86_OP_ENTRYw(POP, FS, w), 1063 1064 [0x0b] = X86_OP_ENTRY0(UD), /* UD2 */ 1065 [0x0d] = X86_OP_ENTRY1(NOP, M,v), /* 3DNow! prefetch */ 1066 1067 [0x18] = X86_OP_ENTRY1(NOP, nop,v), /* prefetch/reserved NOP */ 1068 [0x19] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ 1069 [0x1c] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ 1070 [0x1d] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ 1071 [0x1e] = X86_OP_ENTRY1(NOP, nop,v), /* reserved NOP */ 1072 [0x1f] = X86_OP_ENTRY1(NOP, nop,v), /* NOP/reserved NOP */ 1073 1074 [0x28] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1 p_00_66), /* MOVAPS */ 1075 [0x29] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 p_00_66), /* MOVAPS */ 1076 [0x2A] = X86_OP_GROUP0(0F2A), 1077 [0x2B] = X86_OP_GROUP0(0F2B), 1078 [0x2C] = X86_OP_GROUP0(0F2C), 1079 [0x2D] = X86_OP_GROUP0(0F2D), 1080 [0x2E] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VUCOMISS/SD */ 1081 [0x2F] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VCOMISS/SD */ 1082 1083 [0x38] = X86_OP_GROUP0(0F38), 1084 [0x3a] = X86_OP_GROUP0(0F3A), 1085 1086 [0x48] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1087 [0x49] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1088 [0x4a] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1089 [0x4b] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1090 [0x4c] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1091 [0x4d] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1092 [0x4e] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1093 [0x4f] = X86_OP_ENTRY2(CMOVcc, G,v, E,v, cpuid(CMOV)), 1094 1095 [0x58] = X86_OP_ENTRY3(VADD, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1096 [0x59] = X86_OP_ENTRY3(VMUL, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1097 [0x5a] = X86_OP_GROUP0(0F5A), 1098 [0x5b] = X86_OP_GROUP0(0F5B), 1099 [0x5c] = X86_OP_ENTRY3(VSUB, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1100 [0x5d] = X86_OP_ENTRY3(VMIN, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1101 [0x5e] = X86_OP_ENTRY3(VDIV, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1102 [0x5f] = X86_OP_ENTRY3(VMAX, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1103 1104 [0x68] = X86_OP_ENTRY3(PUNPCKHBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1105 [0x69] = X86_OP_ENTRY3(PUNPCKHWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1106 [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1107 [0x6b] = X86_OP_ENTRY3(PACKSSDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1108 [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), 1109 [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), 1110 [0x6e] = X86_OP_ENTRY3(MOVD_to, V,x, None,None, E,y, vex5 mmx p_00_66), /* wrong dest Vy on SDM! */ 1111 [0x6f] = X86_OP_GROUP0(0F6F), 1112 1113 [0x78] = X86_OP_GROUP0(0F78), 1114 [0x79] = X86_OP_GROUP2(0F79, V,x, U,x, cpuid(SSE4A)), 1115 [0x7c] = X86_OP_ENTRY3(VHADD, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 1116 [0x7d] = X86_OP_ENTRY3(VHSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 1117 [0x7e] = X86_OP_GROUP0(0F7E), 1118 [0x7f] = X86_OP_GROUP0(0F7F), 1119 1120 [0x88] = X86_OP_ENTRYr(Jcc, J,z_f64), 1121 [0x89] = X86_OP_ENTRYr(Jcc, J,z_f64), 1122 [0x8a] = X86_OP_ENTRYr(Jcc, J,z_f64), 1123 [0x8b] = X86_OP_ENTRYr(Jcc, J,z_f64), 1124 [0x8c] = X86_OP_ENTRYr(Jcc, J,z_f64), 1125 [0x8d] = X86_OP_ENTRYr(Jcc, J,z_f64), 1126 [0x8e] = X86_OP_ENTRYr(Jcc, J,z_f64), 1127 [0x8f] = X86_OP_ENTRYr(Jcc, J,z_f64), 1128 1129 [0x98] = X86_OP_ENTRYw(SETcc, E,b), 1130 [0x99] = X86_OP_ENTRYw(SETcc, E,b), 1131 [0x9a] = X86_OP_ENTRYw(SETcc, E,b), 1132 [0x9b] = X86_OP_ENTRYw(SETcc, E,b), 1133 [0x9c] = X86_OP_ENTRYw(SETcc, E,b), 1134 [0x9d] = X86_OP_ENTRYw(SETcc, E,b), 1135 [0x9e] = X86_OP_ENTRYw(SETcc, E,b), 1136 [0x9f] = X86_OP_ENTRYw(SETcc, E,b), 1137 1138 [0xa8] = X86_OP_ENTRYr(PUSH, GS, w), 1139 [0xa9] = X86_OP_ENTRYw(POP, GS, w), 1140 [0xae] = X86_OP_GROUP0(group15), 1141 /* 1142 * It's slightly more efficient to put Ev operand in T0 and allow gen_IMUL3 1143 * to assume sextT0. Multiplication is commutative anyway. 1144 */ 1145 [0xaf] = X86_OP_ENTRY3(IMUL3, G,v, E,v, 2op,v, sextT0), 1146 1147 [0xb2] = X86_OP_ENTRY3(LSS, G,v, EM,p, None, None), 1148 [0xb4] = X86_OP_ENTRY3(LFS, G,v, EM,p, None, None), 1149 [0xb5] = X86_OP_ENTRY3(LGS, G,v, EM,p, None, None), 1150 [0xb6] = X86_OP_ENTRY3(MOV, G,v, E,b, None, None, zextT0), /* MOVZX */ 1151 [0xb7] = X86_OP_ENTRY3(MOV, G,v, E,w, None, None, zextT0), /* MOVZX */ 1152 1153 /* decoded as modrm, which is visible as a difference between page fault and #UD */ 1154 [0xb9] = X86_OP_ENTRYr(UD, nop,v), /* UD1 */ 1155 [0xbe] = X86_OP_ENTRY3(MOV, G,v, E,b, None, None, sextT0), /* MOVSX */ 1156 [0xbf] = X86_OP_ENTRY3(MOV, G,v, E,w, None, None, sextT0), /* MOVSX */ 1157 1158 [0xc2] = X86_OP_ENTRY4(VCMP, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 1159 [0xc3] = X86_OP_ENTRY3(MOV, EM,y,G,y, None,None, cpuid(SSE2)), /* MOVNTI */ 1160 [0xc4] = X86_OP_ENTRY4(PINSRW, V,dq,H,dq,E,w, vex5 mmx p_00_66), 1161 [0xc5] = X86_OP_ENTRY3(PEXTRW, G,d, U,dq,I,b, vex5 mmx p_00_66), 1162 [0xc6] = X86_OP_ENTRY4(VSHUF, V,x, H,x, W,x, vex4 p_00_66), 1163 1164 [0xc8] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1165 [0xc9] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1166 [0xca] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1167 [0xcb] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1168 [0xcc] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1169 [0xcd] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1170 [0xce] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1171 [0xcf] = X86_OP_ENTRY1(BSWAP, LoBits,y), 1172 1173 [0xd0] = X86_OP_ENTRY3(VADDSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 1174 [0xd1] = X86_OP_ENTRY3(PSRLW_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1175 [0xd2] = X86_OP_ENTRY3(PSRLD_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1176 [0xd3] = X86_OP_ENTRY3(PSRLQ_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1177 [0xd4] = X86_OP_ENTRY3(PADDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1178 [0xd5] = X86_OP_ENTRY3(PMULLW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1179 [0xd6] = X86_OP_GROUP0(0FD6), 1180 [0xd7] = X86_OP_ENTRY3(PMOVMSKB, G,d, None,None, U,x, vex7 mmx avx2_256 p_00_66), 1181 1182 [0xe0] = X86_OP_ENTRY3(PAVGB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1183 [0xe1] = X86_OP_ENTRY3(PSRAW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1184 [0xe2] = X86_OP_ENTRY3(PSRAD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1185 [0xe3] = X86_OP_ENTRY3(PAVGW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1186 [0xe4] = X86_OP_ENTRY3(PMULHUW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1187 [0xe5] = X86_OP_ENTRY3(PMULHW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1188 [0xe6] = X86_OP_GROUP0(0FE6), 1189 [0xe7] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */ 1190 1191 [0xf0] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex4_unal cpuid(SSE3) p_f2), /* LDDQU */ 1192 [0xf1] = X86_OP_ENTRY3(PSLLW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1193 [0xf2] = X86_OP_ENTRY3(PSLLD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1194 [0xf3] = X86_OP_ENTRY3(PSLLQ_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 1195 [0xf4] = X86_OP_ENTRY3(PMULUDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1196 [0xf5] = X86_OP_ENTRY3(PMADDWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1197 [0xf6] = X86_OP_ENTRY3(PSADBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1198 [0xf7] = X86_OP_ENTRY3(MASKMOV, None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66), 1199 1200 /* Incorrectly missing from 2-17 */ 1201 [0xd8] = X86_OP_ENTRY3(PSUBUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1202 [0xd9] = X86_OP_ENTRY3(PSUBUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1203 [0xda] = X86_OP_ENTRY3(PMINUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1204 [0xdb] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1205 [0xdc] = X86_OP_ENTRY3(PADDUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1206 [0xdd] = X86_OP_ENTRY3(PADDUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1207 [0xde] = X86_OP_ENTRY3(PMAXUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1208 [0xdf] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1209 1210 [0xe8] = X86_OP_ENTRY3(PSUBSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1211 [0xe9] = X86_OP_ENTRY3(PSUBSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1212 [0xea] = X86_OP_ENTRY3(PMINSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1213 [0xeb] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1214 [0xec] = X86_OP_ENTRY3(PADDSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1215 [0xed] = X86_OP_ENTRY3(PADDSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1216 [0xee] = X86_OP_ENTRY3(PMAXSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1217 [0xef] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1218 1219 [0xf8] = X86_OP_ENTRY3(PSUBB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1220 [0xf9] = X86_OP_ENTRY3(PSUBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1221 [0xfa] = X86_OP_ENTRY3(PSUBD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1222 [0xfb] = X86_OP_ENTRY3(PSUBQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1223 [0xfc] = X86_OP_ENTRY3(PADDB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1224 [0xfd] = X86_OP_ENTRY3(PADDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1225 [0xfe] = X86_OP_ENTRY3(PADDD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 1226 [0xff] = X86_OP_ENTRYr(UD, nop,v), /* UD0 */ 1227}; 1228 1229static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1230{ 1231 *entry = opcodes_0F[*b]; 1232} 1233 1234static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1235{ 1236 *b = x86_ldub_code(env, s); 1237 do_decode_0F(s, env, entry, b); 1238} 1239 1240static void decode_63(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1241{ 1242 static const X86OpEntry arpl = X86_OP_ENTRY2(ARPL, E,w, G,w, chk(prot)); 1243 static const X86OpEntry mov = X86_OP_ENTRY3(MOV, G,v, E,v, None, None); 1244 static const X86OpEntry movsxd = X86_OP_ENTRY3(MOV, G,v, E,d, None, None, sextT0); 1245 if (!CODE64(s)) { 1246 *entry = arpl; 1247 } else if (REX_W(s)) { 1248 *entry = movsxd; 1249 } else { 1250 *entry = mov; 1251 } 1252} 1253 1254static void decode_group1(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1255{ 1256 static const X86GenFunc group1_gen[8] = { 1257 gen_ADD, gen_OR, gen_ADC, gen_SBB, gen_AND, gen_SUB, gen_XOR, gen_SUB, 1258 }; 1259 int op = (get_modrm(s, env) >> 3) & 7; 1260 entry->gen = group1_gen[op]; 1261 1262 if (op == 7) { 1263 /* prevent writeback for CMP */ 1264 entry->op1 = entry->op0; 1265 entry->op0 = X86_TYPE_None; 1266 entry->s0 = X86_SIZE_None; 1267 } else { 1268 entry->special = X86_SPECIAL_HasLock; 1269 } 1270} 1271 1272static void decode_group1A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1273{ 1274 int op = (get_modrm(s, env) >> 3) & 7; 1275 if (op != 0) { 1276 /* could be XOP prefix too */ 1277 *entry = UNKNOWN_OPCODE; 1278 } else { 1279 entry->gen = gen_POP; 1280 /* The address must use the value of ESP after the pop. */ 1281 s->popl_esp_hack = 1 << mo_pushpop(s, s->dflag); 1282 } 1283} 1284 1285static void decode_group2(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1286{ 1287 static const X86GenFunc group2_gen[8] = { 1288 gen_ROL, gen_ROR, gen_RCL, gen_RCR, 1289 gen_SHL, gen_SHR, gen_SHL /* SAL, undocumented */, gen_SAR, 1290 }; 1291 int op = (get_modrm(s, env) >> 3) & 7; 1292 entry->gen = group2_gen[op]; 1293 if (op == 7) { 1294 entry->special = X86_SPECIAL_SExtT0; 1295 } else { 1296 entry->special = X86_SPECIAL_ZExtT0; 1297 } 1298} 1299 1300static void decode_group3(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1301{ 1302 static const X86OpEntry opcodes_grp3[16] = { 1303 /* 0xf6 */ 1304 [0x00] = X86_OP_ENTRYrr(AND, E,b, I,b), 1305 [0x02] = X86_OP_ENTRY1(NOT, E,b, lock), 1306 [0x03] = X86_OP_ENTRY1(NEG, E,b, lock), 1307 [0x04] = X86_OP_ENTRYrr(MUL, E,b, 0,b, zextT0), 1308 [0x05] = X86_OP_ENTRYrr(IMUL,E,b, 0,b, sextT0), 1309 [0x06] = X86_OP_ENTRYr(DIV, E,b), 1310 [0x07] = X86_OP_ENTRYr(IDIV, E,b), 1311 1312 /* 0xf7 */ 1313 [0x08] = X86_OP_ENTRYrr(AND, E,v, I,z), 1314 [0x0a] = X86_OP_ENTRY1(NOT, E,v, lock), 1315 [0x0b] = X86_OP_ENTRY1(NEG, E,v, lock), 1316 [0x0c] = X86_OP_ENTRYrr(MUL, E,v, 0,v, zextT0), 1317 [0x0d] = X86_OP_ENTRYrr(IMUL,E,v, 0,v, sextT0), 1318 [0x0e] = X86_OP_ENTRYr(DIV, E,v), 1319 [0x0f] = X86_OP_ENTRYr(IDIV, E,v), 1320 }; 1321 1322 int w = (*b & 1); 1323 int reg = (get_modrm(s, env) >> 3) & 7; 1324 1325 *entry = opcodes_grp3[(w << 3) | reg]; 1326} 1327 1328static void decode_group4_5(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1329{ 1330 static const X86OpEntry opcodes_grp4_5[16] = { 1331 /* 0xfe */ 1332 [0x00] = X86_OP_ENTRY1(INC, E,b, lock), 1333 [0x01] = X86_OP_ENTRY1(DEC, E,b, lock), 1334 1335 /* 0xff */ 1336 [0x08] = X86_OP_ENTRY1(INC, E,v, lock), 1337 [0x09] = X86_OP_ENTRY1(DEC, E,v, lock), 1338 [0x0a] = X86_OP_ENTRY3(CALL_m, None, None, E,f64, None, None, zextT0), 1339 [0x0b] = X86_OP_ENTRYr(CALLF_m, M,p), 1340 [0x0c] = X86_OP_ENTRY3(JMP_m, None, None, E,f64, None, None, zextT0), 1341 [0x0d] = X86_OP_ENTRYr(JMPF_m, M,p), 1342 [0x0e] = X86_OP_ENTRYr(PUSH, E,f64), 1343 }; 1344 1345 int w = (*b & 1); 1346 int reg = (get_modrm(s, env) >> 3) & 7; 1347 1348 *entry = opcodes_grp4_5[(w << 3) | reg]; 1349} 1350 1351 1352static void decode_group11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1353{ 1354 int op = (get_modrm(s, env) >> 3) & 7; 1355 if (op != 0) { 1356 *entry = UNKNOWN_OPCODE; 1357 } else { 1358 entry->gen = gen_MOV; 1359 } 1360} 1361 1362static const X86OpEntry opcodes_root[256] = { 1363 [0x00] = X86_OP_ENTRY2(ADD, E,b, G,b, lock), 1364 [0x01] = X86_OP_ENTRY2(ADD, E,v, G,v, lock), 1365 [0x02] = X86_OP_ENTRY2(ADD, G,b, E,b, lock), 1366 [0x03] = X86_OP_ENTRY2(ADD, G,v, E,v, lock), 1367 [0x04] = X86_OP_ENTRY2(ADD, 0,b, I,b, lock), /* AL, Ib */ 1368 [0x05] = X86_OP_ENTRY2(ADD, 0,v, I,z, lock), /* rAX, Iz */ 1369 [0x06] = X86_OP_ENTRYr(PUSH, ES, w, chk(i64)), 1370 [0x07] = X86_OP_ENTRYw(POP, ES, w, chk(i64)), 1371 1372 [0x10] = X86_OP_ENTRY2(ADC, E,b, G,b, lock), 1373 [0x11] = X86_OP_ENTRY2(ADC, E,v, G,v, lock), 1374 [0x12] = X86_OP_ENTRY2(ADC, G,b, E,b, lock), 1375 [0x13] = X86_OP_ENTRY2(ADC, G,v, E,v, lock), 1376 [0x14] = X86_OP_ENTRY2(ADC, 0,b, I,b, lock), /* AL, Ib */ 1377 [0x15] = X86_OP_ENTRY2(ADC, 0,v, I,z, lock), /* rAX, Iz */ 1378 [0x16] = X86_OP_ENTRYr(PUSH, SS, w, chk(i64)), 1379 [0x17] = X86_OP_ENTRYw(POP, SS, w, chk(i64)), 1380 1381 [0x20] = X86_OP_ENTRY2(AND, E,b, G,b, lock), 1382 [0x21] = X86_OP_ENTRY2(AND, E,v, G,v, lock), 1383 [0x22] = X86_OP_ENTRY2(AND, G,b, E,b, lock), 1384 [0x23] = X86_OP_ENTRY2(AND, G,v, E,v, lock), 1385 [0x24] = X86_OP_ENTRY2(AND, 0,b, I,b, lock), /* AL, Ib */ 1386 [0x25] = X86_OP_ENTRY2(AND, 0,v, I,z, lock), /* rAX, Iz */ 1387 [0x26] = {}, 1388 [0x27] = X86_OP_ENTRY0(DAA, chk(i64)), 1389 1390 [0x30] = X86_OP_ENTRY2(XOR, E,b, G,b, lock), 1391 [0x31] = X86_OP_ENTRY2(XOR, E,v, G,v, lock), 1392 [0x32] = X86_OP_ENTRY2(XOR, G,b, E,b, lock), 1393 [0x33] = X86_OP_ENTRY2(XOR, G,v, E,v, lock), 1394 [0x34] = X86_OP_ENTRY2(XOR, 0,b, I,b, lock), /* AL, Ib */ 1395 [0x35] = X86_OP_ENTRY2(XOR, 0,v, I,z, lock), /* rAX, Iz */ 1396 [0x36] = {}, 1397 [0x37] = X86_OP_ENTRY0(AAA, chk(i64)), 1398 1399 [0x40] = X86_OP_ENTRY1(INC, 0,v, chk(i64)), 1400 [0x41] = X86_OP_ENTRY1(INC, 1,v, chk(i64)), 1401 [0x42] = X86_OP_ENTRY1(INC, 2,v, chk(i64)), 1402 [0x43] = X86_OP_ENTRY1(INC, 3,v, chk(i64)), 1403 [0x44] = X86_OP_ENTRY1(INC, 4,v, chk(i64)), 1404 [0x45] = X86_OP_ENTRY1(INC, 5,v, chk(i64)), 1405 [0x46] = X86_OP_ENTRY1(INC, 6,v, chk(i64)), 1406 [0x47] = X86_OP_ENTRY1(INC, 7,v, chk(i64)), 1407 1408 [0x50] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1409 [0x51] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1410 [0x52] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1411 [0x53] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1412 [0x54] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1413 [0x55] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1414 [0x56] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1415 [0x57] = X86_OP_ENTRYr(PUSH, LoBits,d64), 1416 1417 [0x60] = X86_OP_ENTRY0(PUSHA, chk(i64)), 1418 [0x61] = X86_OP_ENTRY0(POPA, chk(i64)), 1419 [0x62] = X86_OP_ENTRYrr(BOUND, G,v, M,a, chk(i64)), 1420 [0x63] = X86_OP_GROUP0(63), 1421 [0x64] = {}, 1422 [0x65] = {}, 1423 [0x66] = {}, 1424 [0x67] = {}, 1425 1426 [0x70] = X86_OP_ENTRYr(Jcc, J,b), 1427 [0x71] = X86_OP_ENTRYr(Jcc, J,b), 1428 [0x72] = X86_OP_ENTRYr(Jcc, J,b), 1429 [0x73] = X86_OP_ENTRYr(Jcc, J,b), 1430 [0x74] = X86_OP_ENTRYr(Jcc, J,b), 1431 [0x75] = X86_OP_ENTRYr(Jcc, J,b), 1432 [0x76] = X86_OP_ENTRYr(Jcc, J,b), 1433 [0x77] = X86_OP_ENTRYr(Jcc, J,b), 1434 1435 [0x80] = X86_OP_GROUP2(group1, E,b, I,b), 1436 [0x81] = X86_OP_GROUP2(group1, E,v, I,z), 1437 [0x82] = X86_OP_GROUP2(group1, E,b, I,b, chk(i64)), 1438 [0x83] = X86_OP_GROUP2(group1, E,v, I,b), 1439 [0x84] = X86_OP_ENTRYrr(AND, E,b, G,b), 1440 [0x85] = X86_OP_ENTRYrr(AND, E,v, G,v), 1441 [0x86] = X86_OP_ENTRY2(XCHG, E,b, G,b, xchg), 1442 [0x87] = X86_OP_ENTRY2(XCHG, E,v, G,v, xchg), 1443 1444 [0x90] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1445 [0x91] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1446 [0x92] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1447 [0x93] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1448 [0x94] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1449 [0x95] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1450 [0x96] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1451 [0x97] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v), 1452 1453 [0xA0] = X86_OP_ENTRY3(MOV, 0,b, O,b, None, None), /* AL, Ob */ 1454 [0xA1] = X86_OP_ENTRY3(MOV, 0,v, O,v, None, None), /* rAX, Ov */ 1455 [0xA2] = X86_OP_ENTRY3(MOV, O,b, 0,b, None, None), /* Ob, AL */ 1456 [0xA3] = X86_OP_ENTRY3(MOV, O,v, 0,v, None, None), /* Ov, rAX */ 1457 [0xA4] = X86_OP_ENTRYrr(MOVS, Y,b, X,b), 1458 [0xA5] = X86_OP_ENTRYrr(MOVS, Y,v, X,v), 1459 [0xA6] = X86_OP_ENTRYrr(CMPS, Y,b, X,b), 1460 [0xA7] = X86_OP_ENTRYrr(CMPS, Y,v, X,v), 1461 1462 [0xB0] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1463 [0xB1] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1464 [0xB2] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1465 [0xB3] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1466 [0xB4] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1467 [0xB5] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1468 [0xB6] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1469 [0xB7] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None), 1470 1471 [0xC0] = X86_OP_GROUP2(group2, E,b, I,b), 1472 [0xC1] = X86_OP_GROUP2(group2, E,v, I,b), 1473 [0xC2] = X86_OP_ENTRYr(RET, I,w), 1474 [0xC3] = X86_OP_ENTRY0(RET), 1475 [0xC4] = X86_OP_ENTRY3(LES, G,z, EM,p, None, None, chk(i64)), 1476 [0xC5] = X86_OP_ENTRY3(LDS, G,z, EM,p, None, None, chk(i64)), 1477 [0xC6] = X86_OP_GROUP3(group11, E,b, I,b, None, None), /* reg=000b */ 1478 [0xC7] = X86_OP_GROUP3(group11, E,v, I,z, None, None), /* reg=000b */ 1479 1480 [0xD0] = X86_OP_GROUP1(group2, E,b), 1481 [0xD1] = X86_OP_GROUP1(group2, E,v), 1482 [0xD2] = X86_OP_GROUP2(group2, E,b, 1,b), /* CL */ 1483 [0xD3] = X86_OP_GROUP2(group2, E,v, 1,b), /* CL */ 1484 [0xD4] = X86_OP_ENTRY2(AAM, 0,w, I,b), 1485 [0xD5] = X86_OP_ENTRY2(AAD, 0,w, I,b), 1486 [0xD6] = X86_OP_ENTRYw(SALC, 0,b), 1487 [0xD7] = X86_OP_ENTRY1(XLAT, 0,b, zextT0), /* AL read/written */ 1488 1489 [0xE0] = X86_OP_ENTRYr(LOOPNE, J,b), /* implicit: CX with aflag size */ 1490 [0xE1] = X86_OP_ENTRYr(LOOPE, J,b), /* implicit: CX with aflag size */ 1491 [0xE2] = X86_OP_ENTRYr(LOOP, J,b), /* implicit: CX with aflag size */ 1492 [0xE3] = X86_OP_ENTRYr(JCXZ, J,b), /* implicit: CX with aflag size */ 1493 [0xE4] = X86_OP_ENTRYwr(IN, 0,b, I_unsigned,b), /* AL */ 1494 [0xE5] = X86_OP_ENTRYwr(IN, 0,v, I_unsigned,b), /* AX/EAX */ 1495 [0xE6] = X86_OP_ENTRYrr(OUT, 0,b, I_unsigned,b), /* AL */ 1496 [0xE7] = X86_OP_ENTRYrr(OUT, 0,v, I_unsigned,b), /* AX/EAX */ 1497 1498 [0xF1] = X86_OP_ENTRY0(INT1, svm(ICEBP)), 1499 [0xF4] = X86_OP_ENTRY0(HLT, chk(cpl0)), 1500 [0xF5] = X86_OP_ENTRY0(CMC), 1501 [0xF6] = X86_OP_GROUP1(group3, E,b), 1502 [0xF7] = X86_OP_GROUP1(group3, E,v), 1503 1504 [0x08] = X86_OP_ENTRY2(OR, E,b, G,b, lock), 1505 [0x09] = X86_OP_ENTRY2(OR, E,v, G,v, lock), 1506 [0x0A] = X86_OP_ENTRY2(OR, G,b, E,b, lock), 1507 [0x0B] = X86_OP_ENTRY2(OR, G,v, E,v, lock), 1508 [0x0C] = X86_OP_ENTRY2(OR, 0,b, I,b, lock), /* AL, Ib */ 1509 [0x0D] = X86_OP_ENTRY2(OR, 0,v, I,z, lock), /* rAX, Iz */ 1510 [0x0E] = X86_OP_ENTRYr(PUSH, CS, w, chk(i64)), 1511 [0x0F] = X86_OP_GROUP0(0F), 1512 1513 [0x18] = X86_OP_ENTRY2(SBB, E,b, G,b, lock), 1514 [0x19] = X86_OP_ENTRY2(SBB, E,v, G,v, lock), 1515 [0x1A] = X86_OP_ENTRY2(SBB, G,b, E,b, lock), 1516 [0x1B] = X86_OP_ENTRY2(SBB, G,v, E,v, lock), 1517 [0x1C] = X86_OP_ENTRY2(SBB, 0,b, I,b, lock), /* AL, Ib */ 1518 [0x1D] = X86_OP_ENTRY2(SBB, 0,v, I,z, lock), /* rAX, Iz */ 1519 [0x1E] = X86_OP_ENTRYr(PUSH, DS, w, chk(i64)), 1520 [0x1F] = X86_OP_ENTRYw(POP, DS, w, chk(i64)), 1521 1522 [0x28] = X86_OP_ENTRY2(SUB, E,b, G,b, lock), 1523 [0x29] = X86_OP_ENTRY2(SUB, E,v, G,v, lock), 1524 [0x2A] = X86_OP_ENTRY2(SUB, G,b, E,b, lock), 1525 [0x2B] = X86_OP_ENTRY2(SUB, G,v, E,v, lock), 1526 [0x2C] = X86_OP_ENTRY2(SUB, 0,b, I,b, lock), /* AL, Ib */ 1527 [0x2D] = X86_OP_ENTRY2(SUB, 0,v, I,z, lock), /* rAX, Iz */ 1528 [0x2E] = {}, 1529 [0x2F] = X86_OP_ENTRY0(DAS, chk(i64)), 1530 1531 [0x38] = X86_OP_ENTRYrr(SUB, E,b, G,b), 1532 [0x39] = X86_OP_ENTRYrr(SUB, E,v, G,v), 1533 [0x3A] = X86_OP_ENTRYrr(SUB, G,b, E,b), 1534 [0x3B] = X86_OP_ENTRYrr(SUB, G,v, E,v), 1535 [0x3C] = X86_OP_ENTRYrr(SUB, 0,b, I,b), /* AL, Ib */ 1536 [0x3D] = X86_OP_ENTRYrr(SUB, 0,v, I,z), /* rAX, Iz */ 1537 [0x3E] = {}, 1538 [0x3F] = X86_OP_ENTRY0(AAS, chk(i64)), 1539 1540 [0x48] = X86_OP_ENTRY1(DEC, 0,v, chk(i64)), 1541 [0x49] = X86_OP_ENTRY1(DEC, 1,v, chk(i64)), 1542 [0x4A] = X86_OP_ENTRY1(DEC, 2,v, chk(i64)), 1543 [0x4B] = X86_OP_ENTRY1(DEC, 3,v, chk(i64)), 1544 [0x4C] = X86_OP_ENTRY1(DEC, 4,v, chk(i64)), 1545 [0x4D] = X86_OP_ENTRY1(DEC, 5,v, chk(i64)), 1546 [0x4E] = X86_OP_ENTRY1(DEC, 6,v, chk(i64)), 1547 [0x4F] = X86_OP_ENTRY1(DEC, 7,v, chk(i64)), 1548 1549 [0x58] = X86_OP_ENTRYw(POP, LoBits,d64), 1550 [0x59] = X86_OP_ENTRYw(POP, LoBits,d64), 1551 [0x5A] = X86_OP_ENTRYw(POP, LoBits,d64), 1552 [0x5B] = X86_OP_ENTRYw(POP, LoBits,d64), 1553 [0x5C] = X86_OP_ENTRYw(POP, LoBits,d64), 1554 [0x5D] = X86_OP_ENTRYw(POP, LoBits,d64), 1555 [0x5E] = X86_OP_ENTRYw(POP, LoBits,d64), 1556 [0x5F] = X86_OP_ENTRYw(POP, LoBits,d64), 1557 1558 [0x68] = X86_OP_ENTRYr(PUSH, I,z), 1559 [0x69] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,z, sextT0), 1560 [0x6A] = X86_OP_ENTRYr(PUSH, I,b), 1561 [0x6B] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,b, sextT0), 1562 [0x6C] = X86_OP_ENTRYrr(INS, Y,b, 2,w), /* DX */ 1563 [0x6D] = X86_OP_ENTRYrr(INS, Y,z, 2,w), /* DX */ 1564 [0x6E] = X86_OP_ENTRYrr(OUTS, X,b, 2,w), /* DX */ 1565 [0x6F] = X86_OP_ENTRYrr(OUTS, X,z, 2,w), /* DX */ 1566 1567 [0x78] = X86_OP_ENTRYr(Jcc, J,b), 1568 [0x79] = X86_OP_ENTRYr(Jcc, J,b), 1569 [0x7A] = X86_OP_ENTRYr(Jcc, J,b), 1570 [0x7B] = X86_OP_ENTRYr(Jcc, J,b), 1571 [0x7C] = X86_OP_ENTRYr(Jcc, J,b), 1572 [0x7D] = X86_OP_ENTRYr(Jcc, J,b), 1573 [0x7E] = X86_OP_ENTRYr(Jcc, J,b), 1574 [0x7F] = X86_OP_ENTRYr(Jcc, J,b), 1575 1576 [0x88] = X86_OP_ENTRY3(MOV, E,b, G,b, None, None), 1577 [0x89] = X86_OP_ENTRY3(MOV, E,v, G,v, None, None), 1578 [0x8A] = X86_OP_ENTRY3(MOV, G,b, E,b, None, None), 1579 [0x8B] = X86_OP_ENTRY3(MOV, G,v, E,v, None, None), 1580 /* Missing in Table A-2: memory destination is always 16-bit. */ 1581 [0x8C] = X86_OP_ENTRY3(MOV, E,v, S,w, None, None, op0_Mw), 1582 [0x8D] = X86_OP_ENTRY3(LEA, G,v, M,v, None, None, noseg), 1583 [0x8E] = X86_OP_ENTRY3(MOV, S,w, E,w, None, None), 1584 [0x8F] = X86_OP_GROUPw(group1A, E,v), 1585 1586 [0x98] = X86_OP_ENTRY1(CBW, 0,v), /* rAX */ 1587 [0x99] = X86_OP_ENTRY3(CWD, 2,v, 0,v, None, None), /* rDX, rAX */ 1588 [0x9A] = X86_OP_ENTRYrr(CALLF, I_unsigned,p, I_unsigned,w, chk(i64)), 1589 [0x9B] = X86_OP_ENTRY0(WAIT), 1590 [0x9C] = X86_OP_ENTRY0(PUSHF, chk(vm86_iopl) svm(PUSHF)), 1591 [0x9D] = X86_OP_ENTRY0(POPF, chk(vm86_iopl) svm(POPF)), 1592 [0x9E] = X86_OP_ENTRY0(SAHF), 1593 [0x9F] = X86_OP_ENTRY0(LAHF), 1594 1595 [0xA8] = X86_OP_ENTRYrr(AND, 0,b, I,b), /* AL, Ib */ 1596 [0xA9] = X86_OP_ENTRYrr(AND, 0,v, I,z), /* rAX, Iz */ 1597 [0xAA] = X86_OP_ENTRY3(STOS, Y,b, 0,b, None, None), 1598 [0xAB] = X86_OP_ENTRY3(STOS, Y,v, 0,v, None, None), 1599 /* Manual writeback because REP LODS (!) has to write EAX/RAX after every LODS. */ 1600 [0xAC] = X86_OP_ENTRYr(LODS, X,b), 1601 [0xAD] = X86_OP_ENTRYr(LODS, X,v), 1602 [0xAE] = X86_OP_ENTRYrr(SCAS, 0,b, Y,b), 1603 [0xAF] = X86_OP_ENTRYrr(SCAS, 0,v, Y,v), 1604 1605 [0xB8] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None), 1606 [0xB9] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None), 1607 [0xBA] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None), 1608 [0xBB] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None), 1609 [0xBC] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None), 1610 [0xBD] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None), 1611 [0xBE] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None), 1612 [0xBF] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None), 1613 1614 [0xC8] = X86_OP_ENTRYrr(ENTER, I,w, I,b), 1615 [0xC9] = X86_OP_ENTRY1(LEAVE, A,d64), 1616 [0xCA] = X86_OP_ENTRYr(RETF, I,w), 1617 [0xCB] = X86_OP_ENTRY0(RETF), 1618 [0xCC] = X86_OP_ENTRY0(INT3), 1619 [0xCD] = X86_OP_ENTRYr(INT, I,b, chk(vm86_iopl)), 1620 [0xCE] = X86_OP_ENTRY0(INTO), 1621 [0xCF] = X86_OP_ENTRY0(IRET, chk(vm86_iopl) svm(IRET)), 1622 1623 [0xE8] = X86_OP_ENTRYr(CALL, J,z_f64), 1624 [0xE9] = X86_OP_ENTRYr(JMP, J,z_f64), 1625 [0xEA] = X86_OP_ENTRYrr(JMPF, I_unsigned,p, I_unsigned,w, chk(i64)), 1626 [0xEB] = X86_OP_ENTRYr(JMP, J,b), 1627 [0xEC] = X86_OP_ENTRYwr(IN, 0,b, 2,w), /* AL, DX */ 1628 [0xED] = X86_OP_ENTRYwr(IN, 0,v, 2,w), /* AX/EAX, DX */ 1629 [0xEE] = X86_OP_ENTRYrr(OUT, 0,b, 2,w), /* DX, AL */ 1630 [0xEF] = X86_OP_ENTRYrr(OUT, 0,v, 2,w), /* DX, AX/EAX */ 1631 1632 [0xF8] = X86_OP_ENTRY0(CLC), 1633 [0xF9] = X86_OP_ENTRY0(STC), 1634 [0xFA] = X86_OP_ENTRY0(CLI, chk(iopl)), 1635 [0xFB] = X86_OP_ENTRY0(STI, chk(iopl)), 1636 [0xFC] = X86_OP_ENTRY0(CLD), 1637 [0xFD] = X86_OP_ENTRY0(STD), 1638 [0xFE] = X86_OP_GROUP1(group4_5, E,b), 1639 [0xFF] = X86_OP_GROUP1(group4_5, E,v), 1640}; 1641 1642#undef mmx 1643#undef vex1 1644#undef vex2 1645#undef vex3 1646#undef vex4 