1 /* 2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support 3 * 4 * Copyright (c) 2005 Fabrice Bellard 5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com> 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "crypto/aes.h" 22 23 #if SHIFT == 0 24 #define Reg MMXReg 25 #define XMM_ONLY(...) 26 #define B(n) MMX_B(n) 27 #define W(n) MMX_W(n) 28 #define L(n) MMX_L(n) 29 #define Q(n) MMX_Q(n) 30 #define SUFFIX _mmx 31 #else 32 #define Reg ZMMReg 33 #define XMM_ONLY(...) __VA_ARGS__ 34 #define B(n) ZMM_B(n) 35 #define W(n) ZMM_W(n) 36 #define L(n) ZMM_L(n) 37 #define Q(n) ZMM_Q(n) 38 #define SUFFIX _xmm 39 #endif 40 41 void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 42 { 43 int shift; 44 45 if (s->Q(0) > 15) { 46 d->Q(0) = 0; 47 #if SHIFT == 1 48 d->Q(1) = 0; 49 #endif 50 } else { 51 shift = s->B(0); 52 d->W(0) >>= shift; 53 d->W(1) >>= shift; 54 d->W(2) >>= shift; 55 d->W(3) >>= shift; 56 #if SHIFT == 1 57 d->W(4) >>= shift; 58 d->W(5) >>= shift; 59 d->W(6) >>= shift; 60 d->W(7) >>= shift; 61 #endif 62 } 63 } 64 65 void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 66 { 67 int shift; 68 69 if (s->Q(0) > 15) { 70 shift = 15; 71 } else { 72 shift = s->B(0); 73 } 74 d->W(0) = (int16_t)d->W(0) >> shift; 75 d->W(1) = (int16_t)d->W(1) >> shift; 76 d->W(2) = (int16_t)d->W(2) >> shift; 77 d->W(3) = (int16_t)d->W(3) >> shift; 78 #if SHIFT == 1 79 d->W(4) = (int16_t)d->W(4) >> shift; 80 d->W(5) = (int16_t)d->W(5) >> shift; 81 d->W(6) = (int16_t)d->W(6) >> shift; 82 d->W(7) = (int16_t)d->W(7) >> shift; 83 #endif 84 } 85 86 void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 87 { 88 int shift; 89 90 if (s->Q(0) > 15) { 91 d->Q(0) = 0; 92 #if SHIFT == 1 93 d->Q(1) = 0; 94 #endif 95 } else { 96 shift = s->B(0); 97 d->W(0) <<= shift; 98 d->W(1) <<= shift; 99 d->W(2) <<= shift; 100 d->W(3) <<= shift; 101 #if SHIFT == 1 102 d->W(4) <<= shift; 103 d->W(5) <<= shift; 104 d->W(6) <<= shift; 105 d->W(7) <<= shift; 106 #endif 107 } 108 } 109 110 void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 111 { 112 int shift; 113 114 if (s->Q(0) > 31) { 115 d->Q(0) = 0; 116 #if SHIFT == 1 117 d->Q(1) = 0; 118 #endif 119 } else { 120 shift = s->B(0); 121 d->L(0) >>= shift; 122 d->L(1) >>= shift; 123 #if SHIFT == 1 124 d->L(2) >>= shift; 125 d->L(3) >>= shift; 126 #endif 127 } 128 } 129 130 void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 131 { 132 int shift; 133 134 if (s->Q(0) > 31) { 135 shift = 31; 136 } else { 137 shift = s->B(0); 138 } 139 d->L(0) = (int32_t)d->L(0) >> shift; 140 d->L(1) = (int32_t)d->L(1) >> shift; 141 #if SHIFT == 1 142 d->L(2) = (int32_t)d->L(2) >> shift; 143 d->L(3) = (int32_t)d->L(3) >> shift; 144 #endif 145 } 146 147 void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 148 { 149 int shift; 150 151 if (s->Q(0) > 31) { 152 d->Q(0) = 0; 153 #if SHIFT == 1 154 d->Q(1) = 0; 155 #endif 156 } else { 157 shift = s->B(0); 158 d->L(0) <<= shift; 159 d->L(1) <<= shift; 160 #if SHIFT == 1 161 d->L(2) <<= shift; 162 d->L(3) <<= shift; 163 #endif 164 } 165 } 166 167 void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 168 { 169 int shift; 170 171 if (s->Q(0) > 63) { 172 d->Q(0) = 0; 173 #if SHIFT == 1 174 d->Q(1) = 0; 175 #endif 176 } else { 177 shift = s->B(0); 178 d->Q(0) >>= shift; 179 #if SHIFT == 1 180 d->Q(1) >>= shift; 181 #endif 182 } 183 } 184 185 void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 186 { 187 int shift; 188 189 if (s->Q(0) > 63) { 190 d->Q(0) = 0; 191 #if SHIFT == 1 192 d->Q(1) = 0; 193 #endif 194 } else { 195 shift = s->B(0); 196 d->Q(0) <<= shift; 197 #if SHIFT == 1 198 d->Q(1) <<= shift; 199 #endif 200 } 201 } 202 203 #if SHIFT == 1 204 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 205 { 206 int shift, i; 207 208 shift = s->L(0); 209 if (shift > 16) { 210 shift = 16; 211 } 212 for (i = 0; i < 16 - shift; i++) { 213 d->B(i) = d->B(i + shift); 214 } 215 for (i = 16 - shift; i < 16; i++) { 216 d->B(i) = 0; 217 } 218 } 219 220 void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 221 { 222 int shift, i; 223 224 shift = s->L(0); 225 if (shift > 16) { 226 shift = 16; 227 } 228 for (i = 15; i >= shift; i--) { 229 d->B(i) = d->B(i - shift); 230 } 231 for (i = 0; i < shift; i++) { 232 d->B(i) = 0; 233 } 234 } 235 #endif 236 237 #define SSE_HELPER_B(name, F) \ 238 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 239 { \ 240 d->B(0) = F(d->B(0), s->B(0)); \ 241 d->B(1) = F(d->B(1), s->B(1)); \ 242 d->B(2) = F(d->B(2), s->B(2)); \ 243 d->B(3) = F(d->B(3), s->B(3)); \ 244 d->B(4) = F(d->B(4), s->B(4)); \ 245 d->B(5) = F(d->B(5), s->B(5)); \ 246 d->B(6) = F(d->B(6), s->B(6)); \ 247 d->B(7) = F(d->B(7), s->B(7)); \ 248 XMM_ONLY( \ 249 d->B(8) = F(d->B(8), s->B(8)); \ 250 d->B(9) = F(d->B(9), s->B(9)); \ 251 d->B(10) = F(d->B(10), s->B(10)); \ 252 d->B(11) = F(d->B(11), s->B(11)); \ 253 d->B(12) = F(d->B(12), s->B(12)); \ 254 d->B(13) = F(d->B(13), s->B(13)); \ 255 d->B(14) = F(d->B(14), s->B(14)); \ 256 d->B(15) = F(d->B(15), s->B(15)); \ 257 ) \ 258 } 259 260 #define SSE_HELPER_W(name, F) \ 261 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 262 { \ 263 d->W(0) = F(d->W(0), s->W(0)); \ 264 d->W(1) = F(d->W(1), s->W(1)); \ 265 d->W(2) = F(d->W(2), s->W(2)); \ 266 d->W(3) = F(d->W(3), s->W(3)); \ 267 XMM_ONLY( \ 268 d->W(4) = F(d->W(4), s->W(4)); \ 269 d->W(5) = F(d->W(5), s->W(5)); \ 270 d->W(6) = F(d->W(6), s->W(6)); \ 271 d->W(7) = F(d->W(7), s->W(7)); \ 272 ) \ 273 } 274 275 #define SSE_HELPER_L(name, F) \ 276 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 277 { \ 278 d->L(0) = F(d->L(0), s->L(0)); \ 279 d->L(1) = F(d->L(1), s->L(1)); \ 280 XMM_ONLY( \ 281 d->L(2) = F(d->L(2), s->L(2)); \ 282 d->L(3) = F(d->L(3), s->L(3)); \ 283 ) \ 284 } 285 286 #define SSE_HELPER_Q(name, F) \ 287 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 288 { \ 289 d->Q(0) = F(d->Q(0), s->Q(0)); \ 290 XMM_ONLY( \ 291 d->Q(1) = F(d->Q(1), s->Q(1)); \ 292 ) \ 293 } 294 295 #if SHIFT == 0 296 static inline int satub(int x) 297 { 298 if (x < 0) { 299 return 0; 300 } else if (x > 255) { 301 return 255; 302 } else { 303 return x; 304 } 305 } 306 307 static inline int satuw(int x) 308 { 309 if (x < 0) { 310 return 0; 311 } else if (x > 65535) { 312 return 65535; 313 } else { 314 return x; 315 } 316 } 317 318 static inline int satsb(int x) 319 { 320 if (x < -128) { 321 return -128; 322 } else if (x > 127) { 323 return 127; 324 } else { 325 return x; 326 } 327 } 328 329 static inline int satsw(int x) 330 { 331 if (x < -32768) { 332 return -32768; 333 } else if (x > 32767) { 334 return 32767; 335 } else { 336 return x; 337 } 338 } 339 340 #define FADD(a, b) ((a) + (b)) 341 #define FADDUB(a, b) satub((a) + (b)) 342 #define FADDUW(a, b) satuw((a) + (b)) 343 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) 344 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) 345 346 #define FSUB(a, b) ((a) - (b)) 347 #define FSUBUB(a, b) satub((a) - (b)) 348 #define FSUBUW(a, b) satuw((a) - (b)) 349 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) 350 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) 351 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) 352 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) 353 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) 354 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) 355 356 #define FAND(a, b) ((a) & (b)) 357 #define FANDN(a, b) ((~(a)) & (b)) 358 #define FOR(a, b) ((a) | (b)) 359 #define FXOR(a, b) ((a) ^ (b)) 360 361 #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0) 362 #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0) 363 #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0) 364 #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0) 365 366 #define FMULLW(a, b) ((a) * (b)) 367 #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16) 368 #define FMULHUW(a, b) ((a) * (b) >> 16) 369 #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16) 370 371 #define FAVG(a, b) (((a) + (b) + 1) >> 1) 372 #endif 373 374 SSE_HELPER_B(helper_paddb, FADD) 375 SSE_HELPER_W(helper_paddw, FADD) 376 SSE_HELPER_L(helper_paddl, FADD) 377 SSE_HELPER_Q(helper_paddq, FADD) 378 379 SSE_HELPER_B(helper_psubb, FSUB) 380 SSE_HELPER_W(helper_psubw, FSUB) 381 SSE_HELPER_L(helper_psubl, FSUB) 382 SSE_HELPER_Q(helper_psubq, FSUB) 383 384 