xref: /openbmc/qemu/target/i386/ops_sse.h (revision 259ebed4)
1 /*
2  *  MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3  *
4  *  Copyright (c) 2005 Fabrice Bellard
5  *  Copyright (c) 2008 Intel Corporation  <andrew.zaborowski@intel.com>
6  *
7  * This library is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * This library is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "crypto/aes.h"
22 #include "crypto/aes-round.h"
23 #include "crypto/clmul.h"
24 
25 #if SHIFT == 0
26 #define Reg MMXReg
27 #define XMM_ONLY(...)
28 #define B(n) MMX_B(n)
29 #define W(n) MMX_W(n)
30 #define L(n) MMX_L(n)
31 #define Q(n) MMX_Q(n)
32 #define SUFFIX _mmx
33 #else
34 #define Reg ZMMReg
35 #define XMM_ONLY(...) __VA_ARGS__
36 #define B(n) ZMM_B(n)
37 #define W(n) ZMM_W(n)
38 #define L(n) ZMM_L(n)
39 #define Q(n) ZMM_Q(n)
40 #if SHIFT == 1
41 #define SUFFIX _xmm
42 #else
43 #define SUFFIX _ymm
44 #endif
45 #endif
46 
47 #define LANE_WIDTH (SHIFT ? 16 : 8)
48 #define PACK_WIDTH (LANE_WIDTH / 2)
49 
50 #if SHIFT == 0
51 #define FPSRL(x, c) ((x) >> shift)
52 #define FPSRAW(x, c) ((int16_t)(x) >> shift)
53 #define FPSRAL(x, c) ((int32_t)(x) >> shift)
54 #define FPSLL(x, c) ((x) << shift)
55 #endif
56 
57 void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
58 {
59     int shift;
60     if (c->Q(0) > 15) {
61         for (int i = 0; i < 1 << SHIFT; i++) {
62             d->Q(i) = 0;
63         }
64     } else {
65         shift = c->B(0);
66         for (int i = 0; i < 4 << SHIFT; i++) {
67             d->W(i) = FPSRL(s->W(i), shift);
68         }
69     }
70 }
71 
72 void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
73 {
74     int shift;
75     if (c->Q(0) > 15) {
76         for (int i = 0; i < 1 << SHIFT; i++) {
77             d->Q(i) = 0;
78         }
79     } else {
80         shift = c->B(0);
81         for (int i = 0; i < 4 << SHIFT; i++) {
82             d->W(i) = FPSLL(s->W(i), shift);
83         }
84     }
85 }
86 
87 void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
88 {
89     int shift;
90     if (c->Q(0) > 15) {
91         shift = 15;
92     } else {
93         shift = c->B(0);
94     }
95     for (int i = 0; i < 4 << SHIFT; i++) {
96         d->W(i) = FPSRAW(s->W(i), shift);
97     }
98 }
99 
100 void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
101 {
102     int shift;
103     if (c->Q(0) > 31) {
104         for (int i = 0; i < 1 << SHIFT; i++) {
105             d->Q(i) = 0;
106         }
107     } else {
108         shift = c->B(0);
109         for (int i = 0; i < 2 << SHIFT; i++) {
110             d->L(i) = FPSRL(s->L(i), shift);
111         }
112     }
113 }
114 
115 void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
116 {
117     int shift;
118     if (c->Q(0) > 31) {
119         for (int i = 0; i < 1 << SHIFT; i++) {
120             d->Q(i) = 0;
121         }
122     } else {
123         shift = c->B(0);
124         for (int i = 0; i < 2 << SHIFT; i++) {
125             d->L(i) = FPSLL(s->L(i), shift);
126         }
127     }
128 }
129 
130 void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
131 {
132     int shift;
133     if (c->Q(0) > 31) {
134         shift = 31;
135     } else {
136         shift = c->B(0);
137     }
138     for (int i = 0; i < 2 << SHIFT; i++) {
139         d->L(i) = FPSRAL(s->L(i), shift);
140     }
141 }
142 
143 void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
144 {
145     int shift;
146     if (c->Q(0) > 63) {
147         for (int i = 0; i < 1 << SHIFT; i++) {
148             d->Q(i) = 0;
149         }
150     } else {
151         shift = c->B(0);
152         for (int i = 0; i < 1 << SHIFT; i++) {
153             d->Q(i) = FPSRL(s->Q(i), shift);
154         }
155     }
156 }
157 
158 void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
159 {
160     int shift;
161     if (c->Q(0) > 63) {
162         for (int i = 0; i < 1 << SHIFT; i++) {
163             d->Q(i) = 0;
164         }
165     } else {
166         shift = c->B(0);
167         for (int i = 0; i < 1 << SHIFT; i++) {
168             d->Q(i) = FPSLL(s->Q(i), shift);
169         }
170     }
171 }
172 
173 #if SHIFT >= 1
174 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
175 {
176     int shift, i, j;
177 
178     shift = c->L(0);
179     if (shift > 16) {
180         shift = 16;
181     }
182     for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) {
183         for (i = 0; i < 16 - shift; i++) {
184             d->B(j + i) = s->B(j + i + shift);
185         }
186         for (i = 16 - shift; i < 16; i++) {
187             d->B(j + i) = 0;
188         }
189     }
190 }
191 
192 void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, Reg *c)
193 {
194     int shift, i, j;
195 
196     shift = c->L(0);
197     if (shift > 16) {
198         shift = 16;
199     }
200     for (j = 0; j < 8 << SHIFT; j += LANE_WIDTH) {
201         for (i = 15; i >= shift; i--) {
202             d->B(j + i) = s->B(j + i - shift);
203         }
204         for (i = 0; i < shift; i++) {
205             d->B(j + i) = 0;
206         }
207     }
208 }
209 #endif
210 
211 #define SSE_HELPER_1(name, elem, num, F)                        \
212     void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)   \
213     {                                                           \
214         int n = num;                                            \
215         for (int i = 0; i < n; i++) {                           \
216             d->elem(i) = F(s->elem(i));                         \
217         }                                                       \
218     }
219 
220 #define SSE_HELPER_2(name, elem, num, F)                        \
221     void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)   \
222     {                                                           \
223         int n = num;                                            \
224         for (int i = 0; i < n; i++) {                           \
225             d->elem(i) = F(v->elem(i), s->elem(i));             \
226         }                                                       \
227     }
228 
229 #define SSE_HELPER_B(name, F)                                   \
230     SSE_HELPER_2(name, B, 8 << SHIFT, F)
231 
232 #define SSE_HELPER_W(name, F)                                   \
233     SSE_HELPER_2(name, W, 4 << SHIFT, F)
234 
235 #define SSE_HELPER_L(name, F)                                   \
236     SSE_HELPER_2(name, L, 2 << SHIFT, F)
237 
238 #define SSE_HELPER_Q(name, F)                                   \
239     SSE_HELPER_2(name, Q, 1 << SHIFT, F)
240 
241 #if SHIFT == 0
242 static inline int satub(int x)
243 {
244     if (x < 0) {
245         return 0;
246     } else if (x > 255) {
247         return 255;
248     } else {
249         return x;
250     }
251 }
252 
253 static inline int satuw(int x)
254 {
255     if (x < 0) {
256         return 0;
257     } else if (x > 65535) {
258         return 65535;
259     } else {
260         return x;
261     }
262 }
263 
264 static inline int satsb(int x)
265 {
266     if (x < -128) {
267         return -128;
268     } else if (x > 127) {
269         return 127;
270     } else {
271         return x;
272     }
273 }
274 
275 static inline int satsw(int x)
276 {
277     if (x < -32768) {
278         return -32768;
279     } else if (x > 32767) {
280         return 32767;
281     } else {
282         return x;
283     }
284 }
285 
286 #define FADD(a, b) ((a) + (b))
287 #define FADDUB(a, b) satub((a) + (b))
288 #define FADDUW(a, b) satuw((a) + (b))
289 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
290 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
291 
292 #define FSUB(a, b) ((a) - (b))
293 #define FSUBUB(a, b) satub((a) - (b))
294 #define FSUBUW(a, b) satuw((a) - (b))
295 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
296 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
297 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
298 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
299 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
300 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
301 
302 #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16)
303 #define FMULHUW(a, b) ((a) * (b) >> 16)
304 #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16)
305 
306 #define FAVG(a, b) (((a) + (b) + 1) >> 1)
307 #endif
308 
309 SSE_HELPER_W(helper_pmulhuw, FMULHUW)
310 SSE_HELPER_W(helper_pmulhw, FMULHW)
311 
312 #if SHIFT == 0
313 void glue(helper_pmulhrw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
314 {
315     d->W(0) = FMULHRW(d->W(0), s->W(0));
316     d->W(1) = FMULHRW(d->W(1), s->W(1));
317     d->W(2) = FMULHRW(d->W(2), s->W(2));
318     d->W(3) = FMULHRW(d->W(3), s->W(3));
319 }
320 #endif
321 
322 SSE_HELPER_B(helper_pavgb, FAVG)
323 SSE_HELPER_W(helper_pavgw, FAVG)
324 
325 void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
326 {
327     int i;
328 
329     for (i = 0; i < (1 << SHIFT); i++) {
330         d->Q(i) = (uint64_t)s->L(i * 2) * (uint64_t)v->L(i * 2);
331     }
332 }
333 
334 void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
335 {
336     int i;
337 
338     for (i = 0; i < (2 << SHIFT); i++) {
339         d->L(i) = (int16_t)s->W(2 * i) * (int16_t)v->W(2 * i) +
340             (int16_t)s->W(2 * i + 1) * (int16_t)v->W(2 * i + 1);
341     }
342 }
343 
344 #if SHIFT == 0
345 static inline int abs1(int a)
346 {
347     if (a < 0) {
348         return -a;
349     } else {
350         return a;
351     }
352 }
353 #endif
354 void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
355 {
356     int i;
357 
358     for (i = 0; i < (1 << SHIFT); i++) {
359         unsigned int val = 0;
360         val += abs1(v->B(8 * i + 0) - s->B(8 * i + 0));
361         val += abs1(v->B(8 * i + 1) - s->B(8 * i + 1));
362         val += abs1(v->B(8 * i + 2) - s->B(8 * i + 2));
363         val += abs1(v->B(8 * i + 3) - s->B(8 * i + 3));
364         val += abs1(v->B(8 * i + 4) - s->B(8 * i + 4));
365         val += abs1(v->B(8 * i + 5) - s->B(8 * i + 5));
366         val += abs1(v->B(8 * i + 6) - s->B(8 * i + 6));
367         val += abs1(v->B(8 * i + 7) - s->B(8 * i + 7));
368         d->Q(i) = val;
369     }
370 }
371 
372 #if SHIFT < 2
373 void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
374                                   target_ulong a0)
375 {
376     int i;
377 
378     for (i = 0; i < (8 << SHIFT); i++) {
379         if (s->B(i) & 0x80) {
380             cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC());
381         }
382     }
383 }
384 #endif
385 
386 #define SHUFFLE4(F, a, b, offset) do {      \
387     r0 = a->F((order & 3) + offset);        \
388     r1 = a->F(((order >> 2) & 3) + offset); \
389     r2 = b->F(((order >> 4) & 3) + offset); \
