1/* 2 * New-style decoder for i386 instructions 3 * 4 * Copyright (c) 2022 Red Hat, Inc. 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This library is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2.1 of the License, or (at your option) any later version. 12 * 13 * This library is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22/* 23 * The decoder is mostly based on tables copied from the Intel SDM. As 24 * a result, most operand load and writeback is done entirely in common 25 * table-driven code using the same operand type (X86_TYPE_*) and 26 * size (X86_SIZE_*) codes used in the manual. 27 * 28 * The main difference is that the V, U and W types are extended to 29 * cover MMX as well; if an instruction is like 30 * 31 * por Pq, Qq 32 * 66 por Vx, Hx, Wx 33 * 34 * only the second row is included and the instruction is marked as a 35 * valid MMX instruction. The MMX flag directs the decoder to rewrite 36 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing 37 * "x" to "q" if there is no prefix. 38 * 39 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x" 40 * if the difference is expressed via prefixes. Individual instructions 41 * are separated by prefix in the generator functions. 42 * 43 * There are a couple cases in which instructions (e.g. MOVD) write the 44 * whole XMM or MM register but are established incorrectly in the manual 45 * as "d" or "q". These have to be fixed for the decoder to work correctly. 46 */ 47 48#define X86_OP_NONE { 0 }, 49 50#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ 51 .decode = glue(decode_, op), \ 52 .op0 = glue(X86_TYPE_, op0_), \ 53 .s0 = glue(X86_SIZE_, s0_), \ 54 .op1 = glue(X86_TYPE_, op1_), \ 55 .s1 = glue(X86_SIZE_, s1_), \ 56 .op2 = glue(X86_TYPE_, op2_), \ 57 .s2 = glue(X86_SIZE_, s2_), \ 58 .is_decode = true, \ 59 ## __VA_ARGS__ \ 60} 61 62#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...) \ 63 X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) 64#define X86_OP_GROUP0(op, ...) \ 65 X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__) 66 67#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \ 68 .gen = glue(gen_, op), \ 69 .op0 = glue(X86_TYPE_, op0_), \ 70 .s0 = glue(X86_SIZE_, s0_), \ 71 .op1 = glue(X86_TYPE_, op1_), \ 72 .s1 = glue(X86_SIZE_, s1_), \ 73 .op2 = glue(X86_TYPE_, op2_), \ 74 .s2 = glue(X86_SIZE_, s2_), \ 75 ## __VA_ARGS__ \ 76} 77 78#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) \ 79 X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, \ 80 .op3 = X86_TYPE_I, .s3 = X86_SIZE_b, \ 81 ## __VA_ARGS__) 82 83#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...) \ 84 X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__) 85#define X86_OP_ENTRYw(op, op0, s0, ...) \ 86 X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__) 87#define X86_OP_ENTRYr(op, op0, s0, ...) \ 88 X86_OP_ENTRY3(op, None, None, None, None, op0, s0, ## __VA_ARGS__) 89#define X86_OP_ENTRY0(op, ...) \ 90 X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__) 91 92#define cpuid(feat) .cpuid = X86_FEAT_##feat, 93#define i64 .special = X86_SPECIAL_i64, 94#define o64 .special = X86_SPECIAL_o64, 95#define xchg .special = X86_SPECIAL_Locked, 96#define mmx .special = X86_SPECIAL_MMX, 97#define zext0 .special = X86_SPECIAL_ZExtOp0, 98#define zext2 .special = X86_SPECIAL_ZExtOp2, 99#define avx_movx .special = X86_SPECIAL_AVXExtMov, 100 101#define vex1 .vex_class = 1, 102#define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar, 103#define vex2 .vex_class = 2, 104#define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar, 105#define vex3 .vex_class = 3, 106#define vex4 .vex_class = 4, 107#define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned, 108#define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar, 109#define vex5 .vex_class = 5, 110#define vex6 .vex_class = 6, 111#define vex7 .vex_class = 7, 112#define vex8 .vex_class = 8, 113#define vex11 .vex_class = 11, 114#define vex12 .vex_class = 12, 115#define vex13 .vex_class = 13, 116 117#define avx2_256 .vex_special = X86_VEX_AVX2_256, 118 119#define P_00 1 120#define P_66 (1 << PREFIX_DATA) 121#define P_F3 (1 << PREFIX_REPZ) 122#define P_F2 (1 << PREFIX_REPNZ) 123 124#define p_00 .valid_prefix = P_00, 125#define p_66 .valid_prefix = P_66, 126#define p_f3 .valid_prefix = P_F3, 127#define p_f2 .valid_prefix = P_F2, 128#define p_00_66 .valid_prefix = P_00 | P_66, 129#define p_00_f3 .valid_prefix = P_00 | P_F3, 130#define p_66_f2 .valid_prefix = P_66 | P_F2, 131#define p_00_66_f3 .valid_prefix = P_00 | P_66 | P_F3, 132#define p_66_f3_f2 .valid_prefix = P_66 | P_F3 | P_F2, 133#define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2, 134 135static uint8_t get_modrm(DisasContext *s, CPUX86State *env) 136{ 137 if (!s->has_modrm) { 138 s->modrm = x86_ldub_code(env, s); 139 s->has_modrm = true; 140 } 141 return s->modrm; 142} 143 144static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4]) 145{ 146 if (s->prefix & PREFIX_REPNZ) { 147 return &entries[3]; 148 } else if (s->prefix & PREFIX_REPZ) { 149 return &entries[2]; 150 } else if (s->prefix & PREFIX_DATA) { 151 return &entries[1]; 152 } else { 153 return &entries[0]; 154 } 155} 156 157static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 158{ 159 /* only includes ldmxcsr and stmxcsr, because they have AVX variants. */ 160 static const X86OpEntry group15_reg[8] = { 161 }; 162 163 static const X86OpEntry group15_mem[8] = { 164 [2] = X86_OP_ENTRYr(LDMXCSR, E,d, vex5), 165 [3] = X86_OP_ENTRYw(STMXCSR, E,d, vex5), 166 }; 167 168 uint8_t modrm = get_modrm(s, env); 169 if ((modrm >> 6) == 3) { 170 *entry = group15_reg[(modrm >> 3) & 7]; 171 } else { 172 *entry = group15_mem[(modrm >> 3) & 7]; 173 } 174} 175 176static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 177{ 178 static const X86GenFunc group17_gen[8] = { 179 NULL, gen_BLSR, gen_BLSMSK, gen_BLSI, 180 }; 181 int op = (get_modrm(s, env) >> 3) & 7; 182 entry->gen = group17_gen[op]; 183} 184 185static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 186{ 187 static const X86OpEntry opcodes_group12[8] = { 188 {}, 189 {}, 190 X86_OP_ENTRY3(PSRLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 191 {}, 192 X86_OP_ENTRY3(PSRAW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 193 {}, 194 X86_OP_ENTRY3(PSLLW_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 195 {}, 196 }; 197 198 int op = (get_modrm(s, env) >> 3) & 7; 199 *entry = opcodes_group12[op]; 200} 201 202static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 203{ 204 static const X86OpEntry opcodes_group13[8] = { 205 {}, 206 {}, 207 X86_OP_ENTRY3(PSRLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 208 {}, 209 X86_OP_ENTRY3(PSRAD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 210 {}, 211 X86_OP_ENTRY3(PSLLD_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 212 {}, 213 }; 214 215 int op = (get_modrm(s, env) >> 3) & 7; 216 *entry = opcodes_group13[op]; 217} 218 219static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 220{ 221 static const X86OpEntry opcodes_group14[8] = { 222 /* grp14 */ 223 {}, 224 {}, 225 X86_OP_ENTRY3(PSRLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 226 X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), 227 {}, 228 {}, 229 X86_OP_ENTRY3(PSLLQ_i, H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66), 230 X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66), 231 }; 232 233 int op = (get_modrm(s, env) >> 3) & 7; 234 *entry = opcodes_group14[op]; 235} 236 237static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 238{ 239 static const X86OpEntry opcodes_0F6F[4] = { 240 X86_OP_ENTRY3(MOVDQ, P,q, None,None, Q,q, vex5 mmx), /* movq */ 241 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1), /* movdqa */ 242 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* movdqu */ 243 {}, 244 }; 245 *entry = *decode_by_prefix(s, opcodes_0F6F); 246} 247 248static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 249{ 250 static const X86OpEntry pshufw[4] = { 251 X86_OP_ENTRY3(PSHUFW, P,q, Q,q, I,b, vex4 mmx), 252 X86_OP_ENTRY3(PSHUFD, V,x, W,x, I,b, vex4 avx2_256), 253 X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256), 254 X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256), 255 }; 256 257 *entry = *decode_by_prefix(s, pshufw); 258} 259 260static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 261{ 262 if (!