1 /* 2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support 3 * 4 * Copyright (c) 2005 Fabrice Bellard 5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com> 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "crypto/aes.h" 22 23 #if SHIFT == 0 24 #define Reg MMXReg 25 #define XMM_ONLY(...) 26 #define B(n) MMX_B(n) 27 #define W(n) MMX_W(n) 28 #define L(n) MMX_L(n) 29 #define Q(n) MMX_Q(n) 30 #define SUFFIX _mmx 31 #else 32 #define Reg ZMMReg 33 #define XMM_ONLY(...) __VA_ARGS__ 34 #define B(n) ZMM_B(n) 35 #define W(n) ZMM_W(n) 36 #define L(n) ZMM_L(n) 37 #define Q(n) ZMM_Q(n) 38 #define SUFFIX _xmm 39 #endif 40 41 void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 42 { 43 int shift; 44 45 if (s->Q(0) > 15) { 46 d->Q(0) = 0; 47 #if SHIFT == 1 48 d->Q(1) = 0; 49 #endif 50 } else { 51 shift = s->B(0); 52 d->W(0) >>= shift; 53 d->W(1) >>= shift; 54 d->W(2) >>= shift; 55 d->W(3) >>= shift; 56 #if SHIFT == 1 57 d->W(4) >>= shift; 58 d->W(5) >>= shift; 59 d->W(6) >>= shift; 60 d->W(7) >>= shift; 61 #endif 62 } 63 } 64 65 void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 66 { 67 int shift; 68 69 if (s->Q(0) > 15) { 70 shift = 15; 71 } else { 72 shift = s->B(0); 73 } 74 d->W(0) = (int16_t)d->W(0) >> shift; 75 d->W(1) = (int16_t)d->W(1) >> shift; 76 d->W(2) = (int16_t)d->W(2) >> shift; 77 d->W(3) = (int16_t)d->W(3) >> shift; 78 #if SHIFT == 1 79 d->W(4) = (int16_t)d->W(4) >> shift; 80 d->W(5) = (int16_t)d->W(5) >> shift; 81 d->W(6) = (int16_t)d->W(6) >> shift; 82 d->W(7) = (int16_t)d->W(7) >> shift; 83 #endif 84 } 85 86 void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 87 { 88 int shift; 89 90 if (s->Q(0) > 15) { 91 d->Q(0) = 0; 92 #if SHIFT == 1 93 d->Q(1) = 0; 94 #endif 95 } else { 96 shift = s->B(0); 97 d->W(0) <<= shift; 98 d->W(1) <<= shift; 99 d->W(2) <<= shift; 100 d->W(3) <<= shift; 101 #if SHIFT == 1 102 d->W(4) <<= shift; 103 d->W(5) <<= shift; 104 d->W(6) <<= shift; 105 d->W(7) <<= shift; 106 #endif 107 } 108 } 109 110 void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 111 { 112 int shift; 113 114 if (s->Q(0) > 31) { 115 d->Q(0) = 0; 116 #if SHIFT == 1 117 d->Q(1) = 0; 118 #endif 119 } else { 120 shift = s->B(0); 121 d->L(0) >>= shift; 122 d->L(1) >>= shift; 123 #if SHIFT == 1 124 d->L(2) >>= shift; 125 d->L(3) >>= shift; 126 #endif 127 } 128 } 129 130 void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 131 { 132 int shift; 133 134 if (s->Q(0) > 31) { 135 shift = 31; 136 } else { 137 shift = s->B(0); 138 } 139 d->L(0) = (int32_t)d->L(0) >> shift; 140 d->L(1) = (int32_t)d->L(1) >> shift; 141 #if SHIFT == 1 142 d->L(2) = (int32_t)d->L(2) >> shift; 143 d->L(3) = (int32_t)d->L(3) >> shift; 144 #endif 145 } 146 147 void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 148 { 149 int shift; 150 151 if (s->Q(0) > 31) { 152 d->Q(0) = 0; 153 #if SHIFT == 1 154 d->Q(1) = 0; 155 #endif 156 } else { 157 shift = s->B(0); 158 d->L(0) <<= shift; 159 d->L(1) <<= shift; 160 #if SHIFT == 1 161 d->L(2) <<= shift; 162 d->L(3) <<= shift; 163 #endif 164 } 165 } 166 167 void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 168 { 169 int shift; 170 171 if (s->Q(0) > 63) { 172 d->Q(0) = 0; 173 #if SHIFT == 1 174 d->Q(1) = 0; 175 #endif 176 } else { 177 shift = s->B(0); 178 d->Q(0) >>= shift; 179 #if SHIFT == 1 180 d->Q(1) >>= shift; 181 #endif 182 } 183 } 184 185 void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 186 { 187 int shift; 188 189 if (s->Q(0) > 63) { 190 d->Q(0) = 0; 191 #if SHIFT == 1 192 d->Q(1) = 0; 193 #endif 194 } else { 195 shift = s->B(0); 196 d->Q(0) <<= shift; 197 #if SHIFT == 1 198 d->Q(1) <<= shift; 199 #endif 200 } 201 } 202 203 #if SHIFT == 1 204 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 205 { 206 int shift, i; 207 208 shift = s->L(0); 209 if (shift > 16) { 210 shift = 16; 211 } 212 for (i = 0; i < 16 - shift; i++) { 213 d->B(i) = d->B(i + shift); 214 } 215 for (i = 16 - shift; i < 16; i++) { 216 d->B(i) = 0; 217 } 218 } 219 220 void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 221 { 222 int shift, i; 223 224 shift = s->L(0); 225 if (shift > 16) { 226 shift = 16; 227 } 228 for (i = 15; i >= shift; i--) { 229 d->B(i) = d->B(i - shift); 230 } 231 for (i = 0; i < shift; i++) { 232 d->B(i) = 0; 233 } 234 } 235 #endif 236 237 #define SSE_HELPER_B(name, F) \ 238 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 239 { \ 240 d->B(0) = F(d->B(0), s->B(0)); \ 241 d->B(1) = F(d->B(1), s->B(1)); \ 242 d->B(2) = F(d->B(2), s->B(2)); \ 243 d->B(3) = F(d->B(3), s->B(3)); \ 244 d->B(4) = F(d->B(4), s->B(4)); \ 245 d->B(5) = F(d->B(5), s->B(5)); \ 246 d->B(6) = F(d->B(6), s->B(6)); \ 247 d->B(7) = F(d->B(7), s->B(7)); \ 248 XMM_ONLY( \ 249 d->B(8) = F(d->B(8), s->B(8)); \ 250 d->B(9) = F(d->B(9), s->B(9)); \ 251 d->B(10) = F(d->B(10), s->B(10)); \ 252 d->B(11) = F(d->B(11), s->B(11)); \ 253 d->B(12) = F(d->B(12), s->B(12)); \ 254 d->B(13) = F(d->B(13), s->B(13)); \ 255 d->B(14) = F(d->B(14), s->B(14)); \ 256 d->B(15) = F(d->B(15), s->B(15)); \ 257 ) \ 258 } 259 260 #define SSE_HELPER_W(name, F) \ 261 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 262 { \ 263 d->W(0) = F(d->W(0), s->W(0)); \ 264 d->W(1) = F(d->W(1), s->W(1)); \ 265 d->W(2) = F(d->W(2), s->W(2)); \ 266 d->W(3) = F(d->W(3), s->W(3)); \ 267 XMM_ONLY( \ 268 d->W(4) = F(d->W(4), s->W(4)); \ 269 d->W(5) = F(d->W(5), s->W(5)); \ 270 d->W(6) = F(d->W(6), s->W(6)); \ 271 d->W(7) = F(d->W(7), s->W(7)); \ 272 ) \ 273 } 274 275 #define SSE_HELPER_L(name, F) \ 276 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 277 { \ 278 d->L(0) = F(d->L(0), s->L(0)); \ 279 d->L(1) = F(d->L(1), s->L(1)); \ 280 XMM_ONLY( \ 281 d->L(2) = F(d->L(2), s->L(2)); \ 282 d->L(3) = F(d->L(3), s->L(3)); \ 283 ) \ 284 } 285 286 #define SSE_HELPER_Q(name, F) \ 287 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 288 { \ 289 d->Q(0) = F(d->Q(0), s->Q(0)); \ 290 XMM_ONLY( \ 291 d->Q(1) = F(d->Q(1), s->Q(1)); \ 292 ) \ 293 } 294 295 #if SHIFT == 0 296 static inline int satub(int x) 297 { 298 if (x < 0) { 299 return 0; 300 } else if (x > 255) { 301 return 255; 302 } else { 303 return x; 304 } 305 } 306 307 static inline int satuw(int x) 308 { 309 if (x < 0) { 310 return 0; 311 } else if (x > 65535) { 312 return 65535; 313 } else { 314 return x; 315 } 316 } 317 318 static inline int satsb(int x) 319 { 320 if (x < -128) { 321 return -128; 322 } else if (x > 127) { 323 return 127; 324 } else { 325 return x; 326 } 327 } 328 329 static inline int satsw(int x) 330 { 331 if (x < -32768) { 332 return -32768; 333 } else if (x > 32767) { 334 return 32767; 335 } else { 336 return x; 337 } 338 } 339 340 #define FADD(a, b) ((a) + (b)) 341 #define FADDUB(a, b) satub((a) + (b)) 342 #define FADDUW(a, b) satuw((a) + (b)) 343 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) 344 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) 345 346 #define FSUB(a, b) ((a) - (b)) 347 #define FSUBUB(a, b) satub((a) - (b)) 348 #define FSUBUW(a, b) satuw((a) - (b)) 349 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) 350 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) 351 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) 352 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) 353 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) 354 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) 355 356 #define FAND(a, b) ((a) & (b)) 357 #define FANDN(a, b) ((~(a)) & (b)) 358 #define FOR(a, b) ((a) | (b)) 359 #define FXOR(a, b) ((a) ^ (b)) 360 361 #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0) 362 #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0) 363 #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0) 364 #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0) 365 366 #define FMULLW(a, b) ((a) * (b)) 367 #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16) 368 #define FMULHUW(a, b) ((a) * (b) >> 16) 369 #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16) 370 371 #define FAVG(a, b) (((a) + (b) + 1) >> 1) 372 #endif 373 374 SSE_HELPER_B(helper_paddb, FADD) 375 SSE_HELPER_W(helper_paddw, FADD) 376 SSE_HELPER_L(helper_paddl, FADD) 377 SSE_HELPER_Q(helper_paddq, FADD) 378 379 SSE_HELPER_B(helper_psubb, FSUB) 380 SSE_HELPER_W(helper_psubw, FSUB) 381 SSE_HELPER_L(helper_psubl, FSUB) 382 SSE_HELPER_Q(helper_psubq, FSUB) 383 384 SSE_HELPER_B(helper_paddusb, FADDUB) 385 