390     r3 = b->F(((order >> 6) & 3) + offset); \
391     d->F(offset) = r0;                      \
392     d->F(offset + 1) = r1;                  \
393     d->F(offset + 2) = r2;                  \
394     d->F(offset + 3) = r3;                  \
395     } while (0)
396 
397 #if SHIFT == 0
398 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order)
399 {
400     uint16_t r0, r1, r2, r3;
401 
402     SHUFFLE4(W, s, s, 0);
403 }
404 #else
405 void glue(helper_shufps, SUFFIX)(Reg *d, Reg *v, Reg *s, int order)
406 {
407     uint32_t r0, r1, r2, r3;
408     int i;
409 
410     for (i = 0; i < 2 << SHIFT; i += 4) {
411         SHUFFLE4(L, v, s, i);
412     }
413 }
414 
415 void glue(helper_shufpd, SUFFIX)(Reg *d, Reg *v, Reg *s, int order)
416 {
417     uint64_t r0, r1;
418     int i;
419 
420     for (i = 0; i < 1 << SHIFT; i += 2) {
421         r0 = v->Q(((order & 1) & 1) + i);
422         r1 = s->Q(((order >> 1) & 1) + i);
423         d->Q(i) = r0;
424         d->Q(i + 1) = r1;
425         order >>= 2;
426     }
427 }
428 
429 void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order)
430 {
431     uint32_t r0, r1, r2, r3;
432     int i;
433 
434     for (i = 0; i < 2 << SHIFT; i += 4) {
435         SHUFFLE4(L, s, s, i);
436     }
437 }
438 
439 void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order)
440 {
441     uint16_t r0, r1, r2, r3;
442     int i, j;
443 
444     for (i = 0, j = 1; j < 1 << SHIFT; i += 8, j += 2) {
445         SHUFFLE4(W, s, s, i);
446         d->Q(j) = s->Q(j);
447     }
448 }
449 
450 void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order)
451 {
452     uint16_t r0, r1, r2, r3;
453     int i, j;
454 
455     for (i = 4, j = 0; j < 1 << SHIFT; i += 8, j += 2) {
456         d->Q(j) = s->Q(j);
457         SHUFFLE4(W, s, s, i);
458     }
459 }
460 #endif
461 
462 #if SHIFT >= 1
463 /* FPU ops */
464 /* XXX: not accurate */
465 
466 #define SSE_HELPER_P(name, F)                                           \
467     void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env,          \
468             Reg *d, Reg *v, Reg *s)                                     \
469     {                                                                   \
470         int i;                                                          \
471         for (i = 0; i < 2 << SHIFT; i++) {                              \
472             d->ZMM_S(i) = F(32, v->ZMM_S(i), s->ZMM_S(i));              \
473         }                                                               \
474     }                                                                   \
475                                                                         \
476     void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env,          \
477             Reg *d, Reg *v, Reg *s)                                     \
478     {                                                                   \
479         int i;                                                          \
480         for (i = 0; i < 1 << SHIFT; i++) {                              \
481             d->ZMM_D(i) = F(64, v->ZMM_D(i), s->ZMM_D(i));              \
482         }                                                               \
483     }
484 
485 #if SHIFT == 1
486 
487 #define SSE_HELPER_S(name, F)                                           \
488     SSE_HELPER_P(name, F)                                               \
489                                                                         \
490     void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *v, Reg *s)\
491     {                                                                   \
492         int i;                                                          \
493         d->ZMM_S(0) = F(32, v->ZMM_S(0), s->ZMM_S(0));                  \
494         for (i = 1; i < 2 << SHIFT; i++) {                              \
495             d->ZMM_L(i) = v->ZMM_L(i);                                  \
496         }                                                               \
497     }                                                                   \
498                                                                         \
499     void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *v, Reg *s)\
500     {                                                                   \
501         int i;                                                          \
502         d->ZMM_D(0) = F(64, v->ZMM_D(0), s->ZMM_D(0));                  \
503         for (i = 1; i < 1 << SHIFT; i++) {                              \
504             d->ZMM_Q(i) = v->ZMM_Q(i);                                  \
505         }                                                               \
506     }
507 
508 #else
509 
510 #define SSE_HELPER_S(name, F) SSE_HELPER_P(name, F)
511 
512 #endif
513 
514 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
515 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
516 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
517 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
518 
519 /* Note that the choice of comparison op here is important to get the
520  * special cases right: for min and max Intel specifies that (-0,0),
521  * (NaN, anything) and (anything, NaN) return the second argument.
522  */
523 #define FPU_MIN(size, a, b)                                     \
524     (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b))
525 #define FPU_MAX(size, a, b)                                     \
526     (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b))
527 
528 SSE_HELPER_S(add, FPU_ADD)
529 SSE_HELPER_S(sub, FPU_SUB)
530 SSE_HELPER_S(mul, FPU_MUL)
531 SSE_HELPER_S(div, FPU_DIV)
532 SSE_HELPER_S(min, FPU_MIN)
533 SSE_HELPER_S(max, FPU_MAX)
534 
535 void glue(helper_sqrtps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
536 {
537     int i;
538     for (i = 0; i < 2 << SHIFT; i++) {
539         d->ZMM_S(i) = float32_sqrt(s->ZMM_S(i), &env->sse_status);
540     }
541 }
542 
543 void glue(helper_sqrtpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
544 {
545     int i;
546     for (i = 0; i < 1 << SHIFT; i++) {
547         d->ZMM_D(i) = float64_sqrt(s->ZMM_D(i), &env->sse_status);
548     }
549 }
550 
551 #if SHIFT == 1
552 void helper_sqrtss(CPUX86State *env, Reg *d, Reg *v, Reg *s)
553 {
554     int i;
555     d->ZMM_S(0) = float32_sqrt(s->ZMM_S(0), &env->sse_status);
556     for (i = 1; i < 2 << SHIFT; i++) {
557         d->ZMM_L(i) = v->ZMM_L(i);
558     }
559 }
560 
561 void helper_sqrtsd(CPUX86State *env, Reg *d, Reg *v, Reg *s)
562 {
563     int i;
564     d->ZMM_D(0) = float64_sqrt(s->ZMM_D(0), &env->sse_status);
565     for (i = 1; i < 1 << SHIFT; i++) {
566         d->ZMM_Q(i) = v->ZMM_Q(i);
567     }
568 }
569 #endif
570 
571 /* float to float conversions */
572 void glue(helper_cvtps2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
573 {
574     int i;
575     for (i = 1 << SHIFT; --i >= 0; ) {
576         d->ZMM_D(i) = float32_to_float64(s->ZMM_S(i), &env->sse_status);
577     }
578 }
579 
580 void glue(helper_cvtpd2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
581 {
582     int i;
583     for (i = 0; i < 1 << SHIFT; i++) {
584          d->ZMM_S(i) = float64_to_float32(s->ZMM_D(i), &env->sse_status);
585     }
586     for (i >>= 1; i < 1 << SHIFT; i++) {
587          d->Q(i) = 0;
588     }
589 }
590 
591 #if SHIFT >= 1
592 void glue(helper_cvtph2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
593 {
594     int i;
595 
596     for (i = 2 << SHIFT; --i >= 0; ) {
597          d->ZMM_S(i) = float16_to_float32(s->ZMM_H(i), true, &env->sse_status);
598     }
599 }
600 
601 void glue(helper_cvtps2ph, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, int mode)
602 {
603     int i;
604     FloatRoundMode prev_rounding_mode = env->sse_status.float_rounding_mode;
605     if (!(mode & (1 << 2))) {
606         set_x86_rounding_mode(mode & 3, &env->sse_status);
607     }
608 
609     for (i = 0; i < 2 << SHIFT; i++) {
610         d->ZMM_H(i) = float32_to_float16(s->ZMM_S(i), true, &env->sse_status);
611     }
612     for (i >>= 2; i < 1 << SHIFT; i++) {
613         d->Q(i) = 0;
614     }
615 
616     env->sse_status.float_rounding_mode = prev_rounding_mode;
617 }
618 #endif
619 
620 #if SHIFT == 1
621 void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *v, Reg *s)
622 {
623     int i;
624     d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status);
625     for (i = 1; i < 1 << SHIFT; i++) {
626         d->ZMM_Q(i) = v->ZMM_Q(i);
627     }
628 }
629 
630 void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *v, Reg *s)
631 {
632     int i;
633     d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status);
634     for (i = 1; i < 2 << SHIFT; i++) {
635         d->ZMM_L(i) = v->ZMM_L(i);
636     }
637 }
638 #endif
639 
640 /* integer to float */
641 void glue(helper_cvtdq2ps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
642 {
643     int i;
644     for (i = 0; i < 2 << SHIFT; i++) {
645         d->ZMM_S(i) = int32_to_float32(s->ZMM_L(i), &env->sse_status);
646     }
647 }
648 
649 void glue(helper_cvtdq2pd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
650 {
651     int i;
652     for (i = 1 << SHIFT; --i >= 0; ) {
653         int32_t l = s->ZMM_L(i);
654         d->ZMM_D(i) = int32_to_float64(l, &env->sse_status);
655     }
656 }
657 
658 #if SHIFT == 1
659 void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s)
660 {
661     d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
662     d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
663 }
664 
665 void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s)
666 {
667     d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
668     d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
669 }
670 
671 void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val)
672 {
673     d->ZMM_S(0) = int32_to_float32(val, &env->sse_status);
674 }
675 
676 void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val)
677 {
678     d->ZMM_D(0) = int32_to_float64(val, &env->sse_status);
679 }
680 
681 #ifdef TARGET_X86_64
682 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val)
683 {
684     d->ZMM_S(0) = int64_to_float32(val, &env->sse_status);
685 }
686 
687 void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val)
688 {
689     d->ZMM_D(0) = int64_to_float64(val, &env->sse_status);
690 }
691 #endif
692 
693 #endif
694 
695 /* float to integer */
696 
697 #if SHIFT == 1
698 /*
699  * x86 mandates that we return the indefinite integer value for the result
700  * of any float-to-integer conversion that raises the 'invalid' exception.
701  * Wrap the softfloat functions to get this behaviour.
