1 /* 2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support 3 * 4 * Copyright (c) 2005 Fabrice Bellard 5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com> 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "crypto/aes.h" 22 23 #if SHIFT == 0 24 #define Reg MMXReg 25 #define XMM_ONLY(...) 26 #define B(n) MMX_B(n) 27 #define W(n) MMX_W(n) 28 #define L(n) MMX_L(n) 29 #define Q(n) MMX_Q(n) 30 #define SUFFIX _mmx 31 #else 32 #define Reg ZMMReg 33 #define XMM_ONLY(...) __VA_ARGS__ 34 #define B(n) ZMM_B(n) 35 #define W(n) ZMM_W(n) 36 #define L(n) ZMM_L(n) 37 #define Q(n) ZMM_Q(n) 38 #define SUFFIX _xmm 39 #endif 40 41 void glue(helper_psrlw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 42 { 43 int shift; 44 45 if (s->Q(0) > 15) { 46 d->Q(0) = 0; 47 #if SHIFT == 1 48 d->Q(1) = 0; 49 #endif 50 } else { 51 shift = s->B(0); 52 d->W(0) >>= shift; 53 d->W(1) >>= shift; 54 d->W(2) >>= shift; 55 d->W(3) >>= shift; 56 #if SHIFT == 1 57 d->W(4) >>= shift; 58 d->W(5) >>= shift; 59 d->W(6) >>= shift; 60 d->W(7) >>= shift; 61 #endif 62 } 63 } 64 65 void glue(helper_psraw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 66 { 67 int shift; 68 69 if (s->Q(0) > 15) { 70 shift = 15; 71 } else { 72 shift = s->B(0); 73 } 74 d->W(0) = (int16_t)d->W(0) >> shift; 75 d->W(1) = (int16_t)d->W(1) >> shift; 76 d->W(2) = (int16_t)d->W(2) >> shift; 77 d->W(3) = (int16_t)d->W(3) >> shift; 78 #if SHIFT == 1 79 d->W(4) = (int16_t)d->W(4) >> shift; 80 d->W(5) = (int16_t)d->W(5) >> shift; 81 d->W(6) = (int16_t)d->W(6) >> shift; 82 d->W(7) = (int16_t)d->W(7) >> shift; 83 #endif 84 } 85 86 void glue(helper_psllw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 87 { 88 int shift; 89 90 if (s->Q(0) > 15) { 91 d->Q(0) = 0; 92 #if SHIFT == 1 93 d->Q(1) = 0; 94 #endif 95 } else { 96 shift = s->B(0); 97 d->W(0) <<= shift; 98 d->W(1) <<= shift; 99 d->W(2) <<= shift; 100 d->W(3) <<= shift; 101 #if SHIFT == 1 102 d->W(4) <<= shift; 103 d->W(5) <<= shift; 104 d->W(6) <<= shift; 105 d->W(7) <<= shift; 106 #endif 107 } 108 } 109 110 void glue(helper_psrld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 111 { 112 int shift; 113 114 if (s->Q(0) > 31) { 115 d->Q(0) = 0; 116 #if SHIFT == 1 117 d->Q(1) = 0; 118 #endif 119 } else { 120 shift = s->B(0); 121 d->L(0) >>= shift; 122 d->L(1) >>= shift; 123 #if SHIFT == 1 124 d->L(2) >>= shift; 125 d->L(3) >>= shift; 126 #endif 127 } 128 } 129 130 void glue(helper_psrad, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 131 { 132 int shift; 133 134 if (s->Q(0) > 31) { 135 shift = 31; 136 } else { 137 shift = s->B(0); 138 } 139 d->L(0) = (int32_t)d->L(0) >> shift; 140 d->L(1) = (int32_t)d->L(1) >> shift; 141 #if SHIFT == 1 142 d->L(2) = (int32_t)d->L(2) >> shift; 143 d->L(3) = (int32_t)d->L(3) >> shift; 144 #endif 145 } 146 147 void glue(helper_pslld, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 148 { 149 int shift; 150 151 if (s->Q(0) > 31) { 152 d->Q(0) = 0; 153 #if SHIFT == 1 154 d->Q(1) = 0; 155 #endif 156 } else { 157 shift = s->B(0); 158 d->L(0) <<= shift; 159 d->L(1) <<= shift; 160 #if SHIFT == 1 161 d->L(2) <<= shift; 162 d->L(3) <<= shift; 163 #endif 164 } 165 } 166 167 void glue(helper_psrlq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 168 { 169 int shift; 170 171 if (s->Q(0) > 63) { 172 d->Q(0) = 0; 173 #if SHIFT == 1 174 d->Q(1) = 0; 175 #endif 176 } else { 177 shift = s->B(0); 178 d->Q(0) >>= shift; 179 #if SHIFT == 1 180 d->Q(1) >>= shift; 181 #endif 182 } 183 } 184 185 void glue(helper_psllq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 186 { 187 int shift; 188 189 if (s->Q(0) > 63) { 190 d->Q(0) = 0; 191 #if SHIFT == 1 192 d->Q(1) = 0; 193 #endif 194 } else { 195 shift = s->B(0); 196 d->Q(0) <<= shift; 197 #if SHIFT == 1 198 d->Q(1) <<= shift; 199 #endif 200 } 201 } 202 203 #if SHIFT == 1 204 void glue(helper_psrldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 205 { 206 int shift, i; 207 208 shift = s->L(0); 209 if (shift > 16) { 210 shift = 16; 211 } 212 for (i = 0; i < 16 - shift; i++) { 213 d->B(i) = d->B(i + shift); 214 } 215 for (i = 16 - shift; i < 16; i++) { 216 d->B(i) = 0; 217 } 218 } 219 220 void glue(helper_pslldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 221 { 222 int shift, i; 223 224 shift = s->L(0); 225 if (shift > 16) { 226 shift = 16; 227 } 228 for (i = 15; i >= shift; i--) { 229 d->B(i) = d->B(i - shift); 230 } 231 for (i = 0; i < shift; i++) { 232 d->B(i) = 0; 233 } 234 } 235 #endif 236 237 #define SSE_HELPER_B(name, F) \ 238 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 239 { \ 240 d->B(0) = F(d->B(0), s->B(0)); \ 241 d->B(1) = F(d->B(1), s->B(1)); \ 242 d->B(2) = F(d->B(2), s->B(2)); \ 243 d->B(3) = F(d->B(3), s->B(3)); \ 244 d->B(4) = F(d->B(4), s->B(4)); \ 245 d->B(5) = F(d->B(5), s->B(5)); \ 246 d->B(6) = F(d->B(6), s->B(6)); \ 247 d->B(7) = F(d->B(7), s->B(7)); \ 248 XMM_ONLY( \ 249 d->B(8) = F(d->B(8), s->B(8)); \ 250 d->B(9) = F(d->B(9), s->B(9)); \ 251 d->B(10) = F(d->B(10), s->B(10)); \ 252 d->B(11) = F(d->B(11), s->B(11)); \ 253 d->B(12) = F(d->B(12), s->B(12)); \ 254 d->B(13) = F(d->B(13), s->B(13)); \ 255 d->B(14) = F(d->B(14), s->B(14)); \ 256 d->B(15) = F(d->B(15), s->B(15)); \ 257 ) \ 258 } 259 260 #define SSE_HELPER_W(name, F) \ 261 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 262 { \ 263 d->W(0) = F(d->W(0), s->W(0)); \ 264 d->W(1) = F(d->W(1), s->W(1)); \ 265 d->W(2) = F(d->W(2), s->W(2)); \ 266 d->W(3) = F(d->W(3), s->W(3)); \ 267 XMM_ONLY( \ 268 d->W(4) = F(d->W(4), s->W(4)); \ 269 d->W(5) = F(d->W(5), s->W(5)); \ 270 d->W(6) = F(d->W(6), s->W(6)); \ 271 d->W(7) = F(d->W(7), s->W(7)); \ 272 ) \ 273 } 274 275 #define SSE_HELPER_L(name, F) \ 276 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 277 { \ 278 d->L(0) = F(d->L(0), s->L(0)); \ 279 d->L(1) = F(d->L(1), s->L(1)); \ 280 XMM_ONLY( \ 281 d->L(2) = F(d->L(2), s->L(2)); \ 282 d->L(3) = F(d->L(3), s->L(3)); \ 283 ) \ 284 } 285 286 #define SSE_HELPER_Q(name, F) \ 287 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 288 { \ 289 d->Q(0) = F(d->Q(0), s->Q(0)); \ 290 XMM_ONLY( \ 291 d->Q(1) = F(d->Q(1), s->Q(1)); \ 292 ) \ 293 } 294 295 #if SHIFT == 0 296 static inline int satub(int x) 297 { 298 if (x < 0) { 299 return 0; 300 } else if (x > 255) { 301 return 255; 302 } else { 303 return x; 304 } 305 } 306 307 static inline int satuw(int x) 308 { 309 if (x < 0) { 310 return 0; 311 } else if (x > 65535) { 312 return 65535; 313 } else { 314 return x; 315 } 316 } 317 318 static inline int satsb(int x) 319 { 320 if (x < -128) { 321 return -128; 322 } else if (x > 127) { 323 return 127; 324 } else { 325 return x; 326 } 327 } 328 329 static inline int satsw(int x) 330 { 331 if (x < -32768) { 332 return -32768; 333 } else if (x > 32767) { 334 return 32767; 335 } else { 336 return x; 337 } 338 } 339 340 #define FADD(a, b) ((a) + (b)) 341 #define FADDUB(a, b) satub((a) + (b)) 342 #define FADDUW(a, b) satuw((a) + (b)) 343 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b)) 344 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b)) 345 346 #define FSUB(a, b) ((a) - (b)) 347 #define FSUBUB(a, b) satub((a) - (b)) 348 #define FSUBUW(a, b) satuw((a) - (b)) 349 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b)) 350 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b)) 351 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b) 352 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b) 353 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b) 354 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b) 355 356 #define FAND(a, b) ((a) & (b)) 357 #define FANDN(a, b) ((~(a)) & (b)) 358 #define FOR(a, b) ((a) | (b)) 359 #define FXOR(a, b) ((a) ^ (b)) 360 361 #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0) 362 #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0) 363 #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0) 364 #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0) 365 366 #define FMULLW(a, b) ((a) * (b)) 367 #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16) 368 #define FMULHUW(a, b) ((a) * (b) >> 16) 369 #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16) 370 371 #define FAVG(a, b) (((a) + (b) + 1) >> 1) 372 #endif 373 374 SSE_HELPER_B(helper_paddb, FADD) 375 SSE_HELPER_W(helper_paddw, FADD) 376 SSE_HELPER_L(helper_paddl, FADD) 377 SSE_HELPER_Q(helper_paddq, FADD) 378 379 SSE_HELPER_B(helper_psubb, FSUB) 380 SSE_HELPER_W(helper_psubw, FSUB) 381 SSE_HELPER_L(helper_psubl, FSUB) 382 SSE_HELPER_Q(helper_psubq, FSUB) 383 384 SSE_HELPER_B(helper_paddusb, FADDUB) 385 SSE_HELPER_B(helper_paddsb, FADDSB) 386 