SSE_HELPER_B(helper_paddsb, FADDSB) 386 SSE_HELPER_B(helper_psubusb, FSUBUB) 387 SSE_HELPER_B(helper_psubsb, FSUBSB) 388 389 SSE_HELPER_W(helper_paddusw, FADDUW) 390 SSE_HELPER_W(helper_paddsw, FADDSW) 391 SSE_HELPER_W(helper_psubusw, FSUBUW) 392 SSE_HELPER_W(helper_psubsw, FSUBSW) 393 394 SSE_HELPER_B(helper_pminub, FMINUB) 395 SSE_HELPER_B(helper_pmaxub, FMAXUB) 396 397 SSE_HELPER_W(helper_pminsw, FMINSW) 398 SSE_HELPER_W(helper_pmaxsw, FMAXSW) 399 400 SSE_HELPER_Q(helper_pand, FAND) 401 SSE_HELPER_Q(helper_pandn, FANDN) 402 SSE_HELPER_Q(helper_por, FOR) 403 SSE_HELPER_Q(helper_pxor, FXOR) 404 405 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB) 406 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW) 407 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL) 408 409 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ) 410 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ) 411 SSE_HELPER_L(helper_pcmpeql, FCMPEQ) 412 413 SSE_HELPER_W(helper_pmullw, FMULLW) 414 #if SHIFT == 0 415 SSE_HELPER_W(helper_pmulhrw, FMULHRW) 416 #endif 417 SSE_HELPER_W(helper_pmulhuw, FMULHUW) 418 SSE_HELPER_W(helper_pmulhw, FMULHW) 419 420 SSE_HELPER_B(helper_pavgb, FAVG) 421 SSE_HELPER_W(helper_pavgw, FAVG) 422 423 void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 424 { 425 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0); 426 #if SHIFT == 1 427 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2); 428 #endif 429 } 430 431 void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 432 { 433 int i; 434 435 for (i = 0; i < (2 << SHIFT); i++) { 436 d->L(i) = (int16_t)s->W(2 * i) * (int16_t)d->W(2 * i) + 437 (int16_t)s->W(2 * i + 1) * (int16_t)d->W(2 * i + 1); 438 } 439 } 440 441 #if SHIFT == 0 442 static inline int abs1(int a) 443 { 444 if (a < 0) { 445 return -a; 446 } else { 447 return a; 448 } 449 } 450 #endif 451 void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 452 { 453 unsigned int val; 454 455 val = 0; 456 val += abs1(d->B(0) - s->B(0)); 457 val += abs1(d->B(1) - s->B(1)); 458 val += abs1(d->B(2) - s->B(2)); 459 val += abs1(d->B(3) - s->B(3)); 460 val += abs1(d->B(4) - s->B(4)); 461 val += abs1(d->B(5) - s->B(5)); 462 val += abs1(d->B(6) - s->B(6)); 463 val += abs1(d->B(7) - s->B(7)); 464 d->Q(0) = val; 465 #if SHIFT == 1 466 val = 0; 467 val += abs1(d->B(8) - s->B(8)); 468 val += abs1(d->B(9) - s->B(9)); 469 val += abs1(d->B(10) - s->B(10)); 470 val += abs1(d->B(11) - s->B(11)); 471 val += abs1(d->B(12) - s->B(12)); 472 val += abs1(d->B(13) - s->B(13)); 473 val += abs1(d->B(14) - s->B(14)); 474 val += abs1(d->B(15) - s->B(15)); 475 d->Q(1) = val; 476 #endif 477 } 478 479 void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 480 target_ulong a0) 481 { 482 int i; 483 484 for (i = 0; i < (8 << SHIFT); i++) { 485 if (s->B(i) & 0x80) { 486 cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC()); 487 } 488 } 489 } 490 491 void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val) 492 { 493 d->L(0) = val; 494 d->L(1) = 0; 495 #if SHIFT == 1 496 d->Q(1) = 0; 497 #endif 498 } 499 500 #ifdef TARGET_X86_64 501 void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val) 502 { 503 d->Q(0) = val; 504 #if SHIFT == 1 505 d->Q(1) = 0; 506 #endif 507 } 508 #endif 509 510 #if SHIFT == 0 511 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order) 512 { 513 Reg r; 514 515 r.W(0) = s->W(order & 3); 516 r.W(1) = s->W((order >> 2) & 3); 517 r.W(2) = s->W((order >> 4) & 3); 518 r.W(3) = s->W((order >> 6) & 3); 519 *d = r; 520 } 521 #else 522 void helper_shufps(Reg *d, Reg *s, int order) 523 { 524 Reg r; 525 526 r.L(0) = d->L(order & 3); 527 r.L(1) = d->L((order >> 2) & 3); 528 r.L(2) = s->L((order >> 4) & 3); 529 r.L(3) = s->L((order >> 6) & 3); 530 *d = r; 531 } 532 533 void helper_shufpd(Reg *d, Reg *s, int order) 534 { 535 Reg r; 536 537 r.Q(0) = d->Q(order & 1); 538 r.Q(1) = s->Q((order >> 1) & 1); 539 *d = r; 540 } 541 542 void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order) 543 { 544 Reg r; 545 546 r.L(0) = s->L(order & 3); 547 r.L(1) = s->L((order >> 2) & 3); 548 r.L(2) = s->L((order >> 4) & 3); 549 r.L(3) = s->L((order >> 6) & 3); 550 *d = r; 551 } 552 553 void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order) 554 { 555 Reg r; 556 557 r.W(0) = s->W(order & 3); 558 r.W(1) = s->W((order >> 2) & 3); 559 r.W(2) = s->W((order >> 4) & 3); 560 r.W(3) = s->W((order >> 6) & 3); 561 r.Q(1) = s->Q(1); 562 *d = r; 563 } 564 565 void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order) 566 { 567 Reg r; 568 569 r.Q(0) = s->Q(0); 570 r.W(4) = s->W(4 + (order & 3)); 571 r.W(5) = s->W(4 + ((order >> 2) & 3)); 572 r.W(6) = s->W(4 + ((order >> 4) & 3)); 573 r.W(7) = s->W(4 + ((order >> 6) & 3)); 574 *d = r; 575 } 576 #endif 577 578 #if SHIFT == 1 579 /* FPU ops */ 580 /* XXX: not accurate */ 581 582 #define SSE_HELPER_S(name, F) \ 583 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ 584 { \ 585 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 586 d->ZMM_S(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ 587 d->ZMM_S(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ 588 d->ZMM_S(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ 589 } \ 590 \ 591 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ 592 { \ 593 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 594 } \ 595 \ 596 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ 597 { \ 598 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 599 d->ZMM_D(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ 600 } \ 601 \ 602 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ 603 { \ 604 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 605 } 606 607 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) 608 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) 609 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) 610 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) 611 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status) 612 613 /* Note that the choice of comparison op here is important to get the 614 * special cases right: for min and max Intel specifies that (-0,0), 615 * (NaN, anything) and (anything, NaN) return the second argument. 616 */ 617 #define FPU_MIN(size, a, b) \ 618 (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b)) 619 #define FPU_MAX(size, a, b) \ 620 (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b)) 621 622 SSE_HELPER_S(add, FPU_ADD) 623 SSE_HELPER_S(sub, FPU_SUB) 624 SSE_HELPER_S(mul, FPU_MUL) 625 SSE_HELPER_S(div, FPU_DIV) 626 SSE_HELPER_S(min, FPU_MIN) 627 SSE_HELPER_S(max, FPU_MAX) 628 SSE_HELPER_S(sqrt, FPU_SQRT) 629 630 631 /* float to float conversions */ 632 void helper_cvtps2pd(CPUX86State *env, Reg *d, Reg *s) 633 { 634 float32 s0, s1; 635 636 s0 = s->ZMM_S(0); 637 s1 = s->ZMM_S(1); 638 d->ZMM_D(0) = float32_to_float64(s0, &env->sse_status); 639 d->ZMM_D(1) = float32_to_float64(s1, &env->sse_status); 640 } 641 642 void helper_cvtpd2ps(CPUX86State *env, Reg *d, Reg *s) 643 { 644 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); 645 d->ZMM_S(1) = float64_to_float32(s->ZMM_D(1), &env->sse_status); 646 d->Q(1) = 0; 647 } 648 649 void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *s) 650 { 651 d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status); 652 } 653 654 void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *s) 655 { 656 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); 657 } 658 659 /* integer to float */ 660 void helper_cvtdq2ps(CPUX86State *env, Reg *d, Reg *s) 661 { 662 d->ZMM_S(0) = int32_to_float32(s->ZMM_L(0), &env->sse_status); 663 d->ZMM_S(1) = int32_to_float32(s->ZMM_L(1), &env->sse_status); 664 d->ZMM_S(2) = int32_to_float32(s->ZMM_L(2), &env->sse_status); 665 d->ZMM_S(3) = int32_to_float32(s->ZMM_L(3), &env->sse_status); 666 } 667 668 void helper_cvtdq2pd(CPUX86State *env, Reg *d, Reg *s) 669 { 670 int32_t l0, l1; 671 672 l0 = (int32_t)s->ZMM_L(0); 673 l1 = (int32_t)s->ZMM_L(1); 674 d->ZMM_D(0) = int32_to_float64(l0, &env->sse_status); 675 d->ZMM_D(1) = int32_to_float64(l1, &env->sse_status); 676 } 677 678 void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s) 679 { 680 d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); 681 d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); 682 } 683 684 void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s) 685 { 686 d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); 687 d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); 688 } 689 690 void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val) 691 { 692 d->ZMM_S(0) = int32_to_float32(val, &env->sse_status); 693 } 694 695 void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val) 696 { 697 d->ZMM_D(0) = int32_to_float64(val, &env->sse_status); 698 } 699 700 #ifdef TARGET_X86_64 701 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val) 702 { 703 d->ZMM_S(0) = int64_to_float32(val, &env->sse_status); 704 } 705 706 void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val) 707 { 708 d->ZMM_D(0) = int64_to_float64(val, &env->sse_status); 709 } 710 #endif 711 712 /* float to integer */ 713 714 /* 715 * x86 mandates that we return the indefinite integer value for the result 716 * of any float-to-integer conversion that raises the 'invalid' exception. 