1647#undef vex4_unal 1648#undef vex5 1649#undef vex6 1650#undef vex7 1651#undef vex8 1652#undef vex11 1653#undef vex12 1654#undef vex13 1655 1656/* 1657 * Decode the fixed part of the opcode and place the last 1658 * in b. 1659 */ 1660static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1661{ 1662 *entry = opcodes_root[*b]; 1663} 1664 1665 1666static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, 1667 X86DecodedOp *op, X86OpType type) 1668{ 1669 int modrm = get_modrm(s, env); 1670 if ((modrm >> 6) == 3) { 1671 op->n = (modrm & 7); 1672 if (type != X86_TYPE_Q && type != X86_TYPE_N) { 1673 op->n |= REX_B(s); 1674 } 1675 } else { 1676 op->has_ea = true; 1677 op->n = -1; 1678 decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env)); 1679 } 1680 return modrm; 1681} 1682 1683static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot) 1684{ 1685 switch (size) { 1686 case X86_SIZE_b: /* byte */ 1687 *ot = MO_8; 1688 return true; 1689 1690 case X86_SIZE_d: /* 32-bit */ 1691 case X86_SIZE_ss: /* SSE/AVX scalar single precision */ 1692 *ot = MO_32; 1693 return true; 1694 1695 case X86_SIZE_p: /* Far pointer, return offset size */ 1696 case X86_SIZE_s: /* Descriptor, return offset size */ 1697 case X86_SIZE_v: /* 16/32/64-bit, based on operand size */ 1698 *ot = s->dflag; 1699 return true; 1700 1701 case X86_SIZE_pi: /* MMX */ 1702 case X86_SIZE_q: /* 64-bit */ 1703 case X86_SIZE_sd: /* SSE/AVX scalar double precision */ 1704 *ot = MO_64; 1705 return true; 1706 1707 case X86_SIZE_w: /* 16-bit */ 1708 *ot = MO_16; 1709 return true; 1710 1711 case X86_SIZE_y: /* 32/64-bit, based on operand size */ 1712 *ot = s->dflag == MO_16 ? MO_32 : s->dflag; 1713 return true; 1714 1715 case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */ 1716 *ot = s->dflag == MO_16 ? MO_16 : MO_32; 1717 return true; 1718 1719 case X86_SIZE_z_f64: /* 32-bit for 32-bit operand size or 64-bit mode, else 16-bit */ 1720 *ot = !CODE64(s) && s->dflag == MO_16 ? MO_16 : MO_32; 1721 return true; 1722 1723 case X86_SIZE_dq: /* SSE/AVX 128-bit */ 1724 if (e->special == X86_SPECIAL_MMX && 1725 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1726 *ot = MO_64; 1727 return true; 1728 } 1729 if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) { 1730 return false; 1731 } 1732 *ot = MO_128; 1733 return true; 1734 1735 case X86_SIZE_qq: /* AVX 256-bit */ 1736 if (!s->vex_l) { 1737 return false; 1738 } 1739 *ot = MO_256; 1740 return true; 1741 1742 case X86_SIZE_x: /* 128/256-bit, based on operand size */ 1743 if (e->special == X86_SPECIAL_MMX && 1744 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1745 *ot = MO_64; 1746 return true; 1747 } 1748 /* fall through */ 1749 case X86_SIZE_ps: /* SSE/AVX packed single precision */ 1750 case X86_SIZE_pd: /* SSE/AVX packed double precision */ 1751 *ot = s->vex_l ? MO_256 : MO_128; 1752 return true; 1753 1754 case X86_SIZE_xh: /* SSE/AVX packed half register */ 1755 *ot = s->vex_l ? MO_128 : MO_64; 1756 return true; 1757 1758 case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */ 1759 *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag; 1760 return true; 1761 1762 case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */ 1763 *ot = CODE64(s) ? MO_64 : s->dflag; 1764 return true; 1765 1766 default: 1767 *ot = -1; 1768 return true; 1769 } 1770} 1771 1772static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, 1773 X86DecodedOp *op, X86OpType type, int b) 1774{ 1775 int modrm; 1776 1777 switch (type) { 1778 case X86_TYPE_None: /* Implicit or absent */ 1779 case X86_TYPE_A: /* Implicit */ 1780 case X86_TYPE_F: /* EFLAGS/RFLAGS */ 1781 case X86_TYPE_X: /* string source */ 1782 case X86_TYPE_Y: /* string destination */ 1783 break; 1784 1785 case X86_TYPE_B: /* VEX.vvvv selects a GPR */ 1786 op->unit = X86_OP_INT; 1787 op->n = s->vex_v; 1788 break; 1789 1790 case X86_TYPE_C: /* REG in the modrm byte selects a control register */ 1791 op->unit = X86_OP_CR; 1792 goto get_reg; 1793 1794 case X86_TYPE_D: /* REG in the modrm byte selects a debug register */ 1795 op->unit = X86_OP_DR; 1796 goto get_reg; 1797 1798 case X86_TYPE_G: /* REG in the modrm byte selects a GPR */ 1799 op->unit = X86_OP_INT; 1800 goto get_reg; 1801 1802 case X86_TYPE_S: /* reg selects a segment register */ 1803 op->unit = X86_OP_SEG; 1804 goto get_reg; 1805 1806 case X86_TYPE_P: 1807 op->unit = X86_OP_MMX; 1808 goto get_reg; 1809 1810 case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */ 1811 if (decode->e.special == X86_SPECIAL_MMX && 1812 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1813 op->unit = X86_OP_MMX; 1814 } else { 1815 op->unit = X86_OP_SSE; 1816 } 1817 get_reg: 1818 op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s); 1819 break; 1820 1821 case X86_TYPE_E: /* ALU modrm operand */ 1822 op->unit = X86_OP_INT; 1823 goto get_modrm; 1824 1825 case X86_TYPE_Q: /* MMX modrm operand */ 1826 op->unit = X86_OP_MMX; 1827 goto get_modrm; 1828 1829 case X86_TYPE_W: /* XMM/YMM modrm operand */ 1830 if (decode->e.special == X86_SPECIAL_MMX && 1831 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1832 op->unit = X86_OP_MMX; 1833 } else { 1834 op->unit = X86_OP_SSE; 1835 } 1836 goto get_modrm; 1837 1838 case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */ 1839 op->unit = X86_OP_MMX; 1840 goto get_modrm_reg; 1841 1842 case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */ 1843 if (decode->e.special == X86_SPECIAL_MMX && 1844 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1845 op->unit = X86_OP_MMX; 1846 } else { 1847 op->unit = X86_OP_SSE; 1848 } 1849 goto get_modrm_reg; 1850 1851 case X86_TYPE_R: /* R/M in the modrm byte selects a register */ 1852 op->unit = X86_OP_INT; 1853 get_modrm_reg: 1854 modrm = get_modrm(s, env); 1855 if ((modrm >> 6) != 3) { 1856 return false; 1857 } 1858 goto get_modrm; 1859 1860 case X86_TYPE_WM: /* modrm byte selects an XMM/YMM memory operand */ 1861 op->unit = X86_OP_SSE; 1862 goto get_modrm_mem; 1863 1864 case X86_TYPE_EM: /* modrm byte selects an ALU memory operand */ 1865 op->unit = X86_OP_INT; 1866 /* fall through */ 1867 case X86_TYPE_M: /* modrm byte selects a memory operand */ 1868 get_modrm_mem: 1869 modrm = get_modrm(s, env); 1870 if ((modrm >> 6) == 3) { 1871 return false; 1872 } 1873 /* fall through */ 1874 case X86_TYPE_nop: /* modrm operand decoded but not fetched */ 1875 get_modrm: 1876 decode_modrm(s, env, decode, op, type); 1877 break; 1878 1879 case X86_TYPE_O: /* Absolute address encoded in the instruction */ 1880 op->unit = X86_OP_INT; 1881 op->has_ea = true; 1882 op->n = -1; 1883 decode->mem = (AddressParts) { 1884 .def_seg = R_DS, 1885 .base = -1, 1886 .index = -1, 1887 .disp = insn_get_addr(env, s, s->aflag) 