SSE_HELPER_B(helper_psubusb, FSUBUB) 387 SSE_HELPER_B(helper_psubsb, FSUBSB) 388 389 SSE_HELPER_W(helper_paddusw, FADDUW) 390 SSE_HELPER_W(helper_paddsw, FADDSW) 391 SSE_HELPER_W(helper_psubusw, FSUBUW) 392 SSE_HELPER_W(helper_psubsw, FSUBSW) 393 394 SSE_HELPER_B(helper_pminub, FMINUB) 395 SSE_HELPER_B(helper_pmaxub, FMAXUB) 396 397 SSE_HELPER_W(helper_pminsw, FMINSW) 398 SSE_HELPER_W(helper_pmaxsw, FMAXSW) 399 400 SSE_HELPER_Q(helper_pand, FAND) 401 SSE_HELPER_Q(helper_pandn, FANDN) 402 SSE_HELPER_Q(helper_por, FOR) 403 SSE_HELPER_Q(helper_pxor, FXOR) 404 405 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB) 406 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW) 407 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL) 408 409 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ) 410 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ) 411 SSE_HELPER_L(helper_pcmpeql, FCMPEQ) 412 413 SSE_HELPER_W(helper_pmullw, FMULLW) 414 #if SHIFT == 0 415 SSE_HELPER_W(helper_pmulhrw, FMULHRW) 416 #endif 417 SSE_HELPER_W(helper_pmulhuw, FMULHUW) 418 SSE_HELPER_W(helper_pmulhw, FMULHW) 419 420 SSE_HELPER_B(helper_pavgb, FAVG) 421 SSE_HELPER_W(helper_pavgw, FAVG) 422 423 void glue(helper_pmuludq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 424 { 425 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0); 426 #if SHIFT == 1 427 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2); 428 #endif 429 } 430 431 void glue(helper_pmaddwd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 432 { 433 int i; 434 435 for (i = 0; i < (2 << SHIFT); i++) { 436 d->L(i) = (int16_t)s->W(2 * i) * (int16_t)d->W(2 * i) + 437 (int16_t)s->W(2 * i + 1) * (int16_t)d->W(2 * i + 1); 438 } 439 } 440 441 #if SHIFT == 0 442 static inline int abs1(int a) 443 { 444 if (a < 0) { 445 return -a; 446 } else { 447 return a; 448 } 449 } 450 #endif 451 void glue(helper_psadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 452 { 453 unsigned int val; 454 455 val = 0; 456 val += abs1(d->B(0) - s->B(0)); 457 val += abs1(d->B(1) - s->B(1)); 458 val += abs1(d->B(2) - s->B(2)); 459 val += abs1(d->B(3) - s->B(3)); 460 val += abs1(d->B(4) - s->B(4)); 461 val += abs1(d->B(5) - s->B(5)); 462 val += abs1(d->B(6) - s->B(6)); 463 val += abs1(d->B(7) - s->B(7)); 464 d->Q(0) = val; 465 #if SHIFT == 1 466 val = 0; 467 val += abs1(d->B(8) - s->B(8)); 468 val += abs1(d->B(9) - s->B(9)); 469 val += abs1(d->B(10) - s->B(10)); 470 val += abs1(d->B(11) - s->B(11)); 471 val += abs1(d->B(12) - s->B(12)); 472 val += abs1(d->B(13) - s->B(13)); 473 val += abs1(d->B(14) - s->B(14)); 474 val += abs1(d->B(15) - s->B(15)); 475 d->Q(1) = val; 476 #endif 477 } 478 479 void glue(helper_maskmov, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 480 target_ulong a0) 481 { 482 int i; 483 484 for (i = 0; i < (8 << SHIFT); i++) { 485 if (s->B(i) & 0x80) { 486 cpu_stb_data_ra(env, a0 + i, d->B(i), GETPC()); 487 } 488 } 489 } 490 491 void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val) 492 { 493 d->L(0) = val; 494 d->L(1) = 0; 495 #if SHIFT == 1 496 d->Q(1) = 0; 497 #endif 498 } 499 500 #ifdef TARGET_X86_64 501 void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val) 502 { 503 d->Q(0) = val; 504 #if SHIFT == 1 505 d->Q(1) = 0; 506 #endif 507 } 508 #endif 509 510 #if SHIFT == 0 511 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order) 512 { 513 Reg r; 514 515 r.W(0) = s->W(order & 3); 516 r.W(1) = s->W((order >> 2) & 3); 517 r.W(2) = s->W((order >> 4) & 3); 518 r.W(3) = s->W((order >> 6) & 3); 519 *d = r; 520 } 521 #else 522 void helper_shufps(Reg *d, Reg *s, int order) 523 { 524 Reg r; 525 526 r.L(0) = d->L(order & 3); 527 r.L(1) = d->L((order >> 2) & 3); 528 r.L(2) = s->L((order >> 4) & 3); 529 r.L(3) = s->L((order >> 6) & 3); 530 *d = r; 531 } 532 533 void helper_shufpd(Reg *d, Reg *s, int order) 534 { 535 Reg r; 536 537 r.Q(0) = d->Q(order & 1); 538 r.Q(1) = s->Q((order >> 1) & 1); 539 *d = r; 540 } 541 542 void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order) 543 { 544 Reg r; 545 546 r.L(0) = s->L(order & 3); 547 r.L(1) = s->L((order >> 2) & 3); 548 r.L(2) = s->L((order >> 4) & 3); 549 r.L(3) = s->L((order >> 6) & 3); 550 *d = r; 551 } 552 553 void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order) 554 { 555 Reg r; 556 557 r.W(0) = s->W(order & 3); 558 r.W(1) = s->W((order >> 2) & 3); 559 r.W(2) = s->W((order >> 4) & 3); 560 r.W(3) = s->W((order >> 6) & 3); 561 r.Q(1) = s->Q(1); 562 *d = r; 563 } 564 565 void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order) 566 { 567 Reg r; 568 569 r.Q(0) = s->Q(0); 570 r.W(4) = s->W(4 + (order & 3)); 571 r.W(5) = s->W(4 + ((order >> 2) & 3)); 572 r.W(6) = s->W(4 + ((order >> 4) & 3)); 573 r.W(7) = s->W(4 + ((order >> 6) & 3)); 574 *d = r; 575 } 576 #endif 577 578 #if SHIFT == 1 579 /* FPU ops */ 580 /* XXX: not accurate */ 581 582 #define SSE_HELPER_S(name, F) \ 583 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ 584 { \ 585 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 586 d->ZMM_S(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ 587 d->ZMM_S(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ 588 d->ZMM_S(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ 589 } \ 590 \ 591 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ 592 { \ 593 d->ZMM_S(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 594 } \ 595 \ 596 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ 597 { \ 598 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 599 d->ZMM_D(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ 600 } \ 601 \ 602 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ 603 { \ 604 d->ZMM_D(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 605 } 606 607 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status) 608 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status) 609 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status) 610 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status) 611 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status) 612 613 /* Note that the choice of comparison op here is important to get the 614 * special cases right: for min and max Intel specifies that (-0,0), 615 * (NaN, anything) and (anything, NaN) return the second argument. 616 */ 617 #define FPU_MIN(size, a, b) \ 618 (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b)) 619 #define FPU_MAX(size, a, b) \ 620 (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b)) 621 622 SSE_HELPER_S(add, FPU_ADD) 623 SSE_HELPER_S(sub, FPU_SUB) 624 SSE_HELPER_S(mul, FPU_MUL) 625 SSE_HELPER_S(div, FPU_DIV) 626 SSE_HELPER_S(min, FPU_MIN) 627 SSE_HELPER_S(max, FPU_MAX) 628 SSE_HELPER_S(sqrt, FPU_SQRT) 629 630 631 /* float to float conversions */ 632 void helper_cvtps2pd(CPUX86State *env, Reg *d, Reg *s) 633 { 634 float32 s0, s1; 635 636 s0 = s->ZMM_S(0); 637 s1 = s->ZMM_S(1); 638 d->ZMM_D(0) = float32_to_float64(s0, &env->sse_status); 639 d->ZMM_D(1) = float32_to_float64(s1, &env->sse_status); 640 } 641 642 void helper_cvtpd2ps(CPUX86State *env, Reg *d, Reg *s) 643 { 644 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); 645 d->ZMM_S(1) = float64_to_float32(s->ZMM_D(1), &env->sse_status); 646 d->Q(1) = 0; 647 } 648 649 void helper_cvtss2sd(CPUX86State *env, Reg *d, Reg *s) 650 { 651 d->ZMM_D(0) = float32_to_float64(s->ZMM_S(0), &env->sse_status); 652 } 653 654 void helper_cvtsd2ss(CPUX86State *env, Reg *d, Reg *s) 655 { 656 d->ZMM_S(0) = float64_to_float32(s->ZMM_D(0), &env->sse_status); 657 } 658 659 /* integer to float */ 660 void helper_cvtdq2ps(CPUX86State *env, Reg *d, Reg *s) 661 { 662 d->ZMM_S(0) = int32_to_float32(s->ZMM_L(0), &env->sse_status); 663 d->ZMM_S(1) = int32_to_float32(s->ZMM_L(1), &env->sse_status); 664 d->ZMM_S(2) = int32_to_float32(s->ZMM_L(2), &env->sse_status); 665 d->ZMM_S(3) = int32_to_float32(s->ZMM_L(3), &env->sse_status); 666 } 667 668 void helper_cvtdq2pd(CPUX86State *env, Reg *d, Reg *s) 669 { 670 int32_t l0, l1; 671 672 l0 = (int32_t)s->ZMM_L(0); 673 l1 = (int32_t)s->ZMM_L(1); 674 d->ZMM_D(0) = int32_to_float64(l0, &env->sse_status); 675 d->ZMM_D(1) = int32_to_float64(l1, &env->sse_status); 676 } 677 678 void helper_cvtpi2ps(CPUX86State *env, ZMMReg *d, MMXReg *s) 679 { 680 d->ZMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status); 681 d->ZMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status); 682 } 683 684 void helper_cvtpi2pd(CPUX86State *env, ZMMReg *d, MMXReg *s) 685 { 686 d->ZMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status); 687 d->ZMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status); 688 } 689 690 void helper_cvtsi2ss(CPUX86State *env, ZMMReg *d, uint32_t val) 691 { 692 d->ZMM_S(0) = int32_to_float32(val, &env->sse_status); 693 } 694 695 void helper_cvtsi2sd(CPUX86State *env, ZMMReg *d, uint32_t val) 696 { 697 d->ZMM_D(0) = int32_to_float64(val, &env->sse_status); 698 } 699 700 #ifdef TARGET_X86_64 701 void helper_cvtsq2ss(CPUX86State *env, ZMMReg *d, uint64_t val) 702 { 703 d->ZMM_S(0) = int64_to_float32(val, &env->sse_status); 704 } 705 706 void helper_cvtsq2sd(CPUX86State *env, ZMMReg *d, uint64_t val) 707 { 708 d->ZMM_D(0) = int64_to_float64(val, &env->sse_status); 709 } 710 #endif 711 712 /* float to integer */ 713 714 /* 715 * x86 mandates that we return the indefinite integer value for the result 716 * of any float-to-integer conversion that raises the 'invalid' exception. 