717 * Wrap the softfloat functions to get this behaviour. 718 */ 719 #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \ 720 static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \ 721 { \ 722 int oldflags, newflags; \ 723 RETTYPE r; \ 724 \ 725 oldflags = get_float_exception_flags(s); \ 726 set_float_exception_flags(0, s); \ 727 r = FN(a, s); \ 728 newflags = get_float_exception_flags(s); \ 729 if (newflags & float_flag_invalid) { \ 730 r = INDEFVALUE; \ 731 } \ 732 set_float_exception_flags(newflags | oldflags, s); \ 733 return r; \ 734 } 735 736 WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN) 737 WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN) 738 WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN) 739 WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN) 740 WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN) 741 WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN) 742 WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN) 743 WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN) 744 745 void helper_cvtps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 746 { 747 d->ZMM_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); 748 d->ZMM_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); 749 d->ZMM_L(2) = x86_float32_to_int32(s->ZMM_S(2), &env->sse_status); 750 d->ZMM_L(3) = x86_float32_to_int32(s->ZMM_S(3), &env->sse_status); 751 } 752 753 void helper_cvtpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 754 { 755 d->ZMM_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); 756 d->ZMM_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); 757 d->ZMM_Q(1) = 0; 758 } 759 760 void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 761 { 762 d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); 763 d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); 764 } 765 766 void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 767 { 768 d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); 769 d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); 770 } 771 772 int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s) 773 { 774 return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); 775 } 776 777 int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s) 778 { 779 return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); 780 } 781 782 #ifdef TARGET_X86_64 783 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s) 784 { 785 return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status); 786 } 787 788 int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s) 789 { 790 return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status); 791 } 792 #endif 793 794 /* float to integer truncated */ 795 void helper_cvttps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 796 { 797 d->ZMM_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); 798 d->ZMM_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); 799 d->ZMM_L(2) = x86_float32_to_int32_round_to_zero(s->ZMM_S(2), &env->sse_status); 800 d->ZMM_L(3) = x86_float32_to_int32_round_to_zero(s->ZMM_S(3), &env->sse_status); 801 } 802 803 void helper_cvttpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 804 { 805 d->ZMM_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); 806 d->ZMM_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); 807 d->ZMM_Q(1) = 0; 808 } 809 810 void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 811 { 812 d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); 813 d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); 814 } 815 816 void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 817 { 818 d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); 819 d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); 820 } 821 822 int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s) 823 { 824 return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); 825 } 826 827 int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s) 828 { 829 return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); 830 } 831 832 #ifdef TARGET_X86_64 833 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s) 834 { 835 return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status); 836 } 837 838 int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s) 839 { 840 return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status); 841 } 842 #endif 843 844 void helper_rsqrtps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 845 { 846 d->ZMM_S(0) = float32_div(float32_one, 847 float32_sqrt(s->ZMM_S(0), &env->sse_status), 848 &env->sse_status); 849 d->ZMM_S(1) = float32_div(float32_one, 850 float32_sqrt(s->ZMM_S(1), &env->sse_status), 851 &env->sse_status); 852 d->ZMM_S(2) = float32_div(float32_one, 853 float32_sqrt(s->ZMM_S(2), &env->sse_status), 854 &env->sse_status); 855 d->ZMM_S(3) = float32_div(float32_one, 856 float32_sqrt(s->ZMM_S(3), &env->sse_status), 857 &env->sse_status); 858 } 859 860 void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *s) 861 { 862 d->ZMM_S(0) = float32_div(float32_one, 863 float32_sqrt(s->ZMM_S(0), &env->sse_status), 864 &env->sse_status); 865 } 866 867 void helper_rcpps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 868 { 869 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); 870 d->ZMM_S(1) = float32_div(float32_one, s->ZMM_S(1), &env->sse_status); 871 d->ZMM_S(2) = float32_div(float32_one, s->ZMM_S(2), &env->sse_status); 872 d->ZMM_S(3) = float32_div(float32_one, s->ZMM_S(3), &env->sse_status); 873 } 874 875 void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *s) 876 { 877 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); 878 } 879 880 static inline uint64_t helper_extrq(uint64_t src, int shift, int len) 881 { 882 uint64_t mask; 883 884 if (len == 0) { 885 mask = ~0LL; 886 } else { 887 mask = (1ULL << len) - 1; 888 } 889 return (src >> shift) & mask; 890 } 891 892 void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) 893 { 894 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1), s->ZMM_B(0)); 895 } 896 897 void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length) 898 { 899 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length); 900 } 901 902 static inline uint64_t helper_insertq(uint64_t src, int shift, int len) 903 { 904 uint64_t mask; 905 906 if (len == 0) { 907 mask = ~0ULL; 908 } else { 909 mask = (1ULL << len) - 1; 910 } 911 return (src & ~(mask << shift)) | ((src & mask) << shift); 912 } 913 914 void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) 915 { 916 d->ZMM_Q(0) = helper_insertq(s->ZMM_Q(0), s->ZMM_B(9), s->ZMM_B(8)); 917 } 918 919 void helper_insertq_i(CPUX86State *env, ZMMReg *d, int index, int length) 920 { 921 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), index, length); 922 } 923 924 void helper_haddps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 925 { 926 ZMMReg r; 927 928 r.ZMM_S(0) = float32_add(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); 929 r.ZMM_S(1) = float32_add(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); 930 r.ZMM_S(2) = float32_add(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); 931 r.ZMM_S(3) = float32_add(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); 932 *d = r; 933 } 934 935 void helper_haddpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) 936 { 937 ZMMReg r; 938 939 r.ZMM_D(0) = float64_add(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); 940 