1888 }; 1889 break; 1890 1891 case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */ 1892 if ((s->prefix & PREFIX_VEX)) { 1893 op->unit = X86_OP_SSE; 1894 op->n = s->vex_v; 1895 break; 1896 } 1897 if (op == &decode->op[0]) { 1898 /* shifts place the destination in VEX.vvvv, use modrm */ 1899 return decode_op(s, env, decode, op, decode->e.op1, b); 1900 } else { 1901 return decode_op(s, env, decode, op, decode->e.op0, b); 1902 } 1903 1904 case X86_TYPE_I: /* Immediate */ 1905 case X86_TYPE_J: /* Relative offset for a jump */ 1906 op->unit = X86_OP_IMM; 1907 decode->immediate = op->imm = insn_get_signed(env, s, op->ot); 1908 break; 1909 1910 case X86_TYPE_I_unsigned: /* Immediate */ 1911 op->unit = X86_OP_IMM; 1912 decode->immediate = op->imm = insn_get(env, s, op->ot); 1913 break; 1914 1915 case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */ 1916 op->n = insn_get(env, s, op->ot) >> 4; 1917 break; 1918 1919 case X86_TYPE_2op: 1920 *op = decode->op[0]; 1921 break; 1922 1923 case X86_TYPE_LoBits: 1924 op->n = (b & 7) | REX_B(s); 1925 op->unit = X86_OP_INT; 1926 break; 1927 1928 case X86_TYPE_0 ... X86_TYPE_7: 1929 op->n = type - X86_TYPE_0; 1930 op->unit = X86_OP_INT; 1931 break; 1932 1933 case X86_TYPE_ES ... X86_TYPE_GS: 1934 op->n = type - X86_TYPE_ES; 1935 op->unit = X86_OP_SEG; 1936 break; 1937 } 1938 1939 return true; 1940} 1941 1942static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e) 1943{ 1944 uint16_t sse_prefixes; 1945 1946 if (!e->valid_prefix) { 1947 return true; 1948 } 1949 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { 1950 /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66. */ 1951 s->prefix &= ~PREFIX_DATA; 1952 } 1953 1954 /* Now, either zero or one bit is set in sse_prefixes. */ 1955 sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA); 1956 return e->valid_prefix & (1 << sse_prefixes); 1957} 1958 1959static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func, 1960 X86DecodedInsn *decode) 1961{ 1962 X86OpEntry *e = &decode->e; 1963 1964 decode_func(s, env, e, &decode->b); 1965 while (e->is_decode) { 1966 e->is_decode = false; 1967 e->decode(s, env, e, &decode->b); 1968 } 1969 1970 if (!validate_sse_prefix(s, e)) { 1971 return false; 1972 } 1973 1974 /* First compute size of operands in order to initialize s->rip_offset. */ 1975 if (e->op0 != X86_TYPE_None) { 1976 if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) { 1977 return false; 1978 } 1979 if (e->op0 == X86_TYPE_I) { 1980 s->rip_offset += 1 << decode->op[0].ot; 1981 } 1982 } 1983 if (e->op1 != X86_TYPE_None) { 1984 if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) { 1985 return false; 1986 } 1987 if (e->op1 == X86_TYPE_I) { 1988 s->rip_offset += 1 << decode->op[1].ot; 1989 } 1990 } 1991 if (e->op2 != X86_TYPE_None) { 1992 if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) { 1993 return false; 1994 } 1995 if (e->op2 == X86_TYPE_I) { 1996 s->rip_offset += 1 << decode->op[2].ot; 1997 } 1998 } 1999 if (e->op3 != X86_TYPE_None) { 2000 /* 2001 * A couple instructions actually use the extra immediate byte for an Lx 2002 * register operand; those are handled in the gen_* functions as one off. 2003 */ 2004 assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b); 2005 s->rip_offset += 1; 2006 } 2007 2008 if (e->op0 != X86_TYPE_None && 2009 !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) { 2010 return false; 2011 } 2012 2013 if (e->op1 != X86_TYPE_None && 2014 !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) { 2015 return false; 2016 } 2017 2018 if (e->op2 != X86_TYPE_None && 2019 !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) { 2020 return false; 2021 } 2022 2023 if (e->op3 != X86_TYPE_None) { 2024 decode->immediate = insn_get_signed(env, s, MO_8); 2025 } 2026 2027 return true; 2028} 2029 2030static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid) 2031{ 2032 switch (cpuid) { 2033 case X86_FEAT_None: 2034 return true; 2035 case X86_FEAT_CMOV: 2036 return (s->cpuid_features & CPUID_CMOV); 2037 case X86_FEAT_F16C: 2038 return (s->cpuid_ext_features & CPUID_EXT_F16C); 2039 case X86_FEAT_FMA: 2040 return (s->cpuid_ext_features & CPUID_EXT_FMA); 2041 case X86_FEAT_MOVBE: 2042 return (s->cpuid_ext_features & CPUID_EXT_MOVBE); 2043 case X86_FEAT_PCLMULQDQ: 2044 return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ); 2045 case X86_FEAT_SSE: 2046 return (s->cpuid_features & CPUID_SSE); 2047 case X86_FEAT_SSE2: 2048 return (s->cpuid_features & CPUID_SSE2); 2049 case X86_FEAT_SSE3: 2050 return (s->cpuid_ext_features & CPUID_EXT_SSE3); 2051 case X86_FEAT_SSSE3: 2052 return (s->cpuid_ext_features & CPUID_EXT_SSSE3); 2053 case X86_FEAT_SSE41: 2054 return (s->cpuid_ext_features & CPUID_EXT_SSE41); 2055 case X86_FEAT_SSE42: 2056 return (s->cpuid_ext_features & CPUID_EXT_SSE42); 2057 case X86_FEAT_AES: 2058 if (!(s->cpuid_ext_features & CPUID_EXT_AES)) { 2059 return false; 2060 } else if (!(s->prefix & PREFIX_VEX)) { 2061 return true; 2062 } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) { 2063 return false; 2064 } else { 2065 return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES); 2066 } 2067 2068 case X86_FEAT_AVX: 2069 return (s->cpuid_ext_features & CPUID_EXT_AVX); 2070 2071 case X86_FEAT_3DNOW: 2072 return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW); 2073 case X86_FEAT_SSE4A: 2074 return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A); 2075 2076 case X86_FEAT_ADX: 2077 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX); 2078 case X86_FEAT_BMI1: 2079 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1); 2080 case X86_FEAT_BMI2: 2081 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2); 2082 case X86_FEAT_AVX2: 2083 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2); 2084 case X86_FEAT_SHA_NI: 2085 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SHA_NI); 2086 2087 case X86_FEAT_CMPCCXADD: 2088 return (s->cpuid_7_1_eax_features & CPUID_7_1_EAX_CMPCCXADD); 2089 } 2090 g_assert_not_reached(); 2091} 2092 2093static bool validate_vex(DisasContext *s, X86DecodedInsn *decode) 2094{ 2095 X86OpEntry *e = &decode->e; 2096 2097 switch (e->vex_special) { 2098 case X86_VEX_REPScalar: 2099 /* 2100 * Instructions which differ between 00/66 and F2/F3 in the 2101 * exception classification and the size of the memory operand. 2102 */ 2103 assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4); 2104 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { 2105 e->vex_class = e->vex_class < 4 ? 