717 * Wrap the softfloat functions to get this behaviour. 718 */ 719 #define WRAP_FLOATCONV(RETTYPE, FN, FLOATTYPE, INDEFVALUE) \ 720 static inline RETTYPE x86_##FN(FLOATTYPE a, float_status *s) \ 721 { \ 722 int oldflags, newflags; \ 723 RETTYPE r; \ 724 \ 725 oldflags = get_float_exception_flags(s); \ 726 set_float_exception_flags(0, s); \ 727 r = FN(a, s); \ 728 newflags = get_float_exception_flags(s); \ 729 if (newflags & float_flag_invalid) { \ 730 r = INDEFVALUE; \ 731 } \ 732 set_float_exception_flags(newflags | oldflags, s); \ 733 return r; \ 734 } 735 736 WRAP_FLOATCONV(int32_t, float32_to_int32, float32, INT32_MIN) 737 WRAP_FLOATCONV(int32_t, float32_to_int32_round_to_zero, float32, INT32_MIN) 738 WRAP_FLOATCONV(int32_t, float64_to_int32, float64, INT32_MIN) 739 WRAP_FLOATCONV(int32_t, float64_to_int32_round_to_zero, float64, INT32_MIN) 740 WRAP_FLOATCONV(int64_t, float32_to_int64, float32, INT64_MIN) 741 WRAP_FLOATCONV(int64_t, float32_to_int64_round_to_zero, float32, INT64_MIN) 742 WRAP_FLOATCONV(int64_t, float64_to_int64, float64, INT64_MIN) 743 WRAP_FLOATCONV(int64_t, float64_to_int64_round_to_zero, float64, INT64_MIN) 744 745 void helper_cvtps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 746 { 747 d->ZMM_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); 748 d->ZMM_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); 749 d->ZMM_L(2) = x86_float32_to_int32(s->ZMM_S(2), &env->sse_status); 750 d->ZMM_L(3) = x86_float32_to_int32(s->ZMM_S(3), &env->sse_status); 751 } 752 753 void helper_cvtpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 754 { 755 d->ZMM_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); 756 d->ZMM_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); 757 d->ZMM_Q(1) = 0; 758 } 759 760 void helper_cvtps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 761 { 762 d->MMX_L(0) = x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); 763 d->MMX_L(1) = x86_float32_to_int32(s->ZMM_S(1), &env->sse_status); 764 } 765 766 void helper_cvtpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 767 { 768 d->MMX_L(0) = x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); 769 d->MMX_L(1) = x86_float64_to_int32(s->ZMM_D(1), &env->sse_status); 770 } 771 772 int32_t helper_cvtss2si(CPUX86State *env, ZMMReg *s) 773 { 774 return x86_float32_to_int32(s->ZMM_S(0), &env->sse_status); 775 } 776 777 int32_t helper_cvtsd2si(CPUX86State *env, ZMMReg *s) 778 { 779 return x86_float64_to_int32(s->ZMM_D(0), &env->sse_status); 780 } 781 782 #ifdef TARGET_X86_64 783 int64_t helper_cvtss2sq(CPUX86State *env, ZMMReg *s) 784 { 785 return x86_float32_to_int64(s->ZMM_S(0), &env->sse_status); 786 } 787 788 int64_t helper_cvtsd2sq(CPUX86State *env, ZMMReg *s) 789 { 790 return x86_float64_to_int64(s->ZMM_D(0), &env->sse_status); 791 } 792 #endif 793 794 /* float to integer truncated */ 795 void helper_cvttps2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 796 { 797 d->ZMM_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); 798 d->ZMM_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); 799 d->ZMM_L(2) = x86_float32_to_int32_round_to_zero(s->ZMM_S(2), &env->sse_status); 800 d->ZMM_L(3) = x86_float32_to_int32_round_to_zero(s->ZMM_S(3), &env->sse_status); 801 } 802 803 void helper_cvttpd2dq(CPUX86State *env, ZMMReg *d, ZMMReg *s) 804 { 805 d->ZMM_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); 806 d->ZMM_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); 807 d->ZMM_Q(1) = 0; 808 } 809 810 void helper_cvttps2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 811 { 812 d->MMX_L(0) = x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); 813 d->MMX_L(1) = x86_float32_to_int32_round_to_zero(s->ZMM_S(1), &env->sse_status); 814 } 815 816 void helper_cvttpd2pi(CPUX86State *env, MMXReg *d, ZMMReg *s) 817 { 818 d->MMX_L(0) = x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); 819 d->MMX_L(1) = x86_float64_to_int32_round_to_zero(s->ZMM_D(1), &env->sse_status); 820 } 821 822 int32_t helper_cvttss2si(CPUX86State *env, ZMMReg *s) 823 { 824 return x86_float32_to_int32_round_to_zero(s->ZMM_S(0), &env->sse_status); 825 } 826 827 int32_t helper_cvttsd2si(CPUX86State *env, ZMMReg *s) 828 { 829 return x86_float64_to_int32_round_to_zero(s->ZMM_D(0), &env->sse_status); 830 } 831 832 #ifdef TARGET_X86_64 833 int64_t helper_cvttss2sq(CPUX86State *env, ZMMReg *s) 834 { 835 return x86_float32_to_int64_round_to_zero(s->ZMM_S(0), &env->sse_status); 836 } 837 838 int64_t helper_cvttsd2sq(CPUX86State *env, ZMMReg *s) 839 { 840 return x86_float64_to_int64_round_to_zero(s->ZMM_D(0), &env->sse_status); 841 } 842 #endif 843 844 void helper_rsqrtps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 845 { 846 uint8_t old_flags = get_float_exception_flags(&env->sse_status); 847 d->ZMM_S(0) = float32_div(float32_one, 848 float32_sqrt(s->ZMM_S(0), &env->sse_status), 849 &env->sse_status); 850 d->ZMM_S(1) = float32_div(float32_one, 851 float32_sqrt(s->ZMM_S(1), &env->sse_status), 852 &env->sse_status); 853 d->ZMM_S(2) = float32_div(float32_one, 854 float32_sqrt(s->ZMM_S(2), &env->sse_status), 855 &env->sse_status); 856 d->ZMM_S(3) = float32_div(float32_one, 857 float32_sqrt(s->ZMM_S(3), &env->sse_status), 858 &env->sse_status); 859 set_float_exception_flags(old_flags, &env->sse_status); 860 } 861 862 void helper_rsqrtss(CPUX86State *env, ZMMReg *d, ZMMReg *s) 863 { 864 uint8_t old_flags = get_float_exception_flags(&env->sse_status); 865 d->ZMM_S(0) = float32_div(float32_one, 866 float32_sqrt(s->ZMM_S(0), &env->sse_status), 867 &env->sse_status); 868 set_float_exception_flags(old_flags, &env->sse_status); 869 } 870 871 void helper_rcpps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 872 { 873 uint8_t old_flags = get_float_exception_flags(&env->sse_status); 874 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); 875 d->ZMM_S(1) = float32_div(float32_one, s->ZMM_S(1), &env->sse_status); 876 d->ZMM_S(2) = float32_div(float32_one, s->ZMM_S(2), &env->sse_status); 877 d->ZMM_S(3) = float32_div(float32_one, s->ZMM_S(3), &env->sse_status); 878 set_float_exception_flags(old_flags, &env->sse_status); 879 } 880 881 void helper_rcpss(CPUX86State *env, ZMMReg *d, ZMMReg *s) 882 { 883 uint8_t old_flags = get_float_exception_flags(&env->sse_status); 884 d->ZMM_S(0) = float32_div(float32_one, s->ZMM_S(0), &env->sse_status); 885 set_float_exception_flags(old_flags, &env->sse_status); 886 } 887 888 static inline uint64_t helper_extrq(uint64_t src, int shift, int len) 889 { 890 uint64_t mask; 891 892 if (len == 0) { 893 mask = ~0LL; 894 } else { 895 mask = (1ULL << len) - 1; 896 } 897 return (src >> shift) & mask; 898 } 899 900 void helper_extrq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) 901 { 902 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), s->ZMM_B(1), s->ZMM_B(0)); 903 } 904 905 void helper_extrq_i(CPUX86State *env, ZMMReg *d, int index, int length) 906 { 907 d->ZMM_Q(0) = helper_extrq(d->ZMM_Q(0), index, length); 908 } 909 910 static inline uint64_t helper_insertq(uint64_t src, int shift, int len) 911 { 912 uint64_t mask; 913 914 if (len == 0) { 915 mask = ~0ULL; 916 } else { 917 mask = (1ULL << len) - 1; 918 } 919 return (src & ~(mask << shift)) | ((src & mask) << shift); 920 } 921 922 void helper_insertq_r(CPUX86State *env, ZMMReg *d, ZMMReg *s) 923 { 924 d->ZMM_Q(0) = helper_insertq(s->ZMM_Q(0), s->ZMM_B(9), s->ZMM_B(8)); 925 } 926 927 void helper_insertq_i(CPUX86State *env, ZMMReg *d, int index, int length) 928 { 929 d->ZMM_Q(0) = helper_insertq(d->ZMM_Q(0), index, length); 930 } 931 932 void helper_haddps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 933 { 934 ZMMReg r; 935 936 r.ZMM_S(0) = float32_add(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); 937 r.ZMM_S(1) = float32_add(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); 