SSE_HELPER_B(helper_paddusb, FADDUB) 385 SSE_HELPER_B(helper_paddsb, FADDSB) 386 SSE_HELPER_B(helper_psubusb, FSUBUB) 387 SSE_HELPER_B(helper_psubsb, FSUBSB) 388 389 SSE_HELPER_W(helper_paddusw, FADDUW) 390 SSE_HELPER_W(helper_paddsw, FADDSW) 391 SSE_HELPER_W(helper_psubusw, FSUBUW) 392 SSE_HELPER_W(helper_psubsw, FSUBSW) 393 394 SSE_HELPER_B(helper_pminub, FMINUB) 395 SSE_HELPER_B(helper_pmaxub, FMAXUB) 396 397 SSE_HELPER_W(helper_pminsw, FMINSW) 398 SSE_HELPER_W(helper_pmaxsw, FMAXSW) 399 400 SSE_HELPER_Q(helper_pand, FAND) 401 SSE_HELPER_Q(helper_pandn, FANDN) 402 SSE_HELPER_Q(helper_por, FOR) 403 SSE_HELPER_Q(helper_pxor, FXOR) 404 405 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB) 406 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW) 407 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL) 408 409 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ) 410 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ) 411 SSE_HELPER_L(helper_pcmpeql, FCMPEQ) 412 413 SSE_HELPER_W(helper_pmullw, FMULLW) 414 #if SHIFT == 0 415 SSE_HELPER_W(helper_pmulhrw, FMULHRW) 416 #endif 417 SSE_HELPER_W(helper_pmulhuw, FMULHUW) 418 SSE_HELPER_W(helper_pmulhw, FMULHW) 419 420 SSE_HELPER_B(helper_pavgb, FAVG) 421 SSE_HELPER_W(helper_pavgw, FAVG) 422 423 void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 424 { 425 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0); 426 #if SHIFT == 1 427 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2); 428 #endif 429 } 430 431 void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 432 { 433 int i; 434 435 for (i = 0; i < (2 << SHIFT); i++) { 436 d->L(i) = (int16_t)s->W(2 * i) * (int16_t)d->W(2 * i) + 437 (int16_t)s->W(2 * i + 1) * (int16_t)d->W(2 * i + 1); 438 } 439 } 440 441 #if SHIFT == 0 442 static inline int abs1(int a) 443 { 444 if (a < 0) { 445 return -a; 446 } else { 447 return a; 448 } 449 } 450 #endif 451 void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 452 { 453 unsigned int val; 454 455 val = 0; 456 val += abs1(d->B(0) - s->B(0)); 457 val += abs1(d->B(1) - s->B(1)); 458 val += abs1(d->B(2) - s->B(2)); 459 val += abs1(d->B(3) - s->B(3)); 460 val += abs1(d->B(4) - s->B(4)); 461 val += abs1(d->B(5) - s->B(5)); 462 val += abs1(d->B(6) - s->B(6)); 463 val += abs1(d->B(7) - s->B(7)); 464 d->Q(0) = val; 465 #if SHIFT == 1 466 val = 0; 467 val += abs1(d->B(8) - s->B(8)); 468 val += abs1(d->B(9) - s->B(9)); 469 val += abs1(d->B(10) - s->B(10)); 470 val += abs1(d->B(11) - s->B(11)); 471 val += abs1(d->B(12) - s->B(12)); 472 val += abs1(d->B(13) - s->B(13)); 473 val += abs1(d->B(14) - s->B(14)); 474 val += abs1(d->B(15) - s->B(15)); 475 d->Q(1) = val; 476 #endif 477 } 478 479 void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 480 target_ulong a0) 481 { 482 int i; 483 484 for (i = 0; i < (8 << SHIFT); i++) { 485 if (s->B(i) & 0x80) { 486 cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC()); 487 } 488 } 489 } 490 491 void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val) 492 { 493 d->L(0) = val; 494 d->L(1) = 0; 495 #if SHIFT == 1 496 d->Q(1) = 0; 497 #endif 498 } 499 500 #ifdef TARGET_X86_64 501 void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val) 502 { 503 d->Q(0) = val; 504 #if SHIFT == 1 505 d->Q(1) = 0; 506 #endif 507 } 508 #endif 509 510 #if SHIFT == 0 511 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order) 512 { 513 Reg r; 514 515 r.W(0) = s->W(order & 3); 516 r.W(1) = s->W((order >> 2) & 3); 517 r.W(2) = s->W((order >> 4) & 3); 518 r.W(3) = s->W((order >> 6) & 3); 519 *d = r; 520 } 521 #else 522 void helper_shufps(Reg *d, Reg *s, int order) 523 { 524 Reg r; 525 526 r.L(0) = d->L(order & 3); 527 r.L(1) = d->L((order >> 2) & 3); 528 r.L(2) = s->L((order >> 4) & 3); 529 r.L(3) = s->L((order >> 6) & 3); 530 *d = r; 531 } 532 533 void helper_shufpd(Reg *d, Reg *s, int order) 534 { 535 Reg r; 536 537 r.Q(0) = d->Q(order & 1); 538 r.Q(1) = s->Q((order >> 1) & 1); 539 *d = r; 540 } 541 542 void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order) 543 { 544 Reg r; 545 546 r.L(0) = s->L(order & 3); 547 r.L(1) = s->L((order >> 2) & 3); 548 r.L(2) = s->L((order >> 4) & 3); 549 r.L(3) = s->L((order >> 6) & 3); 550 *d = r; 551 } 552 553 void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order) 554 { 555 Reg r; 556 557 r.W(0) = s->W(order & 3); 558 r.W(1) = s->W((order >> 2) & 3); 559 r.W(2) = s->W((order >> 4) & 3); 560 r.W(3) = s->W((order >> 6) & 3); 561 r.Q(1) = s->Q(1); 562 *d = r; 563 } 564 565 void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order) 566 { 567 Reg r; 568 569 r.Q(0) = s->Q(0); 570 r.W(4) = s->W(4 + (order & 3)); 571 r.W(5) = s->W(4 + ((order >> 2) & 3)); 572 r.W(6) = s->W(4 + ((order >> 4) & 3)); 573 r.W(7) = s->W(4 + ((order >> 6) & 3)); 574 *d = r; 575 } 576 #endif 577 578 #if SHIFT == 1 579 /* FPU ops */ 580 /* XXX: not accurate */ 581 582 #define SSE_HELPER_S(name, F) \ 583 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ 584 { \ 585 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 586 d->ZMM_S(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ 587 d->ZMM_S(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ 588 d->ZMM_S(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ 589 } \ 590 \ 591 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ 592 { \ 593 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 594 } \ 595 \ 596 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ 597 { \ 598 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 599 d->ZMM_D(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ 600 } \ 601 \ 602 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ 603 { \ 604 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 605 } 606 607 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) 608 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) 609 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) 610 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) 611 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status) 612 613 /* Note that the choice of comparison op here is important to get the 614 * special cases right: for min and max Intel specifies that (-0,0), 615 * (NaN, anything) and (anything, NaN) return the second argument. 616 */ 617 #define FPU_MIN(size, a, b) \ 618 (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b)) 619 #define FPU_MAX(size, a, b) \ 620 (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b)) 621 622 SSE_HELPER_S(add, FPU_ADD) 623 SSE_HELPER_S(sub, FPU_SUB) 624 SSE_HELPER_S(mul, FPU_MUL) 625 SSE_HELPER_S(div, FPU_DIV) 626 SSE_HELPER_S(min, FPU_MIN) 627 SSE_HELPER_S(max, FPU_MAX) 628 SSE_HELPER_S(sqrt, FPU_SQRT) 629 630 631 /* float to float conversions */ 632 void helper_cvtps2pd(CPUX86State *env, Reg *d, Reg *s) 633 { 634 float32 s0, s1; 635 636 s0 = s->ZMM_S(0); 637 s1 = s->ZMM_S(1); 638 d->ZMM_D(0) = float32_to_float64(s0, &env->sse_status); 639 d->ZMM_D(1) = float32_to_float64(s1, &env->sse_status); 640 } 641 642 void helper_cvtpd2ps(CPUX86State *env, Reg *d, Reg *s) 643 { 644 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); 645 d->ZMM_S(1) = float64_to_float32(s->ZMM_D(1), &env->sse_status); 646 d->Q(1) = 0; 647 } 648 649 void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *s) 650 { 651 d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status); 652 } 653 654 void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *s) 655 { 656 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); 657 } 658 659 /* integer to float */ 660 void helper_cvtdq2ps(CPUX86State *env, Reg *d, Reg *s) 661 { 662 d->ZMM_S(0) = int32_to_float32(s->ZMM_L(0), &env->sse_status); 663 d->ZMM_S(1) = int32_to_float32(s->ZMM_L(1), &env->sse_status); 664 d->ZMM_S(2) = int32_to_float32(s->ZMM_L(2), &env->sse_status); 665 d->ZMM_S(3) = int32_to_float32(s->ZMM_L(3), &env->sse_status); 666 } 667 668 void helper_cvtdq2pd(CPUX86State *env, Reg *d, Reg *s) 669 { 670 int32_t l0, l1; 671 672 l0 = (int32_t)s->ZMM_L(0); 673 l1 = (int32_t)s->ZMM_L(1); 674 d->ZMM_D(0) = int32_to_float64(l0, &env->sse_status); 675 d->ZMM_D(1) = int32_to_float64(l1, &env->sse_status); 676 } 677 678 void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s) 679 { 680 d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); 681 d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); 682 } 683 684 void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s) 685 { 686 d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); 687 d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); 688 } 689 690 void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val) 691 { 692 d->ZMM_S(0) = int32_to_float32(val, &env->sse_status); 693 } 694 695 void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val) 696 { 697 d->ZMM_D(0) = int32_to_float64(val, &env->sse_status); 698 } 699 700 #ifdef TARGET_X86_64 701 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val) 702 { 703 d->ZMM_S(0) = int64_to_float32(val, &env->sse_status); 704 } 705 706 void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val) 707 { 708 d->ZMM_D(0) = int64_to_float64(val, &env->sse_status); 709 } 710 #endif 711 712 /* float to integer */ 713 714 /* 715 * x86 mandates that we return the indefinite integer value for the result 716 * of any float-to-integer conversion that raises the 'invalid' exception. 