(s->prefix & PREFIX_VEX)) { 263 entry->gen = gen_EMMS; 264 } else if (!s->vex_l) { 265 entry->gen = gen_VZEROUPPER; 266 entry->vex_class = 8; 267 } else { 268 entry->gen = gen_VZEROALL; 269 entry->vex_class = 8; 270 } 271} 272 273static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 274{ 275 static const X86OpEntry opcodes_0F78[4] = { 276 {}, 277 X86_OP_ENTRY3(EXTRQ_i, V,x, None,None, I,w, cpuid(SSE4A)), /* AMD extension */ 278 {}, 279 X86_OP_ENTRY3(INSERTQ_i, V,x, U,x, I,w, cpuid(SSE4A)), /* AMD extension */ 280 }; 281 *entry = *decode_by_prefix(s, opcodes_0F78); 282} 283 284static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 285{ 286 if (s->prefix & PREFIX_REPNZ) { 287 entry->gen = gen_INSERTQ_r; /* AMD extension */ 288 } else if (s->prefix & PREFIX_DATA) { 289 entry->gen = gen_EXTRQ_r; /* AMD extension */ 290 } else { 291 entry->gen = NULL; 292 }; 293} 294 295static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 296{ 297 static const X86OpEntry opcodes_0F7E[4] = { 298 X86_OP_ENTRY3(MOVD_from, E,y, None,None, P,y, vex5 mmx), 299 X86_OP_ENTRY3(MOVD_from, E,y, None,None, V,y, vex5), 300 X86_OP_ENTRY3(MOVQ, V,x, None,None, W,q, vex5), /* wrong dest Vy on SDM! */ 301 {}, 302 }; 303 *entry = *decode_by_prefix(s, opcodes_0F7E); 304} 305 306static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 307{ 308 static const X86OpEntry opcodes_0F7F[4] = { 309 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex5 mmx), /* movq */ 310 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1), /* movdqa */ 311 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4_unal), /* movdqu */ 312 {}, 313 }; 314 *entry = *decode_by_prefix(s, opcodes_0F7F); 315} 316 317static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 318{ 319 static const X86OpEntry movq[4] = { 320 {}, 321 X86_OP_ENTRY3(MOVQ, W,x, None, None, V,q, vex5), 322 X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q), 323 X86_OP_ENTRY3(MOVq_dq, P,q, None, None, U,q), 324 }; 325 326 *entry = *decode_by_prefix(s, movq); 327} 328 329static const X86OpEntry opcodes_0F38_00toEF[240] = { 330 [0x00] = X86_OP_ENTRY3(PSHUFB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 331 [0x01] = X86_OP_ENTRY3(PHADDW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 332 [0x02] = X86_OP_ENTRY3(PHADDD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 333 [0x03] = X86_OP_ENTRY3(PHADDSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 334 [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 335 [0x05] = X86_OP_ENTRY3(PHSUBW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 336 [0x06] = X86_OP_ENTRY3(PHSUBD, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 337 [0x07] = X86_OP_ENTRY3(PHSUBSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 338 339 [0x10] = X86_OP_ENTRY2(PBLENDVB, V,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 340 [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x, W,xh, vex11 cpuid(F16C) p_66), 341 [0x14] = X86_OP_ENTRY2(BLENDVPS, V,x, W,x, vex4 cpuid(SSE41) p_66), 342 [0x15] = X86_OP_ENTRY2(BLENDVPD, V,x, W,x, vex4 cpuid(SSE41) p_66), 343 /* Listed incorrectly as type 4 */ 344 [0x16] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), 345 [0x17] = X86_OP_ENTRY3(VPTEST, None,None, V,x, W,x, vex4 cpuid(SSE41) p_66), 346 347 /* 348 * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed 349 * as 128-bit only in 2-17. 350 */ 351 [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 352 [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 353 [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 354 [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 355 [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 356 [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 357 358 /* Same as PMOVSX. */ 359 [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 360 [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 361 [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x, None,None, W,w, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 362 [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 363 [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x, None,None, W,d, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 364 [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x, None,None, W,q, vex5 cpuid(SSE41) avx_movx avx2_256 p_66), 365 [0x36] = X86_OP_ENTRY3(VPERMD, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), 366 [0x37] = X86_OP_ENTRY3(PCMPGTQ, V,x, H,x, W,x, vex4 cpuid(SSE42) avx2_256 p_66), 367 368 [0x40] = X86_OP_ENTRY3(PMULLD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 369 [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66), 370 /* Listed incorrectly as type 4 */ 371 [0x45] = X86_OP_ENTRY3(VPSRLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 372 [0x46] = X86_OP_ENTRY3(VPSRAV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 373 [0x47] = X86_OP_ENTRY3(VPSLLV, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), 374 375 [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */ 376 [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */ 377 [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x, H,x, M,d, vex12 cpuid(AVX2) p_66), /* vgatherdps/d */ 378 [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x, H,x, M,q, vex12 cpuid(AVX2) p_66), /* vgatherqps/d */ 379 380 /* Should be exception type 2 but they do not have legacy SSE equivalents? */ 381 [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 382 [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 383 384 [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 385 [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 386 387 [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 388 [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 389 390 [0x08] = X86_OP_ENTRY3(PSIGNB, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 391 [0x09] = X86_OP_ENTRY3(PSIGNW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 392 [0x0a] = X86_OP_ENTRY3(PSIGND, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 393 [0x0b] = X86_OP_ENTRY3(PMULHRSW, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 394 [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x, H,x, W,x, vex4 cpuid(AVX) p_00_66), 395 [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x, H,x, W,x, vex4 cpuid(AVX) p_66), 396 [0x0e] = X86_OP_ENTRY3(VTESTPS, None,None, V,x, W,x, vex4 cpuid(AVX) p_66), 397 [0x0f] = X86_OP_ENTRY3(VTESTPD, None,None, V,x, W,x, vex4 cpuid(AVX) p_66), 398 399 [0x18] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX) p_66), /* vbroadcastss */ 400 [0x19] = X86_OP_ENTRY3(VPBROADCASTQ, V,qq, None,None, W,q, vex6 cpuid(AVX) p_66), /* vbroadcastsd */ 401 [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX) p_66), 402 [0x1c] = X86_OP_ENTRY3(PABSB, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 403 [0x1d] = X86_OP_ENTRY3(PABSW, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 404 [0x1e] = X86_OP_ENTRY3(PABSD, V,x, None,None, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 405 406 [0x28] = X86_OP_ENTRY3(PMULDQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 407 [0x29] = X86_OP_ENTRY3(PCMPEQQ, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 408 [0x2a] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */ 409 [0x2b] = X86_OP_ENTRY3(VPACKUSDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 410 [0x2c] = X86_OP_ENTRY3(VMASKMOVPS, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66), 411 [0x2d] = X86_OP_ENTRY3(VMASKMOVPD, V,x, H,x, WM,x, vex6 cpuid(AVX) p_66), 412 /* Incorrectly listed as Mx,Hx,Vx in the manual */ 413 [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66), 414 [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x, H,x, vex6 cpuid(AVX) p_66), 415 416 [0x38] = X86_OP_ENTRY3(PMINSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 417 [0x39] = X86_OP_ENTRY3(PMINSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 418 [0x3a] = X86_OP_ENTRY3(PMINUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 419 [0x3b] = X86_OP_ENTRY3(PMINUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 420 [0x3c] = X86_OP_ENTRY3(PMAXSB, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 421 [0x3d] = X86_OP_ENTRY3(PMAXSD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 422 [0x3e] = X86_OP_ENTRY3(PMAXUW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 423 [0x3f] = X86_OP_ENTRY3(PMAXUD, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 424 425 [0x58] = X86_OP_ENTRY3(VPBROADCASTD, V,x, None,None, W,d, vex6 cpuid(AVX2) p_66), 426 [0x59] = X86_OP_ENTRY3(VPBROADCASTQ, V,x, None,None, W,q, vex6 cpuid(AVX2) p_66), 427 [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 cpuid(AVX2) p_66), 428 429 [0x78] = X86_OP_ENTRY3(VPBROADCASTB, V,x, None,None, W,b, vex6 cpuid(AVX2) p_66), 430 [0x79] = X86_OP_ENTRY3(VPBROADCASTW, V,x, None,None, W,w, vex6 cpuid(AVX2) p_66), 431 432 [0x8c] = X86_OP_ENTRY3(VPMASKMOV, V,x, H,x, WM,x, vex6 cpuid(AVX2) p_66), 433 [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x, V,x, H,x, vex6 cpuid(AVX2) p_66), 434 435 /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */ 436 [0x98] = X86_OP_ENTRY3(VFMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 437 [0x99] = X86_OP_ENTRY3(VFMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 438 [0x9a] = X86_OP_ENTRY3(VFMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 439 [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 440 [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 441 [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 442 [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 443 [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 444 445 [0xa8] = X86_OP_ENTRY3(VFMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 446 [0xa9] = X86_OP_ENTRY3(VFMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 447 [0xaa] = X86_OP_ENTRY3(VFMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 448 [0xab] = X86_OP_ENTRY3(VFMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 449 [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 450 [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 451 [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 452 [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 453 454 [0xb8] = X86_OP_ENTRY3(VFMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 455 [0xb9] = X86_OP_ENTRY3(VFMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 456 [0xba] = X86_OP_ENTRY3(VFMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 457 [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 458 [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 459 [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 460 [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 461 [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x, H,x, W,x, vex6 cpuid(FMA) p_66), 462 463 [0xdb] = X86_OP_ENTRY3(VAESIMC, V,dq, None,None, W,dq, vex4 cpuid(AES) p_66), 464 [0xdc] = X86_OP_ENTRY3(VAESENC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 465 [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 466 [0xde] = X86_OP_ENTRY3(VAESDEC, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 467 [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x, H,x, W,x, vex4 cpuid(AES) p_66), 468}; 469 470/* five rows for no prefix, 66, F3, F2, 66+F2 */ 471static const X86OpEntry opcodes_0F38_F0toFF[16][5] = { 472 [0] = { 473 X86_OP_ENTRY3(MOVBE, G,y, M,y, None,None, cpuid(MOVBE)), 474 X86_OP_ENTRY3(MOVBE, G,w, M,w, None,None, cpuid(MOVBE)), 475 {}, 476 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), 477 X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)), 478 }, 479 [1] = { 480 X86_OP_ENTRY3(MOVBE, M,y, G,y, None,None, cpuid(MOVBE)), 481 X86_OP_ENTRY3(MOVBE, M,w, G,w, None,None, cpuid(MOVBE)), 482 {}, 483 X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)), 484 X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)), 485 }, 486 [2] = { 487 X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)), 488 {}, 489 {}, 490 {}, 491 {}, 492 }, 493 [3] = { 494 X86_OP_GROUP3(group17, B,y, E,y, None,None, vex13 cpuid(BMI1)), 495 {}, 496 {}, 497 {}, 498 {}, 499 }, 500 [5] = { 501 X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)), 502 {}, 503 X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 cpuid(BMI2)), 504 X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 cpuid(BMI2)), 505 {}, 506 }, 507 [6] = { 508 {}, 509 X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)), 510 X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)), 511 X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)), 512 {}, 513 }, 514 [7] = { 515 X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 cpuid(BMI1)), 516 X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)), 517 X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 cpuid(BMI1)), 518 X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 cpuid(BMI1)), 519 {}, 520 }, 521}; 522 523static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 524{ 525 *b = x86_ldub_code(env, s); 526 if (*b < 0xf0) { 527 *entry = opcodes_0F38_00toEF[*b]; 528 } else { 529 int row = 0; 530 if (s->prefix & PREFIX_REPZ) { 531 /* The REPZ (F3) prefix has priority over 66 */ 532 row = 2; 533 } else { 534 row += s->prefix & PREFIX_REPNZ ? 3 : 0; 535 row += s->prefix & PREFIX_DATA ? 1 : 0; 536 } 537 *entry = opcodes_0F38_F0toFF[*b & 15][row]; 538 } 539} 540 541static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 542{ 543 static const X86OpEntry 544 vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66), 545 vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d, vex5 cpuid(SSE41) p_66); 546 547 int modrm = get_modrm(s, env); 548 *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem; 549} 550 551static const X86OpEntry opcodes_0F3A[256] = { 552 /* 553 * These are VEX-only, but incorrectly listed in the manual as exception type 4. 554 * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256 555 * only. 556 */ 557 [0x00] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66), 558 [0x01] = X86_OP_ENTRY3(VPERMQ, V,qq, W,qq, I,b, vex6 cpuid(AVX2) p_66), /* VPERMPD */ 559 [0x02] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex6 cpuid(AVX2) p_66), /* VPBLENDD */ 560 [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66), 561 [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x, W,x, I,b, vex6 cpuid(AVX) p_66), 562 [0x06] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66), 563 564 [0x14] = X86_OP_ENTRY3(PEXTRB, E,b, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66), 565 [0x15] = X86_OP_ENTRY3(PEXTRW, E,w, V,dq, I,b, vex5 cpuid(SSE41) zext0 p_66), 566 [0x16] = X86_OP_ENTRY3(PEXTR, E,y, V,dq, I,b, vex5 cpuid(SSE41) p_66), 567 [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d, V,dq, I,b, vex5 cpuid(SSE41) p_66), 568 [0x1d] = X86_OP_ENTRY3(VCVTPS2PH, W,xh, V,x, I,b, vex11 cpuid(F16C) p_66), 569 570 [0x20] = X86_OP_ENTRY4(PINSRB, V,dq, H,dq, E,b, vex5 cpuid(SSE41) zext2 p_66), 571 [0x21] = X86_OP_GROUP0(VINSERTPS), 572 [0x22] = X86_OP_ENTRY4(PINSR, V,dq, H,dq, E,y, vex5 cpuid(SSE41) p_66), 573 574 [0x40] = X86_OP_ENTRY4(VDDPS, V,x, H,x, W,x, vex2 cpuid(SSE41) p_66), 575 [0x41] = X86_OP_ENTRY4(VDDPD, V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66), 576 [0x42] = X86_OP_ENTRY4(VMPSADBW, V,x, H,x, W,x, vex2 cpuid(SSE41) avx2_256 p_66), 577 [0x44] = X86_OP_ENTRY4(PCLMULQDQ, V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66), 578 [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), 579 580 [0x60] = X86_OP_ENTRY4(PCMPESTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 581 [0x61] = X86_OP_ENTRY4(PCMPESTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 582 [0x62] = X86_OP_ENTRY4(PCMPISTRM, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 583 [0x63] = X86_OP_ENTRY4(PCMPISTRI, None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66), 584 585 [0x08] = X86_OP_ENTRY3(VROUNDPS, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), 586 [0x09] = X86_OP_ENTRY3(VROUNDPD, V,x, W,x, I,b, vex2 cpuid(SSE41) p_66), 587 /* 588 * Not listed as four operand in the manual. Also writes and reads 128-bits 589 * from the first two operands due to the V operand picking higher entries of 590 * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect. 591 * For other unary operations such as VSQRTSx this is hidden by the "REPScalar" 592 * value of vex_special, because the table lists the operand types of VSQRTPx. 