938 r.ZMM_S(2) = float32_add(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); 939 r.ZMM_S(3) = float32_add(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); 940 *d = r; 941 } 942 943 void helper_haddpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) 944 { 945 ZMMReg r; 946 947 r.ZMM_D(0) = float64_add(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); 948 r.ZMM_D(1) = float64_add(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); 949 *d = r; 950 } 951 952 void helper_hsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 953 { 954 ZMMReg r; 955 956 r.ZMM_S(0) = float32_sub(d->ZMM_S(0), d->ZMM_S(1), &env->sse_status); 957 r.ZMM_S(1) = float32_sub(d->ZMM_S(2), d->ZMM_S(3), &env->sse_status); 958 r.ZMM_S(2) = float32_sub(s->ZMM_S(0), s->ZMM_S(1), &env->sse_status); 959 r.ZMM_S(3) = float32_sub(s->ZMM_S(2), s->ZMM_S(3), &env->sse_status); 960 *d = r; 961 } 962 963 void helper_hsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) 964 { 965 ZMMReg r; 966 967 r.ZMM_D(0) = float64_sub(d->ZMM_D(0), d->ZMM_D(1), &env->sse_status); 968 r.ZMM_D(1) = float64_sub(s->ZMM_D(0), s->ZMM_D(1), &env->sse_status); 969 *d = r; 970 } 971 972 void helper_addsubps(CPUX86State *env, ZMMReg *d, ZMMReg *s) 973 { 974 d->ZMM_S(0) = float32_sub(d->ZMM_S(0), s->ZMM_S(0), &env->sse_status); 975 d->ZMM_S(1) = float32_add(d->ZMM_S(1), s->ZMM_S(1), &env->sse_status); 976 d->ZMM_S(2) = float32_sub(d->ZMM_S(2), s->ZMM_S(2), &env->sse_status); 977 d->ZMM_S(3) = float32_add(d->ZMM_S(3), s->ZMM_S(3), &env->sse_status); 978 } 979 980 void helper_addsubpd(CPUX86State *env, ZMMReg *d, ZMMReg *s) 981 { 982 d->ZMM_D(0) = float64_sub(d->ZMM_D(0), s->ZMM_D(0), &env->sse_status); 983 d->ZMM_D(1) = float64_add(d->ZMM_D(1), s->ZMM_D(1), &env->sse_status); 984 } 985 986 /* XXX: unordered */ 987 #define SSE_HELPER_CMP(name, F) \ 988 void helper_ ## name ## ps(CPUX86State *env, Reg *d, Reg *s) \ 989 { \ 990 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 991 d->ZMM_L(1) = F(32, d->ZMM_S(1), s->ZMM_S(1)); \ 992 d->ZMM_L(2) = F(32, d->ZMM_S(2), s->ZMM_S(2)); \ 993 d->ZMM_L(3) = F(32, d->ZMM_S(3), s->ZMM_S(3)); \ 994 } \ 995 \ 996 void helper_ ## name ## ss(CPUX86State *env, Reg *d, Reg *s) \ 997 { \ 998 d->ZMM_L(0) = F(32, d->ZMM_S(0), s->ZMM_S(0)); \ 999 } \ 1000 \ 1001 void helper_ ## name ## pd(CPUX86State *env, Reg *d, Reg *s) \ 1002 { \ 1003 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 1004 d->ZMM_Q(1) = F(64, d->ZMM_D(1), s->ZMM_D(1)); \ 1005 } \ 1006 \ 1007 void helper_ ## name ## sd(CPUX86State *env, Reg *d, Reg *s) \ 1008 { \ 1009 d->ZMM_Q(0) = F(64, d->ZMM_D(0), s->ZMM_D(0)); \ 1010 } 1011 1012 #define FPU_CMPEQ(size, a, b) \ 1013 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0) 1014 #define FPU_CMPLT(size, a, b) \ 1015 (float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0) 1016 #define FPU_CMPLE(size, a, b) \ 1017 (float ## size ## _le(a, b, &env->sse_status) ? -1 : 0) 1018 #define FPU_CMPUNORD(size, a, b) \ 1019 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? -1 : 0) 1020 #define FPU_CMPNEQ(size, a, b) \ 1021 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1) 1022 #define FPU_CMPNLT(size, a, b) \ 1023 (float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1) 1024 #define FPU_CMPNLE(size, a, b) \ 1025 (float ## size ## _le(a, b, &env->sse_status) ? 0 : -1) 1026 #define FPU_CMPORD(size, a, b) \ 1027 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1) 1028 1029 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ) 1030 SSE_HELPER_CMP(cmplt, FPU_CMPLT) 1031 SSE_HELPER_CMP(cmple, FPU_CMPLE) 1032 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD) 1033 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ) 1034 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT) 1035 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE) 1036 SSE_HELPER_CMP(cmpord, FPU_CMPORD) 1037 1038 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C}; 1039 1040 void helper_ucomiss(CPUX86State *env, Reg *d, Reg *s) 1041 { 1042 FloatRelation ret; 1043 float32 s0, s1; 1044 1045 s0 = d->ZMM_S(0); 1046 s1 = s->ZMM_S(0); 1047 ret = float32_compare_quiet(s0, s1, &env->sse_status); 1048 CC_SRC = comis_eflags[ret + 1]; 1049 } 1050 1051 void helper_comiss(CPUX86State *env, Reg *d, Reg *s) 1052 { 1053 FloatRelation ret; 1054 float32 s0, s1; 1055 1056 s0 = d->ZMM_S(0); 1057 s1 = s->ZMM_S(0); 1058 ret = float32_compare(s0, s1, &env->sse_status); 1059 CC_SRC = comis_eflags[ret + 1]; 1060 } 1061 1062 void helper_ucomisd(CPUX86State *env, Reg *d, Reg *s) 1063 { 1064 FloatRelation ret; 1065 float64 d0, d1; 1066 1067 d0 = d->ZMM_D(0); 1068 d1 = s->ZMM_D(0); 1069 ret = float64_compare_quiet(d0, d1, &env->sse_status); 1070 CC_SRC = comis_eflags[ret + 1]; 1071 } 1072 1073 void helper_comisd(CPUX86State *env, Reg *d, Reg *s) 1074 { 1075 FloatRelation ret; 1076 float64 d0, d1; 1077 1078 d0 = d->ZMM_D(0); 1079 d1 = s->ZMM_D(0); 1080 ret = float64_compare(d0, d1, &env->sse_status); 1081 CC_SRC = comis_eflags[ret + 1]; 1082 } 1083 1084 uint32_t helper_movmskps(CPUX86State *env, Reg *s) 1085 { 1086 int b0, b1, b2, b3; 1087 1088 b0 = s->ZMM_L(0) >> 31; 1089 b1 = s->ZMM_L(1) >> 31; 1090 b2 = s->ZMM_L(2) >> 31; 1091 b3 = s->ZMM_L(3) >> 31; 1092 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3); 1093 } 1094 1095 uint32_t helper_movmskpd(CPUX86State *env, Reg *s) 1096 { 1097 int b0, b1; 1098 1099 b0 = s->ZMM_L(1) >> 31; 1100 b1 = s->ZMM_L(3) >> 31; 1101 return b0 | (b1 << 1); 1102 } 1103 1104 #endif 1105 1106 uint32_t glue(helper_pmovmskb, SUFFIX)(CPUX86State *env, Reg *s) 1107 { 1108 uint32_t val; 1109 1110 val = 0; 1111 val |= (s->B(0) >> 7); 1112 val |= (s->B(1) >> 6) & 0x02; 1113 val |= (s->B(2) >> 5) & 0x04; 1114 val |= (s->B(3) >> 4) & 0x08; 1115 val |= (s->B(4) >> 3) & 0x10; 1116 val |= (s->B(5) >> 2) & 0x20; 1117 val |= (s->B(6) >> 1) & 0x40; 1118 val |= (s->B(7)) & 0x80; 1119 #if SHIFT == 1 1120 val |= (s->B(8) << 1) & 0x0100; 1121 val |= (s->B(9) << 2) & 0x0200; 1122 val |= (s->B(10) << 3) & 0x0400; 1123 val |= (s->B(11) << 4) & 0x0800; 1124 val |= (s->B(12) << 5) & 0x1000; 1125 val |= (s->B(13) << 6) & 0x2000; 1126 val |= (s->B(14) << 7) & 0x4000; 1127 val |= (s->B(15) << 8) & 0x8000; 1128 #endif 1129 return val; 1130 } 1131 1132 void glue(helper_packsswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1133 { 1134 Reg r; 1135 1136 r.B(0) = satsb((int16_t)d->W(0)); 1137 r.B(1) = satsb((int16_t)d->W(1)); 1138 r.B(2) = satsb((int16_t)d->W(2)); 1139 r.B(3) = satsb((int16_t)d->W(3)); 1140 #if SHIFT == 1 1141 r.B(4) = satsb((int16_t)d->W(4)); 1142 r.B(5) = satsb((int16_t)d->W(5)); 1143 r.B(6) = satsb((int16_t)d->W(6)); 1144 r.B(7) = satsb((int16_t)d->W(7)); 1145 #endif 1146 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0)); 1147 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1)); 1148 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2)); 1149 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3)); 1150 #if SHIFT == 1 1151 r.B(12) = satsb((int16_t)s->W(4)); 1152 r.B(13) = satsb((int16_t)s->W(5)); 1153 r.B(14) = satsb((int16_t)s->W(6)); 1154 r.B(15) = satsb((int16_t)s->W(7)); 1155 #endif 1156 *d = r; 1157 } 1158 1159 void glue(helper_packuswb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1160 { 1161 Reg r; 1162 1163 r.B(0) = satub((int16_t)d->W(0)); 1164 r.B(1) = satub((int16_t)d->W(1)); 1165 r.B(2) = satub((int16_t)d->W(2)); 1166 r.B(3) = satub((int16_t)d->W(3)); 1167 #if SHIFT == 1 1168 r.B(4) = satub((int16_t)d->W(4)); 1169 r.B(5) = satub((int16_t)d->W(5)); 1170 r.B(6) = satub((int16_t)d->W(6)); 1171 r.B(7) = satub((int16_t)d->W(7)); 1172 #endif 1173 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0)); 1174 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1)); 1175 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2)); 1176 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3)); 1177 #if SHIFT == 1 1178 r.B(12) = satub((int16_t)s->W(4)); 1179 r.B(13) = satub((int16_t)s->W(5)); 1180 r.B(14) = satub((int16_t)s->W(6)); 1181 r.B(15) = satub((int16_t)s->W(7)); 1182 #endif 1183 *d = r; 1184 } 1185 1186 void glue(helper_packssdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1187 { 1188 Reg r; 1189 1190 r.W(0) = satsw(d->L(0)); 1191 r.W(1) = satsw(d->L(1)); 1192 #if SHIFT == 1 1193 r.W(2) = satsw(d->L(2)); 1194 r.W(3) = satsw(d->L(3)); 1195 #endif 1196 r.W((2 << SHIFT) + 0) = satsw(s->L(0)); 1197 r.W((2 << SHIFT) + 1) = satsw(s->L(1)); 1198 #if SHIFT == 1 1199 r.W(6) = satsw(s->L(2)); 1200 r.W(7) = satsw(s->L(3)); 1201 #endif 1202 *d = r; 1203 } 1204 1205 #define