717 * Wrap the softfloat functions to get this behaviour. 718 */ 719 #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \ 720 static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \ 721 { \ 722 int oldflags, newflags; \ 723 RETTYPE r; \ 724 \ 725 oldflags = get_float_exception_flags(s); \ 726 set_float_exception_flags(0, s); \ 727 r = FN(a, s); \ 728 newflags = get_float_exception_flags(s); \ 729 if (newflags & float_flag_invalid) { \ 730 r = INDEFVALUE; \ 731 } \ 732 set_float_exception_flags(newflags | oldflags, s); \ 733 return r; \ 734 } 735 736 WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN) 737 WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN) 738 WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN) 739 WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN) 740 WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN) 741 WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN) 742 WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN) 743 WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN) 744 745 void helper_cvtps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 746 { 747 d->ZMM_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); 748 d->ZMM_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); 749 d->ZMM_L(2) = x86_float32_to_int32(s->ZMM_S(2), &env->sse_status); 750 d->ZMM_L(3) = x86_float32_to_int32(s->ZMM_S(3), &env->sse_status); 751 } 752 753 void helper_cvtpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 754 { 755 d->ZMM_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); 756 d->ZMM_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); 757 d->ZMM_Q(1) = 0; 758 } 759 760 void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 761 { 762 d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); 763 d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); 764 } 765 766 void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 767 { 768 d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); 769 d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); 770 } 771 772 int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s) 773 { 774 return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); 775 } 776 777 int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s) 778 { 779 return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); 780 } 781 782 #ifdef TARGET_X86_64 783 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s) 784 { 785 return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status); 786 } 787 788 int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s) 789 { 790 return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status); 791 } 792 #endif 793 794 /* float to integer truncated */ 795 void helper_cvttps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 796 { 797 d->ZMM_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); 798 d->ZMM_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); 799 d->ZMM_L(2) = x86_float32_to_int32_round_to_zero(s->ZMM_S(2), &env->sse_status); 800 d->ZMM_L(3) = x86_float32_to_int32_round_to_zero(s->ZMM_S(3), &env->sse_status); 801 } 802 803 void helper_cvttpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 804 { 805 d->ZMM_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); 806 d->ZMM_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); 807 d->ZMM_Q(1) = 0; 808 } 809 810 void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 811 { 812 d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); 813 d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); 814 } 815 816 void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 817 { 818 d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); 819 d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); 820 } 821 822 int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s) 823 { 824 return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); 825 } 826 827 int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s) 828 { 829 return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); 830 } 831 832 #ifdef TARGET_X86_64 833 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s) 834 { 835 return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status); 836 } 837 838 int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s) 839 { 840 return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status); 841 } 842 #endif 843 844 void helper_rsqrtps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 845 { 846 d->ZMM_S(0) = float32_div(float32_one, 847 float32_sqrt(s->ZMM_S(0), &env->sse_status), 848 &env->sse_status); 849 d->ZMM_S(1) = float32_div(float32_one, 850 float32_sqrt(s->ZMM_S(1), &env->sse_status), 851 &env->sse_status); 852 d->ZMM_S(2) = float32_div(float32_one, 853 float32_sqrt(s->ZMM_S(2), &env->sse_status), 854 &env->sse_status); 855 d->ZMM_S(3) = float32_div(float32_one, 856 float32_sqrt(s->ZMM_S(3), &env->sse_status), 857 &env->sse_status); 858 } 859 860 void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *s) 861 { 862 d->ZMM_S(0) = float32_div(float32_one, 863 float32_sqrt(s->ZMM_S(0), &env->sse_status), 864 &env->sse_status); 865 } 866 867 void helper_rcpps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 868 { 869 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); 870 d->ZMM_S(1) = float32_div(float32_one, s->ZMM_S(1), &env->sse_status); 871 d->ZMM_S(2) = float32_div(float32_one, s->ZMM_S(2), &env->sse_status); 872 d->ZMM_S(3) = float32_div(float32_one, s->ZMM_S(3), &env->sse_status); 873 } 874 875 void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *s) 876 { 877 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); 878 } 879 880 static inline uint64_t helper_extrq(uint64_t src, int shift, int len) 881 { 882 uint64_t mask; 883 884 if (len == 0) { 885 mask = ~0LL; 886 } else { 887 mask = (1ULL << len) - 1; 888 } 889 return (src >> shift) & mask; 890 } 891 892 void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) 893 { 894 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1), s->ZMM_B(0)); 895 } 896 897 void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length) 898 { 899 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length); 900 } 901 902 static inline uint64_t helper_insertq(uint64_t src, int shift, int len) 903 { 904 uint64_t mask; 905 906 if (len == 0) { 907 mask = ~0ULL; 908 } else { 909 mask = (1ULL << len) - 1; 910 } 911 return (src & ~(mask << shift)) | ((src & mask) << shift); 912 } 913 914 void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) 915 { 916 d->ZMM_Q(0) = helper_insertq(s->ZMM_Q(0), s->ZMM_B(9), s->ZMM_B(8)); 917 } 918 919 void helper_insertq_i(CPUX86State *env, ZMMReg *d, int index, int length) 920 { 921 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), index, length); 922 } 923 924 void helper_haddps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 925 { 926 ZMMReg r; 927 928 r.ZMM_S(0) = float32_add(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); 929 r.ZMM_S(1) = float32_add(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); 930 r.ZMM_S(2) = float32_add(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); 931 r.ZMM_S(3) = float32_add(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); 932 *d = r; 933 } 934 935 void helper_haddpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) 936 { 937 ZMMReg r; 938 939 