3 : 5; 2106 if (s->vex_l) { 2107 goto illegal; 2108 } 2109 assert(decode->e.s2 == X86_SIZE_x); 2110 if (decode->op[2].has_ea) { 2111 decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64; 2112 } 2113 } 2114 break; 2115 2116 case X86_VEX_SSEUnaligned: 2117 /* handled in sse_needs_alignment. */ 2118 break; 2119 2120 case X86_VEX_AVX2_256: 2121 if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) { 2122 goto illegal; 2123 } 2124 } 2125 2126 switch (e->vex_class) { 2127 case 0: 2128 if (s->prefix & PREFIX_VEX) { 2129 goto illegal; 2130 } 2131 return true; 2132 case 1: 2133 case 2: 2134 case 3: 2135 case 4: 2136 case 5: 2137 case 7: 2138 if (s->prefix & PREFIX_VEX) { 2139 if (!(s->flags & HF_AVX_EN_MASK)) { 2140 goto illegal; 2141 } 2142 } else if (e->special != X86_SPECIAL_MMX || 2143 (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { 2144 if (!(s->flags & HF_OSFXSR_MASK)) { 2145 goto illegal; 2146 } 2147 } 2148 break; 2149 case 12: 2150 /* Must have a VSIB byte and no address prefix. */ 2151 assert(s->has_modrm); 2152 if ((s->modrm & 7) != 4 || s->aflag == MO_16) { 2153 goto illegal; 2154 } 2155 2156 /* Check no overlap between registers. */ 2157 if (!decode->op[0].has_ea && 2158 (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) { 2159 goto illegal; 2160 } 2161 assert(!decode->op[1].has_ea); 2162 if (decode->op[1].n == decode->mem.index) { 2163 goto illegal; 2164 } 2165 if (!decode->op[2].has_ea && 2166 (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) { 2167 goto illegal; 2168 } 2169 /* fall through */ 2170 case 6: 2171 case 11: 2172 if (!(s->prefix & PREFIX_VEX)) { 2173 goto illegal; 2174 } 2175 if (!(s->flags & HF_AVX_EN_MASK)) { 2176 goto illegal; 2177 } 2178 break; 2179 case 8: 2180 /* Non-VEX case handled in decode_0F77. */ 2181 assert(s->prefix & PREFIX_VEX); 2182 if (!(s->flags & HF_AVX_EN_MASK)) { 2183 goto illegal; 2184 } 2185 break; 2186 case 13: 2187 if (!(s->prefix & PREFIX_VEX)) { 2188 goto illegal; 2189 } 2190 if (s->vex_l) { 2191 goto illegal; 2192 } 2193 /* All integer instructions use VEX.vvvv, so exit. */ 2194 return true; 2195 } 2196 2197 if (s->vex_v != 0 && 2198 e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B && 2199 e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B && 2200 e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) { 2201 goto illegal; 2202 } 2203 2204 if (s->flags & HF_TS_MASK) { 2205 goto nm_exception; 2206 } 2207 if (s->flags & HF_EM_MASK) { 2208 goto illegal; 2209 } 2210 2211 if (e->check) { 2212 if (e->check & X86_CHECK_VEX128) { 2213 if (s->vex_l) { 2214 goto illegal; 2215 } 2216 } 2217 if (e->check & X86_CHECK_W0) { 2218 if (s->vex_w) { 2219 goto illegal; 2220 } 2221 } 2222 if (e->check & X86_CHECK_W1) { 2223 if (!s->vex_w) { 2224 goto illegal; 2225 } 2226 } 2227 } 2228 return true; 2229 2230nm_exception: 2231 gen_NM_exception(s); 2232 return false; 2233illegal: 2234 gen_illegal_opcode(s); 2235 return false; 2236} 2237 2238/* 2239 * Convert one instruction. s->base.is_jmp is set if the translation must 2240 * be stopped. 2241 */ 2242static void disas_insn(DisasContext *s, CPUState *cpu) 2243{ 2244 CPUX86State *env = cpu_env(cpu); 2245 X86DecodedInsn decode; 2246 X86DecodeFunc decode_func = decode_root; 2247 uint8_t cc_live, b; 2248 2249 s->pc = s->base.pc_next; 2250 s->override = -1; 2251 s->popl_esp_hack = 0; 2252#ifdef TARGET_X86_64 2253 s->rex_r = 0; 2254 s->rex_x = 0; 2255 s->rex_b = 0; 2256#endif 2257 s->rip_offset = 0; /* for relative ip address */ 2258 s->vex_l = 0; 2259 s->vex_v = 0; 2260 s->vex_w = false; 2261 s->has_modrm = false; 2262 s->prefix = 0; 2263 2264 next_byte: 2265 b = x86_ldub_code(env, s); 2266 2267 /* Collect prefixes. */ 2268 switch (b) { 2269 case 0xf3: 2270 s->prefix |= PREFIX_REPZ; 2271 s->prefix &= ~PREFIX_REPNZ; 2272 goto next_byte; 2273 case 0xf2: 2274 s->prefix |= PREFIX_REPNZ; 2275 s->prefix &= ~PREFIX_REPZ; 2276 goto next_byte; 2277 case 0xf0: 2278 s->prefix |= PREFIX_LOCK; 2279 goto next_byte; 2280 case 0x2e: 2281 s->override = R_CS; 2282 goto next_byte; 2283 case 0x36: 2284 s->override = R_SS; 2285 goto next_byte; 2286 case 0x3e: 2287 s->override = R_DS; 2288 goto next_byte; 2289 case 0x26: 2290 s->override = R_ES; 2291 goto next_byte; 2292 case 0x64: 2293 s->override = R_FS; 2294 goto next_byte; 2295 case 0x65: 2296 s->override = R_GS; 2297 goto next_byte; 2298 case 0x66: 2299 s->prefix |= PREFIX_DATA; 2300 goto next_byte; 2301 case 0x67: 2302 s->prefix |= PREFIX_ADR; 2303 goto next_byte; 2304#ifdef TARGET_X86_64 2305 case 0x40 ... 0x4f: 2306 if (CODE64(s)) { 2307 /* REX prefix */ 2308 s->prefix |= PREFIX_REX; 2309 s->vex_w = (b >> 3) & 1; 2310 s->rex_r = (b & 0x4) << 1; 2311 s->rex_x = (b & 0x2) << 2; 2312 s->rex_b = (b & 0x1) << 3; 2313 goto next_byte; 2314 } 2315 break; 2316#endif 2317 case 0xc5: /* 2-byte VEX */ 2318 case 0xc4: /* 3-byte VEX */ 2319 /* 2320 * VEX prefixes cannot be used except in 32-bit mode. 2321 * Otherwise the instruction is LES or LDS. 2322 */ 2323 if (CODE32(s) && !VM86(s)) { 2324 static const int pp_prefix[4] = { 2325 0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ 2326 }; 2327 int vex3, vex2 = x86_ldub_code(env, s); 2328 2329 if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) { 2330 /* 2331 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b, 2332 * otherwise the instruction is LES or LDS. 2333 */ 2334 s->pc--; /* rewind the advance_pc() x86_ldub_code() did */ 2335 break; 2336 } 2337 2338 /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */ 2339 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ 2340 | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) { 2341 goto illegal_op; 2342 } 2343#ifdef TARGET_X86_64 2344 s->rex_r = (~vex2 >> 4) & 8; 2345#endif 2346 if (b == 0xc5) { 2347 /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */ 2348 vex3 = vex2; 2349 decode_func = decode_0F; 2350 } else { 2351 /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */ 2352 vex3 = x86_ldub_code(env, s); 2353#ifdef TARGET_X86_64 2354 s->rex_x = (~vex2 >> 3) & 8; 2355 s->rex_b = (~vex2 >> 2) & 8; 2356#endif 2357 s->vex_w = (vex3 >> 7) & 1; 2358 switch (vex2 & 0x1f) { 2359 case 0x01: /* Implied 0f leading opcode bytes. */ 2360 decode_func = decode_0F; 2361 break; 2362 case 0x02: /* Implied 0f 38 leading opcode bytes. */ 2363 decode_func = decode_0F38; 2364 break; 2365 case 0x03: /* Implied 0f 3a leading opcode bytes. */ 2366 decode_func = decode_0F3A; 2367 break; 2368 default: /* Reserved for future use. */ 2369 goto unknown_op; 2370 } 2371 } 2372 s->vex_v = (~vex3 >> 3) & 0xf; 2373 s->vex_l = (vex3 >> 2) & 1; 2374 s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX; 2375 } 2376 break; 2377 default: 2378 break; 2379 } 2380 2381 /* Post-process prefixes. */ 2382 if (CODE64(s)) { 2383 /* 2384 * In 64-bit mode, the default data size is 32-bit. Select 64-bit 2385 * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence 2386 * over 0x66 if both are present. 