UNPCK_OP(base_name, base) \ 1206 \ 1207 void glue(helper_punpck ## base_name ## bw, SUFFIX)(CPUX86State *env,\ 1208 Reg *d, Reg *s) \ 1209 { \ 1210 Reg r; \ 1211 \ 1212 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \ 1213 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \ 1214 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \ 1215 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \ 1216 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \ 1217 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \ 1218 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \ 1219 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \ 1220 XMM_ONLY( \ 1221 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \ 1222 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \ 1223 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \ 1224 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \ 1225 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \ 1226 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \ 1227 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \ 1228 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \ 1229 ) \ 1230 *d = r; \ 1231 } \ 1232 \ 1233 void glue(helper_punpck ## base_name ## wd, SUFFIX)(CPUX86State *env,\ 1234 Reg *d, Reg *s) \ 1235 { \ 1236 Reg r; \ 1237 \ 1238 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \ 1239 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \ 1240 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \ 1241 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \ 1242 XMM_ONLY( \ 1243 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \ 1244 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \ 1245 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \ 1246 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \ 1247 ) \ 1248 *d = r; \ 1249 } \ 1250 \ 1251 void glue(helper_punpck ## base_name ## dq, SUFFIX)(CPUX86State *env,\ 1252 Reg *d, Reg *s) \ 1253 { \ 1254 Reg r; \ 1255 \ 1256 r.L(0) = d->L((base << SHIFT) + 0); \ 1257 r.L(1) = s->L((base << SHIFT) + 0); \ 1258 XMM_ONLY( \ 1259 r.L(2) = d->L((base << SHIFT) + 1); \ 1260 r.L(3) = s->L((base << SHIFT) + 1); \ 1261 ) \ 1262 *d = r; \ 1263 } \ 1264 \ 1265 XMM_ONLY( \ 1266 void glue(helper_punpck ## base_name ## qdq, SUFFIX)(CPUX86State \ 1267 *env, \ 1268 Reg *d, \ 1269 Reg *s) \ 1270 { \ 1271 Reg r; \ 1272 \ 1273 r.Q(0) = d->Q(base); \ 1274 r.Q(1) = s->Q(base); \ 1275 *d = r; \ 1276 } \ 1277 ) 1278 1279 UNPCK_OP(l, 0) 1280 UNPCK_OP(h, 1) 1281 1282 /* 3DNow! float ops */ 1283 #if SHIFT == 0 1284 void helper_pi2fd(CPUX86State *env, MMXReg *d, MMXReg *s) 1285 { 1286 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status); 1287 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status); 1288 } 1289 1290 void helper_pi2fw(CPUX86State *env, MMXReg *d, MMXReg *s) 1291 { 1292 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status); 1293 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status); 1294 } 1295 1296 void helper_pf2id(CPUX86State *env, MMXReg *d, MMXReg *s) 1297 { 1298 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status); 1299 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status); 1300 } 1301 1302 void helper_pf2iw(CPUX86State *env, MMXReg *d, MMXReg *s) 1303 { 1304 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), 1305 &env->mmx_status)); 1306 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), 1307 &env->mmx_status)); 1308 } 1309 1310 void helper_pfacc(CPUX86State *env, MMXReg *d, MMXReg *s) 1311 { 1312 MMXReg r; 1313 1314 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1315 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1316 *d = r; 1317 } 1318 1319 void helper_pfadd(CPUX86State *env, MMXReg *d, MMXReg *s) 1320 { 1321 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1322 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1323 } 1324 1325 void helper_pfcmpeq(CPUX86State *env, MMXReg *d, MMXReg *s) 1326 { 1327 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), 1328 &env->mmx_status) ? -1 : 0; 1329 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), 1330 &env->mmx_status) ? -1 : 0; 1331 } 1332 1333 void helper_pfcmpge(CPUX86State *env, MMXReg *d, MMXReg *s) 1334 { 1335 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), 1336 &env->mmx_status) ? -1 : 0; 1337 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), 1338 &env->mmx_status) ? -1 : 0; 1339 } 1340 1341 void helper_pfcmpgt(CPUX86State *env, MMXReg *d, MMXReg *s) 1342 { 1343 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), 1344 &env->mmx_status) ? -1 : 0; 1345 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), 1346 &env->mmx_status) ? -1 : 0; 1347 } 1348 1349 void helper_pfmax(CPUX86State *env, MMXReg *d, MMXReg *s) 1350 { 1351 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) { 1352 d->MMX_S(0) = s->MMX_S(0); 1353 } 1354 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) { 1355 d->MMX_S(1) = s->MMX_S(1); 1356 } 1357 } 1358 1359 void helper_pfmin(CPUX86State *env, MMXReg *d, MMXReg *s) 1360 { 1361 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) { 1362 d->MMX_S(0) = s->MMX_S(0); 1363 } 1364 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) { 1365 d->MMX_S(1) = s->MMX_S(1); 1366 } 1367 } 1368 1369 void helper_pfmul(CPUX86State *env, MMXReg *d, MMXReg *s) 1370 { 1371 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1372 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1373 } 1374 1375 void helper_pfnacc(CPUX86State *env, MMXReg *d, MMXReg *s) 1376 { 1377 MMXReg r; 1378 1379 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1380 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1381 *d = r; 1382 } 1383 1384 void helper_pfpnacc(CPUX86State *env, MMXReg *d, MMXReg *s) 1385 { 1386 MMXReg r; 1387 1388 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status); 1389 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status); 1390 *d = r; 1391 } 1392 1393 void helper_pfrcp(CPUX86State *env, MMXReg *d, MMXReg *s) 1394 { 1395 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status); 1396 d->MMX_S(1) = d->MMX_S(0); 1397 } 1398 1399 void helper_pfrsqrt(CPUX86State *env, MMXReg *d, MMXReg *s) 1400 { 1401 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff; 1402 d->MMX_S(1) = float32_div(float32_one, 1403 float32_sqrt(d->MMX_S(1), &env->mmx_status), 1404 &env->mmx_status); 1405 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000; 1406 d->MMX_L(0) = d->MMX_L(1); 1407 } 1408 1409 void helper_pfsub(CPUX86State *env, MMXReg *d, MMXReg *s) 1410 { 1411 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status); 1412 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status); 1413 } 1414 1415 void helper_pfsubr(CPUX86State *env, MMXReg *d, MMXReg *s) 1416 { 1417 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status); 1418 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status); 1419 } 1420 1421 void helper_pswapd(CPUX86State *env, MMXReg *d, MMXReg *s) 1422 { 1423 MMXReg r; 1424 1425 r.MMX_L(0) = s->MMX_L(1); 1426 r.MMX_L(1) = s->MMX_L(0); 1427 *d = r; 1428 } 1429 #endif 1430 1431 /* SSSE3 op helpers */ 1432 void glue(helper_pshufb, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1433 { 1434 int i; 1435 Reg r; 1436 1437 for (i = 0; i < (8 << SHIFT); i++) { 1438 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1))); 1439 } 1440 1441 *d = r; 1442 } 1443 1444 void glue(helper_phaddw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1445 { 1446 1447 Reg r; 1448 1449 r.W(0) = (int16_t)d->W(0) + (int16_t)d->W(1); 1450 r.W(1) = (int16_t)d->W(2) + (int16_t)d->W(3); 1451 XMM_ONLY(r.W(2) = (int16_t)d->W(4) + (int16_t)d->W(5)); 1452 XMM_ONLY(r.W(3) = (int16_t)d->W(6) + (int16_t)d->W(7)); 1453 r.W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1); 1454 r.W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3); 1455 XMM_ONLY(r.W(6) = (int16_t)s->W(4) + (int16_t)s->W(5)); 1456 XMM_ONLY(r.W(7) = (int16_t)s->W(6) + (int16_t)s->W(7)); 1457 1458 *d = r; 1459 } 1460 1461 void glue(helper_phaddd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1462 { 1463 Reg r; 1464 1465 r.L(0) = (int32_t)d->L(0) + (int32_t)d->L(1); 1466 XMM_ONLY(r.L(1) = (int32_t)d->L(2) + (int32_t)d->L(3)); 1467 r.L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1); 1468 XMM_ONLY(r.L(3) = (int32_t)s->L(2) + (int32_t)s->L(3)); 1469 1470 *d = r; 1471 } 1472 1473 void glue(helper_phaddsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1474 { 1475 Reg r; 1476 1477 r.W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1)); 1478 r.W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3)); 