r.ZMM_D(0) = float64_add(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); 940 r.ZMM_D(1) = float64_add(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); 941 *d = r; 942 } 943 944 void helper_hsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 945 { 946 ZMMReg r; 947 948 r.ZMM_S(0) = float32_sub(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); 949 r.ZMM_S(1) = float32_sub(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); 950 r.ZMM_S(2) = float32_sub(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); 951 r.ZMM_S(3) = float32_sub(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); 952 *d = r; 953 } 954 955 void helper_hsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) 956 { 957 ZMMReg r; 958 959 r.ZMM_D(0) = float64_sub(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); 960 r.ZMM_D(1) = float64_sub(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); 961 *d = r; 962 } 963 964 void helper_addsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 965 { 966 d->ZMM_S(0) = float32_sub(d->ZMM_S(0), s->ZMM_S(0), &env->sse_status); 967 d->ZMM_S(1) = float32_add(d->ZMM_S(1), s->ZMM_S(1), &env->sse_status); 968 d->ZMM_S(2) = float32_sub(d->ZMM_S(2), s->ZMM_S(2), &env->sse_status); 969 d->ZMM_S(3) = float32_add(d->ZMM_S(3), s->ZMM_S(3), &env->sse_status); 970 } 971 972 void helper_addsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) 973 { 974 d->ZMM_D(0) = float64_sub(d->ZMM_D(0), s->ZMM_D(0), &env->sse_status); 975 d->ZMM_D(1) = float64_add(d->ZMM_D(1), s->ZMM_D(1), &env->sse_status); 976 } 977 978 /* XXX: unordered */ 979 #define SSE_HELPER_CMP(name, F) \ 980 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ 981 { \ 982 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 983 d->ZMM_L(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ 984 d->ZMM_L(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ 985 d->ZMM_L(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ 986 } \ 987 \ 988 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ 989 { \ 990 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 991 } \ 992 \ 993 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ 994 { \ 995 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 996 d->ZMM_Q(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ 997 } \ 998 \ 999 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ 1000 { \ 1001 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 1002 } 1003 1004 #define FPU_CMPEQ(size, a, b) \ 1005 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0) 1006 #define FPU_CMPLT(size, a, b) \ 1007 (float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0) 1008 #define FPU_CMPLE(size, a, b) \ 1009 (float ## size ## _le(a, b, &env->sse_status) ? -1 : 0) 1010 #define FPU_CMPUNORD(size, a, b) \ 1011 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? -1 : 0) 1012 #define FPU_CMPNEQ(size, a, b) \ 1013 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1) 1014 #define FPU_CMPNLT(size, a, b) \ 1015 (float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1) 1016 #define FPU_CMPNLE(size, a, b) \ 1017 (float ## size ## _le(a, b, &env->sse_status) ? 0 : -1) 1018 #define FPU_CMPORD(size, a, b) \ 1019 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1) 1020 1021 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ) 1022 SSE_HELPER_CMP(cmplt, FPU_CMPLT) 1023 SSE_HELPER_CMP(cmple, FPU_CMPLE) 1024 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD) 1025 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ) 1026 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT) 1027 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE) 1028 SSE_HELPER_CMP(cmpord, FPU_CMPORD) 1029 1030 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; 1031 1032 void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s) 1033 { 1034 int ret; 1035 float32 s0, s1; 1036 1037 s0 = d->ZMM_S(0); 1038 s1 = s->ZMM_S(0); 1039 ret = float32_compare_quiet(s0, s1, &env->sse_status); 1040 CC_SRC = comis_eflags[ret + 1]; 1041 } 1042 1043 void helper_comiss(CPUX86State *env, Reg *d, Reg *s) 1044 { 1045 int ret; 1046 float32 s0, s1; 1047 1048 s0 = d->ZMM_S(0); 1049 s1 = s->ZMM_S(0); 1050 ret = float32_compare(s0, s1, &env->sse_status); 1051 CC_SRC = comis_eflags[ret + 1]; 1052 } 1053 1054 void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s) 1055 { 1056 int ret; 1057 float64 d0, d1; 1058 1059 d0 = d->ZMM_D(0); 1060 d1 = s->ZMM_D(0); 1061 ret = float64_compare_quiet(d0, d1, &env->sse_status); 1062 CC_SRC = comis_eflags[ret + 1]; 1063 } 1064 1065 void helper_comisd(CPUX86State *env, Reg *d, Reg *s) 1066 { 1067 int ret; 1068 float64 d0, d1; 1069 1070 d0 = d->ZMM_D(0); 1071 d1 = s->ZMM_D(0); 1072 ret = float64_compare(d0, d1, &env->sse_status); 1073 CC_SRC = comis_eflags[ret + 1]; 1074 } 1075 1076 uint32_t helper_movmskps(CPUX86State *env, Reg *s) 1077 { 1078 int b0, b1, b2, b3; 1079 1080 b0 = s->ZMM_L(0) >> 31; 1081 b1 = s->ZMM_L(1) >> 31; 1082 b2 = s->ZMM_L(2) >> 31; 1083 b3 = s->ZMM_L(3) >> 31; 1084 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3); 1085 } 1086 1087 uint32_t helper_movmskpd(CPUX86State *env, Reg *s) 1088 { 1089 int b0, b1; 1090 1091 b0 = s->ZMM_L(1) >> 31; 1092 b1 = s->ZMM_L(3) >> 31; 1093 return b0 | (b1 << 1); 1094 } 1095 1096 #endif 1097 1098 uint32_t glue(helper_pmovmskb, SUFFIX)(CPUX86State *env, Reg *s) 1099 { 1100 uint32_t val; 1101 1102 val = 0; 1103 val |= (s->B(0) >> 7); 1104 val |= (s->B(1) >> 6) & 0x02; 1105 val |= (s->B(2) >> 5) & 0x04; 1106 val |= (s->B(3) >> 4) & 0x08; 1107 val |= (s->B(4) >> 3) & 0x10; 1108 val |= (s->B(5) >> 2) & 0x20; 1109 val |= (s->B(6) >> 1) & 0x40; 1110 val |= (s->B(7)) & 0x80; 1111 #if SHIFT == 1 1112 val |= (s->B(8) << 1) & 0x0100; 1113 val |= (s->B(9) << 2) & 0x0200; 1114 val |= (s->B(10) << 3) & 0x0400; 1115 val |= (s->B(11) << 4) & 0x0800; 1116 val |= (s->B(12) << 5) & 0x1000; 1117 val |= (s->B(13) << 6) & 0x2000; 1118 val |= (s->B(14) << 7) & 0x4000; 1119 val |= (s->B(15) << 8) & 0x8000; 1120 #endif 1121 return val; 1122 } 1123 1124 void glue(helper_packsswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1125 { 1126 Reg r; 1127 1128 r.B(0) = satsb((int16_t)d->W(0)); 1129 r.B(1) = satsb((int16_t)d->W(1)); 1130 r.B(2) = satsb((int16_t)d->W(2)); 1131 r.B(3) = satsb((int16_t)d->W(3)); 1132 #if SHIFT == 1 1133 r.B(4) = satsb((int16_t)d->W(4)); 1134 r.B(5) = satsb((int16_t)d->W(5)); 1135 r.B(6) = satsb((int16_t)d->W(6)); 1136 r.B(7) = satsb((int16_t)d->W(7)); 1137 #endif 1138 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0)); 1139 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1)); 1140 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2)); 1141 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3)); 1142 #if SHIFT == 1 1143 r.B(12) = satsb((int16_t)s->W(4)); 1144 r.B(13) = satsb((int16_t)s->W(5)); 1145 r.B(14) = satsb((int16_t)s->W(6)); 1146 r.B(15) = satsb((int16_t)s->W(7)); 1147 #endif 1148 *d = r; 1149 } 1150 1151 void glue(helper_packuswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1152 { 1153 Reg r; 1154 1155 r.B(0) = satub((int16_t)d->W(0)); 1156 r.B(1) = satub((int16_t)d->W(1)); 1157 r.B(2) = satub((int16_t)d->W(2)); 1158 r.B(3) = satub((int16_t)d->W(3)); 1159 #if SHIFT == 1 1160 r.B(4) = satub((int16_t)d->W(4)); 1161 r.B(5) = satub((int16_t)d->W(5)); 1162 r.B(6) = satub((int16_t)d->W(6)); 1163 r.B(7) = satub((int16_t)d->W(7)); 1164 #endif 1165 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0)); 1166 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1)); 1167 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2)); 1168 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3)); 1169 #if SHIFT == 1 1170 r.B(12) = satub((int16_t)s->W(4)); 1171 r.B(13) = satub((int16_t)s->W(5)); 1172 r.B(14) = satub((int16_t)s->W(6)); 1173 r.B(15) = satub((int16_t)s->W(7)); 1174 #endif 1175 *d = r; 1176 } 1177 1178 void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1179 { 1180 Reg r; 1181 1182 r.W(0) = satsw(d->L(0)); 1183 r.W(1) = satsw(d->L(1)); 1184 #if SHIFT == 1 1185 r.W(2) = satsw(d->L(2)); 1186 r.W(3) = satsw(d->L(3)); 1187 #endif 1188 r.W((2 << SHIFT) + 0) = satsw(s->L(0)); 1189 r.W((2 << SHIFT) + 1) = satsw(s->L(1)); 1190 #if SHIFT == 1 1191 r.W(6) = satsw(s->L(2)); 1192 r.W(7) = satsw(s->L(3)); 1193 #endif 1194 *d = r; 1195 } 1196 1197 #define UNPCK_OP(base_name, base) \ 