r.ZMM_D(1) = float64_add(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); 941 *d = r; 942 } 943 944 void helper_hsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 945 { 946 ZMMReg r; 947 948 r.ZMM_S(0) = float32_sub(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); 949 r.ZMM_S(1) = float32_sub(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); 950 r.ZMM_S(2) = float32_sub(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); 951 r.ZMM_S(3) = float32_sub(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); 952 *d = r; 953 } 954 955 void helper_hsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) 956 { 957 ZMMReg r; 958 959 r.ZMM_D(0) = float64_sub(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); 960 r.ZMM_D(1) = float64_sub(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); 961 *d = r; 962 } 963 964 void helper_addsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 965 { 966 d->ZMM_S(0) = float32_sub(d->ZMM_S(0), s->ZMM_S(0), &env->sse_status); 967 d->ZMM_S(1) = float32_add(d->ZMM_S(1), s->ZMM_S(1), &env->sse_status); 968 d->ZMM_S(2) = float32_sub(d->ZMM_S(2), s->ZMM_S(2), &env->sse_status); 969 d->ZMM_S(3) = float32_add(d->ZMM_S(3), s->ZMM_S(3), &env->sse_status); 970 } 971 972 void helper_addsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) 973 { 974 d->ZMM_D(0) = float64_sub(d->ZMM_D(0), s->ZMM_D(0), &env->sse_status); 975 d->ZMM_D(1) = float64_add(d->ZMM_D(1), s->ZMM_D(1), &env->sse_status); 976 } 977 978 /* XXX: unordered */ 979 #define SSE_HELPER_CMP(name, F) \ 980 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ 981 { \ 982 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 983 d->ZMM_L(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ 984 d->ZMM_L(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ 985 d->ZMM_L(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ 986 } \ 987 \ 988 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ 989 { \ 990 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 991 } \ 992 \ 993 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ 994 { \ 995 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 996 d->ZMM_Q(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ 997 } \ 998 \ 999 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ 1000 { \ 1001 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 1002 } 1003 1004 #define FPU_CMPEQ(size, a, b) \ 1005 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0) 1006 #define FPU_CMPLT(size, a, b) \ 1007 (float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0) 1008 #define FPU_CMPLE(size, a, b) \ 1009 (float ## size ## _le(a, b, &env->sse_status) ? -1 : 0) 1010 #define FPU_CMPUNORD(size, a, b) \ 1011 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? -1 : 0) 1012 #define FPU_CMPNEQ(size, a, b) \ 1013 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1) 1014 #define FPU_CMPNLT(size, a, b) \ 1015 (float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1) 1016 #define FPU_CMPNLE(size, a, b) \ 1017 (float ## size ## _le(a, b, &env->sse_status) ? 0 : -1) 1018 #define FPU_CMPORD(size, a, b) \ 1019 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1) 1020 1021 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ) 1022 SSE_HELPER_CMP(cmplt, FPU_CMPLT) 1023 SSE_HELPER_CMP(cmple, FPU_CMPLE) 1024 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD) 1025 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ) 1026 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT) 1027 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE) 1028 SSE_HELPER_CMP(cmpord, FPU_CMPORD) 1029 1030 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; 1031 1032 void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s) 1033 { 1034 FloatRelation ret; 1035 float32 s0, s1; 1036 1037 s0 = d->ZMM_S(0); 1038 s1 = s->ZMM_S(0); 1039 ret = float32_compare_quiet(s0, s1, &env->sse_status); 1040 CC_SRC = comis_eflags[ret + 1]; 1041 } 1042 1043 void helper_comiss(CPUX86State *env, Reg *d, Reg *s) 1044 { 1045 FloatRelation ret; 1046 float32 s0, s1; 1047 1048 s0 = d->ZMM_S(0); 1049 s1 = s->ZMM_S(0); 1050 ret = float32_compare(s0, s1, &env->sse_status); 1051 CC_SRC = comis_eflags[ret + 1]; 1052 } 1053 1054 void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s) 1055 { 1056 FloatRelation ret; 1057 float64 d0, d1; 1058 1059 d0 = d->ZMM_D(0); 1060 d1 = s->ZMM_D(0); 1061 ret = float64_compare_quiet(d0, d1, &env->sse_status); 1062 CC_SRC = comis_eflags[ret + 1]; 1063 } 1064 1065 void helper_comisd(CPUX86State *env, Reg *d, Reg *s) 1066 { 1067 FloatRelation ret; 1068 float64 d0, d1; 1069 1070 d0 = d->ZMM_D(0); 1071 d1 = s->ZMM_D(0); 1072 ret = float64_compare(d0, d1, &env->sse_status); 1073 CC_SRC = comis_eflags[ret + 1]; 1074 } 1075 1076 uint32_t helper_movmskps(CPUX86State *env, Reg *s) 1077 { 1078 int b0, b1, b2, b3; 1079 1080 b0 = s->ZMM_L(0) >> 31; 1081 b1 = s->ZMM_L(1) >> 31; 1082 b2 = s->ZMM_L(2) >> 31; 1083 b3 = s->ZMM_L(3) >> 31; 1084 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3); 1085 } 1086 1087 uint32_t helper_movmskpd(CPUX86State *env, Reg *s) 1088 { 1089 int b0, b1; 1090 1091 b0 = s->ZMM_L(1) >> 31; 1092 b1 = s->ZMM_L(3) >> 31; 1093 return b0 | (b1 << 1); 1094 } 1095 1096 #endif 1097 1098 uint32_t glue(helper_pmovmskb, SUFFIX)(CPUX86State *env, Reg *s) 1099 { 1100 uint32_t val; 1101 1102 val = 0; 1103 val |= (s->B(0) >> 7); 1104 val |= (s->B(1) >> 6) & 0x02; 1105 val |= (s->B(2) >> 5) & 0x04; 1106 val |= (s->B(3) >> 4) & 0x08; 1107 val |= (s->B(4) >> 3) & 0x10; 1108 val |= (s->B(5) >> 2) & 0x20; 1109 val |= (s->B(6) >> 1) & 0x40; 1110 val |= (s->B(7)) & 0x80; 1111 #if SHIFT == 1 1112 val |= (s->B(8) << 1) & 0x0100; 1113 val |= (s->B(9) << 2) & 0x0200; 1114 val |= (s->B(10) << 3) & 0x0400; 1115 val |= (s->B(11) << 4) & 0x0800; 1116 val |= (s->B(12) << 5) & 0x1000; 1117 val |= (s->B(13) << 6) & 0x2000; 1118 val |= (s->B(14) << 7) & 0x4000; 1119 val |= (s->B(15) << 8) & 0x8000; 1120 #endif 1121 return val; 1122 } 1123 1124 void glue(helper_packsswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1125 { 1126 Reg r; 1127 1128 r.B(0) = satsb((int16_t)d->W(0)); 1129 r.B(1) = satsb((int16_t)d->W(1)); 1130 r.B(2) = satsb((int16_t)d->W(2)); 1131 r.B(3) = satsb((int16_t)d->W(3)); 1132 #if SHIFT == 1 1133 r.B(4) = satsb((int16_t)d->W(4)); 1134 r.B(5) = satsb((int16_t)d->W(5)); 1135 r.B(6) = satsb((int16_t)d->W(6)); 1136 r.B(7) = satsb((int16_t)d->W(7)); 1137 #endif 1138 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0)); 1139 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1)); 1140 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2)); 1141 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3)); 1142 #if SHIFT == 1 1143 r.B(12) = satsb((int16_t)s->W(4)); 1144 r.B(13) = satsb((int16_t)s->W(5)); 1145 r.B(14) = satsb((int16_t)s->W(6)); 1146 r.B(15) = satsb((int16_t)s->W(7)); 1147 #endif 1148 *d = r; 1149 } 1150 1151 void glue(helper_packuswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1152 { 1153 Reg r; 1154 1155 r.B(0) = satub((int16_t)d->W(0)); 1156 r.B(1) = satub((int16_t)d->W(1)); 1157 r.B(2) = satub((int16_t)d->W(2)); 1158 r.B(3) = satub((int16_t)d->W(3)); 1159 #if SHIFT == 1 1160 r.B(4) = satub((int16_t)d->W(4)); 1161 r.B(5) = satub((int16_t)d->W(5)); 1162 r.B(6) = satub((int16_t)d->W(6)); 1163 r.B(7) = satub((int16_t)d->W(7)); 1164 #endif 1165 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0)); 1166 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1)); 1167 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2)); 1168 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3)); 1169 #if SHIFT == 1 1170 r.B(12) = satub((int16_t)s->W(4)); 1171 r.B(13) = satub((int16_t)s->W(5)); 1172 r.B(14) = satub((int16_t)s->W(6)); 1173 r.B(15) = satub((int16_t)s->W(7)); 1174 #endif 1175 *d = r; 1176 } 1177 1178 void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1179 { 1180 Reg r; 1181 1182 r.W(0) = satsw(d->L(0)); 1183 r.W(1) = satsw(d->L(1)); 1184 #if SHIFT == 1 1185 r.W(2) = satsw(d->L(2)); 1186 r.W(3) = satsw(d->L(3)); 1187 #endif 1188 r.W((2 << SHIFT) + 0) = satsw(s->L(0)); 1189 r.W((2 << SHIFT) + 1) = satsw(s->L(1)); 1190 #if SHIFT == 1 1191 r.W(6) = satsw(s->L(2)); 1192 r.W(7) = satsw(s->L(3)); 1193 #endif 1194 *d = r; 1195 } 1196 1197 #define UNPCK_OP(base_name, base) \ 1198 \ 1199 void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\ 