1479 XMM_ONLY(r.W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5))); 1480 XMM_ONLY(r.W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7))); 1481 r.W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1)); 1482 r.W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3)); 1483 XMM_ONLY(r.W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5))); 1484 XMM_ONLY(r.W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7))); 1485 1486 *d = r; 1487 } 1488 1489 void glue(helper_pmaddubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1490 { 1491 d->W(0) = satsw((int8_t)s->B(0) * (uint8_t)d->B(0) + 1492 (int8_t)s->B(1) * (uint8_t)d->B(1)); 1493 d->W(1) = satsw((int8_t)s->B(2) * (uint8_t)d->B(2) + 1494 (int8_t)s->B(3) * (uint8_t)d->B(3)); 1495 d->W(2) = satsw((int8_t)s->B(4) * (uint8_t)d->B(4) + 1496 (int8_t)s->B(5) * (uint8_t)d->B(5)); 1497 d->W(3) = satsw((int8_t)s->B(6) * (uint8_t)d->B(6) + 1498 (int8_t)s->B(7) * (uint8_t)d->B(7)); 1499 #if SHIFT == 1 1500 d->W(4) = satsw((int8_t)s->B(8) * (uint8_t)d->B(8) + 1501 (int8_t)s->B(9) * (uint8_t)d->B(9)); 1502 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) + 1503 (int8_t)s->B(11) * (uint8_t)d->B(11)); 1504 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) + 1505 (int8_t)s->B(13) * (uint8_t)d->B(13)); 1506 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) + 1507 (int8_t)s->B(15) * (uint8_t)d->B(15)); 1508 #endif 1509 } 1510 1511 void glue(helper_phsubw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1512 { 1513 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1); 1514 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3); 1515 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5)); 1516 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7)); 1517 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1); 1518 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3); 1519 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5)); 1520 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7)); 1521 } 1522 1523 void glue(helper_phsubd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1524 { 1525 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1); 1526 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3)); 1527 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1); 1528 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3)); 1529 } 1530 1531 void glue(helper_phsubsw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1532 { 1533 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1)); 1534 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3)); 1535 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5))); 1536 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7))); 1537 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1)); 1538 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3)); 1539 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5))); 1540 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7))); 1541 } 1542 1543 #define FABSB(_, x) (x > INT8_MAX ? -(int8_t)x : x) 1544 #define FABSW(_, x) (x > INT16_MAX ? -(int16_t)x : x) 1545 #define FABSL(_, x) (x > INT32_MAX ? -(int32_t)x : x) 1546 SSE_HELPER_B(helper_pabsb, FABSB) 1547 SSE_HELPER_W(helper_pabsw, FABSW) 1548 SSE_HELPER_L(helper_pabsd, FABSL) 1549 1550 #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15) 1551 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW) 1552 1553 #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d) 1554 #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d) 1555 #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d) 1556 SSE_HELPER_B(helper_psignb, FSIGNB) 1557 SSE_HELPER_W(helper_psignw, FSIGNW) 1558 SSE_HELPER_L(helper_psignd, FSIGNL) 1559 1560 void glue(helper_palignr, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1561 int32_t shift) 1562 { 1563 Reg r; 1564 1565 /* XXX could be checked during translation */ 1566 if (shift >= (16 << SHIFT)) { 1567 r.Q(0) = 0; 1568 XMM_ONLY(r.Q(1) = 0); 1569 } else { 1570 shift <<= 3; 1571 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0) 1572 #if SHIFT == 0 1573 r.Q(0) = SHR(s->Q(0), shift - 0) | 1574 SHR(d->Q(0), shift - 64); 1575 #else 1576 r.Q(0) = SHR(s->Q(0), shift - 0) | 1577 SHR(s->Q(1), shift - 64) | 1578 SHR(d->Q(0), shift - 128) | 1579 SHR(d->Q(1), shift - 192); 1580 r.Q(1) = SHR(s->Q(0), shift + 64) | 1581 SHR(s->Q(1), shift - 0) | 1582 SHR(d->Q(0), shift - 64) | 1583 SHR(d->Q(1), shift - 128); 1584 #endif 1585 #undef SHR 1586 } 1587 1588 *d = r; 1589 } 1590 1591 #define XMM0 (env->xmm_regs[0]) 1592 1593 #if SHIFT == 1 1594 #define SSE_HELPER_V(name, elem, num, F) \ 1595 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 1596 { \ 1597 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \ 1598 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \ 1599 if (num > 2) { \ 1600 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \ 1601 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \ 1602 if (num > 4) { \ 1603 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \ 1604 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \ 1605 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \ 1606 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \ 1607 if (num > 8) { \ 1608 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \ 1609 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \ 1610 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \ 1611 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \ 1612 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \ 1613 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \ 1614 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \ 1615 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \ 1616 } \ 1617 } \ 1618 } \ 1619 } 1620 1621 #define SSE_HELPER_I(name, elem, num, F) \ 1622 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t imm) \ 1623 { \ 1624 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \ 1625 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \ 1626 if (num > 2) { \ 1627 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \ 1628 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \ 1629 if (num > 4) { \ 1630 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \ 1631 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \ 1632 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \ 1633 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \ 1634 if (num > 8) { \ 1635 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \ 1636 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \ 1637 d->elem(10) = F(d->elem(10), s->elem(10), \ 1638 ((imm >> 10) & 1)); \ 1639 d->elem(11) = F(d->elem(11), s->elem(11), \ 1640 ((imm >> 11) & 1)); \ 1641 d->elem(12) = F(d->elem(12), s->elem(12), \ 1642 ((imm >> 12) & 1)); \ 1643 d->elem(13) = F(d->elem(13), s->elem(13), \ 1644 ((imm >> 13) & 1)); \ 1645 d->elem(14) = F(d->elem(14), s->elem(14), \ 1646 ((imm >> 14) & 1)); \ 1647 d->elem(15) = F(d->elem(15), s->elem(15), \ 1648 ((imm >> 15) & 1)); \ 1649 } \ 1650 } \ 1651 } \ 1652 } 1653 1654 /* SSE4.1 op helpers */ 1655 #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d) 1656 #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d) 1657 #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d) 1658 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB) 1659 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS) 1660 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD) 1661 1662 void glue(helper_ptest, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1663 { 1664 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1)); 1665 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1)); 1666 1667 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C); 1668 } 1669 1670 #define SSE_HELPER_F(name, elem, num, F) \ 1671 void glue(name, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) \ 1672 { \ 1673 if (num > 2) { \ 1674 if (num > 4) { \ 1675 d->elem(7) = F(7); \ 1676 d->elem(6) = F(6); \ 1677 d->elem(5) = F(5); \ 1678 d->elem(4) = F(4); \ 1679 } \ 1680 d->elem(3) = F(3); \ 1681 d->elem(2) = F(2); \ 1682 } \ 1683 d->elem(1) = F(1); \ 1684 d->elem(0) = F(0); \ 1685 } 1686 1687 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B) 1688 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B) 1689 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B) 1690 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W) 1691 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W) 1692 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L) 1693 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B) 