702  */
703 #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE)              \
704     static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s)        \
705     {                                                                   \
706         int oldflags, newflags;                                         \
707         RETTYPE r;                                                      \
708                                                                         \
709         oldflags = get_float_exception_flags(s);                        \
710         set_float_exception_flags(0, s);                                \
711         r = FN(a, s);                                                   \
712         newflags = get_float_exception_flags(s);                        \
713         if (newflags & float_flag_invalid) {                            \
714             r = INDEFVALUE;                                             \
715         }                                                               \
716         set_float_exception_flags(newflags | oldflags, s);              \
717         return r;                                                       \
718     }
719 
720 WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN)
721 WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN)
722 WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN)
723 WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN)
724 WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN)
725 WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN)
726 WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN)
727 WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN)
728 #endif
729 
730 void glue(helper_cvtps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
731 {
732     int i;
733     for (i = 0; i < 2 << SHIFT; i++) {
734         d->ZMM_L(i) = x86_float32_to_int32(s->ZMM_S(i), &env->sse_status);
735     }
736 }
737 
738 void glue(helper_cvtpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
739 {
740     int i;
741     for (i = 0; i < 1 << SHIFT; i++) {
742         d->ZMM_L(i) = x86_float64_to_int32(s->ZMM_D(i), &env->sse_status);
743     }
744     for (i >>= 1; i < 1 << SHIFT; i++) {
745          d->Q(i) = 0;
746     }
747 }
748 
749 #if SHIFT == 1
750 void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
751 {
752     d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
753     d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status);
754 }
755 
756 void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
757 {
758     d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
759     d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status);
760 }
761 
762 int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s)
763 {
764     return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status);
765 }
766 
767 int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s)
768 {
769     return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status);
770 }
771 
772 #ifdef TARGET_X86_64
773 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s)
774 {
775     return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status);
776 }
777 
778 int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s)
779 {
780     return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status);
781 }
782 #endif
783 #endif
784 
785 /* float to integer truncated */
786 void glue(helper_cvttps2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
787 {
788     int i;
789     for (i = 0; i < 2 << SHIFT; i++) {
790         d->ZMM_L(i) = x86_float32_to_int32_round_to_zero(s->ZMM_S(i),
791                                                          &env->sse_status);
792     }
793 }
794 
795 void glue(helper_cvttpd2dq, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
796 {
797     int i;
798     for (i = 0; i < 1 << SHIFT; i++) {
799         d->ZMM_L(i) = x86_float64_to_int32_round_to_zero(s->ZMM_D(i),
800                                                          &env->sse_status);
801     }
802     for (i >>= 1; i < 1 << SHIFT; i++) {
803          d->Q(i) = 0;
804     }
805 }
806 
807 #if SHIFT == 1
808 void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
809 {
810     d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
811     d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status);
812 }
813 
814 void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s)
815 {
816     d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
817     d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status);
818 }
819 
820 int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s)
821 {
822     return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status);
823 }
824 
825 int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s)
826 {
827     return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status);
828 }
829 
830 #ifdef TARGET_X86_64
831 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s)
832 {
833     return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status);
834 }
835 
836 int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s)
837 {
838     return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status);
839 }
840 #endif
841 #endif
842 
843 void glue(helper_rsqrtps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
844 {
845     uint8_t old_flags = get_float_exception_flags(&env->sse_status);
846     int i;
847     for (i = 0; i < 2 << SHIFT; i++) {
848         d->ZMM_S(i) = float32_div(float32_one,
849                                   float32_sqrt(s->ZMM_S(i), &env->sse_status),
850                                   &env->sse_status);
851     }
852     set_float_exception_flags(old_flags, &env->sse_status);
853 }
854 
855 #if SHIFT == 1
856 void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *v, ZMMReg *s)
857 {
858     uint8_t old_flags = get_float_exception_flags(&env->sse_status);
859     int i;
860     d->ZMM_S(0) = float32_div(float32_one,
861                               float32_sqrt(s->ZMM_S(0), &env->sse_status),
862                               &env->sse_status);
863     set_float_exception_flags(old_flags, &env->sse_status);
864     for (i = 1; i < 2 << SHIFT; i++) {
865         d->ZMM_L(i) = v->ZMM_L(i);
866     }
867 }
868 #endif
869 
870 void glue(helper_rcpps, SUFFIX)(CPUX86State *env, ZMMReg *d, ZMMReg *s)
871 {
872     uint8_t old_flags = get_float_exception_flags(&env->sse_status);
873     int i;
874     for (i = 0; i < 2 << SHIFT; i++) {
875         d->ZMM_S(i) = float32_div(float32_one, s->ZMM_S(i), &env->sse_status);
876     }
877     set_float_exception_flags(old_flags, &env->sse_status);
878 }
879 
880 #if SHIFT == 1
881 void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *v, ZMMReg *s)
882 {
883     uint8_t old_flags = get_float_exception_flags(&env->sse_status);
884     int i;
885     d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status);
886     for (i = 1; i < 2 << SHIFT; i++) {
887         d->ZMM_L(i) = v->ZMM_L(i);
888     }
889     set_float_exception_flags(old_flags, &env->sse_status);
890 }
891 #endif
892 
893 #if SHIFT == 1
894 static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
895 {
896     uint64_t mask;
897 
898     if (len == 0) {
899         mask = ~0LL;
900     } else {
901         mask = (1ULL << len) - 1;
902     }
903     return (src >> shift) & mask;
904 }
905 
906 void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
907 {
908     d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1) & 63, s->ZMM_B(0) & 63);
909 }
910 
911 void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length)
912 {
913     d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length);
914 }
915 
916 static inline uint64_t helper_insertq(uint64_t dest, uint64_t src, int shift, int len)
917 {
918     uint64_t mask;
919 
920     if (len == 0) {
921         mask = ~0ULL;
922     } else {
923         mask = (1ULL << len) - 1;
924     }
925     return (dest & ~(mask << shift)) | ((src & mask) << shift);
926 }
927 
928 void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s)
929 {
930     d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), s->ZMM_Q(0), s->ZMM_B(9) & 63, s->ZMM_B(8) & 63);
931 }
932 
933 void helper_insertq_i(CPUX86State *env, ZMMReg *d, ZMMReg *s, int index, int length)
934 {
935     d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), s->ZMM_Q(0), index, length);
936 }
937 #endif
938 
939 #define SSE_HELPER_HPS(name, F)  \
940 void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
941 {                                                                 \
942     float32 r[2 << SHIFT];                                        \
943     int i, j, k;                                                  \
944     for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) {            \
945         for (i = j = 0; j < 4; i++, j += 2) {                     \
946             r[i + k] = F(v->ZMM_S(j + k), v->ZMM_S(j + k + 1), &env->sse_status); \
947         }                                                         \
948         for (j = 0; j < 4; i++, j += 2) {                         \
949             r[i + k] = F(s->ZMM_S(j + k), s->ZMM_S(j + k + 1), &env->sse_status); \
950         }                                                         \
951     }                                                             \
952     for (i = 0; i < 2 << SHIFT; i++) {                            \
953         d->ZMM_S(i) = r[i];                                       \
954     }                                                             \
955 }
956 
957 SSE_HELPER_HPS(haddps, float32_add)
958 SSE_HELPER_HPS(hsubps, float32_sub)
959 
960 #define SSE_HELPER_HPD(name, F)  \
961 void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
962 {                                                                 \
963     float64 r[1 << SHIFT];                                        \
964     int i, j, k;                                                  \
965     for (k = 0; k < 1 << SHIFT; k += LANE_WIDTH / 8) {            \
966         for (i = j = 0; j < 2; i++, j += 2) {                     \
967             r[i + k] = F(v->ZMM_D(j + k), v->ZMM_D(j + k + 1), &env->sse_status); \
968         }                                                         \
969         for (j = 0; j < 2; i++, j += 2) {                         \
970             r[i + k] = F(s->ZMM_D(j + k), s->ZMM_D(j + k + 1), &env->sse_status); \
971         }                                                         \
972     }                                                             \
973     for (i = 0; i < 1 << SHIFT; i++) {                            \
974         d->ZMM_D(i) = r[i];                                       \
975     }                                                             \
976 }
977 
978 SSE_HELPER_HPD(haddpd, float64_add)
979 SSE_HELPER_HPD(hsubpd, float64_sub)
980 
981 void glue(helper_addsubps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
982 {
983     int i;
984     for (i = 0; i < 2 << SHIFT; i += 2) {
985         d->ZMM_S(i) = float32_sub(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status);
986         d->ZMM_S(i+1) = float32_add(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status);
987     }
988 }
989 
990 void glue(helper_addsubpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
991 {
992     int i;
993     for (i = 0; i < 1 << SHIFT; i += 2) {
994         d->ZMM_D(i) = float64_sub(v->ZMM_D(i), s->ZMM_D(i), &env->sse_status);
995         d->ZMM_D(i+1) = float64_add(v->ZMM_D(i+1), s->ZMM_D(i+1), &env->sse_status);
996     }
997 }
998 
999 #define SSE_HELPER_CMP_P(name, F, C)                                    \
1000     void glue(helper_ ## name ## ps, SUFFIX)(CPUX86State *env,          \
1001                                              Reg *d, Reg *v, Reg *s)    \
1002     {                                                                   \
1003         int i;                                                          \
1004         for (i = 0; i < 2 << SHIFT; i++) {                              \
1005             d->ZMM_L(i) = C(F(32, v->ZMM_S(i), s->ZMM_S(i))) ? -1 : 0;  \
1006         }                                                               \
1007     }                                                                   \
1008                                                                         \