1198 \ 1199 void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\ 1200 Reg *d, Reg *s) \ 1201 { \ 1202 Reg r; \ 1203 \ 1204 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \ 1205 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \ 1206 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \ 1207 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \ 1208 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \ 1209 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \ 1210 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \ 1211 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \ 1212 XMM_ONLY( \ 1213 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \ 1214 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \ 1215 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \ 1216 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \ 1217 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \ 1218 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \ 1219 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \ 1220 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \ 1221 ) \ 1222 *d = r; \ 1223 } \ 1224 \ 1225 void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\ 1226 Reg *d, Reg *s) \ 1227 { \ 1228 Reg r; \ 1229 \ 1230 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \ 1231 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \ 1232 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \ 1233 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \ 1234 XMM_ONLY( \ 1235 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \ 1236 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \ 1237 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \ 1238 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \ 1239 ) \ 1240 *d = r; \ 1241 } \ 1242 \ 1243 void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\ 1244 Reg *d, Reg *s) \ 1245 { \ 1246 Reg r; \ 1247 \ 1248 r.L(0) = d->L((base << SHIFT) + 0); \ 1249 r.L(1) = s->L((base << SHIFT) + 0); \ 1250 XMM_ONLY( \ 1251 r.L(2) = d->L((base << SHIFT) + 1); \ 1252 r.L(3) = s->L((base << SHIFT) + 1); \ 1253 ) \ 1254 *d = r; \ 1255 } \ 1256 \ 1257 XMM_ONLY( \ 1258 void glue(helper_punpck ## base_name ## qdq, SUFFIX)(CPUX86State \ 1259 *env, \ 1260 Reg *d, \ 1261 Reg *s) \ 1262 { \ 1263 Reg r; \ 1264 \ 1265 r.Q(0) = d->Q(base); \ 1266 r.Q(1) = s->Q(base); \ 1267 *d = r; \ 1268 } \ 1269 ) 1270 1271 UNPCK_OP(l, 0) 1272 UNPCK_OP(h, 1) 1273 1274 /* 3DNow! float ops */ 1275 #if SHIFT == 0 1276 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s) 1277 { 1278 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status); 1279 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status); 1280 } 1281 1282 void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s) 1283 { 1284 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status); 1285 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status); 1286 } 1287 1288 void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s) 1289 { 1290 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status); 1291 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status); 1292 } 1293 1294 void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s) 1295 { 1296 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), 1297 &env->mmx_status)); 1298 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), 1299 &env->mmx_status)); 1300 } 1301 1302 void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s) 1303 { 1304 MMXReg r; 1305 1306 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1307 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1308 *d = r; 1309 } 1310 1311 void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s) 1312 { 1313 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1314 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1315 } 1316 1317 void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s) 1318 { 1319 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), 1320 &env->mmx_status) ? -1 : 0; 1321 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), 1322 &env->mmx_status) ? -1 : 0; 1323 } 1324 1325 void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s) 1326 { 1327 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), 1328 &env->mmx_status) ? -1 : 0; 1329 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), 1330 &env->mmx_status) ? -1 : 0; 1331 } 1332 1333 void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s) 1334 { 1335 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), 1336 &env->mmx_status) ? -1 : 0; 1337 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), 1338 &env->mmx_status) ? -1 : 0; 1339 } 1340 1341 void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s) 1342 { 1343 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) { 1344 d->MMX_S(0) = s->MMX_S(0); 1345 } 1346 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) { 1347 d->MMX_S(1) = s->MMX_S(1); 1348 } 1349 } 1350 1351 void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s) 1352 { 1353 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) { 1354 d->MMX_S(0) = s->MMX_S(0); 1355 } 1356 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) { 1357 d->MMX_S(1) = s->MMX_S(1); 1358 } 1359 } 1360 1361 void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s) 1362 { 1363 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1364 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1365 } 1366 1367 void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s) 1368 { 1369 MMXReg r; 1370 1371 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1372 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1373 *d = r; 1374 } 1375 1376 void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s) 1377 { 1378 MMXReg r; 1379 1380 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1381 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1382 *d = r; 1383 } 1384 1385 void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s) 1386 { 1387 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status); 1388 d->MMX_S(1) = d->MMX_S(0); 1389 } 1390 1391 void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s) 1392 { 1393 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff; 1394 d->MMX_S(1) = float32_div(float32_one, 1395 float32_sqrt(d->MMX_S(1), &env->mmx_status), 1396 &env->mmx_status); 1397 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000; 1398 d->MMX_L(0) = d->MMX_L(1); 1399 } 1400 1401 void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s) 1402 { 1403 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1404 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1405 } 1406 1407 void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s) 1408 { 1409 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status); 1410 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status); 1411 } 1412 1413 void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s) 1414 { 1415 MMXReg r; 1416 1417 r.MMX_L(0) = s->MMX_L(1); 1418 r.MMX_L(1) = s->MMX_L(0); 1419 *d = r; 1420 } 1421 #endif 1422 1423 /* SSSE3 op helpers */ 1424 void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1425 { 1426 int i; 1427 Reg r; 1428 1429 for (i = 0; i < (8 << SHIFT); i++) { 1430 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1))); 1431 } 1432 1433 *d = r; 1434 } 1435 1436 void glue(helper_phaddw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1437 { 1438 d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1); 1439 d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3); 1440 XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5)); 1441 XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7)); 1442 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1); 1443 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3); 1444 XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5)); 1445 XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7)); 1446 } 1447 1448 void glue(helper_phaddd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1449 { 1450 d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1); 1451 XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3)); 1452 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1); 1453 XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3)); 1454 } 1455 1456 void glue(helper_phaddsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1457 { 1458 d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1)); 1459 d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3)); 1460 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5))); 1461 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7))); 1462 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1)); 1463 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3)); 1464 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5))); 1465 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7))); 1466 } 1467 1468 void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1469 { 1470 d->W(0) = satsw((int8_t)s->B(0) * (uint8_t)d->B(0) + 1471 (int8_t)s->B(1) * (uint8_t)d->B(1)); 1472 d->W(1) = satsw((int8_t)s->B(2) * (uint8_t)d->B(2) + 1473 (int8_t)s->B(3) * (uint8_t)d->B(3)); 1474 d->W(2) = satsw((int8_t)s->B(4) * (uint8_t)d->B(4) + 1475 (int8_t)s->B(5) * (uint8_t)d->B(5)); 1476 d->W(3) = satsw((int8_t)s->B(6) * (uint8_t)d->B(6) + 1477 (int8_t)s->B(7) * (uint8_t)d->B(7)); 1478 #if SHIFT == 1 1479 d->W(4) = satsw((int8_t)s->B(8) * (uint8_t)d->B(8) + 1480 (int8_t)s->B(9) * (uint8_t)d->B(9)); 1481 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) + 1482 (int8_t)s->B(11) * (uint8_t)d->B(11)); 1483 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) + 1484 (int8_t)s->B(13) * (uint8_t)d->B(13)); 1485 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) + 1486 (int8_t)s->B(15) * (uint8_t)d->B(15)); 1487 #endif 1488 } 1489 1490 void glue(helper_phsubw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1491 { 1492 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1); 1493 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3); 1494 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5)); 1495 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7)); 1496 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1); 1497 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3); 1498 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5)); 1499 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7)); 1500 } 1501 1502 void glue(helper_phsubd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1503 { 1504 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1); 1505 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3)); 1506 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1); 1507 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3)); 1508 } 1509 1510 void glue(helper_phsubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1511 { 1512 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1)); 1513 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3)); 1514 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5))); 1515 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7))); 1516 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1)); 1517 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3)); 1518 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5))); 1519 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7))); 1520 } 1521 1522 #define FABSB(_, x) (x > INT8_MAX ? -(int8_t)x : x) 1523 #define FABSW(_, x) (x > INT16_MAX ? -(int16_t)x : x) 1524 #define FABSL(_, x) (x > INT32_MAX ? -(int32_t)x : x) 1525 SSE_HELPER_B(helper_pabsb, FABSB) 1526 SSE_HELPER_W(helper_pabsw, FABSW) 1527 SSE_HELPER_L(helper_pabsd, FABSL) 1528 1529 #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15) 1530 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW) 1531 1532 #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d) 1533 #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d) 1534 #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d) 1535 SSE_HELPER_B(helper_psignb, FSIGNB) 1536 SSE_HELPER_W(helper_psignw, FSIGNW) 1537 SSE_HELPER_L(helper_psignd, FSIGNL) 1538 1539 void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1540 int32_t shift) 1541 { 1542 Reg r; 1543 1544 /* XXX could be checked during translation */ 1545 if (shift >= (16 << SHIFT)) { 1546 r.Q(0) = 0; 1547 XMM_ONLY(r.Q(1) = 0); 1548 } else { 1549 shift <<= 3; 1550 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0) 1551 #if SHIFT == 0 1552 r.Q(0) = SHR(s->Q(0), shift - 0) | 1553 SHR(d->Q(0), shift - 64); 1554 #else 1555 r.Q(0) = SHR(s->Q(0), shift - 0) | 1556 SHR(s->Q(1), shift - 64) | 1557 SHR(d->Q(0), shift - 128) | 1558 SHR(d->Q(1), shift - 192); 1559 r.Q(1) = SHR(s->Q(0), shift + 64) | 1560 SHR(s->Q(1), shift - 0) | 1561 SHR(d->Q(0), shift - 64) | 1562 SHR(d->Q(1), shift - 128); 1563 #endif 1564 #undef SHR 1565 } 1566 1567 *d = r; 1568 } 1569 1570 #define XMM0 (env->xmm_regs[0]) 1571 1572 #if SHIFT == 1 1573 #define SSE_HELPER_V(name, elem, num, F) \ 1574 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 1575 { \ 1576 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \ 1577 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \ 1578 if (num > 2) { \ 1579 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \ 1580 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \ 1581 if (num > 4) { \ 1582 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \ 1583 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \ 1584 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \ 1585 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \ 1586 if (num > 8) { \ 1587 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \ 1588 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \ 1589 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \ 1590 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \ 1591 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \ 1592 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \ 1593 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \ 1594 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \ 1595 } \ 1596 } \ 1597 } \ 1598 } 1599 1600 #define SSE_HELPER_I(name, elem, num, F) \ 1601 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t imm) \ 1602 { \ 1603 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \ 1604 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \ 1605 if (num > 2) { \ 1606 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \ 1607 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \ 1608 if (num > 4) { \ 1609 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \ 1610 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \ 1611 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \ 1612 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \ 1613 if (num > 8) { \ 1614 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \ 1615 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \ 1616 d->elem(10) = F(d->elem(10), s->elem(10), \ 1617 ((imm >> 10) & 1)); \ 1618 d->elem(11) = F(d->elem(11), s->elem(11), \ 1619 ((imm >> 11) & 1)); \ 1620 d->elem(12) = F(d->elem(12), s->elem(12), \ 1621 ((imm >> 12) & 1)); \ 1622 d->elem(13) = F(d->elem(13), s->elem(13), \ 1623 ((imm >> 13) & 1)); \ 1624 d->elem(14) = F(d->elem(14), s->elem(14), \ 1625 ((imm >> 14) & 1)); \ 1626 d->elem(15) = F(d->elem(15), s->elem(15), \ 1627 ((imm >> 15) & 1)); \ 1628 } \ 1629 } \ 1630 } \ 1631 } 1632 1633 /* SSE4.1 op helpers */ 1634 #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d) 1635 #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d) 1636 #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d) 1637 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB) 1638 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS) 1639 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD) 1640 1641 void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1642 { 1643 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1)); 1644 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1)); 1645 1646 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C); 1647 } 1648 1649 #define SSE_HELPER_F(name, elem, num, F) \ 1650 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 1651 { \ 1652 if (num > 2) { \ 1653 if (num > 4) { \ 1654 d->elem(7) = F(7); \ 1655 d->elem(6) = F(6); \ 1656 d->elem(5) = F(5); \ 1657 d->elem(4) = F(4); \ 1658 } \ 1659 d->elem(3) = F(3); \ 1660 d->elem(2) = F(2); \ 1661 } \ 1662 d->elem(1) = F(1); \ 1663 d->elem(0) = F(0); \ 1664 } 1665 1666 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B) 1667 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B) 1668 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B) 