1694 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B) 1695 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B) 1696 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W) 1697 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W) 1698 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L) 1699 1700 void glue(helper_pmuldq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1701 { 1702 d->Q(0) = (int64_t)(int32_t) d->L(0) * (int32_t) s->L(0); 1703 d->Q(1) = (int64_t)(int32_t) d->L(2) * (int32_t) s->L(2); 1704 } 1705 1706 #define FCMPEQQ(d, s) (d == s ? -1 : 0) 1707 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ) 1708 1709 void glue(helper_packusdw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1710 { 1711 Reg r; 1712 1713 r.W(0) = satuw((int32_t) d->L(0)); 1714 r.W(1) = satuw((int32_t) d->L(1)); 1715 r.W(2) = satuw((int32_t) d->L(2)); 1716 r.W(3) = satuw((int32_t) d->L(3)); 1717 r.W(4) = satuw((int32_t) s->L(0)); 1718 r.W(5) = satuw((int32_t) s->L(1)); 1719 r.W(6) = satuw((int32_t) s->L(2)); 1720 r.W(7) = satuw((int32_t) s->L(3)); 1721 *d = r; 1722 } 1723 1724 #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s) 1725 #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s) 1726 #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s) 1727 #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s) 1728 SSE_HELPER_B(helper_pminsb, FMINSB) 1729 SSE_HELPER_L(helper_pminsd, FMINSD) 1730 SSE_HELPER_W(helper_pminuw, MIN) 1731 SSE_HELPER_L(helper_pminud, MIN) 1732 SSE_HELPER_B(helper_pmaxsb, FMAXSB) 1733 SSE_HELPER_L(helper_pmaxsd, FMAXSD) 1734 SSE_HELPER_W(helper_pmaxuw, MAX) 1735 SSE_HELPER_L(helper_pmaxud, MAX) 1736 1737 #define FMULLD(d, s) ((int32_t)d * (int32_t)s) 1738 SSE_HELPER_L(helper_pmulld, FMULLD) 1739 1740 void glue(helper_phminposuw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 1741 { 1742 int idx = 0; 1743 1744 if (s->W(1) < s->W(idx)) { 1745 idx = 1; 1746 } 1747 if (s->W(2) < s->W(idx)) { 1748 idx = 2; 1749 } 1750 if (s->W(3) < s->W(idx)) { 1751 idx = 3; 1752 } 1753 if (s->W(4) < s->W(idx)) { 1754 idx = 4; 1755 } 1756 if (s->W(5) < s->W(idx)) { 1757 idx = 5; 1758 } 1759 if (s->W(6) < s->W(idx)) { 1760 idx = 6; 1761 } 1762 if (s->W(7) < s->W(idx)) { 1763 idx = 7; 1764 } 1765 1766 d->W(0) = s->W(idx); 1767 d->W(1) = idx; 1768 d->L(1) = 0; 1769 d->Q(1) = 0; 1770 } 1771 1772 void glue(helper_roundps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1773 uint32_t mode) 1774 { 1775 uint8_t old_flags = get_float_exception_flags(&env->sse_status); 1776 signed char prev_rounding_mode; 1777 1778 prev_rounding_mode = env->sse_status.float_rounding_mode; 1779 if (!(mode & (1 << 2))) { 1780 switch (mode & 3) { 1781 case 0: 1782 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1783 break; 1784 case 1: 1785 set_float_rounding_mode(float_round_down, &env->sse_status); 1786 break; 1787 case 2: 1788 set_float_rounding_mode(float_round_up, &env->sse_status); 1789 break; 1790 case 3: 1791 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1792 break; 1793 } 1794 } 1795 1796 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); 1797 d->ZMM_S(1) = float32_round_to_int(s->ZMM_S(1), &env->sse_status); 1798 d->ZMM_S(2) = float32_round_to_int(s->ZMM_S(2), &env->sse_status); 1799 d->ZMM_S(3) = float32_round_to_int(s->ZMM_S(3), &env->sse_status); 1800 1801 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { 1802 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1803 ~float_flag_inexact, 1804 &env->sse_status); 1805 } 1806 env->sse_status.float_rounding_mode = prev_rounding_mode; 1807 } 1808 1809 void glue(helper_roundpd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1810 uint32_t mode) 1811 { 1812 uint8_t old_flags = get_float_exception_flags(&env->sse_status); 1813 signed char prev_rounding_mode; 1814 1815 prev_rounding_mode = env->sse_status.float_rounding_mode; 1816 if (!(mode & (1 << 2))) { 1817 switch (mode & 3) { 1818 case 0: 1819 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1820 break; 1821 case 1: 1822 set_float_rounding_mode(float_round_down, &env->sse_status); 1823 break; 1824 case 2: 1825 set_float_rounding_mode(float_round_up, &env->sse_status); 1826 break; 1827 case 3: 1828 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1829 break; 1830 } 1831 } 1832 1833 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); 1834 d->ZMM_D(1) = float64_round_to_int(s->ZMM_D(1), &env->sse_status); 1835 1836 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { 1837 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1838 ~float_flag_inexact, 1839 &env->sse_status); 1840 } 1841 env->sse_status.float_rounding_mode = prev_rounding_mode; 1842 } 1843 1844 void glue(helper_roundss, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1845 uint32_t mode) 1846 { 1847 uint8_t old_flags = get_float_exception_flags(&env->sse_status); 1848 signed char prev_rounding_mode; 1849 1850 prev_rounding_mode = env->sse_status.float_rounding_mode; 1851 if (!(mode & (1 << 2))) { 1852 switch (mode & 3) { 1853 case 0: 1854 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1855 break; 1856 case 1: 1857 set_float_rounding_mode(float_round_down, &env->sse_status); 1858 break; 1859 case 2: 1860 set_float_rounding_mode(float_round_up, &env->sse_status); 1861 break; 1862 case 3: 1863 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1864 break; 1865 } 1866 } 1867 1868 d->ZMM_S(0) = float32_round_to_int(s->ZMM_S(0), &env->sse_status); 1869 1870 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { 1871 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1872 ~float_flag_inexact, 1873 &env->sse_status); 1874 } 1875 env->sse_status.float_rounding_mode = prev_rounding_mode; 1876 } 1877 1878 void glue(helper_roundsd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1879 uint32_t mode) 1880 { 1881 uint8_t old_flags = get_float_exception_flags(&env->sse_status); 1882 signed char prev_rounding_mode; 1883 1884 prev_rounding_mode = env->sse_status.float_rounding_mode; 1885 if (!(mode & (1 << 2))) { 1886 switch (mode & 3) { 1887 case 0: 1888 set_float_rounding_mode(float_round_nearest_even, &env->sse_status); 1889 break; 1890 case 1: 1891 set_float_rounding_mode(float_round_down, &env->sse_status); 1892 break; 1893 case 2: 1894 set_float_rounding_mode(float_round_up, &env->sse_status); 1895 break; 1896 case 3: 1897 set_float_rounding_mode(float_round_to_zero, &env->sse_status); 1898 break; 1899 } 1900 } 1901 1902 d->ZMM_D(0) = float64_round_to_int(s->ZMM_D(0), &env->sse_status); 1903 1904 if (mode & (1 << 3) && !(old_flags & float_flag_inexact)) { 1905 set_float_exception_flags(get_float_exception_flags(&env->sse_status) & 1906 ~float_flag_inexact, 1907 &env->sse_status); 1908 } 1909 env->sse_status.float_rounding_mode = prev_rounding_mode; 1910 } 1911 1912 #define FBLENDP(d, s, m) (m ? s : d) 1913 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP) 1914 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP) 1915 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP) 1916 1917 void glue(helper_dpps, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) 1918 { 1919 float32 iresult = float32_zero; 1920 1921 if (mask & (1 << 4)) { 1922 iresult = float32_add(iresult, 1923 float32_mul(d->ZMM_S(0), s->ZMM_S(0), 1924 &env->sse_status), 1925 &env->sse_status); 1926 } 1927 if (mask & (1 << 5)) { 1928 iresult = float32_add(iresult, 1929 float32_mul(d->ZMM_S(1), s->ZMM_S(1), 1930 &env->sse_status), 1931 &env->sse_status); 1932 } 1933 if (mask & (1 << 6)) { 1934 iresult = float32_add(iresult, 1935 float32_mul(d->ZMM_S(2), s->ZMM_S(2), 1936 &env->sse_status), 1937 &env->sse_status); 1938 } 1939 if (mask & (1 << 7)) { 1940 iresult = float32_add(iresult, 1941 float32_mul(d->ZMM_S(3), s->ZMM_S(3), 1942 &env->sse_status), 1943 &env->sse_status); 1944 } 1945 d->ZMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero; 1946 d->ZMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero; 1947 d->ZMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero; 1948 d->ZMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero; 1949 } 1950 1951 void glue(helper_dppd, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, uint32_t mask) 1952 { 1953 float64 iresult = float64_zero; 1954 1955 if (mask & (1 << 4)) { 1956 iresult = float64_add(iresult, 1957 float64_mul(d->ZMM_D(0), s->ZMM_D(0), 1958 &env->sse_status), 1959 &env->sse_status); 1960 } 1961 if (mask & (1 << 5)) { 1962 iresult = float64_add(iresult, 1963 float64_mul(d->ZMM_D(1), s->ZMM_D(1), 1964 &env->sse_status), 1965 &env->sse_status); 1966 } 1967 