1200 Reg *d, Reg *s) \ 1201 { \ 1202 Reg r; \ 1203 \ 1204 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \ 1205 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \ 1206 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \ 1207 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \ 1208 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \ 1209 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \ 1210 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \ 1211 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \ 1212 XMM_ONLY( \ 1213 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \ 1214 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \ 1215 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \ 1216 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \ 1217 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \ 1218 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \ 1219 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \ 1220 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \ 1221 ) \ 1222 *d = r; \ 1223 } \ 1224 \ 1225 void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\ 1226 Reg *d, Reg *s) \ 1227 { \ 1228 Reg r; \ 1229 \ 1230 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \ 1231 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \ 1232 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \ 1233 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \ 1234 XMM_ONLY( \ 1235 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \ 1236 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \ 1237 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \ 1238 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \ 1239 ) \ 1240 *d = r; \ 1241 } \ 1242 \ 1243 void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\ 1244 Reg *d, Reg *s) \ 1245 { \ 1246 Reg r; \ 1247 \ 1248 r.L(0) = d->L((base << SHIFT) + 0); \ 1249 r.L(1) = s->L((base << SHIFT) + 0); \ 1250 XMM_ONLY( \ 1251 r.L(2) = d->L((base << SHIFT) + 1); \ 1252 r.L(3) = s->L((base << SHIFT) + 1); \ 1253 ) \ 1254 *d = r; \ 1255 } \ 1256 \ 1257 XMM_ONLY( \ 1258 void glue(helper_punpck ## base_name ## qdq, SUFFIX)(CPUX86State \ 1259 *env, \ 1260 Reg *d, \ 1261 Reg *s) \ 1262 { \ 1263 Reg r; \ 1264 \ 1265 r.Q(0) = d->Q(base); \ 1266 r.Q(1) = s->Q(base); \ 1267 *d = r; \ 1268 } \ 1269 ) 1270 1271 UNPCK_OP(l, 0) 1272 UNPCK_OP(h, 1) 1273 1274 /* 3DNow! float ops */ 1275 #if SHIFT == 0 1276 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s) 1277 { 1278 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status); 1279 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status); 1280 } 1281 1282 void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s) 1283 { 1284 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status); 1285 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status); 1286 } 1287 1288 void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s) 1289 { 1290 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status); 1291 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status); 1292 } 1293 1294 void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s) 1295 { 1296 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), 1297 &env->mmx_status)); 1298 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), 1299 &env->mmx_status)); 1300 } 1301 1302 void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s) 1303 { 1304 MMXReg r; 1305 1306 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1307 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1308 *d = r; 1309 } 1310 1311 void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s) 1312 { 1313 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1314 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1315 } 1316 1317 void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s) 1318 { 1319 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), 1320 &env->mmx_status) ? -1 : 0; 1321 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), 1322 &env->mmx_status) ? -1 : 0; 1323 } 1324 1325 void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s) 1326 { 1327 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), 1328 &env->mmx_status) ? -1 : 0; 1329 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), 1330 &env->mmx_status) ? -1 : 0; 1331 } 1332 1333 void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s) 1334 { 1335 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), 1336 &env->mmx_status) ? -1 : 0; 1337 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), 1338 &env->mmx_status) ? -1 : 0; 1339 } 1340 1341 void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s) 1342 { 1343 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) { 1344 d->MMX_S(0) = s->MMX_S(0); 1345 } 1346 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) { 1347 d->MMX_S(1) = s->MMX_S(1); 1348 } 1349 } 1350 1351 void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s) 1352 { 1353 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) { 1354 d->MMX_S(0) = s->MMX_S(0); 1355 } 1356 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) { 1357 d->MMX_S(1) = s->MMX_S(1); 1358 } 1359 } 1360 1361 void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s) 1362 { 1363 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1364 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1365 } 1366 1367 void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s) 1368 { 1369 MMXReg r; 1370 1371 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1372 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1373 *d = r; 1374 } 1375 1376 void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s) 1377 { 1378 MMXReg r; 1379 1380 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1381 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1382 *d = r; 1383 } 1384 1385 void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s) 1386 { 1387 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status); 1388 d->MMX_S(1) = d->MMX_S(0); 1389 } 1390 1391 void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s) 1392 { 1393 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff; 1394 d->MMX_S(1) = float32_div(float32_one, 1395 float32_sqrt(d->MMX_S(1), &env->mmx_status), 1396 &env->mmx_status); 1397 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000; 1398 d->MMX_L(0) = d->MMX_L(1); 1399 } 1400 1401 void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s) 1402 { 1403 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1404 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1405 } 1406 1407 void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s) 1408 { 1409 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status); 1410 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status); 1411 } 1412 1413 void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s) 1414 { 1415 MMXReg r; 1416 1417 r.MMX_L(0) = s->MMX_L(1); 1418 r.MMX_L(1) = s->MMX_L(0); 1419 *d = r; 1420 } 1421 #endif 1422 1423 /* SSSE3 op helpers */ 1424 void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1425 { 1426 int i; 1427 Reg r; 1428 1429 for (i = 0; i < (8 << SHIFT); i++) { 1430 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1))); 1431 } 1432 1433 *d = r; 1434 } 1435 1436 void glue(helper_phaddw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1437 { 1438 1439 Reg r; 1440 1441 r.W(0) = (int16_t)d->W(0) + (int16_t)d->W(1); 1442 r.W(1) = (int16_t)d->W(2) + (int16_t)d->W(3); 1443 XMM_ONLY(r.W(2) = (int16_t)d->W(4) + (int16_t)d->W(5)); 1444 XMM_ONLY(r.W(3) = (int16_t)d->W(6) + (int16_t)d->W(7)); 1445 r.W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1); 1446 r.W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3); 1447 XMM_ONLY(r.W(6) = (int16_t)s->W(4) + (int16_t)s->W(5)); 1448 XMM_ONLY(r.W(7) = (int16_t)s->W(6) + (int16_t)s->W(7)); 1449 1450 *d = r; 1451 } 1452 1453 void glue(helper_phaddd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1454 { 1455 Reg r; 1456 1457 r.L(0) = (int32_t)d->L(0) + (int32_t)d->L(1); 1458 XMM_ONLY(r.L(1) = (int32_t)d->L(2) + (int32_t)d->L(3)); 1459 r.L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1); 1460 XMM_ONLY(r.L(3) = (int32_t)s->L(2) + (int32_t)s->L(3)); 1461 1462 *d = r; 1463 } 1464 1465 void glue(helper_phaddsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1466 { 1467 Reg r; 1468 1469 