1009     void glue(helper_ ## name ## pd, SUFFIX)(CPUX86State *env,          \
1010                                              Reg *d, Reg *v, Reg *s)    \
1011     {                                                                   \
1012         int i;                                                          \
1013         for (i = 0; i < 1 << SHIFT; i++) {                              \
1014             d->ZMM_Q(i) = C(F(64, v->ZMM_D(i), s->ZMM_D(i))) ? -1 : 0;  \
1015         }                                                               \
1016     }
1017 
1018 #if SHIFT == 1
1019 #define SSE_HELPER_CMP(name, F, C)                                          \
1020     SSE_HELPER_CMP_P(name, F, C)                                            \
1021     void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *v, Reg *s)    \
1022     {                                                                       \
1023         int i;                                                              \
1024         d->ZMM_L(0) = C(F(32, v->ZMM_S(0), s->ZMM_S(0))) ? -1 : 0;          \
1025         for (i = 1; i < 2 << SHIFT; i++) {                                  \
1026             d->ZMM_L(i) = v->ZMM_L(i);                                      \
1027         }                                                                   \
1028     }                                                                       \
1029                                                                             \
1030     void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *v, Reg *s)    \
1031     {                                                                       \
1032         int i;                                                              \
1033         d->ZMM_Q(0) = C(F(64, v->ZMM_D(0), s->ZMM_D(0))) ? -1 : 0;          \
1034         for (i = 1; i < 1 << SHIFT; i++) {                                  \
1035             d->ZMM_Q(i) = v->ZMM_Q(i);                                      \
1036         }                                                                   \
1037     }
1038 
1039 static inline bool FPU_EQU(FloatRelation x)
1040 {
1041     return (x == float_relation_equal || x == float_relation_unordered);
1042 }
1043 static inline bool FPU_GE(FloatRelation x)
1044 {
1045     return (x == float_relation_equal || x == float_relation_greater);
1046 }
1047 #define FPU_EQ(x) (x == float_relation_equal)
1048 #define FPU_LT(x) (x == float_relation_less)
1049 #define FPU_LE(x) (x <= float_relation_equal)
1050 #define FPU_GT(x) (x == float_relation_greater)
1051 #define FPU_UNORD(x) (x == float_relation_unordered)
1052 /* We must make sure we evaluate the argument in case it is a signalling NAN */
1053 #define FPU_FALSE(x) (x == float_relation_equal && 0)
1054 
1055 #define FPU_CMPQ(size, a, b) \
1056     float ## size ## _compare_quiet(a, b, &env->sse_status)
1057 #define FPU_CMPS(size, a, b) \
1058     float ## size ## _compare(a, b, &env->sse_status)
1059 
1060 #else
1061 #define SSE_HELPER_CMP(name, F, C) SSE_HELPER_CMP_P(name, F, C)
1062 #endif
1063 
1064 SSE_HELPER_CMP(cmpeq, FPU_CMPQ, FPU_EQ)
1065 SSE_HELPER_CMP(cmplt, FPU_CMPS, FPU_LT)
1066 SSE_HELPER_CMP(cmple, FPU_CMPS, FPU_LE)
1067 SSE_HELPER_CMP(cmpunord, FPU_CMPQ,  FPU_UNORD)
1068 SSE_HELPER_CMP(cmpneq, FPU_CMPQ, !FPU_EQ)
1069 SSE_HELPER_CMP(cmpnlt, FPU_CMPS, !FPU_LT)
1070 SSE_HELPER_CMP(cmpnle, FPU_CMPS, !FPU_LE)
1071 SSE_HELPER_CMP(cmpord, FPU_CMPQ, !FPU_UNORD)
1072 
1073 SSE_HELPER_CMP(cmpequ, FPU_CMPQ, FPU_EQU)
1074 SSE_HELPER_CMP(cmpnge, FPU_CMPS, !FPU_GE)
1075 SSE_HELPER_CMP(cmpngt, FPU_CMPS, !FPU_GT)
1076 SSE_HELPER_CMP(cmpfalse, FPU_CMPQ,  FPU_FALSE)
1077 SSE_HELPER_CMP(cmpnequ, FPU_CMPQ, !FPU_EQU)
1078 SSE_HELPER_CMP(cmpge, FPU_CMPS, FPU_GE)
1079 SSE_HELPER_CMP(cmpgt, FPU_CMPS, FPU_GT)
1080 SSE_HELPER_CMP(cmptrue, FPU_CMPQ,  !FPU_FALSE)
1081 
1082 SSE_HELPER_CMP(cmpeqs, FPU_CMPS, FPU_EQ)
1083 SSE_HELPER_CMP(cmpltq, FPU_CMPQ, FPU_LT)
1084 SSE_HELPER_CMP(cmpleq, FPU_CMPQ, FPU_LE)
1085 SSE_HELPER_CMP(cmpunords, FPU_CMPS,  FPU_UNORD)
1086 SSE_HELPER_CMP(cmpneqq, FPU_CMPS, !FPU_EQ)
1087 SSE_HELPER_CMP(cmpnltq, FPU_CMPQ, !FPU_LT)
1088 SSE_HELPER_CMP(cmpnleq, FPU_CMPQ, !FPU_LE)
1089 SSE_HELPER_CMP(cmpords, FPU_CMPS, !FPU_UNORD)
1090 
1091 SSE_HELPER_CMP(cmpequs, FPU_CMPS, FPU_EQU)
1092 SSE_HELPER_CMP(cmpngeq, FPU_CMPQ, !FPU_GE)
1093 SSE_HELPER_CMP(cmpngtq, FPU_CMPQ, !FPU_GT)
1094 SSE_HELPER_CMP(cmpfalses, FPU_CMPS,  FPU_FALSE)
1095 SSE_HELPER_CMP(cmpnequs, FPU_CMPS, !FPU_EQU)
1096 SSE_HELPER_CMP(cmpgeq, FPU_CMPQ, FPU_GE)
1097 SSE_HELPER_CMP(cmpgtq, FPU_CMPQ, FPU_GT)
1098 SSE_HELPER_CMP(cmptrues, FPU_CMPS,  !FPU_FALSE)
1099 
1100 #undef SSE_HELPER_CMP
1101 
1102 #if SHIFT == 1
1103 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
1104 
1105 void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s)
1106 {
1107     FloatRelation ret;
1108     float32 s0, s1;
1109 
1110     s0 = d->ZMM_S(0);
1111     s1 = s->ZMM_S(0);
1112     ret = float32_compare_quiet(s0, s1, &env->sse_status);
1113     CC_SRC = comis_eflags[ret + 1];
1114 }
1115 
1116 void helper_comiss(CPUX86State *env, Reg *d, Reg *s)
1117 {
1118     FloatRelation ret;
1119     float32 s0, s1;
1120 
1121     s0 = d->ZMM_S(0);
1122     s1 = s->ZMM_S(0);
1123     ret = float32_compare(s0, s1, &env->sse_status);
1124     CC_SRC = comis_eflags[ret + 1];
1125 }
1126 
1127 void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s)
1128 {
1129     FloatRelation ret;
1130     float64 d0, d1;
1131 
1132     d0 = d->ZMM_D(0);
1133     d1 = s->ZMM_D(0);
1134     ret = float64_compare_quiet(d0, d1, &env->sse_status);
1135     CC_SRC = comis_eflags[ret + 1];
1136 }
1137 
1138 void helper_comisd(CPUX86State *env, Reg *d, Reg *s)
1139 {
1140     FloatRelation ret;
1141     float64 d0, d1;
1142 
1143     d0 = d->ZMM_D(0);
1144     d1 = s->ZMM_D(0);
1145     ret = float64_compare(d0, d1, &env->sse_status);
1146     CC_SRC = comis_eflags[ret + 1];
1147 }
1148 #endif
1149 
1150 uint32_t glue(helper_movmskps, SUFFIX)(CPUX86State *env, Reg *s)
1151 {
1152     uint32_t mask;
1153     int i;
1154 
1155     mask = 0;
1156     for (i = 0; i < 2 << SHIFT; i++) {
1157         mask |= (s->ZMM_L(i) >> (31 - i)) & (1 << i);
1158     }
1159     return mask;
1160 }
1161 
1162 uint32_t glue(helper_movmskpd, SUFFIX)(CPUX86State *env, Reg *s)
1163 {
1164     uint32_t mask;
1165     int i;
1166 
1167     mask = 0;
1168     for (i = 0; i < 1 << SHIFT; i++) {
1169         mask |= (s->ZMM_Q(i) >> (63 - i)) & (1 << i);
1170     }
1171     return mask;
1172 }
1173 
1174 #endif
1175 
1176 #define PACK_HELPER_B(name, F) \
1177 void glue(helper_pack ## name, SUFFIX)(CPUX86State *env,      \
1178         Reg *d, Reg *v, Reg *s)                               \
1179 {                                                             \
1180     uint8_t r[PACK_WIDTH * 2];                                \
1181     int j, k;                                                 \
1182     for (j = 0; j < 4 << SHIFT; j += PACK_WIDTH) {            \
1183         for (k = 0; k < PACK_WIDTH; k++) {                    \
1184             r[k] = F((int16_t)v->W(j + k));                   \
1185         }                                                     \
1186         for (k = 0; k < PACK_WIDTH; k++) {                    \
1187             r[PACK_WIDTH + k] = F((int16_t)s->W(j + k));      \
1188         }                                                     \
1189         for (k = 0; k < PACK_WIDTH * 2; k++) {                \
1190             d->B(2 * j + k) = r[k];                           \
1191         }                                                     \
1192     }                                                         \
1193 }
1194 
1195 PACK_HELPER_B(sswb, satsb)
1196 PACK_HELPER_B(uswb, satub)
1197 
1198 void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1199 {
1200     uint16_t r[PACK_WIDTH];
1201     int j, k;
1202 
1203     for (j = 0; j < 2 << SHIFT; j += PACK_WIDTH / 2) {
1204         for (k = 0; k < PACK_WIDTH / 2; k++) {
1205             r[k] = satsw(v->L(j + k));
1206         }
1207         for (k = 0; k < PACK_WIDTH / 2; k++) {
1208             r[PACK_WIDTH / 2 + k] = satsw(s->L(j + k));
1209         }
1210         for (k = 0; k < PACK_WIDTH; k++) {
1211             d->W(2 * j + k) = r[k];
1212         }
1213     }
1214 }
1215 
1216 #define UNPCK_OP(base_name, base)                                       \
1217                                                                         \
1218     void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\
1219                                                 Reg *d, Reg *v, Reg *s) \
1220     {                                                                   \
1221         uint8_t r[PACK_WIDTH * 2];                                      \
1222         int j, i;                                                       \
1223                                                                         \
1224         for (j = 0; j < 8 << SHIFT; ) {                                 \
1225             int k = j + base * PACK_WIDTH;                              \
1226             for (i = 0; i < PACK_WIDTH; i++) {                          \
1227                 r[2 * i] = v->B(k + i);                                 \
1228                 r[2 * i + 1] = s->B(k + i);                             \
1229             }                                                           \
1230             for (i = 0; i < PACK_WIDTH * 2; i++, j++) {                 \
1231                 d->B(j) = r[i];                                         \
1232             }                                                           \
1233         }                                                               \
1234     }                                                                   \
1235                                                                         \
1236     void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\
1237                                                 Reg *d, Reg *v, Reg *s) \
1238     {                                                                   \
1239         uint16_t r[PACK_WIDTH];                                         \
1240         int j, i;                                                       \
1241                                                                         \
1242         for (j = 0; j < 4 << SHIFT; ) {                                 \
1243             int k = j + base * PACK_WIDTH / 2;                          \
1244             for (i = 0; i < PACK_WIDTH / 2; i++) {                      \
1245                 r[2 * i] = v->W(k + i);                                 \
1246                 r[2 * i + 1] = s->W(k + i);                             \
1247             }                                                           \
1248             for (i = 0; i < PACK_WIDTH; i++, j++) {                     \
1249                 d->W(j) = r[i];                                         \
1250             }                                                           \
1251         }                                                               \
1252     }                                                                   \
1253                                                                         \
1254     void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\
1255                                                 Reg *d, Reg *v, Reg *s) \
1256     {                                                                   \
1257         uint32_t r[PACK_WIDTH / 2];                                     \
1258         int j, i;                                                       \
1259                                                                         \
1260         for (j = 0; j < 2 << SHIFT; ) {                                 \
1261             int k = j + base * PACK_WIDTH / 4;                          \
1262             for (i = 0; i < PACK_WIDTH / 4; i++) {                      \
1263                 r[2 * i] = v->L(k + i);                                 \
1264                 r[2 * i + 1] = s->L(k + i);                             \
1265             }                                                           \
1266             for (i = 0; i < PACK_WIDTH / 2; i++, j++) {                 \
1267                 d->L(j) = r[i];                                         \