d->ZMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero; 1968 d->ZMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero; 1969 } 1970 1971 void glue(helper_mpsadbw, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 1972 uint32_t offset) 1973 { 1974 int s0 = (offset & 3) << 2; 1975 int d0 = (offset & 4) << 0; 1976 int i; 1977 Reg r; 1978 1979 for (i = 0; i < 8; i++, d0++) { 1980 r.W(i) = 0; 1981 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0)); 1982 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1)); 1983 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2)); 1984 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3)); 1985 } 1986 1987 *d = r; 1988 } 1989 1990 /* SSE4.2 op helpers */ 1991 #define FCMPGTQ(d, s) ((int64_t)d > (int64_t)s ? -1 : 0) 1992 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ) 1993 1994 static inline int pcmp_elen(CPUX86State *env, int reg, uint32_t ctrl) 1995 { 1996 int val; 1997 1998 /* Presence of REX.W is indicated by a bit higher than 7 set */ 1999 if (ctrl >> 8) { 2000 val = abs1((int64_t)env->regs[reg]); 2001 } else { 2002 val = abs1((int32_t)env->regs[reg]); 2003 } 2004 2005 if (ctrl & 1) { 2006 if (val > 8) { 2007 return 8; 2008 } 2009 } else { 2010 if (val > 16) { 2011 return 16; 2012 } 2013 } 2014 return val; 2015 } 2016 2017 static inline int pcmp_ilen(Reg *r, uint8_t ctrl) 2018 { 2019 int val = 0; 2020 2021 if (ctrl & 1) { 2022 while (val < 8 && r->W(val)) { 2023 val++; 2024 } 2025 } else { 2026 while (val < 16 && r->B(val)) { 2027 val++; 2028 } 2029 } 2030 2031 return val; 2032 } 2033 2034 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i) 2035 { 2036 switch ((ctrl >> 0) & 3) { 2037 case 0: 2038 return r->B(i); 2039 case 1: 2040 return r->W(i); 2041 case 2: 2042 return (int8_t)r->B(i); 2043 case 3: 2044 default: 2045 return (int16_t)r->W(i); 2046 } 2047 } 2048 2049 static inline unsigned pcmpxstrx(CPUX86State *env, Reg *d, Reg *s, 2050 int8_t ctrl, int valids, int validd) 2051 { 2052 unsigned int res = 0; 2053 int v; 2054 int j, i; 2055 int upper = (ctrl & 1) ? 7 : 15; 2056 2057 valids--; 2058 validd--; 2059 2060 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0); 2061 2062 switch ((ctrl >> 2) & 3) { 2063 case 0: 2064 for (j = valids; j >= 0; j--) { 2065 res <<= 1; 2066 v = pcmp_val(s, ctrl, j); 2067 for (i = validd; i >= 0; i--) { 2068 res |= (v == pcmp_val(d, ctrl, i)); 2069 } 2070 } 2071 break; 2072 case 1: 2073 for (j = valids; j >= 0; j--) { 2074 res <<= 1; 2075 v = pcmp_val(s, ctrl, j); 2076 for (i = ((validd - 1) | 1); i >= 0; i -= 2) { 2077 res |= (pcmp_val(d, ctrl, i - 0) >= v && 2078 pcmp_val(d, ctrl, i - 1) <= v); 2079 } 2080 } 2081 break; 2082 case 2: 2083 res = (1 << (upper - MAX(valids, validd))) - 1; 2084 res <<= MAX(valids, validd) - MIN(valids, validd); 2085 for (i = MIN(valids, validd); i >= 0; i--) { 2086 res <<= 1; 2087 v = pcmp_val(s, ctrl, i); 2088 res |= (v == pcmp_val(d, ctrl, i)); 2089 } 2090 break; 2091 case 3: 2092 if (validd == -1) { 2093 res = (2 << upper) - 1; 2094 break; 2095 } 2096 for (j = valids == upper ? valids : valids - validd; j >= 0; j--) { 2097 res <<= 1; 2098 v = 1; 2099 for (i = MIN(valids - j, validd); i >= 0; i--) { 2100 v &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i)); 2101 } 2102 res |= v; 2103 } 2104 break; 2105 } 2106 2107 switch ((ctrl >> 4) & 3) { 2108 case 1: 2109 res ^= (2 << upper) - 1; 2110 break; 2111 case 3: 2112 res ^= (1 << (valids + 1)) - 1; 2113 break; 2114 } 2115 2116 if (res) { 2117 CC_SRC |= CC_C; 2118 } 2119 if (res & 1) { 2120 CC_SRC |= CC_O; 2121 } 2122 2123 return res; 2124 } 2125 2126 void glue(helper_pcmpestri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2127 uint32_t ctrl) 2128 { 2129 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2130 pcmp_elen(env, R_EDX, ctrl), 2131 pcmp_elen(env, R_EAX, ctrl)); 2132 2133 if (res) { 2134 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); 2135 } else { 2136 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); 2137 } 2138 } 2139 2140 void glue(helper_pcmpestrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2141 uint32_t ctrl) 2142 { 2143 int i; 2144 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2145 pcmp_elen(env, R_EDX, ctrl), 2146 pcmp_elen(env, R_EAX, ctrl)); 2147 2148 if ((ctrl >> 6) & 1) { 2149 if (ctrl & 1) { 2150 for (i = 0; i < 8; i++, res >>= 1) { 2151 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; 2152 } 2153 } else { 2154 for (i = 0; i < 16; i++, res >>= 1) { 2155 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; 2156 } 2157 } 2158 } else { 2159 env->xmm_regs[0].Q(1) = 0; 2160 env->xmm_regs[0].Q(0) = res; 2161 } 2162 } 2163 2164 void glue(helper_pcmpistri, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2165 uint32_t ctrl) 2166 { 2167 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2168 pcmp_ilen(s, ctrl), 2169 pcmp_ilen(d, ctrl)); 2170 2171 if (res) { 2172 env->regs[R_ECX] = (ctrl & (1 << 6)) ? 31 - clz32(res) : ctz32(res); 2173 } else { 2174 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0)); 2175 } 2176 } 2177 2178 void glue(helper_pcmpistrm, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2179 uint32_t ctrl) 2180 { 2181 int i; 2182 unsigned int res = pcmpxstrx(env, d, s, ctrl, 2183 pcmp_ilen(s, ctrl), 2184 pcmp_ilen(d, ctrl)); 2185 2186 if ((ctrl >> 6) & 1) { 2187 if (ctrl & 1) { 2188 for (i = 0; i < 8; i++, res >>= 1) { 2189 env->xmm_regs[0].W(i) = (res & 1) ? ~0 : 0; 2190 } 2191 } else { 2192 for (i = 0; i < 16; i++, res >>= 1) { 2193 env->xmm_regs[0].B(i) = (res & 1) ? ~0 : 0; 2194 } 2195 } 2196 } else { 2197 env->xmm_regs[0].Q(1) = 0; 2198 env->xmm_regs[0].Q(0) = res; 2199 } 2200 } 2201 2202 #define CRCPOLY 0x1edc6f41 2203 #define CRCPOLY_BITREV 0x82f63b78 2204 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len) 2205 { 2206 target_ulong crc = (msg & ((target_ulong) -1 >> 2207 (TARGET_LONG_BITS - len))) ^ crc1; 2208 2209 while (len--) { 2210 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0); 2211 } 2212 2213 return crc; 2214 } 2215 2216 void glue(helper_pclmulqdq, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2217 uint32_t ctrl) 2218 { 2219 uint64_t ah, al, b, resh, resl; 2220 2221 ah = 0; 2222 al = d->Q((ctrl & 1) != 0); 2223 b = s->Q((ctrl & 16) != 0); 2224 resh = resl = 0; 2225 2226 while (b) { 2227 if (b & 1) { 2228 resl ^= al; 2229 resh ^= ah; 2230 } 2231 ah = (ah << 1) | (al >> 63); 2232 al <<= 1; 2233 b >>= 1; 2234 } 2235 2236 d->Q(0) = resl; 2237 d->Q(1) = resh; 2238 } 2239 2240 void glue(helper_aesdec, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2241 { 2242 int i; 2243 Reg st = *d; 2244 Reg rk = *s; 2245 2246 for (i = 0 ; i < 4 ; i++) { 2247 d->L(i) = rk.L(i) ^ bswap32(AES_Td0[st.B(AES_ishifts[4*i+0])] ^ 2248 AES_Td1[st.B(AES_ishifts[4*i+1])] ^ 2249 AES_Td2[st.B(AES_ishifts[4*i+2])] ^ 2250 AES_Td3[st.B(AES_ishifts[4*i+3])]); 2251 } 2252 } 2253 2254 void glue(helper_aesdeclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2255 { 2256 int i; 2257 Reg st = *d; 2258 Reg rk = *s; 2259 2260 for (i = 0; i < 16; i++) { 2261 d->B(i) = rk.B(i) ^ (AES_isbox[st.B(AES_ishifts[i])]); 2262 } 2263 } 2264 2265 void glue(helper_aesenc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2266 { 2267 int i; 2268 Reg st = *d; 2269 Reg rk = *s; 2270 2271 for (i = 0 ; i < 4 ; i++) { 2272 d->L(i) = rk.L(i) ^ bswap32(AES_Te0[st.B(AES_shifts[4*i+0])] ^ 2273 AES_Te1[st.B(AES_shifts[4*i+1])] ^ 2274 AES_Te2[st.B(AES_shifts[4*i+2])] ^ 2275 AES_Te3[st.B(AES_shifts[4*i+3])]); 2276 } 2277 } 2278 2279 void glue(helper_aesenclast, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2280 { 2281 int i; 2282 Reg st = *d; 2283 Reg rk = *s; 2284 2285 for (i = 0; i < 16; i++) { 2286 d->B(i) = rk.B(i) ^ (AES_sbox[st.B(AES_shifts[i])]); 2287 } 2288 2289 } 2290 2291 void glue(helper_aesimc, SUFFIX)(CPUX86State *env, Reg *d, Reg *s) 2292 { 2293 int i; 2294 Reg tmp = *s; 2295 2296 for (i = 0 ; i < 4 ; i++) { 2297 d->L(i) = bswap32(AES_imc[tmp.B(4*i+0)][0] ^ 2298 AES_imc[tmp.B(4*i+1)][1] ^ 2299 AES_imc[tmp.B(4*i+2)][2] ^ 2300 AES_imc[tmp.B(4*i+3)][3]); 2301 } 2302 } 2303 2304 void glue(helper_aeskeygenassist, SUFFIX)(CPUX86State *env, Reg *d, Reg *s, 2305 uint32_t ctrl) 2306 { 2307 int i; 2308 Reg tmp = *s; 2309 2310 for (i = 0 ; i < 4 ; i++) { 2311 d->B(i) = AES_sbox[tmp.B(i + 4)]; 2312 d->B(i + 8) = AES_sbox[tmp.B(i + 12)]; 2313 } 2314 d->L(1) = (d->L(0) << 24 | d->L(0) >> 8) ^ ctrl; 2315 d->L(3) = (d->L(2) << 24 | d->L(2) >> 8) ^ ctrl; 2316 } 2317 #endif 2318 2319 #undef SHIFT 2320 #undef XMM_ONLY 2321 #undef Reg 2322 #undef B 2323 #undef W 2324 #undef L 2325 #undef Q 2326 #undef SUFFIX 2327