593 */ 594 [0x0a] = X86_OP_ENTRY4(VROUNDSS, V,x, H,x, W,ss, vex3 cpuid(SSE41) p_66), 595 [0x0b] = X86_OP_ENTRY4(VROUNDSD, V,x, H,x, W,sd, vex3 cpuid(SSE41) p_66), 596 [0x0c] = X86_OP_ENTRY4(VBLENDPS, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), 597 [0x0d] = X86_OP_ENTRY4(VBLENDPD, V,x, H,x, W,x, vex4 cpuid(SSE41) p_66), 598 [0x0e] = X86_OP_ENTRY4(VPBLENDW, V,x, H,x, W,x, vex4 cpuid(SSE41) avx2_256 p_66), 599 [0x0f] = X86_OP_ENTRY4(PALIGNR, V,x, H,x, W,x, vex4 cpuid(SSSE3) mmx avx2_256 p_00_66), 600 601 [0x18] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX) p_66), 602 [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX) p_66), 603 604 [0x38] = X86_OP_ENTRY4(VINSERTx128, V,qq, H,qq, W,qq, vex6 cpuid(AVX2) p_66), 605 [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b, vex6 cpuid(AVX2) p_66), 606 607 /* Listed incorrectly as type 4 */ 608 [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x, H,x, W,x, vex6 cpuid(AVX) p_66), 609 [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x, H,x, W,x, vex6 cpuid(AVX) p_66), 610 [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x, H,x, W,x, vex6 cpuid(AVX) p_66 avx2_256), 611 612 [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b, vex4 cpuid(AES) p_66), 613 614 [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2), 615}; 616 617static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 618{ 619 *b = x86_ldub_code(env, s); 620 *entry = opcodes_0F3A[*b]; 621} 622 623/* 624 * There are some mistakes in the operands in the manual, and the load/store/register 625 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and 626 * efficiency of implementation rather than copying what the manual says. 627 * 628 * In particular: 629 * 630 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b, 631 * but this is not mentioned in the tables. 632 * 633 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their 634 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high 635 * quadword of the V operand. 636 */ 637static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 638{ 639 static const X86OpEntry opcodes_0F10_reg[4] = { 640 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ 641 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ 642 X86_OP_ENTRY3(VMOVSS, V,x, H,x, W,x, vex5), 643 X86_OP_ENTRY3(VMOVLPx, V,x, H,x, W,x, vex5), /* MOVSD */ 644 }; 645 646 static const X86OpEntry opcodes_0F10_mem[4] = { 647 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPS */ 648 X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex4_unal), /* MOVUPD */ 649 X86_OP_ENTRY3(VMOVSS_ld, V,x, H,x, M,ss, vex5), 650 X86_OP_ENTRY3(VMOVSD_ld, V,x, H,x, M,sd, vex5), 651 }; 652 653 if ((get_modrm(s, env) >> 6) == 3) { 654 *entry = *decode_by_prefix(s, opcodes_0F10_reg); 655 } else { 656 *entry = *decode_by_prefix(s, opcodes_0F10_mem); 657 } 658} 659 660static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 661{ 662 static const X86OpEntry opcodes_0F11_reg[4] = { 663 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ 664 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ 665 X86_OP_ENTRY3(VMOVSS, W,x, H,x, V,x, vex5), 666 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, V,q, vex5), /* MOVSD */ 667 }; 668 669 static const X86OpEntry opcodes_0F11_mem[4] = { 670 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPS */ 671 X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex4), /* MOVUPD */ 672 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex5), 673 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */ 674 }; 675 676 if ((get_modrm(s, env) >> 6) == 3) { 677 *entry = *decode_by_prefix(s, opcodes_0F11_reg); 678 } else { 679 *entry = *decode_by_prefix(s, opcodes_0F11_mem); 680 } 681} 682 683static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 684{ 685 static const X86OpEntry opcodes_0F12_mem[4] = { 686 /* 687 * Use dq for operand for compatibility with gen_MOVSD and 688 * to allow VEX128 only. 689 */ 690 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPS */ 691 X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq, M,q, vex5), /* MOVLPD */ 692 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), 693 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */ 694 }; 695 static const X86OpEntry opcodes_0F12_reg[4] = { 696 X86_OP_ENTRY3(VMOVHLPS, V,dq, H,dq, U,dq, vex7), 697 X86_OP_ENTRY3(VMOVLPx, W,x, H,x, U,q, vex5), /* MOVLPD */ 698 X86_OP_ENTRY3(VMOVSLDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), 699 X86_OP_ENTRY3(VMOVDDUP, V,x, None,None, U,x, vex5 cpuid(SSE3)), 700 }; 701 702 if ((get_modrm(s, env) >> 6) == 3) { 703 *entry = *decode_by_prefix(s, opcodes_0F12_reg); 704 } else { 705 *entry = *decode_by_prefix(s, opcodes_0F12_mem); 706 if ((s->prefix & PREFIX_REPNZ) && s->vex_l) { 707 entry->s2 = X86_SIZE_qq; 708 } 709 } 710} 711 712static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 713{ 714 static const X86OpEntry opcodes_0F16_mem[4] = { 715 /* 716 * Operand 1 technically only reads the low 64 bits, but uses dq so that 717 * it is easier to check for op0 == op1 in an endianness-neutral manner. 718 */ 719 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPS */ 720 X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq, M,q, vex5), /* MOVHPD */ 721 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, W,x, vex4 cpuid(SSE3)), 722 {}, 723 }; 724 static const X86OpEntry opcodes_0F16_reg[4] = { 725 /* Same as above, operand 1 could be Hq if it wasn't for big-endian. */ 726 X86_OP_ENTRY3(VMOVLHPS, V,dq, H,dq, U,q, vex7), 727 X86_OP_ENTRY3(VMOVHPx, V,x, H,x, U,x, vex5), /* MOVHPD */ 728 X86_OP_ENTRY3(VMOVSHDUP, V,x, None,None, U,x, vex4 cpuid(SSE3)), 729 {}, 730 }; 731 732 if ((get_modrm(s, env) >> 6) == 3) { 733 *entry = *decode_by_prefix(s, opcodes_0F16_reg); 734 } else { 735 *entry = *decode_by_prefix(s, opcodes_0F16_mem); 736 } 737} 738 739static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 740{ 741 static const X86OpEntry opcodes_0F2A[4] = { 742 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), 743 X86_OP_ENTRY3(CVTPI2Px, V,x, None,None, Q,q), 744 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), 745 X86_OP_ENTRY3(VCVTSI2Sx, V,x, H,x, E,y, vex3), 746 }; 747 *entry = *decode_by_prefix(s, opcodes_0F2A); 748} 749 750static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 751{ 752 static const X86OpEntry opcodes_0F2B[4] = { 753 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPS */ 754 X86_OP_ENTRY3(MOVDQ, M,x, None,None, V,x, vex1), /* MOVNTPD */ 755 /* AMD extensions */ 756 X86_OP_ENTRY3(VMOVSS_st, M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */ 757 X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */ 758 }; 759 760 *entry = *decode_by_prefix(s, opcodes_0F2B); 761} 762 763static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 764{ 765 static const X86OpEntry opcodes_0F2C[4] = { 766 /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit. */ 767 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,q), 768 X86_OP_ENTRY3(CVTTPx2PI, P,q, None,None, W,dq), 769 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,ss, vex3), 770 X86_OP_ENTRY3(VCVTTSx2SI, G,y, None,None, W,sd, vex3), 771 }; 772 *entry = *decode_by_prefix(s, opcodes_0F2C); 773} 774 775static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 776{ 777 static const X86OpEntry opcodes_0F2D[4] = { 778 /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit. */ 779 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,q), 780 X86_OP_ENTRY3(CVTPx2PI, P,q, None,None, W,dq), 781 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,ss, vex3), 782 X86_OP_ENTRY3(VCVTSx2SI, G,y, None,None, W,sd, vex3), 783 }; 784 *entry = *decode_by_prefix(s, opcodes_0F2D); 785} 786 787static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 788{ 789 /* 790 * VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD 791 * respectively. Scalar values usually are associated with 0xF2 and 0xF3, for 792 * which X86_VEX_REPScalar exists, but here it has to be decoded by hand. 793 */ 794 entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss); 795 entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI); 796} 797 798static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 799{ 800 if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) { 801 entry->op1 = X86_TYPE_None; 802 entry->s1 = X86_SIZE_None; 803 } 804 switch (*b) { 805 case 0x51: entry->gen = gen_VSQRT; break; 806 case 0x52: entry->gen = gen_VRSQRT; break; 807 case 0x53: entry->gen = gen_VRCP; break; 808 } 809} 810 811static void