1268             }                                                           \
1269         }                                                               \
1270     }                                                                   \
1271                                                                         \
1272     XMM_ONLY(                                                           \
1273              void glue(helper_punpck ## base_name ## qdq, SUFFIX)(      \
1274                         CPUX86State *env, Reg *d, Reg *v, Reg *s)       \
1275              {                                                          \
1276                  uint64_t r[2];                                         \
1277                  int i;                                                 \
1278                                                                         \
1279                  for (i = 0; i < 1 << SHIFT; i += 2) {                  \
1280                      r[0] = v->Q(base + i);                             \
1281                      r[1] = s->Q(base + i);                             \
1282                      d->Q(i) = r[0];                                    \
1283                      d->Q(i + 1) = r[1];                                \
1284                  }                                                      \
1285              }                                                          \
1286                                                                         )
1287 
1288 UNPCK_OP(l, 0)
1289 UNPCK_OP(h, 1)
1290 
1291 #undef PACK_WIDTH
1292 #undef PACK_HELPER_B
1293 #undef UNPCK_OP
1294 
1295 
1296 /* 3DNow! float ops */
1297 #if SHIFT == 0
1298 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s)
1299 {
1300     d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1301     d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1302 }
1303 
1304 void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s)
1305 {
1306     d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1307     d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1308 }
1309 
1310 void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s)
1311 {
1312     d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1313     d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1314 }
1315 
1316 void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s)
1317 {
1318     d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0),
1319                                                        &env->mmx_status));
1320     d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1),
1321                                                        &env->mmx_status));
1322 }
1323 
1324 void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1325 {
1326     float32 r;
1327 
1328     r = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1329     d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1330     d->MMX_S(0) = r;
1331 }
1332 
1333 void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s)
1334 {
1335     d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1336     d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1337 }
1338 
1339 void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s)
1340 {
1341     d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0),
1342                                    &env->mmx_status) ? -1 : 0;
1343     d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1),
1344                                    &env->mmx_status) ? -1 : 0;
1345 }
1346 
1347 void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s)
1348 {
1349     d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0),
1350                              &env->mmx_status) ? -1 : 0;
1351     d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1),
1352                              &env->mmx_status) ? -1 : 0;
1353 }
1354 
1355 void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s)
1356 {
1357     d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0),
1358                              &env->mmx_status) ? -1 : 0;
1359     d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1),
1360                              &env->mmx_status) ? -1 : 0;
1361 }
1362 
1363 void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s)
1364 {
1365     if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) {
1366         d->MMX_S(0) = s->MMX_S(0);
1367     }
1368     if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) {
1369         d->MMX_S(1) = s->MMX_S(1);
1370     }
1371 }
1372 
1373 void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s)
1374 {
1375     if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) {
1376         d->MMX_S(0) = s->MMX_S(0);
1377     }
1378     if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) {
1379         d->MMX_S(1) = s->MMX_S(1);
1380     }
1381 }
1382 
1383 void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s)
1384 {
1385     d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1386     d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1387 }
1388 
1389 void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1390 {
1391     float32 r;
1392 
1393     r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1394     d->MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1395     d->MMX_S(0) = r;
1396 }
1397 
1398 void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s)
1399 {
1400     float32 r;
1401 
1402     r = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1403     d->MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1404     d->MMX_S(0) = r;
1405 }
1406 
1407 void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s)
1408 {
1409     d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1410     d->MMX_S(1) = d->MMX_S(0);
1411 }
1412 
1413 void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s)
1414 {
1415     d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1416     d->MMX_S(1) = float32_div(float32_one,
1417                               float32_sqrt(d->MMX_S(1), &env->mmx_status),
1418                               &env->mmx_status);
1419     d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1420     d->MMX_L(0) = d->MMX_L(1);
1421 }
1422 
1423 void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s)
1424 {
1425     d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1426     d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1427 }
1428 
1429 void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s)
1430 {
1431     d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1432     d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1433 }
1434 
1435 void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s)
1436 {
1437     uint32_t r;
1438 
1439     r = s->MMX_L(0);
1440     d->MMX_L(0) = s->MMX_L(1);
1441     d->MMX_L(1) = r;
1442 }
1443 #endif
1444 
1445 /* SSSE3 op helpers */
1446 void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1447 {
1448     int i;
1449 #if SHIFT == 0
1450     uint8_t r[8];
1451 
1452     for (i = 0; i < 8; i++) {
1453         r[i] = (s->B(i) & 0x80) ? 0 : (v->B(s->B(i) & 7));
1454     }
1455     for (i = 0; i < 8; i++) {
1456         d->B(i) = r[i];
1457     }
1458 #else
1459     uint8_t r[8 << SHIFT];
1460 
1461     for (i = 0; i < 8 << SHIFT; i++) {
1462         int j = i & ~0xf;
1463         r[i] = (s->B(i) & 0x80) ? 0 : v->B(j | (s->B(i) & 0xf));
1464     }
1465     for (i = 0; i < 8 << SHIFT; i++) {
1466         d->B(i) = r[i];
1467     }
1468 #endif
1469 }
1470 
1471 #define SSE_HELPER_HW(name, F)  \
1472 void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1473 {                                                          \
1474     uint16_t r[4 << SHIFT];                                \
1475     int i, j, k;                                           \
1476     for (k = 0; k < 4 << SHIFT; k += LANE_WIDTH / 2) {     \
1477         for (i = j = 0; j < LANE_WIDTH / 2; i++, j += 2) { \
1478             r[i + k] = F(v->W(j + k), v->W(j + k + 1));    \
1479         }                                                  \
1480         for (j = 0; j < LANE_WIDTH / 2; i++, j += 2) {     \
1481             r[i + k] = F(s->W(j + k), s->W(j + k + 1));    \
1482         }                                                  \
1483     }                                                      \
1484     for (i = 0; i < 4 << SHIFT; i++) {                     \
1485         d->W(i) = r[i];                                    \
1486     }                                                      \
1487 }
1488 
1489 #define SSE_HELPER_HL(name, F)  \
1490 void glue(helper_ ## name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s) \
1491 {                                                          \
1492     uint32_t r[2 << SHIFT];                                \
1493     int i, j, k;                                           \
1494     for (k = 0; k < 2 << SHIFT; k += LANE_WIDTH / 4) {     \
1495         for (i = j = 0; j < LANE_WIDTH / 4; i++, j += 2) { \
1496             r[i + k] = F(v->L(j + k), v->L(j + k + 1));    \
1497         }                                                  \
1498         for (j = 0; j < LANE_WIDTH / 4; i++, j += 2) {     \
1499             r[i + k] = F(s->L(j + k), s->L(j + k + 1));    \
1500         }                                                  \
1501     }                                                      \
1502     for (i = 0; i < 2 << SHIFT; i++) {                     \
1503         d->L(i) = r[i];                                    \
1504     }                                                      \
1505 }
1506 
1507 SSE_HELPER_HW(phaddw, FADD)
1508 SSE_HELPER_HW(phsubw, FSUB)
1509 SSE_HELPER_HW(phaddsw, FADDSW)
1510 SSE_HELPER_HW(phsubsw, FSUBSW)
1511 SSE_HELPER_HL(phaddd, FADD)
1512 SSE_HELPER_HL(phsubd, FSUB)
1513 
1514 #undef SSE_HELPER_HW
1515 #undef SSE_HELPER_HL
1516 
1517 void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1518 {
1519     int i;
1520     for (i = 0; i < 4 << SHIFT; i++) {
1521         d->W(i) = satsw((int8_t)s->B(i * 2) * (uint8_t)v->B(i * 2) +
1522                         (int8_t)s->B(i * 2 + 1) * (uint8_t)v->B(i * 2 + 1));
1523     }
1524 }
1525 
1526 #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15)
1527 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1528 
1529 #define FSIGNB(d, s) (s <= INT8_MAX  ? s ? d : 0 : -(int8_t)d)
1530 #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d)
1531 #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d)
1532 SSE_HELPER_B(helper_psignb, FSIGNB)
1533 SSE_HELPER_W(helper_psignw, FSIGNW)
1534 SSE_HELPER_L(helper_psignd, FSIGNL)
1535 
1536 void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1537                                   uint32_t imm)
1538 {
1539     int i;
1540 
1541     /* XXX could be checked during translation */
1542     if (imm >= (SHIFT ? 32 : 16)) {
1543         for (i = 0; i < (1 << SHIFT); i++) {
1544             d->Q(i) = 0;
1545         }
1546     } else {
1547         int shift = imm * 8;
1548 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1549 #if SHIFT == 0
1550         d->Q(0) = SHR(s->Q(0), shift - 0) |
1551             SHR(v->Q(0), shift -  64);
1552 #else
1553         for (i = 0; i < (1 << SHIFT); i += 2) {
1554             uint64_t r0, r1;
1555 
1556             r0 = SHR(s->Q(i), shift - 0) |
1557                  SHR(s->Q(i + 1), shift -  64) |
1558                  SHR(v->Q(i), shift - 128) |
1559                  SHR(v->Q(i + 1), shift - 192);
1560             r1 = SHR(s->Q(i), shift + 64) |
1561                  SHR(s->Q(i + 1), shift -   0) |
1562                  SHR(v->Q(i), shift -  64) |
1563                  SHR(v->Q(i + 1), shift - 128);
1564             d->Q(i) = r0;
1565             d->Q(i + 1) = r1;
1566         }
1567 #endif
1568 #undef SHR
1569     }
1570 }
1571 
1572 #if SHIFT >= 1
1573 
1574 #define SSE_HELPER_V(name, elem, num, F)                                \
1575     void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,   \
1576                             Reg *m)                                     \
1577     {                                                                   \
1578         int i;                                                          \
1579         for (i = 0; i < num; i++) {                                     \
1580             d->elem(i) = F(v->elem(i), s->elem(i), m->elem(i));         \