2387 */ 2388 s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32); 2389 /* In 64-bit mode, 0x67 selects 32-bit addressing. */ 2390 s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64); 2391 } else { 2392 /* In 16/32-bit mode, 0x66 selects the opposite data size. */ 2393 if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) { 2394 s->dflag = MO_32; 2395 } else { 2396 s->dflag = MO_16; 2397 } 2398 /* In 16/32-bit mode, 0x67 selects the opposite addressing. */ 2399 if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) { 2400 s->aflag = MO_32; 2401 } else { 2402 s->aflag = MO_16; 2403 } 2404 } 2405 2406 /* Go back to old decoder for unconverted opcodes. */ 2407 if (!(s->prefix & PREFIX_VEX)) { 2408 if ((b & ~7) == 0xd8) { 2409 if (!disas_insn_x87(s, cpu, b)) { 2410 goto unknown_op; 2411 } 2412 return; 2413 } 2414 2415 if (b == 0x0f) { 2416 b = x86_ldub_code(env, s); 2417 switch (b) { 2418 case 0x00 ... 0x03: /* mostly privileged instructions */ 2419 case 0x05 ... 0x09: 2420 case 0x1a ... 0x1b: /* MPX */ 2421 case 0x20 ... 0x23: /* mov from/to CR and DR */ 2422 case 0x30 ... 0x35: /* more privileged instructions */ 2423 case 0xa2 ... 0xa5: /* CPUID, BT, SHLD */ 2424 case 0xaa ... 0xae: /* RSM, SHRD, grp15 */ 2425 case 0xb0 ... 0xb1: /* cmpxchg */ 2426 case 0xb3: /* btr */ 2427 case 0xb8: /* integer ops */ 2428 case 0xba ... 0xbd: /* integer ops */ 2429 case 0xc0 ... 0xc1: /* xadd */ 2430 case 0xc7: /* grp9 */ 2431 disas_insn_old(s, cpu, b + 0x100); 2432 return; 2433 default: 2434 decode_func = do_decode_0F; 2435 break; 2436 } 2437 } 2438 } 2439 2440 memset(&decode, 0, sizeof(decode)); 2441 decode.cc_op = -1; 2442 decode.b = b; 2443 if (!decode_insn(s, env, decode_func, &decode)) { 2444 goto illegal_op; 2445 } 2446 if (!decode.e.gen) { 2447 goto unknown_op; 2448 } 2449 2450 if (!has_cpuid_feature(s, decode.e.cpuid)) { 2451 goto illegal_op; 2452 } 2453 2454 /* Checks that result in #UD come first. */ 2455 if (decode.e.check) { 2456 if (decode.e.check & X86_CHECK_i64) { 2457 if (CODE64(s)) { 2458 goto illegal_op; 2459 } 2460 } 2461 if (decode.e.check & X86_CHECK_o64) { 2462 if (!CODE64(s)) { 2463 goto illegal_op; 2464 } 2465 } 2466 if (decode.e.check & X86_CHECK_prot) { 2467 if (!PE(s) || VM86(s)) { 2468 goto illegal_op; 2469 } 2470 } 2471 } 2472 2473 switch (decode.e.special) { 2474 case X86_SPECIAL_None: 2475 break; 2476 2477 case X86_SPECIAL_Locked: 2478 if (decode.op[0].has_ea) { 2479 s->prefix |= PREFIX_LOCK; 2480 } 2481 decode.e.special = X86_SPECIAL_HasLock; 2482 /* fallthrough */ 2483 case X86_SPECIAL_HasLock: 2484 break; 2485 2486 case X86_SPECIAL_Op0_Rd: 2487 assert(decode.op[0].unit == X86_OP_INT); 2488 if (!decode.op[0].has_ea) { 2489 decode.op[0].ot = MO_32; 2490 } 2491 break; 2492 2493 case X86_SPECIAL_Op2_Ry: 2494 assert(decode.op[2].unit == X86_OP_INT); 2495 if (!decode.op[2].has_ea) { 2496 decode.op[2].ot = s->dflag == MO_16 ? MO_32 : s->dflag; 2497 } 2498 break; 2499 2500 case X86_SPECIAL_AVXExtMov: 2501 if (!decode.op[2].has_ea) { 2502 decode.op[2].ot = s->vex_l ? MO_256 : MO_128; 2503 } else if (s->vex_l) { 2504 decode.op[2].ot++; 2505 } 2506 break; 2507 2508 case X86_SPECIAL_SExtT0: 2509 case X86_SPECIAL_ZExtT0: 2510 /* Handled in gen_load. */ 2511 assert(decode.op[1].unit == X86_OP_INT); 2512 break; 2513 2514 case X86_SPECIAL_NoSeg: 2515 decode.mem.def_seg = -1; 2516 s->override = -1; 2517 break; 2518 2519 case X86_SPECIAL_Op0_Mw: 2520 assert(decode.op[0].unit == X86_OP_INT); 2521 if (decode.op[0].has_ea) { 2522 decode.op[0].ot = MO_16; 2523 } 2524 break; 2525 2526 default: 2527 break; 2528 } 2529 2530 if (s->prefix & PREFIX_LOCK) { 2531 if (decode.e.special != X86_SPECIAL_HasLock || !decode.op[0].has_ea) { 2532 goto illegal_op; 2533 } 2534 } 2535 2536 if (!validate_vex(s, &decode)) { 2537 return; 2538 } 2539 2540 /* 2541 * Checks that result in #GP or VMEXIT come second. Intercepts are 2542 * generally checked after non-memory exceptions (i.e. before all 2543 * exceptions if there is no memory operand). Exceptions are 2544 * vm86 checks (INTn, IRET, PUSHF/POPF), RSM and XSETBV (!). 2545 * 2546 * RSM and XSETBV will be handled in the gen_* functions 2547 * instead of using chk(). 2548 */ 2549 if (decode.e.check & X86_CHECK_cpl0) { 2550 if (CPL(s) != 0) { 2551 goto gp_fault; 2552 } 2553 } 2554 if (decode.e.intercept && unlikely(GUEST(s))) { 2555 gen_helper_svm_check_intercept(tcg_env, 2556 tcg_constant_i32(decode.e.intercept)); 2557 } 2558 if (decode.e.check) { 2559 if ((decode.e.check & X86_CHECK_vm86_iopl) && VM86(s)) { 2560 if (IOPL(s) < 3) { 2561 goto gp_fault; 2562 } 2563 } else if (decode.e.check & X86_CHECK_cpl_iopl) { 2564 if (IOPL(s) < CPL(s)) { 2565 goto gp_fault; 2566 } 2567 } 2568 } 2569 2570 if (decode.e.special == X86_SPECIAL_MMX && 2571 !(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { 2572 gen_helper_enter_mmx(tcg_env); 2573 } 2574 2575 if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) { 2576 gen_load_ea(s, &decode.mem, decode.e.vex_class == 12); 2577 } 2578 if (s->prefix & PREFIX_LOCK) { 2579 gen_load(s, &decode, 2, s->T1); 2580 decode.e.gen(s, env, &decode); 2581 } else { 2582 if (decode.op[0].unit == X86_OP_MMX) { 2583 compute_mmx_offset(&decode.op[0]); 2584 } else if (decode.op[0].unit == X86_OP_SSE) { 2585 compute_xmm_offset(&decode.op[0]); 2586 } 2587 gen_load(s, &decode, 1, s->T0); 2588 gen_load(s, &decode, 2, s->T1); 2589 decode.e.gen(s, env, &decode); 2590 gen_writeback(s, &decode, 0, s->T0); 2591 } 2592 2593 /* 2594 * Write back flags after last memory access. Some newer ALU instructions, as 2595 * well as SSE instructions, write flags in the gen_* function, but that can 2596 * cause incorrect tracking of CC_OP for instructions that write to both memory 2597 * and flags. 2598 */ 2599 if (decode.cc_op != -1) { 2600 if (decode.cc_dst) { 2601 tcg_gen_mov_tl(cpu_cc_dst, decode.cc_dst); 2602 } 2603 if (decode.cc_src) { 2604 tcg_gen_mov_tl(cpu_cc_src, decode.cc_src); 2605 } 2606 if (decode.cc_src2) { 2607 tcg_gen_mov_tl(cpu_cc_src2, decode.cc_src2); 2608 } 2609 if (decode.cc_op == CC_OP_DYNAMIC) { 2610 tcg_gen_mov_i32(cpu_cc_op, decode.cc_op_dynamic); 2611 } 2612 set_cc_op(s, decode.cc_op); 2613 cc_live = cc_op_live[decode.cc_op]; 2614 } else { 2615 cc_live = 0; 2616 } 2617 if (decode.cc_op != CC_OP_DYNAMIC) { 2618 assert(!decode.cc_op_dynamic); 2619 assert(!!decode.cc_dst == !!(cc_live & USES_CC_DST)); 2620 assert(!!decode.cc_src == !!(cc_live & USES_CC_SRC)); 2621 assert(!!decode.cc_src2 == !!(cc_live & USES_CC_SRC2)); 2622 } 2623 2624 return; 2625 gp_fault: 2626 gen_exception_gpf(s); 2627 return; 2628 illegal_op: 2629 gen_illegal_opcode(s); 2630 return; 2631 unknown_op: 2632 gen_unknown_opcode(env, s); 2633} 2634