r.W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1)); 1470 r.W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3)); 1471 XMM_ONLY(r.W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5))); 1472 XMM_ONLY(r.W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7))); 1473 r.W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1)); 1474 r.W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3)); 1475 XMM_ONLY(r.W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5))); 1476 XMM_ONLY(r.W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7))); 1477 1478 *d = r; 1479 } 1480 1481 void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1482 { 1483 d->W(0) = satsw((int8_t)s->B(0) * (uint8_t)d->B(0) + 1484 (int8_t)s->B(1) * (uint8_t)d->B(1)); 1485 d->W(1) = satsw((int8_t)s->B(2) * (uint8_t)d->B(2) + 1486 (int8_t)s->B(3) * (uint8_t)d->B(3)); 1487 d->W(2) = satsw((int8_t)s->B(4) * (uint8_t)d->B(4) + 1488 (int8_t)s->B(5) * (uint8_t)d->B(5)); 1489 d->W(3) = satsw((int8_t)s->B(6) * (uint8_t)d->B(6) + 1490 (int8_t)s->B(7) * (uint8_t)d->B(7)); 1491 #if SHIFT == 1 1492 d->W(4) = satsw((int8_t)s->B(8) * (uint8_t)d->B(8) + 1493 (int8_t)s->B(9) * (uint8_t)d->B(9)); 1494 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) + 1495 (int8_t)s->B(11) * (uint8_t)d->B(11)); 1496 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) + 1497 (int8_t)s->B(13) * (uint8_t)d->B(13)); 1498 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) + 1499 (int8_t)s->B(15) * (uint8_t)d->B(15)); 1500 #endif 1501 } 1502 1503 void glue(helper_phsubw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1504 { 1505 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1); 1506 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3); 1507 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5)); 1508 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7)); 1509 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1); 1510 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3); 1511 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5)); 1512 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7)); 1513 } 1514 1515 void glue(helper_phsubd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1516 { 1517 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1); 1518 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3)); 1519 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1); 1520 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3)); 1521 } 1522 1523 void glue(helper_phsubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1524 { 1525 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1)); 1526 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3)); 1527 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5))); 1528 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7))); 1529 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1)); 1530 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3)); 1531 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5))); 1532 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7))); 1533 } 1534 1535 #define FABSB(_, x) (x > INT8_MAX ? -(int8_t)x : x) 1536 #define FABSW(_, x) (x > INT16_MAX ? -(int16_t)x : x) 1537 #define FABSL(_, x) (x > INT32_MAX ? -(int32_t)x : x) 1538 SSE_HELPER_B(helper_pabsb, FABSB) 1539 SSE_HELPER_W(helper_pabsw, FABSW) 1540 SSE_HELPER_L(helper_pabsd, FABSL) 1541 1542 #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15) 1543 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW) 1544 1545 #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d) 1546 #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d) 1547 #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d) 1548 SSE_HELPER_B(helper_psignb, FSIGNB) 1549 SSE_HELPER_W(helper_psignw, FSIGNW) 1550 SSE_HELPER_L(helper_psignd, FSIGNL) 1551 1552 void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1553 int32_t shift) 1554 { 1555 Reg r; 1556 1557 /* XXX could be checked during translation */ 1558 if (shift >= (16 << SHIFT)) { 1559 r.Q(0) = 0; 1560 XMM_ONLY(r.Q(1) = 0); 1561 } else { 1562 shift <<= 3; 1563 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0) 1564 #if SHIFT == 0 1565 r.Q(0) = SHR(s->Q(0), shift - 0) | 1566 SHR(d->Q(0), shift - 64); 1567 #else 1568 r.Q(0) = SHR(s->Q(0), shift - 0) | 1569 SHR(s->Q(1), shift - 64) | 1570 SHR(d->Q(0), shift - 128) | 1571 SHR(d->Q(1), shift - 192); 1572 r.Q(1) = SHR(s->Q(0), shift + 64) | 1573 SHR(s->Q(1), shift - 0) | 1574 SHR(d->Q(0), shift - 64) | 1575 SHR(d->Q(1), shift - 128); 1576 #endif 1577 #undef SHR 1578 } 1579 1580 *d = r; 1581 } 1582 1583 #define XMM0 (env->xmm_regs[0]) 1584 1585 #if SHIFT == 1 1586 #define SSE_HELPER_V(name, elem, num, F) \ 1587 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 1588 { \ 1589 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \ 1590 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \ 1591 if (num > 2) { \ 1592 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \ 1593 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \ 1594 if (num > 4) { \ 1595 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \ 1596 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \ 1597 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \ 1598 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \ 1599 if (num > 8) { \ 1600 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \ 1601 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \ 1602 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \ 1603 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \ 1604 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \ 1605 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \ 1606 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \ 1607 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \ 1608 } \ 1609 } \ 1610 } \ 1611 } 1612 1613 #define SSE_HELPER_I(name, elem, num, F) \ 1614 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t imm) \ 1615 { \ 1616 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \ 1617 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \ 1618 if (num > 2) { \ 1619 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \ 1620 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \ 1621 if (num > 4) { \ 1622 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \ 1623 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \ 1624 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \ 1625 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \ 1626 if (num > 8) { \ 1627 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \ 1628 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \ 1629 d->elem(10) = F(d->elem(10), s->elem(10), \ 1630 ((imm >> 10) & 1)); \ 1631 d->elem(11) = F(d->elem(11), s->elem(11), \ 1632 ((imm >> 11) & 1)); \ 1633 d->elem(12) = F(d->elem(12), s->elem(12), \ 1634 ((imm >> 12) & 1)); \ 1635 d->elem(13) = F(d->elem(13), s->elem(13), \ 1636 ((imm >> 13) & 1)); \ 1637 d->elem(14) = F(d->elem(14), s->elem(14), \ 1638 ((imm >> 14) & 1)); \ 1639 d->elem(15) = F(d->elem(15), s->elem(15), \ 1640 ((imm >> 15) & 1)); \ 1641 } \ 1642 } \ 1643 } \ 1644 } 1645 1646 /* SSE4.1 op helpers */ 1647 #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d) 1648 #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d) 1649 #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d) 1650 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB) 1651 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS) 1652 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD) 1653 1654 void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1655 { 1656 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1)); 1657 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1)); 1658 1659 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C); 1660 } 1661 1662 #define SSE_HELPER_F(name, elem, num, F) \ 1663 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 1664 { \ 1665 if (num > 2) { \ 1666 if (num > 4) { \ 1667 d->elem(7) = F(7); \ 1668 d->elem(6) = F(6); \ 1669 d->elem(5) = F(5); \ 1670 d->elem(4) = F(4); \ 1671 } \ 1672 d->elem(3) = F(3); \ 1673 d->elem(2) = F(2); \ 1674 } \ 1675 d->elem(1) = F(1); \ 1676 d->elem(0) = F(0); \ 1677 } 1678 1679 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B) 1680 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B) 1681 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B) 