1581         }                                                               \
1582     }
1583 
1584 #define SSE_HELPER_I(name, elem, num, F)                                \
1585     void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,   \
1586                             uint32_t imm)                               \
1587     {                                                                   \
1588         int i;                                                          \
1589         for (i = 0; i < num; i++) {                                     \
1590             int j = i & 7;                                              \
1591             d->elem(i) = F(v->elem(i), s->elem(i), (imm >> j) & 1);     \
1592         }                                                               \
1593     }
1594 
1595 /* SSE4.1 op helpers */
1596 #define FBLENDVB(v, s, m) ((m & 0x80) ? s : v)
1597 #define FBLENDVPS(v, s, m) ((m & 0x80000000) ? s : v)
1598 #define FBLENDVPD(v, s, m) ((m & 0x8000000000000000LL) ? s : v)
1599 SSE_HELPER_V(helper_pblendvb, B, 8 << SHIFT, FBLENDVB)
1600 SSE_HELPER_V(helper_blendvps, L, 2 << SHIFT, FBLENDVPS)
1601 SSE_HELPER_V(helper_blendvpd, Q, 1 << SHIFT, FBLENDVPD)
1602 
1603 void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1604 {
1605     uint64_t zf = 0, cf = 0;
1606     int i;
1607 
1608     for (i = 0; i < 1 << SHIFT; i++) {
1609         zf |= (s->Q(i) &  d->Q(i));
1610         cf |= (s->Q(i) & ~d->Q(i));
1611     }
1612     CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1613 }
1614 
1615 #define FMOVSLDUP(i) s->L((i) & ~1)
1616 #define FMOVSHDUP(i) s->L((i) | 1)
1617 #define FMOVDLDUP(i) s->Q((i) & ~1)
1618 
1619 #define SSE_HELPER_F(name, elem, num, F)                        \
1620     void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)   \
1621     {                                                           \
1622         int n = num;                                            \
1623         for (int i = n; --i >= 0; ) {                           \
1624             d->elem(i) = F(i);                                  \
1625         }                                                       \
1626     }
1627 
1628 #if SHIFT > 0
1629 SSE_HELPER_F(helper_pmovsxbw, W, 4 << SHIFT, (int8_t) s->B)
1630 SSE_HELPER_F(helper_pmovsxbd, L, 2 << SHIFT, (int8_t) s->B)
1631 SSE_HELPER_F(helper_pmovsxbq, Q, 1 << SHIFT, (int8_t) s->B)
1632 SSE_HELPER_F(helper_pmovsxwd, L, 2 << SHIFT, (int16_t) s->W)
1633 SSE_HELPER_F(helper_pmovsxwq, Q, 1 << SHIFT, (int16_t) s->W)
1634 SSE_HELPER_F(helper_pmovsxdq, Q, 1 << SHIFT, (int32_t) s->L)
1635 SSE_HELPER_F(helper_pmovzxbw, W, 4 << SHIFT, s->B)
1636 SSE_HELPER_F(helper_pmovzxbd, L, 2 << SHIFT, s->B)
1637 SSE_HELPER_F(helper_pmovzxbq, Q, 1 << SHIFT, s->B)
1638 SSE_HELPER_F(helper_pmovzxwd, L, 2 << SHIFT, s->W)
1639 SSE_HELPER_F(helper_pmovzxwq, Q, 1 << SHIFT, s->W)
1640 SSE_HELPER_F(helper_pmovzxdq, Q, 1 << SHIFT, s->L)
1641 SSE_HELPER_F(helper_pmovsldup, L, 2 << SHIFT, FMOVSLDUP)
1642 SSE_HELPER_F(helper_pmovshdup, L, 2 << SHIFT, FMOVSHDUP)
1643 SSE_HELPER_F(helper_pmovdldup, Q, 1 << SHIFT, FMOVDLDUP)
1644 #endif
1645 
1646 void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1647 {
1648     int i;
1649 
1650     for (i = 0; i < 1 << SHIFT; i++) {
1651         d->Q(i) = (int64_t)(int32_t) v->L(2 * i) * (int32_t) s->L(2 * i);
1652     }
1653 }
1654 
1655 void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
1656 {
1657     uint16_t r[8];
1658     int i, j, k;
1659 
1660     for (i = 0, j = 0; i <= 2 << SHIFT; i += 8, j += 4) {
1661         r[0] = satuw(v->L(j));
1662         r[1] = satuw(v->L(j + 1));
1663         r[2] = satuw(v->L(j + 2));
1664         r[3] = satuw(v->L(j + 3));
1665         r[4] = satuw(s->L(j));
1666         r[5] = satuw(s->L(j + 1));
1667         r[6] = satuw(s->L(j + 2));
1668         r[7] = satuw(s->L(j + 3));
1669         for (k = 0; k < 8; k++) {
1670             d->W(i + k) = r[k];
1671         }
1672     }
1673 }
1674 
1675 #if SHIFT == 1
1676 void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
1677 {
1678     int idx = 0;
1679 
1680     if (s->W(1) < s->W(idx)) {
1681         idx = 1;
1682     }
1683     if (s->W(2) < s->W(idx)) {
1684         idx = 2;
1685     }
1686     if (s->W(3) < s->W(idx)) {
1687         idx = 3;
1688     }
1689     if (s->W(4) < s->W(idx)) {
1690         idx = 4;
1691     }
1692     if (s->W(5) < s->W(idx)) {
1693         idx = 5;
1694     }
1695     if (s->W(6) < s->W(idx)) {
1696         idx = 6;
1697     }
1698     if (s->W(7) < s->W(idx)) {
1699         idx = 7;
1700     }
1701 
1702     d->W(0) = s->W(idx);
1703     d->W(1) = idx;
1704     d->L(1) = 0;
1705     d->Q(1) = 0;
1706 }
1707 #endif
1708 
1709 void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1710                                   uint32_t mode)
1711 {
1712     uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1713     signed char prev_rounding_mode;
1714     int i;
1715 
1716     prev_rounding_mode = env->sse_status.float_rounding_mode;
1717     if (!(mode & (1 << 2))) {
1718         set_x86_rounding_mode(mode & 3, &env->sse_status);
1719     }
1720 
1721     for (i = 0; i < 2 << SHIFT; i++) {
1722         d->ZMM_S(i) = float32_round_to_int(s->ZMM_S(i), &env->sse_status);
1723     }
1724 
1725     if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1726         set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1727                                   ~float_flag_inexact,
1728                                   &env->sse_status);
1729     }
1730     env->sse_status.float_rounding_mode = prev_rounding_mode;
1731 }
1732 
1733 void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
1734                                   uint32_t mode)
1735 {
1736     uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1737     signed char prev_rounding_mode;
1738     int i;
1739 
1740     prev_rounding_mode = env->sse_status.float_rounding_mode;
1741     if (!(mode & (1 << 2))) {
1742         set_x86_rounding_mode(mode & 3, &env->sse_status);
1743     }
1744 
1745     for (i = 0; i < 1 << SHIFT; i++) {
1746         d->ZMM_D(i) = float64_round_to_int(s->ZMM_D(i), &env->sse_status);
1747     }
1748 
1749     if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1750         set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1751                                   ~float_flag_inexact,
1752                                   &env->sse_status);
1753     }
1754     env->sse_status.float_rounding_mode = prev_rounding_mode;
1755 }
1756 
1757 #if SHIFT == 1
1758 void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1759                                   uint32_t mode)
1760 {
1761     uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1762     signed char prev_rounding_mode;
1763     int i;
1764 
1765     prev_rounding_mode = env->sse_status.float_rounding_mode;
1766     if (!(mode & (1 << 2))) {
1767         set_x86_rounding_mode(mode & 3, &env->sse_status);
1768     }
1769 
1770     d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status);
1771     for (i = 1; i < 2 << SHIFT; i++) {
1772         d->ZMM_L(i) = v->ZMM_L(i);
1773     }
1774 
1775     if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1776         set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1777                                   ~float_flag_inexact,
1778                                   &env->sse_status);
1779     }
1780     env->sse_status.float_rounding_mode = prev_rounding_mode;
1781 }
1782 
1783 void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1784                                   uint32_t mode)
1785 {
1786     uint8_t old_flags = get_float_exception_flags(&env->sse_status);
1787     signed char prev_rounding_mode;
1788     int i;
1789 
1790     prev_rounding_mode = env->sse_status.float_rounding_mode;
1791     if (!(mode & (1 << 2))) {
1792         set_x86_rounding_mode(mode & 3, &env->sse_status);
1793     }
1794 
1795     d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status);
1796     for (i = 1; i < 1 << SHIFT; i++) {
1797         d->ZMM_Q(i) = v->ZMM_Q(i);
1798     }
1799 
1800     if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) {
1801         set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1802                                   ~float_flag_inexact,
1803                                   &env->sse_status);
1804     }
1805     env->sse_status.float_rounding_mode = prev_rounding_mode;
1806 }
1807 #endif
1808 
1809 #define FBLENDP(v, s, m) (m ? s : v)
1810 SSE_HELPER_I(helper_blendps, L, 2 << SHIFT, FBLENDP)
1811 SSE_HELPER_I(helper_blendpd, Q, 1 << SHIFT, FBLENDP)
1812 SSE_HELPER_I(helper_pblendw, W, 4 << SHIFT, FBLENDP)
1813 
1814 void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1815                                uint32_t mask)
1816 {
1817     float32 prod1, prod2, temp2, temp3, temp4;
1818     int i;
1819 
1820     for (i = 0; i < 2 << SHIFT; i += 4) {
1821         /*
1822          * We must evaluate (A+B)+(C+D), not ((A+B)+C)+D
1823          * to correctly round the intermediate results
1824          */
1825         if (mask & (1 << 4)) {
1826             prod1 = float32_mul(v->ZMM_S(i), s->ZMM_S(i), &env->sse_status);
1827         } else {
1828             prod1 = float32_zero;
1829         }
1830         if (mask & (1 << 5)) {
1831             prod2 = float32_mul(v->ZMM_S(i+1), s->ZMM_S(i+1), &env->sse_status);
1832         } else {
1833             prod2 = float32_zero;
1834         }
1835         temp2 = float32_add(prod1, prod2, &env->sse_status);
1836         if (mask & (1 << 6)) {
1837             prod1 = float32_mul(v->ZMM_S(i+2), s->ZMM_S(i+2), &env->sse_status);
1838         } else {
1839             prod1 = float32_zero;
1840         }
1841         if (mask & (1 << 7)) {
1842             prod2 = float32_mul(v->ZMM_S(i+3), s->ZMM_S(i+3), &env->sse_status);
1843         } else {
1844             prod2 = float32_zero;
1845         }
1846         temp3 = float32_add(prod1, prod2, &env->sse_status);
1847         temp4 = float32_add(temp2, temp3, &env->sse_status);
1848 
1849         d->ZMM_S(i) = (mask & (1 << 0)) ? temp4 : float32_zero;
1850         d->ZMM_S(i+1) = (mask & (1 << 1)) ? temp4 : float32_zero;
1851         d->ZMM_S(i+2) = (mask & (1 << 2)) ? temp4 : float32_zero;
1852         d->ZMM_S(i+3) = (mask & (1 << 3)) ? temp4 : float32_zero;
1853     }
1854 }
1855 
1856 #if SHIFT == 1
1857 /* Oddly, there is no ymm version of dppd */
1858 void glue(helper_dppd, SUFFIX)(CPUX86State *env,
1859                                Reg *d, Reg *v, Reg *s, uint32_t mask)
1860 {
1861     float64 prod1, prod2, temp2;
1862 
1863     if (mask & (1 << 4)) {
1864         prod1 = float64_mul(v->ZMM_D(0), s->ZMM_D(0), &env->sse_status);
1865     } else {
1866         prod1 = float64_zero;
1867     }
1868     if (mask & (1 << 5)) {
1869         prod2 = float64_mul(v->ZMM_D(1), s->ZMM_D(1), &env->sse_status);
1870     } else {
1871         prod2 = float64_zero;
1872     }
1873     temp2 = float64_add(prod1, prod2, &env->sse_status);
1874     d->ZMM_D(0) = (mask & (1 << 0)) ? temp2 : float64_zero;
1875     d->ZMM_D(1) = (mask & (1 << 1)) ? temp2 : float64_zero;
1876 }
1877 #endif
1878 
1879 void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
1880                                   uint32_t offset)
1881 {
1882     int i, j;
1883     uint16_t r[8];
1884 
1885     for (j = 0; j < 4 << SHIFT; ) {
1886         int s0 = (j * 2) + ((offset & 3) << 2);
1887         int d0 = (j * 2) + ((offset & 4) << 0);
1888         for (i = 0; i < LANE_WIDTH / 2; i++, d0++) {
1889             r[i] = 0;
1890             r[i] += abs1(v->B(d0 + 0) - s->B(s0 + 0));
1891             r[i] += abs1(v->B(d0 + 1) - s->B(s0 + 1));
1892             r[i] += abs1(v->B(d0 + 2) - s->B(s0 + 2));
1893             r[i] += abs1(v->B(d0 + 3) - s->B(s0 + 3));
1894         }
1895         for (i = 0; i < LANE_WIDTH / 2; i++, j++) {
1896             d->W(j) = r[i];
1897         }
1898         offset >>= 3;
1899     }
1900 }
1901 
1902 /* SSE4.2 op helpers */
1903 #if SHIFT == 1
1904 static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl)
1905 {
1906     target_long val, limit;
1907 
1908     /* Presence of REX.W is indicated by a bit higher than 7 set */
1909     if (ctrl >> 8) {
1910         val = (target_long)env->regs[reg];
1911     } else {