decode_0F5A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 812{ 813 static const X86OpEntry opcodes_0F5A[4] = { 814 X86_OP_ENTRY2(VCVTPS2PD, V,x, W,xh, vex2), /* VCVTPS2PD */ 815 X86_OP_ENTRY2(VCVTPD2PS, V,x, W,x, vex2), /* VCVTPD2PS */ 816 X86_OP_ENTRY3(VCVTSS2SD, V,x, H,x, W,x, vex2_rep3), /* VCVTSS2SD */ 817 X86_OP_ENTRY3(VCVTSD2SS, V,x, H,x, W,x, vex2_rep3), /* VCVTSD2SS */ 818 }; 819 *entry = *decode_by_prefix(s, opcodes_0F5A); 820} 821 822static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 823{ 824 static const X86OpEntry opcodes_0F5B[4] = { 825 X86_OP_ENTRY2(VCVTDQ2PS, V,x, W,x, vex2), 826 X86_OP_ENTRY2(VCVTPS2DQ, V,x, W,x, vex2), 827 X86_OP_ENTRY2(VCVTTPS2DQ, V,x, W,x, vex2), 828 {}, 829 }; 830 *entry = *decode_by_prefix(s, opcodes_0F5B); 831} 832 833static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 834{ 835 static const X86OpEntry opcodes_0FE6[4] = { 836 {}, 837 X86_OP_ENTRY2(VCVTTPD2DQ, V,x, W,x, vex2), 838 X86_OP_ENTRY2(VCVTDQ2PD, V,x, W,x, vex5), 839 X86_OP_ENTRY2(VCVTPD2DQ, V,x, W,x, vex2), 840 }; 841 *entry = *decode_by_prefix(s, opcodes_0FE6); 842} 843 844static const X86OpEntry opcodes_0F[256] = { 845 [0x0E] = X86_OP_ENTRY0(EMMS, cpuid(3DNOW)), /* femms */ 846 /* 847 * 3DNow!'s opcode byte comes *after* modrm and displacements, making it 848 * more like an Ib operand. Dispatch to the right helper in a single gen_* 849 * function. 850 */ 851 [0x0F] = X86_OP_ENTRY3(3dnow, P,q, Q,q, I,b, cpuid(3DNOW)), 852 853 [0x10] = X86_OP_GROUP0(0F10), 854 [0x11] = X86_OP_GROUP0(0F11), 855 [0x12] = X86_OP_GROUP0(0F12), 856 [0x13] = X86_OP_ENTRY3(VMOVLPx_st, M,q, None,None, V,q, vex5 p_00_66), 857 [0x14] = X86_OP_ENTRY3(VUNPCKLPx, V,x, H,x, W,x, vex4 p_00_66), 858 [0x15] = X86_OP_ENTRY3(VUNPCKHPx, V,x, H,x, W,x, vex4 p_00_66), 859 [0x16] = X86_OP_GROUP0(0F16), 860 /* Incorrectly listed as Mq,Vq in the manual */ 861 [0x17] = X86_OP_ENTRY3(VMOVHPx_st, M,q, None,None, V,dq, vex5 p_00_66), 862 863 [0x50] = X86_OP_ENTRY3(MOVMSK, G,y, None,None, U,x, vex7 p_00_66), 864 [0x51] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */ 865 [0x52] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */ 866 [0x53] = X86_OP_GROUP3(sse_unary, V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */ 867 [0x54] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 p_00_66), /* vand */ 868 [0x55] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 p_00_66), /* vandn */ 869 [0x56] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 p_00_66), /* vor */ 870 [0x57] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 p_00_66), /* vxor */ 871 872 [0x60] = X86_OP_ENTRY3(PUNPCKLBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 873 [0x61] = X86_OP_ENTRY3(PUNPCKLWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 874 [0x62] = X86_OP_ENTRY3(PUNPCKLDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 875 [0x63] = X86_OP_ENTRY3(PACKSSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 876 [0x64] = X86_OP_ENTRY3(PCMPGTB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 877 [0x65] = X86_OP_ENTRY3(PCMPGTW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 878 [0x66] = X86_OP_ENTRY3(PCMPGTD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 879 [0x67] = X86_OP_ENTRY3(PACKUSWB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 880 881 [0x70] = X86_OP_GROUP0(0F70), 882 [0x71] = X86_OP_GROUP0(group12), 883 [0x72] = X86_OP_GROUP0(group13), 884 [0x73] = X86_OP_GROUP0(group14), 885 [0x74] = X86_OP_ENTRY3(PCMPEQB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 886 [0x75] = X86_OP_ENTRY3(PCMPEQW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 887 [0x76] = X86_OP_ENTRY3(PCMPEQD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 888 [0x77] = X86_OP_GROUP0(0F77), 889 890 [0x28] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, W,x, vex1 p_00_66), /* MOVAPS */ 891 [0x29] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 p_00_66), /* MOVAPS */ 892 [0x2A] = X86_OP_GROUP0(0F2A), 893 [0x2B] = X86_OP_GROUP0(0F2B), 894 [0x2C] = X86_OP_GROUP0(0F2C), 895 [0x2D] = X86_OP_GROUP0(0F2D), 896 [0x2E] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VUCOMISS/SD */ 897 [0x2F] = X86_OP_GROUP3(VxCOMISx, None,None, V,x, W,x, vex3 p_00_66), /* VCOMISS/SD */ 898 899 [0x38] = X86_OP_GROUP0(0F38), 900 [0x3a] = X86_OP_GROUP0(0F3A), 901 902 [0x58] = X86_OP_ENTRY3(VADD, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 903 [0x59] = X86_OP_ENTRY3(VMUL, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 904 [0x5a] = X86_OP_GROUP0(0F5A), 905 [0x5b] = X86_OP_GROUP0(0F5B), 906 [0x5c] = X86_OP_ENTRY3(VSUB, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 907 [0x5d] = X86_OP_ENTRY3(VMIN, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 908 [0x5e] = X86_OP_ENTRY3(VDIV, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 909 [0x5f] = X86_OP_ENTRY3(VMAX, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 910 911 [0x68] = X86_OP_ENTRY3(PUNPCKHBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 912 [0x69] = X86_OP_ENTRY3(PUNPCKHWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 913 [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 914 [0x6b] = X86_OP_ENTRY3(PACKSSDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 915 [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), 916 [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x, vex4 p_66 avx2_256), 917 [0x6e] = X86_OP_ENTRY3(MOVD_to, V,x, None,None, E,y, vex5 mmx p_00_66), /* wrong dest Vy on SDM! */ 918 [0x6f] = X86_OP_GROUP0(0F6F), 919 920 [0x78] = X86_OP_GROUP0(0F78), 921 [0x79] = X86_OP_GROUP2(0F79, V,x, U,x, cpuid(SSE4A)), 922 [0x7c] = X86_OP_ENTRY3(VHADD, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 923 [0x7d] = X86_OP_ENTRY3(VHSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 924 [0x7e] = X86_OP_GROUP0(0F7E), 925 [0x7f] = X86_OP_GROUP0(0F7F), 926 927 [0xae] = X86_OP_GROUP0(group15), 928 929 [0xc2] = X86_OP_ENTRY4(VCMP, V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), 930 [0xc4] = X86_OP_ENTRY4(PINSRW, V,dq,H,dq,E,w, vex5 mmx p_00_66), 931 [0xc5] = X86_OP_ENTRY3(PEXTRW, G,d, U,dq,I,b, vex5 mmx p_00_66), 932 [0xc6] = X86_OP_ENTRY4(VSHUF, V,x, H,x, W,x, vex4 p_00_66), 933 934 [0xd0] = X86_OP_ENTRY3(VADDSUB, V,x, H,x, W,x, vex2 cpuid(SSE3) p_66_f2), 935 [0xd1] = X86_OP_ENTRY3(PSRLW_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 936 [0xd2] = X86_OP_ENTRY3(PSRLD_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 937 [0xd3] = X86_OP_ENTRY3(PSRLQ_r, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 938 [0xd4] = X86_OP_ENTRY3(PADDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 939 [0xd5] = X86_OP_ENTRY3(PMULLW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 940 [0xd6] = X86_OP_GROUP0(0FD6), 941 [0xd7] = X86_OP_ENTRY3(PMOVMSKB, G,d, None,None, U,x, vex7 mmx avx2_256 p_00_66), 942 943 [0xe0] = X86_OP_ENTRY3(PAVGB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 944 [0xe1] = X86_OP_ENTRY3(PSRAW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 945 [0xe2] = X86_OP_ENTRY3(PSRAD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 946 [0xe3] = X86_OP_ENTRY3(PAVGW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 947 [0xe4] = X86_OP_ENTRY3(PMULHUW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 948 [0xe5] = X86_OP_ENTRY3(PMULHW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 949 [0xe6] = X86_OP_GROUP0(0FE6), 950 [0xe7] = X86_OP_ENTRY3(MOVDQ, W,x, None,None, V,x, vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */ 951 952 [0xf0] = X86_OP_ENTRY3(MOVDQ, V,x, None,None, WM,x, vex4_unal cpuid(SSE3) p_f2), /* LDDQU */ 953 [0xf1] = X86_OP_ENTRY3(PSLLW_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 954 [0xf2] = X86_OP_ENTRY3(PSLLD_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 955 [0xf3] = X86_OP_ENTRY3(PSLLQ_r, V,x, H,x, W,x, vex7 mmx avx2_256 p_00_66), 956 [0xf4] = X86_OP_ENTRY3(PMULUDQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 957 [0xf5] = X86_OP_ENTRY3(PMADDWD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 958 [0xf6] = X86_OP_ENTRY3(PSADBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 959 [0xf7] = X86_OP_ENTRY3(MASKMOV, None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66), 960 961 /* Incorrectly missing from 2-17 */ 962 [0xd8] = X86_OP_ENTRY3(PSUBUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 963 [0xd9] = X86_OP_ENTRY3(PSUBUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 964 [0xda] = X86_OP_ENTRY3(PMINUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 965 [0xdb] = X86_OP_ENTRY3(PAND, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 966 [0xdc] = X86_OP_ENTRY3(PADDUSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 967 [0xdd] = X86_OP_ENTRY3(PADDUSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 968 [0xde] = X86_OP_ENTRY3(PMAXUB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 969 [0xdf] = X86_OP_ENTRY3(PANDN, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 970 971 [0xe8] = X86_OP_ENTRY3(PSUBSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 972 [0xe9] = X86_OP_ENTRY3(PSUBSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 973 [0xea] = X86_OP_ENTRY3(PMINSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 974 [0xeb] = X86_OP_ENTRY3(POR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 975 [0xec] = X86_OP_ENTRY3(PADDSB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 976 [0xed] = X86_OP_ENTRY3(PADDSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 977 [0xee] = X86_OP_ENTRY3(PMAXSW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 978 [0xef] = X86_OP_ENTRY3(PXOR, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 979 980 [0xf8] = X86_OP_ENTRY3(PSUBB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 981 [0xf9] = X86_OP_ENTRY3(PSUBW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 982 [0xfa] = X86_OP_ENTRY3(PSUBD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 983 [0xfb] = X86_OP_ENTRY3(PSUBQ, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 984 [0xfc] = X86_OP_ENTRY3(PADDB, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 985 [0xfd] = X86_OP_ENTRY3(PADDW, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 986 [0xfe] = X86_OP_ENTRY3(PADDD, V,x, H,x, W,x, vex4 mmx avx2_256 p_00_66), 987 /* 0xff = UD0 */ 988}; 989 990static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 991{ 992 *entry = opcodes_0F[*b]; 993} 994 995static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 996{ 997 *b = x86_ldub_code(env, s); 998 do_decode_0F(s, env, entry, b); 999} 1000 1001static const X86OpEntry opcodes_root[256] = { 1002 [0x0F] = X86_OP_GROUP0(0F), 1003}; 1004 1005#undef mmx 1006#undef vex1 1007#undef vex2 1008#undef vex3 1009#undef vex4 1010#undef vex4_unal 1011#undef vex5 1012#undef vex6 1013#undef vex7 1014#undef vex8 1015#undef vex11 1016#undef vex12 1017#undef vex13 1018 1019/* 1020 * Decode the fixed part of the opcode and place the last 1021 * in b. 1022 */ 1023static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b) 1024{ 1025 *entry = opcodes_root[*b]; 1026} 1027 1028 1029static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, 1030 X86DecodedOp *op, X86OpType type) 1031{ 1032 int modrm = get_modrm(s, env); 1033 if ((modrm >> 6) == 3) { 1034 if (s->prefix & PREFIX_LOCK) { 1035 decode->e.gen = gen_illegal; 1036 return 0xff; 1037 } 1038 op->n = (modrm & 7); 1039 if (type != X86_TYPE_Q && type != X86_TYPE_N) { 1040 op->n |= REX_B(s); 1041 } 1042 } else { 1043 op->has_ea = true; 1044 op->n = -1; 1045 decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env)); 1046 } 1047 return modrm; 1048} 1049 1050static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot) 1051{ 1052 switch (size) { 1053 case X86_SIZE_b: /* byte */ 1054 *ot = MO_8; 1055 return true; 1056 1057 case X86_SIZE_d: /* 32-bit */ 1058 case X86_SIZE_ss: /* SSE/AVX scalar single precision */ 1059 *ot = MO_32; 1060 return true; 1061 1062 case X86_SIZE_p: /* Far pointer, return offset size */ 1063 case X86_SIZE_s: /* Descriptor, return offset size */ 1064 case X86_SIZE_v: /* 16/32/64-bit, based on operand size */ 1065 *ot = s->dflag; 1066 return true; 1067 1068 case X86_SIZE_pi: /* MMX */ 1069 case X86_SIZE_q: /* 64-bit */ 1070 case X86_SIZE_sd: /* SSE/AVX scalar double precision */ 1071 *ot = MO_64; 1072 return true; 1073 1074 case X86_SIZE_w: /* 16-bit */ 1075 *ot = MO_16; 1076 return true; 1077 1078 case X86_SIZE_y: /* 32/64-bit, based on operand size */ 1079 *ot = s->dflag == MO_16 ? MO_32 : s->dflag; 1080 return true; 1081 1082 case X86_SIZE_z: /* 16-bit for 16-bit operand size, else 32-bit */ 1083 *ot = s->dflag == MO_16 ? MO_16 : MO_32; 1084 return true; 1085 1086 case X86_SIZE_dq: /* SSE/AVX 128-bit */ 1087 if (e->special == X86_SPECIAL_MMX && 1088 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1089 *ot = MO_64; 1090 return true; 1091 } 1092 if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) { 1093 return false; 1094 } 1095 *ot = MO_128; 1096 return true; 1097 1098 case X86_SIZE_qq: /* AVX 256-bit */ 1099 if (!s->vex_l) { 1100 return false; 1101 } 1102 *ot = MO_256; 1103 return true; 1104 1105 case X86_SIZE_x: /* 128/256-bit, based on operand size */ 1106 if (e->special == X86_SPECIAL_MMX && 1107 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1108 *ot = MO_64; 1109 return true; 1110 } 1111 /* fall through */ 1112 case X86_SIZE_ps: /* SSE/AVX packed single precision */ 1113 case X86_SIZE_pd: /* SSE/AVX packed double precision */ 1114 *ot = s->vex_l ? MO_256 : MO_128; 1115 return true; 1116 1117 case X86_SIZE_xh: /* SSE/AVX packed half register */ 1118 *ot = s->vex_l ? MO_128 : MO_64; 1119 return true; 1120 1121 case X86_SIZE_d64: /* Default to 64-bit in 64-bit mode */ 1122 *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag; 1123 return true; 1124 1125 case X86_SIZE_f64: /* Ignore size override prefix in 64-bit mode */ 1126 *ot = CODE64(s) ? MO_64 : s->dflag; 1127 return true; 1128 1129 default: 1130 *ot = -1; 1131 return true; 1132 } 1133} 1134 1135static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode, 1136 X86DecodedOp *op, X86OpType type, int b) 1137{ 1138 int modrm; 1139 1140 switch (type) { 1141 case X86_TYPE_None: /* Implicit or absent */ 1142 case X86_TYPE_A: /* Implicit */ 1143 case X86_TYPE_F: /* EFLAGS/RFLAGS */ 1144 break; 1145 1146 case X86_TYPE_B: /* VEX.vvvv selects a GPR */ 1147 op->unit = X86_OP_INT; 1148 op->n = s->vex_v; 1149 break; 1150 1151 case X86_TYPE_C: /* REG in the modrm byte selects a control register */ 1152 op->unit = X86_OP_CR; 1153 goto get_reg; 1154 1155 case X86_TYPE_D: /* REG in the modrm byte selects a debug register */ 1156 op->unit = X86_OP_DR; 1157 goto get_reg; 1158 1159 case X86_TYPE_G: /* REG in the modrm byte selects a GPR */ 1160 op->unit = X86_OP_INT; 1161 goto get_reg; 1162 1163 case X86_TYPE_S: /* reg selects a segment register */ 1164 op->unit = X86_OP_SEG; 1165 goto get_reg; 1166 1167 case X86_TYPE_P: 1168 op->unit = X86_OP_MMX; 1169 goto get_reg; 1170 1171 case X86_TYPE_V: /* reg in the modrm byte selects an XMM/YMM register */ 1172 if (decode->e.special == X86_SPECIAL_MMX && 1173 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1174 op->unit = X86_OP_MMX; 1175 } else { 1176 op->unit = X86_OP_SSE; 1177 } 1178 get_reg: 1179 op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s); 1180 break; 1181 1182 case X86_TYPE_E: /* ALU modrm operand */ 1183 op->unit = X86_OP_INT; 1184 goto get_modrm; 1185 1186 case X86_TYPE_Q: /* MMX modrm operand */ 1187 op->unit = X86_OP_MMX; 1188 goto get_modrm; 1189 1190 case X86_TYPE_W: /* XMM/YMM modrm operand */ 1191 if (decode->e.special == X86_SPECIAL_MMX && 1192 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1193 op->unit = X86_OP_MMX; 1194 } else { 1195 op->unit = X86_OP_SSE; 1196 } 1197 goto get_modrm; 1198 1199 case X86_TYPE_N: /* R/M in the modrm byte selects an MMX register */ 1200 op->unit = X86_OP_MMX; 1201 goto get_modrm_reg; 1202 1203 case X86_TYPE_U: /* R/M in the modrm byte selects an XMM/YMM register */ 1204 if (decode->e.special == X86_SPECIAL_MMX && 1205 !