1669 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W) 1670 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W) 1671 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L) 1672 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B) 1673 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B) 1674 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B) 1675 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W) 1676 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W) 1677 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L) 1678 1679 void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1680 { 1681 d->Q(0) = (int64_t)(int32_t) d->L(0) * (int32_t) s->L(0); 1682 d->Q(1) = (int64_t)(int32_t) d->L(2) * (int32_t) s->L(2); 1683 } 1684 1685 #define FCMPEQQ(d, s) (d == s ? -1 : 0) 1686 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ) 1687 1688 void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1689 { 1690 Reg r; 1691 1692 r.W(0) = satuw((int32_t) d->L(0)); 1693 r.W(1) = satuw((int32_t) d->L(1)); 1694 r.W(2) = satuw((int32_t) d->L(2)); 1695 r.W(3) = satuw((int32_t) d->L(3)); 1696 r.W(4) = satuw((int32_t) s->L(0)); 1697 r.W(5) = satuw((int32_t) s->L(1)); 1698 r.W(6) = satuw((int32_t) s->L(2)); 1699 r.W(7) = satuw((int32_t) s->L(3)); 1700 *d = r; 1701 } 1702 1703 #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s) 1704 #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s) 1705 #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s) 1706 #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s) 1707 SSE_HELPER_B(helper_pminsb, FMINSB) 1708 SSE_HELPER_L(helper_pminsd, FMINSD) 1709 SSE_HELPER_W(helper_pminuw, MIN) 1710 SSE_HELPER_L(helper_pminud, MIN) 1711 SSE_HELPER_B(helper_pmaxsb, FMAXSB) 1712 SSE_HELPER_L(helper_pmaxsd, FMAXSD) 1713 SSE_HELPER_W(helper_pmaxuw, MAX) 1714 SSE_HELPER_L(helper_pmaxud, MAX) 1715 1716 #define FMULLD(d, s) ((int32_t)d * (int32_t)s) 1717 SSE_HELPER_L(helper_pmulld, FMULLD) 1718 1719 void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1720 { 1721 int idx = 0; 1722 1723 if (s->W(1) < s->W(idx)) { 1724 idx = 1; 1725 } 1726 if (s->W(2) < s->W(idx)) { 1727 idx = 2; 1728 } 1729 if (s->W(3) < s->W(idx)) { 1730 idx = 3; 1731 } 1732 if (s->W(4) < s->W(idx)) { 1733 idx = 4; 1734 } 1735 if (s->W(5) < s->W(idx)) { 1736 idx = 5; 1737 } 1738 if (s->W(6) < s->W(idx)) { 1739 idx = 6; 1740 } 1741 if (s->W(7) < s->W(idx)) { 1742 idx = 7; 1743 } 1744 1745 d->W(0) = s->W(idx); 1746 d->W(1) = idx; 1747 d->L(1) = 0; 1748 d->Q(1) = 0; 1749 } 1750 1751 void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1752 uint32_t mode) 1753 { 1754 signed char prev_rounding_mode; 1755 1756 prev_rounding_mode = env->sse_status.float_rounding_mode; 1757 if (!(mode & (1 << 2))) { 1758 switch (mode & 3) { 1759 case 0: 1760 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1761 break; 1762 case 1: 1763 set_float_rounding_mode(float_round_down, &env->sse_status); 1764 break; 1765 case 2: 1766 set_float_rounding_mode(float_round_up, &env->sse_status); 1767 break; 1768 case 3: 1769 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1770 break; 1771 } 1772 } 1773 1774 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); 1775 d->ZMM_S(1) = float32_round_to_int(s->ZMM_S(1), &env->sse_status); 1776 d->ZMM_S(2) = float32_round_to_int(s->ZMM_S(2), &env->sse_status); 1777 d->ZMM_S(3) = float32_round_to_int(s->ZMM_S(3), &env->sse_status); 1778 1779 #if 0 /* TODO */ 1780 if (mode & (1 << 3)) { 1781 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1782 ~float_flag_inexact, 1783 &env->sse_status); 1784 } 1785 #endif 1786 env->sse_status.float_rounding_mode = prev_rounding_mode; 1787 } 1788 1789 void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1790 uint32_t mode) 1791 { 1792 signed char prev_rounding_mode; 1793 1794 prev_rounding_mode = env->sse_status.float_rounding_mode; 1795 if (!(mode & (1 << 2))) { 1796 switch (mode & 3) { 1797 case 0: 1798 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1799 break; 1800 case 1: 1801 set_float_rounding_mode(float_round_down, &env->sse_status); 1802 break; 1803 case 2: 1804 set_float_rounding_mode(float_round_up, &env->sse_status); 1805 break; 1806 case 3: 1807 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1808 break; 1809 } 1810 } 1811 1812 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); 1813 d->ZMM_D(1) = float64_round_to_int(s->ZMM_D(1), &env->sse_status); 1814 1815 #if 0 /* TODO */ 1816 if (mode & (1 << 3)) { 1817 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1818 ~float_flag_inexact, 1819 &env->sse_status); 1820 } 1821 #endif 1822 env->sse_status.float_rounding_mode = prev_rounding_mode; 1823 } 1824 1825 void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1826 uint32_t mode) 1827 { 1828 signed char prev_rounding_mode; 1829 1830 prev_rounding_mode = env->sse_status.float_rounding_mode; 1831 if (!(mode & (1 << 2))) { 1832 switch (mode & 3) { 1833 case 0: 1834 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1835 break; 1836 case 1: 1837 set_float_rounding_mode(float_round_down, &env->sse_status); 1838 break; 1839 case 2: 1840 set_float_rounding_mode(float_round_up, &env->sse_status); 1841 break; 1842 case 3: 1843 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1844 break; 1845 } 1846 } 1847 1848 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); 1849 1850 #if 0 /* TODO */ 1851 if (mode & (1 << 3)) { 1852 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1853 ~float_flag_inexact, 1854 &env->sse_status); 1855 } 1856 #endif 1857 env->sse_status.float_rounding_mode = prev_rounding_mode; 1858 } 1859 1860 void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1861 uint32_t mode) 1862 { 1863 signed char prev_rounding_mode; 1864 1865 prev_rounding_mode = env->sse_status.float_rounding_mode; 1866 if (!(mode & (1 << 2))) { 1867 switch (mode & 3) { 1868 case 0: 1869 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1870 break; 1871 case 1: 1872 set_float_rounding_mode(float_round_down, &env->sse_status); 1873 break; 1874 case 2: 1875 set_float_rounding_mode(float_round_up, &env->sse_status); 1876 break; 1877 case 3: 1878 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1879 break; 1880 } 1881 } 1882 1883 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); 1884 1885 #if 0 /* TODO */ 1886 if (mode & (1 << 3)) { 1887 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1888 ~float_flag_inexact, 1889 &env->sse_status); 1890 } 1891 #endif 1892 env->sse_status.float_rounding_mode = prev_rounding_mode; 1893 } 1894 1895 #define FBLENDP(d, s, m) (m ? s : d) 1896 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP) 1897 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP) 1898 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP) 1899 1900 void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) 1901 { 1902 float32 iresult = float32_zero; 1903 1904 if (mask & (1 << 4)) { 1905 iresult = float32_add(iresult, 1906 float32_mul(d->ZMM_S(0), s->ZMM_S(0), 1907 &env->sse_status), 1908 &env->sse_status); 1909 } 1910 if (mask & (1 << 5)) { 1911 iresult = float32_add(iresult, 1912 float32_mul(d->ZMM_S(1), s->ZMM_S(1), 1913 &env->sse_status), 1914 &env->sse_status); 1915 } 1916 if (mask & (1 << 6)) { 1917 iresult = float32_add(iresult, 1918 float32_mul(d->ZMM_S(2), s->ZMM_S(2), 1919 &env->sse_status), 1920 &env->sse_status); 1921 } 1922 if (mask & (1 << 7)) { 1923 iresult = float32_add(iresult, 1924 float32_mul(d->ZMM_S(3), s->ZMM_S(3), 1925 &env->sse_status), 1926 &env->sse_status); 1927 } 1928 d->ZMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero; 1929 d->ZMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero; 1930 d->ZMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero; 1931 d->ZMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero; 1932 } 1933 1934 void glue(helper_dppd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) 1935 { 1936 float64 iresult = float64_zero; 1937 1938 if (mask & (1 << 4)) { 1939 iresult = float64_add(iresult, 1940 float64_mul(d->ZMM_D(0), s->ZMM_D(0), 1941 &env->sse_status), 1942 &env->sse_status); 1943 } 1944 if (mask & (1 << 5)) { 1945 iresult = float64_add(iresult, 1946 float64_mul(d->ZMM_D(1), s->ZMM_D(1), 1947 &env->sse_status), 1948 &env->sse_status); 1949 } 1950 d->ZMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero; 