1912         val = (int32_t)env->regs[reg];
1913     }
1914     if (ctrl & 1) {
1915         limit = 8;
1916     } else {
1917         limit = 16;
1918     }
1919     if ((val > limit) || (val < -limit)) {
1920         return limit;
1921     }
1922     return abs1(val);
1923 }
1924 
1925 static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1926 {
1927     int val = 0;
1928 
1929     if (ctrl & 1) {
1930         while (val < 8 && r->W(val)) {
1931             val++;
1932         }
1933     } else {
1934         while (val < 16 && r->B(val)) {
1935             val++;
1936         }
1937     }
1938 
1939     return val;
1940 }
1941 
1942 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1943 {
1944     switch ((ctrl >> 0) & 3) {
1945     case 0:
1946         return r->B(i);
1947     case 1:
1948         return r->W(i);
1949     case 2:
1950         return (int8_t)r->B(i);
1951     case 3:
1952     default:
1953         return (int16_t)r->W(i);
1954     }
1955 }
1956 
1957 static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s,
1958                                  uint8_t ctrl, int valids, int validd)
1959 {
1960     unsigned int res = 0;
1961     int v;
1962     int j, i;
1963     int upper = (ctrl & 1) ? 7 : 15;
1964 
1965     valids--;
1966     validd--;
1967 
1968     CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1969 
1970     switch ((ctrl >> 2) & 3) {
1971     case 0:
1972         for (j = valids; j >= 0; j--) {
1973             res <<= 1;
1974             v = pcmp_val(s, ctrl, j);
1975             for (i = validd; i >= 0; i--) {
1976                 res |= (v == pcmp_val(d, ctrl, i));
1977             }
1978         }
1979         break;
1980     case 1:
1981         for (j = valids; j >= 0; j--) {
1982             res <<= 1;
1983             v = pcmp_val(s, ctrl, j);
1984             for (i = ((validd - 1) | 1); i >= 0; i -= 2) {
1985                 res |= (pcmp_val(d, ctrl, i - 0) >= v &&
1986                         pcmp_val(d, ctrl, i - 1) <= v);
1987             }
1988         }
1989         break;
1990     case 2:
1991         res = (1 << (upper - MAX(valids, validd))) - 1;
1992         res <<= MAX(valids, validd) - MIN(valids, validd);
1993         for (i = MIN(valids, validd); i >= 0; i--) {
1994             res <<= 1;
1995             v = pcmp_val(s, ctrl, i);
1996             res |= (v == pcmp_val(d, ctrl, i));
1997         }
1998         break;
1999     case 3:
2000         if (validd == -1) {
2001             res = (2 << upper) - 1;
2002             break;
2003         }
2004         for (j = valids == upper ? valids : valids - validd; j >= 0; j--) {
2005             res <<= 1;
2006             v = 1;
2007             for (i = MIN(valids - j, validd); i >= 0; i--) {
2008                 v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
2009             }
2010             res |= v;
2011         }
2012         break;
2013     }
2014 
2015     switch ((ctrl >> 4) & 3) {
2016     case 1:
2017         res ^= (2 << upper) - 1;
2018         break;
2019     case 3:
2020         res ^= (1 << (valids + 1)) - 1;
2021         break;
2022     }
2023 
2024     if (res) {
2025         CC_SRC |= CC_C;
2026     }
2027     if (res & 1) {
2028         CC_SRC |= CC_O;
2029     }
2030 
2031     return res;
2032 }
2033 
2034 void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2035                                     uint32_t ctrl)
2036 {
2037     unsigned int res = pcmpxstrx(env, d, s, ctrl,
2038                                  pcmp_elen(env, R_EDX, ctrl),
2039                                  pcmp_elen(env, R_EAX, ctrl));
2040 
2041     if (res) {
2042         env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2043     } else {
2044         env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2045     }
2046 }
2047 
2048 void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2049                                     uint32_t ctrl)
2050 {
2051     int i;
2052     unsigned int res = pcmpxstrx(env, d, s, ctrl,
2053                                  pcmp_elen(env, R_EDX, ctrl),
2054                                  pcmp_elen(env, R_EAX, ctrl));
2055 
2056     if ((ctrl >> 6) & 1) {
2057         if (ctrl & 1) {
2058             for (i = 0; i < 8; i++, res >>= 1) {
2059                 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2060             }
2061         } else {
2062             for (i = 0; i < 16; i++, res >>= 1) {
2063                 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2064             }
2065         }
2066     } else {
2067         env->xmm_regs[0].Q(1) = 0;
2068         env->xmm_regs[0].Q(0) = res;
2069     }
2070 }
2071 
2072 void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2073                                     uint32_t ctrl)
2074 {
2075     unsigned int res = pcmpxstrx(env, d, s, ctrl,
2076                                  pcmp_ilen(s, ctrl),
2077                                  pcmp_ilen(d, ctrl));
2078 
2079     if (res) {
2080         env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res);
2081     } else {
2082         env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2083     }
2084 }
2085 
2086 void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2087                                     uint32_t ctrl)
2088 {
2089     int i;
2090     unsigned int res = pcmpxstrx(env, d, s, ctrl,
2091                                  pcmp_ilen(s, ctrl),
2092                                  pcmp_ilen(d, ctrl));
2093 
2094     if ((ctrl >> 6) & 1) {
2095         if (ctrl & 1) {
2096             for (i = 0; i < 8; i++, res >>= 1) {
2097                 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0;
2098             }
2099         } else {
2100             for (i = 0; i < 16; i++, res >>= 1) {
2101                 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0;
2102             }
2103         }
2104     } else {
2105         env->xmm_regs[0].Q(1) = 0;
2106         env->xmm_regs[0].Q(0) = res;
2107     }
2108 }
2109 
2110 #define CRCPOLY        0x1edc6f41
2111 #define CRCPOLY_BITREV 0x82f63b78
2112 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2113 {
2114     target_ulong crc = (msg & ((target_ulong) -1 >>
2115                                (TARGET_LONG_BITS - len))) ^ crc1;
2116 
2117     while (len--) {
2118         crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2119     }
2120 
2121     return crc;
2122 }
2123 
2124 #endif
2125 
2126 void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s,
2127                                     uint32_t ctrl)
2128 {
2129     int a_idx = (ctrl & 1) != 0;
2130     int b_idx = (ctrl & 16) != 0;
2131 
2132     for (int i = 0; i < SHIFT; i++) {
2133         uint64_t a = v->Q(2 * i + a_idx);
2134         uint64_t b = s->Q(2 * i + b_idx);
2135         Int128 *r = (Int128 *)&d->ZMM_X(i);
2136 
2137         *r = clmul_64(a, b);
2138     }
2139 }
2140 
2141 void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2142 {
2143     for (int i = 0; i < SHIFT; i++) {
2144         AESState *ad = (AESState *)&d->ZMM_X(i);
2145         AESState *st = (AESState *)&v->ZMM_X(i);
2146         AESState *rk = (AESState *)&s->ZMM_X(i);
2147 
2148         aesdec_ISB_ISR_IMC_AK(ad, st, rk, false);
2149     }
2150 }
2151 
2152 void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2153 {
2154     for (int i = 0; i < SHIFT; i++) {
2155         AESState *ad = (AESState *)&d->ZMM_X(i);
2156         AESState *st = (AESState *)&v->ZMM_X(i);
2157         AESState *rk = (AESState *)&s->ZMM_X(i);
2158 
2159         aesdec_ISB_ISR_AK(ad, st, rk, false);
2160     }
2161 }
2162 
2163 void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2164 {
2165     for (int i = 0; i < SHIFT; i++) {
2166         AESState *ad = (AESState *)&d->ZMM_X(i);
2167         AESState *st = (AESState *)&v->ZMM_X(i);
2168         AESState *rk = (AESState *)&s->ZMM_X(i);
2169 
2170         aesenc_SB_SR_MC_AK(ad, st, rk, false);
2171     }
2172 }
2173 
2174 void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2175 {
2176     for (int i = 0; i < SHIFT; i++) {
2177         AESState *ad = (AESState *)&d->ZMM_X(i);
2178         AESState *st = (AESState *)&v->ZMM_X(i);
2179         AESState *rk = (AESState *)&s->ZMM_X(i);
2180 
2181         aesenc_SB_SR_AK(ad, st, rk, false);
2182     }
2183 }
2184 
2185 #if SHIFT == 1
2186 void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2187 {
2188     AESState *ad = (AESState *)&d->ZMM_X(0);
2189     AESState *st = (AESState *)&s->ZMM_X(0);
2190 
2191     aesdec_IMC(ad, st, false);
2192 }
2193 
2194 void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s,
2195                                           uint32_t ctrl)
2196 {
2197     int i;
2198     Reg tmp = *s;
2199 
2200     for (i = 0 ; i < 4 ; i++) {
2201         d->B(i) = AES_sbox[tmp.B(i + 4)];
2202         d->B(i + 8) = AES_sbox[tmp.B(i + 12)];
2203     }
2204     d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl;
2205     d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl;
2206 }
2207 #endif
2208 #endif
2209 
2210 #if SHIFT >= 1
2211 void glue(helper_vpermilpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2212 {
2213     uint64_t r0, r1;
2214     int i;
2215 
2216     for (i = 0; i < 1 << SHIFT; i += 2) {
2217         r0 = v->Q(i + ((s->Q(i) >> 1) & 1));
2218         r1 = v->Q(i + ((s->Q(i+1) >> 1) & 1));
2219         d->Q(i) = r0;
2220         d->Q(i+1) = r1;
2221     }
2222 }
2223 
2224 void glue(helper_vpermilps, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2225 {
2226     uint32_t r0, r1, r2, r3;
2227     int i;
2228 
2229     for (i = 0; i < 2 << SHIFT; i += 4) {
2230         r0 = v->L(i + (s->L(i) & 3));
2231         r1 = v->L(i + (s->L(i+1) & 3));
2232         r2 = v->L(i + (s->L(i+2) & 3));
2233         r3 = v->L(i + (s->L(i+3) & 3));
2234         d->L(i) = r0;
2235         d->L(i+1) = r1;
2236         d->L(i+2) = r2;
2237         d->L(i+3) = r3;
2238     }
2239 }
2240 
2241 void glue(helper_vpermilpd_imm, SUFFIX)(Reg *d, Reg *s, uint32_t order)
2242 {
2243     uint64_t r0, r1;
2244     int i;
2245 
2246     for (i = 0; i < 1 << SHIFT; i += 2) {
2247         r0 = s->Q(i + ((order >> 0) & 1));
2248         r1 = s->Q(i + ((order >> 1) & 1));
2249         d->Q(i) = r0;
2250         d->Q(i+1) = r1;
2251 
2252         order >>= 2;
2253     }
2254 }
2255 
2256 void glue(helper_vpermilps_imm, SUFFIX)(Reg *d, Reg *s, uint32_t order)
2257 {
2258     uint32_t r0, r1, r2, r3;
2259     int i;
2260 
2261     for (i = 0; i < 2 << SHIFT; i += 4) {
2262         r0 = s->L(i + ((order >> 0) & 3));
2263         r1 = s->L(i + ((order >> 2) & 3));
2264         r2 = s->L(i + ((order >> 4) & 3));
2265         r3 = s->L(i + ((order >> 6) & 3));
2266         d->L(i) = r0;
2267         d->L(i+1) = r1;
2268         d->L(i+2) = r2;
2269         d->L(i+3) = r3;
2270     }
2271 }
2272 
2273 #if SHIFT == 1
2274 #define FPSRLVD(x, c) (c < 32 ? ((x) >> c) : 0)
2275 #define FPSRLVQ(x, c) (c < 64 ? ((x) >> c) : 0)
2276 #define FPSRAVD(x, c) ((int32_t)(x) >> (c < 32 ? c : 31))
2277 #define FPSRAVQ(x, c) ((int64_t)(x) >> (c < 64 ? c : 63))
2278 #define FPSLLVD(x, c) (c < 32 ? ((x) << c) : 0)
2279 #define FPSLLVQ(x, c) (c < 64 ? ((x) << c) : 0)
2280 #endif
2281 
2282 SSE_HELPER_L(helper_vpsrlvd, FPSRLVD)
2283 SSE_HELPER_L(helper_vpsravd, FPSRAVD)
2284 SSE_HELPER_L(helper_vpsllvd, FPSLLVD)
2285 
2286 SSE_HELPER_Q(helper_vpsrlvq, FPSRLVQ)
2287 SSE_HELPER_Q(helper_vpsravq, FPSRAVQ)
2288 SSE_HELPER_Q(helper_vpsllvq, FPSLLVQ)
2289 
2290 void glue(helper_vtestps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2291 {
2292     uint32_t zf = 0, cf = 0;
2293     int i;
2294 
2295     for (i = 0; i < 2 << SHIFT; i++) {
2296         zf |= (s->L(i) &  d->L(i));
2297         cf |= (s->L(i) & ~d->L(i));
2298     }
2299     CC_SRC = ((zf >> 31) ? 0 : CC_Z) | ((cf >> 31) ? 0 : CC_C);
2300 }
2301 
2302 void glue(helper_vtestpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s)
2303 {
2304     uint64_t zf = 0, cf = 0;
2305     int i;
2306 
2307     for (i = 0; i < 1 << SHIFT; i++) {
2308         zf |= (s->Q(i) &  d->Q(i));
2309         cf |= (s->Q(i) & ~d->Q(i));
2310     }
2311     CC_SRC = ((zf >> 63) ? 0 : CC_Z) | ((cf >> 63) ? 0 : CC_C);
2312 }
2313 
2314 void glue(helper_vpmaskmovd_st, SUFFIX)(CPUX86State *env,
2315                                         Reg *v, Reg *s, target_ulong a0)
2316 {
2317     int i;
2318 