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) { 1206 op->unit = X86_OP_MMX; 1207 } else { 1208 op->unit = X86_OP_SSE; 1209 } 1210 goto get_modrm_reg; 1211 1212 case X86_TYPE_R: /* R/M in the modrm byte selects a register */ 1213 op->unit = X86_OP_INT; 1214 get_modrm_reg: 1215 modrm = get_modrm(s, env); 1216 if ((modrm >> 6) != 3) { 1217 return false; 1218 } 1219 goto get_modrm; 1220 1221 case X86_TYPE_WM: /* modrm byte selects an XMM/YMM memory operand */ 1222 op->unit = X86_OP_SSE; 1223 /* fall through */ 1224 case X86_TYPE_M: /* modrm byte selects a memory operand */ 1225 modrm = get_modrm(s, env); 1226 if ((modrm >> 6) == 3) { 1227 return false; 1228 } 1229 get_modrm: 1230 decode_modrm(s, env, decode, op, type); 1231 break; 1232 1233 case X86_TYPE_O: /* Absolute address encoded in the instruction */ 1234 op->unit = X86_OP_INT; 1235 op->has_ea = true; 1236 op->n = -1; 1237 decode->mem = (AddressParts) { 1238 .def_seg = R_DS, 1239 .base = -1, 1240 .index = -1, 1241 .disp = insn_get_addr(env, s, s->aflag) 1242 }; 1243 break; 1244 1245 case X86_TYPE_H: /* For AVX, VEX.vvvv selects an XMM/YMM register */ 1246 if ((s->prefix & PREFIX_VEX)) { 1247 op->unit = X86_OP_SSE; 1248 op->n = s->vex_v; 1249 break; 1250 } 1251 if (op == &decode->op[0]) { 1252 /* shifts place the destination in VEX.vvvv, use modrm */ 1253 return decode_op(s, env, decode, op, decode->e.op1, b); 1254 } else { 1255 return decode_op(s, env, decode, op, decode->e.op0, b); 1256 } 1257 1258 case X86_TYPE_I: /* Immediate */ 1259 op->unit = X86_OP_IMM; 1260 decode->immediate = insn_get_signed(env, s, op->ot); 1261 break; 1262 1263 case X86_TYPE_J: /* Relative offset for a jump */ 1264 op->unit = X86_OP_IMM; 1265 decode->immediate = insn_get_signed(env, s, op->ot); 1266 decode->immediate += s->pc - s->cs_base; 1267 if (s->dflag == MO_16) { 1268 decode->immediate &= 0xffff; 1269 } else if (!CODE64(s)) { 1270 decode->immediate &= 0xffffffffu; 1271 } 1272 break; 1273 1274 case X86_TYPE_L: /* The upper 4 bits of the immediate select a 128-bit register */ 1275 op->n = insn_get(env, s, op->ot) >> 4; 1276 break; 1277 1278 case X86_TYPE_X: /* string source */ 1279 op->n = -1; 1280 decode->mem = (AddressParts) { 1281 .def_seg = R_DS, 1282 .base = R_ESI, 1283 .index = -1, 1284 }; 1285 break; 1286 1287 case X86_TYPE_Y: /* string destination */ 1288 op->n = -1; 1289 decode->mem = (AddressParts) { 1290 .def_seg = R_ES, 1291 .base = R_EDI, 1292 .index = -1, 1293 }; 1294 break; 1295 1296 case X86_TYPE_2op: 1297 *op = decode->op[0]; 1298 break; 1299 1300 case X86_TYPE_LoBits: 1301 op->n = (b & 7) | REX_B(s); 1302 op->unit = X86_OP_INT; 1303 break; 1304 1305 case X86_TYPE_0 ... X86_TYPE_7: 1306 op->n = type - X86_TYPE_0; 1307 op->unit = X86_OP_INT; 1308 break; 1309 1310 case X86_TYPE_ES ... X86_TYPE_GS: 1311 op->n = type - X86_TYPE_ES; 1312 op->unit = X86_OP_SEG; 1313 break; 1314 } 1315 1316 return true; 1317} 1318 1319static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e) 1320{ 1321 uint16_t sse_prefixes; 1322 1323 if (!e->valid_prefix) { 1324 return true; 1325 } 1326 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { 1327 /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66. */ 1328 s->prefix &= ~PREFIX_DATA; 1329 } 1330 1331 /* Now, either zero or one bit is set in sse_prefixes. */ 1332 sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA); 1333 return e->valid_prefix & (1 << sse_prefixes); 1334} 1335 1336static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func, 1337 X86DecodedInsn *decode) 1338{ 1339 X86OpEntry *e = &decode->e; 1340 1341 decode_func(s, env, e, &decode->b); 1342 while (e->is_decode) { 1343 e->is_decode = false; 1344 e->decode(s, env, e, &decode->b); 1345 } 1346 1347 if (!validate_sse_prefix(s, e)) { 1348 return false; 1349 } 1350 1351 /* First compute size of operands in order to initialize s->rip_offset. */ 1352 if (e->op0 != X86_TYPE_None) { 1353 if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) { 1354 return false; 1355 } 1356 if (e->op0 == X86_TYPE_I) { 1357 s->rip_offset += 1 << decode->op[0].ot; 1358 } 1359 } 1360 if (e->op1 != X86_TYPE_None) { 1361 if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) { 1362 return false; 1363 } 1364 if (e->op1 == X86_TYPE_I) { 1365 s->rip_offset += 1 << decode->op[1].ot; 1366 } 1367 } 1368 if (e->op2 != X86_TYPE_None) { 1369 if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) { 1370 return false; 1371 } 1372 if (e->op2 == X86_TYPE_I) { 1373 s->rip_offset += 1 << decode->op[2].ot; 1374 } 1375 } 1376 if (e->op3 != X86_TYPE_None) { 1377 /* 1378 * A couple instructions actually use the extra immediate byte for an Lx 1379 * register operand; those are handled in the gen_* functions as one off. 1380 */ 1381 assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b); 1382 s->rip_offset += 1; 1383 } 1384 1385 if (e->op0 != X86_TYPE_None && 1386 !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) { 1387 return false; 1388 } 1389 1390 if (e->op1 != X86_TYPE_None && 1391 !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) { 1392 return false; 1393 } 1394 1395 if (e->op2 != X86_TYPE_None && 1396 !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) { 1397 return false; 1398 } 1399 1400 if (e->op3 != X86_TYPE_None) { 1401 decode->immediate = insn_get_signed(env, s, MO_8); 1402 } 1403 1404 return true; 1405} 1406 1407static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid) 1408{ 1409 switch (cpuid) { 1410 case X86_FEAT_None: 1411 return true; 1412 case X86_FEAT_F16C: 1413 return (s->cpuid_ext_features & CPUID_EXT_F16C); 1414 case X86_FEAT_FMA: 1415 return (s->cpuid_ext_features & CPUID_EXT_FMA); 1416 case X86_FEAT_MOVBE: 1417 return (s->cpuid_ext_features & CPUID_EXT_MOVBE); 1418 case X86_FEAT_PCLMULQDQ: 1419 return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ); 1420 case X86_FEAT_SSE: 1421 return (s->cpuid_ext_features & CPUID_SSE); 1422 case X86_FEAT_SSE2: 1423 return (s->cpuid_ext_features & CPUID_SSE2); 1424 case X86_FEAT_SSE3: 1425 return (s->cpuid_ext_features & CPUID_EXT_SSE3); 1426 case X86_FEAT_SSSE3: 1427 return (s->cpuid_ext_features & CPUID_EXT_SSSE3); 1428 case X86_FEAT_SSE41: 1429 return (s->cpuid_ext_features & CPUID_EXT_SSE41); 1430 case X86_FEAT_SSE42: 1431 return (s->cpuid_ext_features & CPUID_EXT_SSE42); 1432 case X86_FEAT_AES: 1433 if (!(s->cpuid_ext_features & CPUID_EXT_AES)) { 1434 return false; 1435 } else if (!(s->prefix & PREFIX_VEX)) { 1436 return true; 1437 } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) { 1438 return false; 1439 } else { 1440 return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES); 1441 } 1442 1443 case X86_FEAT_AVX: 1444 return (s->cpuid_ext_features & CPUID_EXT_AVX); 1445 1446 case X86_FEAT_3DNOW: 1447 return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW); 1448 case X86_FEAT_SSE4A: 1449 return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A); 1450 1451 case X86_FEAT_ADX: 1452 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX); 1453 case X86_FEAT_BMI1: 1454 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1); 1455 case X86_FEAT_BMI2: 1456 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2); 1457 case X86_FEAT_AVX2: 1458 return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2); 1459 } 1460 g_assert_not_reached(); 1461} 1462 1463static bool validate_vex(DisasContext *s, X86DecodedInsn *decode) 1464{ 1465 X86OpEntry *e = &decode->e; 1466 1467 switch (e->vex_special) { 1468 case X86_VEX_REPScalar: 1469 /* 1470 * Instructions which differ between 00/66 and F2/F3 in the 1471 * exception classification and the size of the memory operand. 1472 */ 1473 assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4); 1474 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) { 1475 e->vex_class = e->vex_class < 4 ? 3 : 5; 1476 if (s->vex_l) { 1477 goto illegal; 1478 } 1479 assert(decode->e.s2 == X86_SIZE_x); 1480 if (decode->op[2].has_ea) { 1481 decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64; 1482 } 1483 } 1484 break; 1485 1486 case X86_VEX_SSEUnaligned: 1487 /* handled in sse_needs_alignment. */ 1488 break; 1489 1490 case X86_VEX_AVX2_256: 1491 if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) { 1492 goto illegal; 1493 } 1494 } 1495 1496 /* TODO: instructions that require VEX.W=0 (Table 2-16) */ 1497 1498 switch (e->vex_class) { 1499 case 0: 1500 if (s->prefix & PREFIX_VEX) { 1501 goto illegal; 1502 } 1503 return true; 1504 case 1: 1505 case 2: 1506 case 3: 1507 case 4: 1508 case 5: 1509 case 7: 1510 if (s->prefix & PREFIX_VEX) { 1511 if (!(s->flags & HF_AVX_EN_MASK)) { 1512 goto illegal; 1513 } 1514 } else if (e->special != X86_SPECIAL_MMX || 1515 (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { 1516 if (!