1682 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W) 1683 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W) 1684 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L) 1685 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B) 1686 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B) 1687 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B) 1688 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W) 1689 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W) 1690 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L) 1691 1692 void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1693 { 1694 d->Q(0) = (int64_t)(int32_t) d->L(0) * (int32_t) s->L(0); 1695 d->Q(1) = (int64_t)(int32_t) d->L(2) * (int32_t) s->L(2); 1696 } 1697 1698 #define FCMPEQQ(d, s) (d == s ? -1 : 0) 1699 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ) 1700 1701 void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1702 { 1703 Reg r; 1704 1705 r.W(0) = satuw((int32_t) d->L(0)); 1706 r.W(1) = satuw((int32_t) d->L(1)); 1707 r.W(2) = satuw((int32_t) d->L(2)); 1708 r.W(3) = satuw((int32_t) d->L(3)); 1709 r.W(4) = satuw((int32_t) s->L(0)); 1710 r.W(5) = satuw((int32_t) s->L(1)); 1711 r.W(6) = satuw((int32_t) s->L(2)); 1712 r.W(7) = satuw((int32_t) s->L(3)); 1713 *d = r; 1714 } 1715 1716 #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s) 1717 #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s) 1718 #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s) 1719 #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s) 1720 SSE_HELPER_B(helper_pminsb, FMINSB) 1721 SSE_HELPER_L(helper_pminsd, FMINSD) 1722 SSE_HELPER_W(helper_pminuw, MIN) 1723 SSE_HELPER_L(helper_pminud, MIN) 1724 SSE_HELPER_B(helper_pmaxsb, FMAXSB) 1725 SSE_HELPER_L(helper_pmaxsd, FMAXSD) 1726 SSE_HELPER_W(helper_pmaxuw, MAX) 1727 SSE_HELPER_L(helper_pmaxud, MAX) 1728 1729 #define FMULLD(d, s) ((int32_t)d * (int32_t)s) 1730 SSE_HELPER_L(helper_pmulld, FMULLD) 1731 1732 void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1733 { 1734 int idx = 0; 1735 1736 if (s->W(1) < s->W(idx)) { 1737 idx = 1; 1738 } 1739 if (s->W(2) < s->W(idx)) { 1740 idx = 2; 1741 } 1742 if (s->W(3) < s->W(idx)) { 1743 idx = 3; 1744 } 1745 if (s->W(4) < s->W(idx)) { 1746 idx = 4; 1747 } 1748 if (s->W(5) < s->W(idx)) { 1749 idx = 5; 1750 } 1751 if (s->W(6) < s->W(idx)) { 1752 idx = 6; 1753 } 1754 if (s->W(7) < s->W(idx)) { 1755 idx = 7; 1756 } 1757 1758 d->W(0) = s->W(idx); 1759 d->W(1) = idx; 1760 d->L(1) = 0; 1761 d->Q(1) = 0; 1762 } 1763 1764 void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1765 uint32_t mode) 1766 { 1767 signed char prev_rounding_mode; 1768 1769 prev_rounding_mode = env->sse_status.float_rounding_mode; 1770 if (!(mode & (1 << 2))) { 1771 switch (mode & 3) { 1772 case 0: 1773 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1774 break; 1775 case 1: 1776 set_float_rounding_mode(float_round_down, &env->sse_status); 1777 break; 1778 case 2: 1779 set_float_rounding_mode(float_round_up, &env->sse_status); 1780 break; 1781 case 3: 1782 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1783 break; 1784 } 1785 } 1786 1787 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); 1788 d->ZMM_S(1) = float32_round_to_int(s->ZMM_S(1), &env->sse_status); 1789 d->ZMM_S(2) = float32_round_to_int(s->ZMM_S(2), &env->sse_status); 1790 d->ZMM_S(3) = float32_round_to_int(s->ZMM_S(3), &env->sse_status); 1791 1792 #if 0 /* TODO */ 1793 if (mode & (1 << 3)) { 1794 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1795 ~float_flag_inexact, 1796 &env->sse_status); 1797 } 1798 #endif 1799 env->sse_status.float_rounding_mode = prev_rounding_mode; 1800 } 1801 1802 void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1803 uint32_t mode) 1804 { 1805 signed char prev_rounding_mode; 1806 1807 prev_rounding_mode = env->sse_status.float_rounding_mode; 1808 if (!(mode & (1 << 2))) { 1809 switch (mode & 3) { 1810 case 0: 1811 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1812 break; 1813 case 1: 1814 set_float_rounding_mode(float_round_down, &env->sse_status); 1815 break; 1816 case 2: 1817 set_float_rounding_mode(float_round_up, &env->sse_status); 1818 break; 1819 case 3: 1820 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1821 break; 1822 } 1823 } 1824 1825 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); 1826 d->ZMM_D(1) = float64_round_to_int(s->ZMM_D(1), &env->sse_status); 1827 1828 #if 0 /* TODO */ 1829 if (mode & (1 << 3)) { 1830 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1831 ~float_flag_inexact, 1832 &env->sse_status); 1833 } 1834 #endif 1835 env->sse_status.float_rounding_mode = prev_rounding_mode; 1836 } 1837 1838 void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1839 uint32_t mode) 1840 { 1841 signed char prev_rounding_mode; 1842 1843 prev_rounding_mode = env->sse_status.float_rounding_mode; 1844 if (!(mode & (1 << 2))) { 1845 switch (mode & 3) { 1846 case 0: 1847 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1848 break; 1849 case 1: 1850 set_float_rounding_mode(float_round_down, &env->sse_status); 1851 break; 1852 case 2: 1853 set_float_rounding_mode(float_round_up, &env->sse_status); 1854 break; 1855 case 3: 1856 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1857 break; 1858 } 1859 } 1860 1861 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); 1862 1863 #if 0 /* TODO */ 1864 if (mode & (1 << 3)) { 1865 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1866 ~float_flag_inexact, 1867 &env->sse_status); 1868 } 1869 #endif 1870 env->sse_status.float_rounding_mode = prev_rounding_mode; 1871 } 1872 1873 void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1874 uint32_t mode) 1875 { 1876 signed char prev_rounding_mode; 1877 1878 prev_rounding_mode = env->sse_status.float_rounding_mode; 1879 if (!(mode & (1 << 2))) { 1880 switch (mode & 3) { 1881 case 0: 1882 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1883 break; 1884 case 1: 1885 set_float_rounding_mode(float_round_down, &env->sse_status); 1886 break; 1887 case 2: 1888 set_float_rounding_mode(float_round_up, &env->sse_status); 1889 break; 1890 case 3: 1891 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1892 break; 1893 } 1894 } 1895 1896 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); 1897 1898 #if 0 /* TODO */ 1899 if (mode & (1 << 3)) { 1900 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1901 ~float_flag_inexact, 1902 &env->sse_status); 1903 } 1904 #endif 1905 env->sse_status.float_rounding_mode = prev_rounding_mode; 1906 } 1907 1908 #define FBLENDP(d, s, m) (m ? s : d) 1909 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP) 1910 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP) 1911 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP) 1912 1913 void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) 1914 { 1915 float32 iresult = float32_zero; 1916 1917 if (mask & (1 << 4)) { 1918 iresult = float32_add(iresult, 1919 float32_mul(d->ZMM_S(0), s->ZMM_S(0), 1920 &env->sse_status), 1921 &env->sse_status); 1922 } 1923 if (mask & (1 << 5)) { 1924 iresult = float32_add(iresult, 1925 float32_mul(d->ZMM_S(1), s->ZMM_S(1), 1926 &env->sse_status), 1927 &env->sse_status); 1928 } 1929 if (mask & (1 << 6)) { 1930 iresult = float32_add(iresult, 1931 float32_mul(d->ZMM_S(2), s->ZMM_S(2), 1932 &env->sse_status), 1933 &env->sse_status); 1934 } 1935 if (mask & (1 << 7)) { 1936 iresult = float32_add(iresult, 1937 float32_mul(d->ZMM_S(3), s->ZMM_S(3), 1938 &env->sse_status), 1939 &env->sse_status); 1940 } 1941 d->ZMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero; 1942 d->ZMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero; 1943 d->ZMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero; 1944 d->ZMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero; 1945 } 1946 1947 void glue(helper_dppd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) 1948 { 1949 float64 iresult = float64_zero; 1950 1951 if (mask & (1 << 4)) { 1952 iresult = float64_add(iresult, 1953 float64_mul(d->ZMM_D(0), s->ZMM_D(0), 1954 &env->sse_status), 1955 &env->sse_status); 1956 } 1957 if (mask & (1 << 5)) { 1958 iresult = float64_add(iresult, 1959 float64_mul(d->ZMM_D(1), s->ZMM_D(1), 1960 &env->sse_status), 1961 &env->sse_status); 1962 } 1963 d->ZMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero; 