2319     for (i = 0; i < (2 << SHIFT); i++) {
2320         if (v->L(i) >> 31) {
2321             cpu_stl_data_ra(env, a0 + i * 4, s->L(i), GETPC());
2322         }
2323     }
2324 }
2325 
2326 void glue(helper_vpmaskmovq_st, SUFFIX)(CPUX86State *env,
2327                                         Reg *v, Reg *s, target_ulong a0)
2328 {
2329     int i;
2330 
2331     for (i = 0; i < (1 << SHIFT); i++) {
2332         if (v->Q(i) >> 63) {
2333             cpu_stq_data_ra(env, a0 + i * 8, s->Q(i), GETPC());
2334         }
2335     }
2336 }
2337 
2338 void glue(helper_vpmaskmovd, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2339 {
2340     int i;
2341 
2342     for (i = 0; i < (2 << SHIFT); i++) {
2343         d->L(i) = (v->L(i) >> 31) ? s->L(i) : 0;
2344     }
2345 }
2346 
2347 void glue(helper_vpmaskmovq, SUFFIX)(CPUX86State *env, Reg *d, Reg *v, Reg *s)
2348 {
2349     int i;
2350 
2351     for (i = 0; i < (1 << SHIFT); i++) {
2352         d->Q(i) = (v->Q(i) >> 63) ? s->Q(i) : 0;
2353     }
2354 }
2355 
2356 void glue(helper_vpgatherdd, SUFFIX)(CPUX86State *env,
2357         Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2358 {
2359     int i;
2360     for (i = 0; i < (2 << SHIFT); i++) {
2361         if (v->L(i) >> 31) {
2362             target_ulong addr = a0
2363                 + ((target_ulong)(int32_t)s->L(i) << scale);
2364             d->L(i) = cpu_ldl_data_ra(env, addr, GETPC());
2365         }
2366         v->L(i) = 0;
2367     }
2368 }
2369 
2370 void glue(helper_vpgatherdq, SUFFIX)(CPUX86State *env,
2371         Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2372 {
2373     int i;
2374     for (i = 0; i < (1 << SHIFT); i++) {
2375         if (v->Q(i) >> 63) {
2376             target_ulong addr = a0
2377                 + ((target_ulong)(int32_t)s->L(i) << scale);
2378             d->Q(i) = cpu_ldq_data_ra(env, addr, GETPC());
2379         }
2380         v->Q(i) = 0;
2381     }
2382 }
2383 
2384 void glue(helper_vpgatherqd, SUFFIX)(CPUX86State *env,
2385         Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2386 {
2387     int i;
2388     for (i = 0; i < (1 << SHIFT); i++) {
2389         if (v->L(i) >> 31) {
2390             target_ulong addr = a0
2391                 + ((target_ulong)(int64_t)s->Q(i) << scale);
2392             d->L(i) = cpu_ldl_data_ra(env, addr, GETPC());
2393         }
2394         v->L(i) = 0;
2395     }
2396     for (i /= 2; i < 1 << SHIFT; i++) {
2397         d->Q(i) = 0;
2398         v->Q(i) = 0;
2399     }
2400 }
2401 
2402 void glue(helper_vpgatherqq, SUFFIX)(CPUX86State *env,
2403         Reg *d, Reg *v, Reg *s, target_ulong a0, unsigned scale)
2404 {
2405     int i;
2406     for (i = 0; i < (1 << SHIFT); i++) {
2407         if (v->Q(i) >> 63) {
2408             target_ulong addr = a0
2409                 + ((target_ulong)(int64_t)s->Q(i) << scale);
2410             d->Q(i) = cpu_ldq_data_ra(env, addr, GETPC());
2411         }
2412         v->Q(i) = 0;
2413     }
2414 }
2415 #endif
2416 
2417 #if SHIFT >= 2
2418 void helper_vpermdq_ymm(Reg *d, Reg *v, Reg *s, uint32_t order)
2419 {
2420     uint64_t r0, r1, r2, r3;
2421 
2422     switch (order & 3) {
2423     case 0:
2424         r0 = v->Q(0);
2425         r1 = v->Q(1);
2426         break;
2427     case 1:
2428         r0 = v->Q(2);
2429         r1 = v->Q(3);
2430         break;
2431     case 2:
2432         r0 = s->Q(0);
2433         r1 = s->Q(1);
2434         break;
2435     case 3:
2436         r0 = s->Q(2);
2437         r1 = s->Q(3);
2438         break;
2439     default: /* default case added to help the compiler to avoid warnings */
2440         g_assert_not_reached();
2441     }
2442     switch ((order >> 4) & 3) {
2443     case 0:
2444         r2 = v->Q(0);
2445         r3 = v->Q(1);
2446         break;
2447     case 1:
2448         r2 = v->Q(2);
2449         r3 = v->Q(3);
2450         break;
2451     case 2:
2452         r2 = s->Q(0);
2453         r3 = s->Q(1);
2454         break;
2455     case 3:
2456         r2 = s->Q(2);
2457         r3 = s->Q(3);
2458         break;
2459     default: /* default case added to help the compiler to avoid warnings */
2460         g_assert_not_reached();
2461     }
2462     d->Q(0) = r0;
2463     d->Q(1) = r1;
2464     d->Q(2) = r2;
2465     d->Q(3) = r3;
2466     if (order & 0x8) {
2467         d->Q(0) = 0;
2468         d->Q(1) = 0;
2469     }
2470     if (order & 0x80) {
2471         d->Q(2) = 0;
2472         d->Q(3) = 0;
2473     }
2474 }
2475 
2476 void helper_vpermq_ymm(Reg *d, Reg *s, uint32_t order)
2477 {
2478     uint64_t r0, r1, r2, r3;
2479     r0 = s->Q(order & 3);
2480     r1 = s->Q((order >> 2) & 3);
2481     r2 = s->Q((order >> 4) & 3);
2482     r3 = s->Q((order >> 6) & 3);
2483     d->Q(0) = r0;
2484     d->Q(1) = r1;
2485     d->Q(2) = r2;
2486     d->Q(3) = r3;
2487 }
2488 
2489 void helper_vpermd_ymm(Reg *d, Reg *v, Reg *s)
2490 {
2491     uint32_t r[8];
2492     int i;
2493 
2494     for (i = 0; i < 8; i++) {
2495         r[i] = s->L(v->L(i) & 7);
2496     }
2497     for (i = 0; i < 8; i++) {
2498         d->L(i) = r[i];
2499     }
2500 }
2501 #endif
2502 
2503 /* FMA3 op helpers */
2504 #if SHIFT == 1
2505 #define SSE_HELPER_FMAS(name, elem, F)                                         \
2506     void name(CPUX86State *env, Reg *d, Reg *a, Reg *b, Reg *c, int flags)     \
2507     {                                                                          \
2508         d->elem(0) = F(a->elem(0), b->elem(0), c->elem(0), flags, &env->sse_status); \
2509     }
2510 #define SSE_HELPER_FMAP(name, elem, num, F)                                    \
2511     void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *a, Reg *b, Reg *c,  \
2512                             int flags, int flip)                               \
2513     {                                                                          \
2514         int i;                                                                 \
2515         for (i = 0; i < num; i++) {                                            \
2516             d->elem(i) = F(a->elem(i), b->elem(i), c->elem(i), flags, &env->sse_status); \
2517             flags ^= flip;                                                     \
2518         }                                                                      \
2519     }
2520 
2521 SSE_HELPER_FMAS(helper_fma4ss,  ZMM_S, float32_muladd)
2522 SSE_HELPER_FMAS(helper_fma4sd,  ZMM_D, float64_muladd)
2523 #endif
2524 
2525 #if SHIFT >= 1
2526 SSE_HELPER_FMAP(helper_fma4ps,  ZMM_S, 2 << SHIFT, float32_muladd)
2527 SSE_HELPER_FMAP(helper_fma4pd,  ZMM_D, 1 << SHIFT, float64_muladd)
2528 #endif
2529 
2530 #if SHIFT == 1
2531 #define SSE_HELPER_SHA1RNDS4(name, F, K) \
2532     void name(Reg *d, Reg *a, Reg *b)                                       \
2533     {                                                                       \
2534         uint32_t A, B, C, D, E, t, i;                                       \
2535                                                                             \
2536         A = a->L(3);                                                        \
2537         B = a->L(2);                                                        \
2538         C = a->L(1);                                                        \
2539         D = a->L(0);                                                        \
2540         E = 0;                                                              \
2541                                                                             \
2542         for (i = 0; i <= 3; i++) {                                          \
2543             t = F(B, C, D) + rol32(A, 5) + b->L(3 - i) + E + K;             \
2544             E = D;                                                          \
2545             D = C;                                                          \
2546             C = rol32(B, 30);                                               \
2547             B = A;                                                          \
2548             A = t;                                                          \
2549         }                                                                   \
2550                                                                             \
2551         d->L(3) = A;                                                        \
2552         d->L(2) = B;                                                        \
2553         d->L(1) = C;                                                        \
2554         d->L(0) = D;                                                        \
2555     }
2556 
2557 #define SHA1_F0(b, c, d) (((b) & (c)) ^ (~(b) & (d)))
2558 #define SHA1_F1(b, c, d) ((b) ^ (c) ^ (d))
2559 #define SHA1_F2(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
2560 
2561 SSE_HELPER_SHA1RNDS4(helper_sha1rnds4_f0, SHA1_F0, 0x5A827999)
2562 SSE_HELPER_SHA1RNDS4(helper_sha1rnds4_f1, SHA1_F1, 0x6ED9EBA1)
2563 SSE_HELPER_SHA1RNDS4(helper_sha1rnds4_f2, SHA1_F2, 0x8F1BBCDC)
2564 SSE_HELPER_SHA1RNDS4(helper_sha1rnds4_f3, SHA1_F1, 0xCA62C1D6)
2565 
2566 void helper_sha1nexte(Reg *d, Reg *a, Reg *b)
2567 {
2568     d->L(3) = b->L(3) + rol32(a->L(3), 30);
2569     d->L(2) = b->L(2);
2570     d->L(1) = b->L(1);
2571     d->L(0) = b->L(0);
2572 }
2573 
2574 void helper_sha1msg1(Reg *d, Reg *a, Reg *b)
2575 {
2576     /* These could be overwritten by the first two assignments, save them.  */
2577     uint32_t b3 = b->L(3);
2578     uint32_t b2 = b->L(2);
2579 
2580     d->L(3) = a->L(3) ^ a->L(1);
2581     d->L(2) = a->L(2) ^ a->L(0);
2582     d->L(1) = a->L(1) ^ b3;
2583     d->L(0) = a->L(0) ^ b2;
2584 }
2585 
2586 void helper_sha1msg2(Reg *d, Reg *a, Reg *b)
2587 {
2588     d->L(3) = rol32(a->L(3) ^ b->L(2), 1);
2589     d->L(2) = rol32(a->L(2) ^ b->L(1), 1);
2590     d->L(1) = rol32(a->L(1) ^ b->L(0), 1);
2591     d->L(0) = rol32(a->L(0) ^ d->L(3), 1);
2592 }
2593 
2594 #define SHA256_CH(e, f, g)  (((e) & (f)) ^ (~(e) & (g)))
2595 #define SHA256_MAJ(a, b, c) (((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)))
2596 
2597 #define SHA256_RNDS0(w) (ror32((w), 2) ^ ror32((w), 13) ^ ror32((w), 22))
2598 #define SHA256_RNDS1(w) (ror32((w), 6) ^ ror32((w), 11) ^ ror32((w), 25))
2599 #define SHA256_MSGS0(w) (ror32((w), 7) ^ ror32((w), 18) ^ ((w) >> 3))
2600 #define SHA256_MSGS1(w) (ror32((w), 17) ^ ror32((w), 19) ^ ((w) >> 10))
2601 
2602 void helper_sha256rnds2(Reg *d, Reg *a, Reg *b, uint32_t wk0, uint32_t wk1)
2603 {
2604     uint32_t t, AA, EE;
2605 
2606     uint32_t A = b->L(3);
2607     uint32_t B = b->L(2);
2608     uint32_t C = a->L(3);
2609     uint32_t D = a->L(2);
2610     uint32_t E = b->L(1);
2611     uint32_t F = b->L(0);
2612     uint32_t G = a->L(1);
2613     uint32_t H = a->L(0);
2614 
2615     /* Even round */
2616     t = SHA256_CH(E, F, G) + SHA256_RNDS1(E) + wk0 + H;
2617     AA = t + SHA256_MAJ(A, B, C) + SHA256_RNDS0(A);
2618     EE = t + D;
2619 
2620     /* These will be B and F at the end of the odd round */
2621     d->L(2) = AA;
2622     d->L(0) = EE;
2623 
2624     D = C, C = B, B = A, A = AA;
2625     H = G, G = F, F = E, E = EE;
2626 
2627     /* Odd round */
2628     t = SHA256_CH(E, F, G) + SHA256_RNDS1(E) + wk1 + H;
2629     AA = t + SHA256_MAJ(A, B, C) + SHA256_RNDS0(A);
2630     EE = t + D;
2631 
2632     d->L(3) = AA;
2633     d->L(1) = EE;
2634 }
2635 
2636 void helper_sha256msg1(Reg *d, Reg *a, Reg *b)
2637 {
2638     /* b->L(0) could be overwritten by the first assignment, save it.  */
2639     uint32_t b0 = b->L(0);
2640 
2641     d->L(0) = a->L(0) + SHA256_MSGS0(a->L(1));
2642     d->L(1) = a->L(1) + SHA256_MSGS0(a->L(2));
2643     d->L(2) = a->L(2) + SHA256_MSGS0(a->L(3));
2644     d->L(3) = a->L(3) + SHA256_MSGS0(b0);
2645 }
2646 
2647 void helper_sha256msg2(Reg *d, Reg *a, Reg *b)
2648 {
2649     /* Earlier assignments cannot overwrite any of the two operands.  */
2650     d->L(0) = a->L(0) + SHA256_MSGS1(b->L(2));
2651     d->L(1) = a->L(1) + SHA256_MSGS1(b->L(3));
2652     /* Yes, this reuses the previously computed values.  */
2653     d->L(2) = a->L(2) + SHA256_MSGS1(d->L(0));
2654     d->L(3) = a->L(3) + SHA256_MSGS1(d->L(1));
2655 }
2656 #endif
2657 
2658 #undef SSE_HELPER_S
2659 
2660 #undef LANE_WIDTH
2661 #undef SHIFT
2662 #undef XMM_ONLY
2663 #undef Reg
2664 #undef B
2665 #undef W
2666 #undef L
2667 #undef Q
2668 #undef SUFFIX
2669