1951 d->ZMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero; 1952 } 1953 1954 void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1955 uint32_t offset) 1956 { 1957 int s0 = (offset & 3) << 2; 1958 int d0 = (offset & 4) << 0; 1959 int i; 1960 Reg r; 1961 1962 for (i = 0; i < 8; i++, d0++) { 1963 r.W(i) = 0; 1964 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0)); 1965 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1)); 1966 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2)); 1967 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3)); 1968 } 1969 1970 *d = r; 1971 } 1972 1973 /* SSE4.2 op helpers */ 1974 #define FCMPGTQ(d, s) ((int64_t)d > (int64_t)s ? -1 : 0) 1975 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ) 1976 1977 static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl) 1978 { 1979 int val; 1980 1981 /* Presence of REX.W is indicated by a bit higher than 7 set */ 1982 if (ctrl >> 8) { 1983 val = abs1((int64_t)env->regs[reg]); 1984 } else { 1985 val = abs1((int32_t)env->regs[reg]); 1986 } 1987 1988 if (ctrl & 1) { 1989 if (val > 8) { 1990 return 8; 1991 } 1992 } else { 1993 if (val > 16) { 1994 return 16; 1995 } 1996 } 1997 return val; 1998 } 1999 2000 static inline int pcmp_ilen(Reg *r, uint8_t ctrl) 2001 { 2002 int val = 0; 2003 2004 if (ctrl & 1) { 2005 while (val < 8 && r->W(val)) { 2006 val++; 2007 } 2008 } else { 2009 while (val < 16 && r->B(val)) { 2010 val++; 2011 } 2012 } 2013 2014 return val; 2015 } 2016 2017 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i) 2018 { 2019 switch ((ctrl >> 0) & 3) { 2020 case 0: 2021 return r->B(i); 2022 case 1: 2023 return r->W(i); 2024 case 2: 2025 return (int8_t)r->B(i); 2026 case 3: 2027 default: 2028 return (int16_t)r->W(i); 2029 } 2030 } 2031 2032 static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s, 2033 int8_t ctrl, int valids, int validd) 2034 { 2035 unsigned int res = 0; 2036 int v; 2037 int j, i; 2038 int upper = (ctrl & 1) ? 7 : 15; 2039 2040 valids--; 2041 validd--; 2042 2043 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0); 2044 2045 switch ((ctrl >> 2) & 3) { 2046 case 0: 2047 for (j = valids; j >= 0; j--) { 2048 res <<= 1; 2049 v = pcmp_val(s, ctrl, j); 2050 for (i = validd; i >= 0; i--) { 2051 res |= (v == pcmp_val(d, ctrl, i)); 2052 } 2053 } 2054 break; 2055 case 1: 2056 for (j = valids; j >= 0; j--) { 2057 res <<= 1; 2058 v = pcmp_val(s, ctrl, j); 2059 for (i = ((validd - 1) | 1); i >= 0; i -= 2) { 2060 res |= (pcmp_val(d, ctrl, i - 0) >= v && 2061 pcmp_val(d, ctrl, i - 1) <= v); 2062 } 2063 } 2064 break; 2065 case 2: 2066 res = (1 << (upper - MAX(valids, validd))) - 1; 2067 res <<= MAX(valids, validd) - MIN(valids, validd); 2068 for (i = MIN(valids, validd); i >= 0; i--) { 2069 res <<= 1; 2070 v = pcmp_val(s, ctrl, i); 2071 res |= (v == pcmp_val(d, ctrl, i)); 2072 } 2073 break; 2074 case 3: 2075 if (validd == -1) { 2076 res = (2 << upper) - 1; 2077 break; 2078 } 2079 for (j = valids - validd; j >= 0; j--) { 2080 res <<= 1; 2081 v = 1; 2082 for (i = validd; i >= 0; i--) { 2083 v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i)); 2084 } 2085 res |= v; 2086 } 2087 break; 2088 } 2089 2090 switch ((ctrl >> 4) & 3) { 2091 case 1: 2092 res ^= (2 << upper) - 1; 2093 break; 2094 case 3: 2095 res ^= (1 << (valids + 1)) - 1; 2096 break; 2097 } 2098 2099 if (res) { 2100 CC_SRC |= CC_C; 2101 } 2102 if (res & 1) { 2103 CC_SRC |= CC_O; 2104 } 2105 2106 return res; 2107 } 2108 2109 void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2110 uint32_t ctrl) 2111 { 2112 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2113 pcmp_elen(env, R_EDX, ctrl), 2114 pcmp_elen(env, R_EAX, ctrl)); 2115 2116 if (res) { 2117 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); 2118 } else { 2119 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); 2120 } 2121 } 2122 2123 void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2124 uint32_t ctrl) 2125 { 2126 int i; 2127 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2128 pcmp_elen(env, R_EDX, ctrl), 2129 pcmp_elen(env, R_EAX, ctrl)); 2130 2131 if ((ctrl >> 6) & 1) { 2132 if (ctrl & 1) { 2133 for (i = 0; i < 8; i++, res >>= 1) { 2134 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; 2135 } 2136 } else { 2137 for (i = 0; i < 16; i++, res >>= 1) { 2138 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; 2139 } 2140 } 2141 } else { 2142 env->xmm_regs[0].Q(1) = 0; 2143 env->xmm_regs[0].Q(0) = res; 2144 } 2145 } 2146 2147 void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2148 uint32_t ctrl) 2149 { 2150 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2151 pcmp_ilen(s, ctrl), 2152 pcmp_ilen(d, ctrl)); 2153 2154 if (res) { 2155 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); 2156 } else { 2157 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); 2158 } 2159 } 2160 2161 void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2162 uint32_t ctrl) 2163 { 2164 int i; 2165 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2166 pcmp_ilen(s, ctrl), 2167 pcmp_ilen(d, ctrl)); 2168 2169 if ((ctrl >> 6) & 1) { 2170 if (ctrl & 1) { 2171 for (i = 0; i < 8; i++, res >>= 1) { 2172 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; 2173 } 2174 } else { 2175 for (i = 0; i < 16; i++, res >>= 1) { 2176 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; 2177 } 2178 } 2179 } else { 2180 env->xmm_regs[0].Q(1) = 0; 2181 env->xmm_regs[0].Q(0) = res; 2182 } 2183 } 2184 2185 #define CRCPOLY 0x1edc6f41 2186 #define CRCPOLY_BITREV 0x82f63b78 2187 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len) 2188 { 2189 target_ulong crc = (msg & ((target_ulong) -1 >> 2190 (TARGET_LONG_BITS - len))) ^ crc1; 2191 2192 while (len--) { 2193 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0); 2194 } 2195 2196 return crc; 2197 } 2198 2199 void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2200 uint32_t ctrl) 2201 { 2202 uint64_t ah, al, b, resh, resl; 2203 2204 ah = 0; 2205 al = d->Q((ctrl & 1) != 0); 2206 b = s->Q((ctrl & 16) != 0); 2207 resh = resl = 0; 2208 2209 while (b) { 2210 if (b & 1) { 2211 resl ^= al; 2212 resh ^= ah; 2213 } 2214 ah = (ah << 1) | (al >> 63); 2215 al <<= 1; 2216 b >>= 1; 2217 } 2218 2219 d->Q(0) = resl; 2220 d->Q(1) = resh; 2221 } 2222 2223 void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2224 { 2225 int i; 2226 Reg st = *d; 2227 Reg rk = *s; 2228 2229 for (i = 0 ; i < 4 ; i++) { 2230 d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4*i+0])] ^ 2231 AES_Td1[st.B(AES_ishifts[4*i+1])] ^ 2232 AES_Td2[st.B(AES_ishifts[4*i+2])] ^ 2233 AES_Td3[st.B(AES_ishifts[4*i+3])]); 2234 } 2235 } 2236 2237 void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2238 { 2239 int i; 2240 Reg st = *d; 2241 Reg rk = *s; 2242 2243 for (i = 0; i < 16; i++) { 2244 d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]); 2245 } 2246 } 2247 2248 void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2249 { 2250 int i; 2251 Reg st = *d; 2252 Reg rk = *s; 2253 2254 for (i = 0 ; i < 4 ; i++) { 2255 d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4*i+0])] ^ 2256 AES_Te1[st.B(AES_shifts[4*i+1])] ^ 2257 AES_Te2[st.B(AES_shifts[4*i+2])] ^ 2258 AES_Te3[st.B(AES_shifts[4*i+3])]); 2259 } 2260 } 2261 2262 void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2263 { 2264 int i; 2265 Reg st = *d; 2266 Reg rk = *s; 2267 2268 for (i = 0; i < 16; i++) { 2269 d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]); 2270 } 2271 2272 } 2273 2274 void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2275 { 2276 int i; 2277 Reg tmp = *s; 2278 2279 for (i = 0 ; i < 4 ; i++) { 2280 d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^ 2281 AES_imc[tmp.B(4*i+1)][1] ^ 2282 AES_imc[tmp.B(4*i+2)][2] ^ 2283 AES_imc[tmp.B(4*i+3)][3]); 2284 } 2285 } 2286 2287 void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2288 uint32_t ctrl) 2289 { 2290 int i; 2291 Reg tmp = *s; 2292 2293 for (i = 0 ; i < 4 ; i++) { 2294 d->B(i) = AES_sbox[tmp.B(i + 4)]; 2295 d->B(i + 8) = AES_sbox[tmp.B(i + 12)]; 2296 } 2297 d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl; 2298 d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl; 2299 } 2300 #endif 2301 2302 #undef SHIFT 2303 #undef XMM_ONLY 2304 #undef Reg 2305 #undef B 2306 #undef W 2307 #undef L 2308 #undef Q 2309 #undef SUFFIX 2310