1964 d->ZMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero; 1965 } 1966 1967 void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1968 uint32_t offset) 1969 { 1970 int s0 = (offset & 3) << 2; 1971 int d0 = (offset & 4) << 0; 1972 int i; 1973 Reg r; 1974 1975 for (i = 0; i < 8; i++, d0++) { 1976 r.W(i) = 0; 1977 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0)); 1978 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1)); 1979 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2)); 1980 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3)); 1981 } 1982 1983 *d = r; 1984 } 1985 1986 /* SSE4.2 op helpers */ 1987 #define FCMPGTQ(d, s) ((int64_t)d > (int64_t)s ? -1 : 0) 1988 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ) 1989 1990 static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl) 1991 { 1992 int val; 1993 1994 /* Presence of REX.W is indicated by a bit higher than 7 set */ 1995 if (ctrl >> 8) { 1996 val = abs1((int64_t)env->regs[reg]); 1997 } else { 1998 val = abs1((int32_t)env->regs[reg]); 1999 } 2000 2001 if (ctrl & 1) { 2002 if (val > 8) { 2003 return 8; 2004 } 2005 } else { 2006 if (val > 16) { 2007 return 16; 2008 } 2009 } 2010 return val; 2011 } 2012 2013 static inline int pcmp_ilen(Reg *r, uint8_t ctrl) 2014 { 2015 int val = 0; 2016 2017 if (ctrl & 1) { 2018 while (val < 8 && r->W(val)) { 2019 val++; 2020 } 2021 } else { 2022 while (val < 16 && r->B(val)) { 2023 val++; 2024 } 2025 } 2026 2027 return val; 2028 } 2029 2030 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i) 2031 { 2032 switch ((ctrl >> 0) & 3) { 2033 case 0: 2034 return r->B(i); 2035 case 1: 2036 return r->W(i); 2037 case 2: 2038 return (int8_t)r->B(i); 2039 case 3: 2040 default: 2041 return (int16_t)r->W(i); 2042 } 2043 } 2044 2045 static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s, 2046 int8_t ctrl, int valids, int validd) 2047 { 2048 unsigned int res = 0; 2049 int v; 2050 int j, i; 2051 int upper = (ctrl & 1) ? 7 : 15; 2052 2053 valids--; 2054 validd--; 2055 2056 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0); 2057 2058 switch ((ctrl >> 2) & 3) { 2059 case 0: 2060 for (j = valids; j >= 0; j--) { 2061 res <<= 1; 2062 v = pcmp_val(s, ctrl, j); 2063 for (i = validd; i >= 0; i--) { 2064 res |= (v == pcmp_val(d, ctrl, i)); 2065 } 2066 } 2067 break; 2068 case 1: 2069 for (j = valids; j >= 0; j--) { 2070 res <<= 1; 2071 v = pcmp_val(s, ctrl, j); 2072 for (i = ((validd - 1) | 1); i >= 0; i -= 2) { 2073 res |= (pcmp_val(d, ctrl, i - 0) >= v && 2074 pcmp_val(d, ctrl, i - 1) <= v); 2075 } 2076 } 2077 break; 2078 case 2: 2079 res = (1 << (upper - MAX(valids, validd))) - 1; 2080 res <<= MAX(valids, validd) - MIN(valids, validd); 2081 for (i = MIN(valids, validd); i >= 0; i--) { 2082 res <<= 1; 2083 v = pcmp_val(s, ctrl, i); 2084 res |= (v == pcmp_val(d, ctrl, i)); 2085 } 2086 break; 2087 case 3: 2088 if (validd == -1) { 2089 res = (2 << upper) - 1; 2090 break; 2091 } 2092 for (j = valids == upper ? valids : valids - validd; j >= 0; j--) { 2093 res <<= 1; 2094 v = 1; 2095 for (i = MIN(valids - j, validd); i >= 0; i--) { 2096 v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i)); 2097 } 2098 res |= v; 2099 } 2100 break; 2101 } 2102 2103 switch ((ctrl >> 4) & 3) { 2104 case 1: 2105 res ^= (2 << upper) - 1; 2106 break; 2107 case 3: 2108 res ^= (1 << (valids + 1)) - 1; 2109 break; 2110 } 2111 2112 if (res) { 2113 CC_SRC |= CC_C; 2114 } 2115 if (res & 1) { 2116 CC_SRC |= CC_O; 2117 } 2118 2119 return res; 2120 } 2121 2122 void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2123 uint32_t ctrl) 2124 { 2125 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2126 pcmp_elen(env, R_EDX, ctrl), 2127 pcmp_elen(env, R_EAX, ctrl)); 2128 2129 if (res) { 2130 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); 2131 } else { 2132 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); 2133 } 2134 } 2135 2136 void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2137 uint32_t ctrl) 2138 { 2139 int i; 2140 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2141 pcmp_elen(env, R_EDX, ctrl), 2142 pcmp_elen(env, R_EAX, ctrl)); 2143 2144 if ((ctrl >> 6) & 1) { 2145 if (ctrl & 1) { 2146 for (i = 0; i < 8; i++, res >>= 1) { 2147 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; 2148 } 2149 } else { 2150 for (i = 0; i < 16; i++, res >>= 1) { 2151 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; 2152 } 2153 } 2154 } else { 2155 env->xmm_regs[0].Q(1) = 0; 2156 env->xmm_regs[0].Q(0) = res; 2157 } 2158 } 2159 2160 void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2161 uint32_t ctrl) 2162 { 2163 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2164 pcmp_ilen(s, ctrl), 2165 pcmp_ilen(d, ctrl)); 2166 2167 if (res) { 2168 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); 2169 } else { 2170 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); 2171 } 2172 } 2173 2174 void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2175 uint32_t ctrl) 2176 { 2177 int i; 2178 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2179 pcmp_ilen(s, ctrl), 2180 pcmp_ilen(d, ctrl)); 2181 2182 if ((ctrl >> 6) & 1) { 2183 if (ctrl & 1) { 2184 for (i = 0; i < 8; i++, res >>= 1) { 2185 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; 2186 } 2187 } else { 2188 for (i = 0; i < 16; i++, res >>= 1) { 2189 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; 2190 } 2191 } 2192 } else { 2193 env->xmm_regs[0].Q(1) = 0; 2194 env->xmm_regs[0].Q(0) = res; 2195 } 2196 } 2197 2198 #define CRCPOLY 0x1edc6f41 2199 #define CRCPOLY_BITREV 0x82f63b78 2200 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len) 2201 { 2202 target_ulong crc = (msg & ((target_ulong) -1 >> 2203 (TARGET_LONG_BITS - len))) ^ crc1; 2204 2205 while (len--) { 2206 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0); 2207 } 2208 2209 return crc; 2210 } 2211 2212 void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2213 uint32_t ctrl) 2214 { 2215 uint64_t ah, al, b, resh, resl; 2216 2217 ah = 0; 2218 al = d->Q((ctrl & 1) != 0); 2219 b = s->Q((ctrl & 16) != 0); 2220 resh = resl = 0; 2221 2222 while (b) { 2223 if (b & 1) { 2224 resl ^= al; 2225 resh ^= ah; 2226 } 2227 ah = (ah << 1) | (al >> 63); 2228 al <<= 1; 2229 b >>= 1; 2230 } 2231 2232 d->Q(0) = resl; 2233 d->Q(1) = resh; 2234 } 2235 2236 void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2237 { 2238 int i; 2239 Reg st = *d; 2240 Reg rk = *s; 2241 2242 for (i = 0 ; i < 4 ; i++) { 2243 d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4*i+0])] ^ 2244 AES_Td1[st.B(AES_ishifts[4*i+1])] ^ 2245 AES_Td2[st.B(AES_ishifts[4*i+2])] ^ 2246 AES_Td3[st.B(AES_ishifts[4*i+3])]); 2247 } 2248 } 2249 2250 void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2251 { 2252 int i; 2253 Reg st = *d; 2254 Reg rk = *s; 2255 2256 for (i = 0; i < 16; i++) { 2257 d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]); 2258 } 2259 } 2260 2261 void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2262 { 2263 int i; 2264 Reg st = *d; 2265 Reg rk = *s; 2266 2267 for (i = 0 ; i < 4 ; i++) { 2268 d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4*i+0])] ^ 2269 AES_Te1[st.B(AES_shifts[4*i+1])] ^ 2270 AES_Te2[st.B(AES_shifts[4*i+2])] ^ 2271 AES_Te3[st.B(AES_shifts[4*i+3])]); 2272 } 2273 } 2274 2275 void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2276 { 2277 int i; 2278 Reg st = *d; 2279 Reg rk = *s; 2280 2281 for (i = 0; i < 16; i++) { 2282 d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]); 2283 } 2284 2285 } 2286 2287 void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2288 { 2289 int i; 2290 Reg tmp = *s; 2291 2292 for (i = 0 ; i < 4 ; i++) { 2293 d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^ 2294 AES_imc[tmp.B(4*i+1)][1] ^ 2295 AES_imc[tmp.B(4*i+2)][2] ^ 2296 AES_imc[tmp.B(4*i+3)][3]); 2297 } 2298 } 2299 2300 void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2301 uint32_t ctrl) 2302 { 2303 int i; 2304 Reg tmp = *s; 2305 2306 for (i = 0 ; i < 4 ; i++) { 2307 d->B(i) = AES_sbox[tmp.B(i + 4)]; 2308 d->B(i + 8) = AES_sbox[tmp.B(i + 12)]; 2309 } 2310 d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl; 2311 d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl; 2312 } 2313 #endif 2314 2315 #undef SHIFT 2316 #undef XMM_ONLY 2317 #undef Reg 2318 #undef B 2319 #undef W 2320 #undef L 2321 #undef Q 2322 #undef SUFFIX 2323