(s->flags & HF_OSFXSR_MASK)) { 1517 goto illegal; 1518 } 1519 } 1520 break; 1521 case 12: 1522 /* Must have a VSIB byte and no address prefix. */ 1523 assert(s->has_modrm); 1524 if ((s->modrm & 7) != 4 || s->aflag == MO_16) { 1525 goto illegal; 1526 } 1527 1528 /* Check no overlap between registers. */ 1529 if (!decode->op[0].has_ea && 1530 (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) { 1531 goto illegal; 1532 } 1533 assert(!decode->op[1].has_ea); 1534 if (decode->op[1].n == decode->mem.index) { 1535 goto illegal; 1536 } 1537 if (!decode->op[2].has_ea && 1538 (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) { 1539 goto illegal; 1540 } 1541 /* fall through */ 1542 case 6: 1543 case 11: 1544 if (!(s->prefix & PREFIX_VEX)) { 1545 goto illegal; 1546 } 1547 if (!(s->flags & HF_AVX_EN_MASK)) { 1548 goto illegal; 1549 } 1550 break; 1551 case 8: 1552 /* Non-VEX case handled in decode_0F77. */ 1553 assert(s->prefix & PREFIX_VEX); 1554 if (!(s->flags & HF_AVX_EN_MASK)) { 1555 goto illegal; 1556 } 1557 break; 1558 case 13: 1559 if (!(s->prefix & PREFIX_VEX)) { 1560 goto illegal; 1561 } 1562 if (s->vex_l) { 1563 goto illegal; 1564 } 1565 /* All integer instructions use VEX.vvvv, so exit. */ 1566 return true; 1567 } 1568 1569 if (s->vex_v != 0 && 1570 e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B && 1571 e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B && 1572 e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) { 1573 goto illegal; 1574 } 1575 1576 if (s->flags & HF_TS_MASK) { 1577 goto nm_exception; 1578 } 1579 if (s->flags & HF_EM_MASK) { 1580 goto illegal; 1581 } 1582 return true; 1583 1584nm_exception: 1585 gen_NM_exception(s); 1586 return false; 1587illegal: 1588 gen_illegal_opcode(s); 1589 return false; 1590} 1591 1592/* 1593 * Convert one instruction. s->base.is_jmp is set if the translation must 1594 * be stopped. 1595 */ 1596static void disas_insn_new(DisasContext *s, CPUState *cpu, int b) 1597{ 1598 CPUX86State *env = cpu->env_ptr; 1599 bool first = true; 1600 X86DecodedInsn decode; 1601 X86DecodeFunc decode_func = decode_root; 1602 1603 s->has_modrm = false; 1604 1605 next_byte: 1606 if (first) { 1607 first = false; 1608 } else { 1609 b = x86_ldub_code(env, s); 1610 } 1611 /* Collect prefixes. */ 1612 switch (b) { 1613 case 0xf3: 1614 s->prefix |= PREFIX_REPZ; 1615 s->prefix &= ~PREFIX_REPNZ; 1616 goto next_byte; 1617 case 0xf2: 1618 s->prefix |= PREFIX_REPNZ; 1619 s->prefix &= ~PREFIX_REPZ; 1620 goto next_byte; 1621 case 0xf0: 1622 s->prefix |= PREFIX_LOCK; 1623 goto next_byte; 1624 case 0x2e: 1625 s->override = R_CS; 1626 goto next_byte; 1627 case 0x36: 1628 s->override = R_SS; 1629 goto next_byte; 1630 case 0x3e: 1631 s->override = R_DS; 1632 goto next_byte; 1633 case 0x26: 1634 s->override = R_ES; 1635 goto next_byte; 1636 case 0x64: 1637 s->override = R_FS; 1638 goto next_byte; 1639 case 0x65: 1640 s->override = R_GS; 1641 goto next_byte; 1642 case 0x66: 1643 s->prefix |= PREFIX_DATA; 1644 goto next_byte; 1645 case 0x67: 1646 s->prefix |= PREFIX_ADR; 1647 goto next_byte; 1648#ifdef TARGET_X86_64 1649 case 0x40 ... 0x4f: 1650 if (CODE64(s)) { 1651 /* REX prefix */ 1652 s->prefix |= PREFIX_REX; 1653 s->vex_w = (b >> 3) & 1; 1654 s->rex_r = (b & 0x4) << 1; 1655 s->rex_x = (b & 0x2) << 2; 1656 s->rex_b = (b & 0x1) << 3; 1657 goto next_byte; 1658 } 1659 break; 1660#endif 1661 case 0xc5: /* 2-byte VEX */ 1662 case 0xc4: /* 3-byte VEX */ 1663 /* 1664 * VEX prefixes cannot be used except in 32-bit mode. 1665 * Otherwise the instruction is LES or LDS. 1666 */ 1667 if (CODE32(s) && !VM86(s)) { 1668 static const int pp_prefix[4] = { 1669 0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ 1670 }; 1671 int vex3, vex2 = x86_ldub_code(env, s); 1672 1673 if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) { 1674 /* 1675 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b, 1676 * otherwise the instruction is LES or LDS. 1677 */ 1678 s->pc--; /* rewind the advance_pc() x86_ldub_code() did */ 1679 break; 1680 } 1681 1682 /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */ 1683 if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ 1684 | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) { 1685 goto illegal_op; 1686 } 1687#ifdef TARGET_X86_64 1688 s->rex_r = (~vex2 >> 4) & 8; 1689#endif 1690 if (b == 0xc5) { 1691 /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */ 1692 vex3 = vex2; 1693 decode_func = decode_0F; 1694 } else { 1695 /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */ 1696 vex3 = x86_ldub_code(env, s); 1697#ifdef TARGET_X86_64 1698 s->rex_x = (~vex2 >> 3) & 8; 1699 s->rex_b = (~vex2 >> 2) & 8; 1700#endif 1701 s->vex_w = (vex3 >> 7) & 1; 1702 switch (vex2 & 0x1f) { 1703 case 0x01: /* Implied 0f leading opcode bytes. */ 1704 decode_func = decode_0F; 1705 break; 1706 case 0x02: /* Implied 0f 38 leading opcode bytes. */ 1707 decode_func = decode_0F38; 1708 break; 1709 case 0x03: /* Implied 0f 3a leading opcode bytes. */ 1710 decode_func = decode_0F3A; 1711 break; 1712 default: /* Reserved for future use. */ 1713 goto unknown_op; 1714 } 1715 } 1716 s->vex_v = (~vex3 >> 3) & 0xf; 1717 s->vex_l = (vex3 >> 2) & 1; 1718 s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX; 1719 } 1720 break; 1721 default: 1722 if (b >= 0x100) { 1723 b -= 0x100; 1724 decode_func = do_decode_0F; 1725 } 1726 break; 1727 } 1728 1729 /* Post-process prefixes. */ 1730 if (CODE64(s)) { 1731 /* 1732 * In 64-bit mode, the default data size is 32-bit. Select 64-bit 1733 * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence 1734 * over 0x66 if both are present. 1735 */ 1736 s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32); 1737 /* In 64-bit mode, 0x67 selects 32-bit addressing. */ 1738 s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64); 1739 } else { 1740 /* In 16/32-bit mode, 0x66 selects the opposite data size. */ 1741 if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) { 1742 s->dflag = MO_32; 1743 } else { 1744 s->dflag = MO_16; 1745 } 1746 /* In 16/32-bit mode, 0x67 selects the opposite addressing. */ 1747 if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) { 1748 s->aflag = MO_32; 1749 } else { 1750 s->aflag = MO_16; 1751 } 1752 } 1753 1754 memset(&decode, 0, sizeof(decode)); 1755 decode.b = b; 1756 if (!decode_insn(s, env, decode_func, &decode)) { 1757 goto illegal_op; 1758 } 1759 if (!decode.e.gen) { 1760 goto unknown_op; 1761 } 1762 1763 if (!has_cpuid_feature(s, decode.e.cpuid)) { 1764 goto illegal_op; 1765 } 1766 1767 switch (decode.e.special) { 1768 case X86_SPECIAL_None: 1769 break; 1770 1771 case X86_SPECIAL_Locked: 1772 if (decode.op[0].has_ea) { 1773 s->prefix |= PREFIX_LOCK; 1774 } 1775 break; 1776 1777 case X86_SPECIAL_ProtMode: 1778 if (!PE(s) || VM86(s)) { 1779 goto illegal_op; 1780 } 1781 break; 1782 1783 case X86_SPECIAL_i64: 1784 if (CODE64(s)) { 1785 goto illegal_op; 1786 } 1787 break; 1788 case X86_SPECIAL_o64: 1789 if (!CODE64(s)) { 1790 goto illegal_op; 1791 } 1792 break; 1793 1794 case X86_SPECIAL_ZExtOp0: 1795 assert(decode.op[0].unit == X86_OP_INT); 1796 if (!decode.op[0].has_ea) { 1797 decode.op[0].ot = MO_32; 1798 } 1799 break; 1800 1801 case X86_SPECIAL_ZExtOp2: 1802 assert(decode.op[2].unit == X86_OP_INT); 1803 if (!decode.op[2].has_ea) { 1804 decode.op[2].ot = MO_32; 1805 } 1806 break; 1807 1808 case X86_SPECIAL_AVXExtMov: 1809 if (!decode.op[2].has_ea) { 1810 decode.op[2].ot = s->vex_l ? MO_256 : MO_128; 1811 } else if (s->vex_l) { 1812 decode.op[2].ot++; 1813 } 1814 break; 1815 1816 default: 1817 break; 1818 } 1819 1820 if (!validate_vex(s, &decode)) { 1821 return; 1822 } 1823 if (decode.e.special == X86_SPECIAL_MMX && 1824 !(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) { 1825 gen_helper_enter_mmx(cpu_env); 1826 } 1827 1828 if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) { 1829 gen_load_ea(s, &decode.mem, decode.e.vex_class == 12); 1830 } 1831 if (s->prefix & PREFIX_LOCK) { 1832 if (decode.op[0].unit != X86_OP_INT || !decode.op[0].has_ea) { 1833 goto illegal_op; 1834 } 1835 gen_load(s, &decode, 2, s->T1); 1836 decode.e.gen(s, env, &decode); 1837 } else { 1838 if (decode.op[0].unit == X86_OP_MMX) { 1839 compute_mmx_offset(&decode.op[0]); 1840 } else if (decode.op[0].unit == X86_OP_SSE) { 1841 compute_xmm_offset(&decode.op[0]); 1842 } 1843 gen_load(s, &decode, 1, s->T0); 1844 gen_load(s, &decode, 2, s->T1); 1845 decode.e.gen(s, env, &decode); 1846 gen_writeback(s, &decode, 0, s->T0); 1847 } 1848 return; 1849 illegal_op: 1850 gen_illegal_opcode(s); 1851 return; 1852 unknown_op: 1853 gen_unknown_opcode(env, s); 1854} 1855